
Fast Hardware Architectures for Supersingular

Isogeny Di�e-Hellman Key Exchange on FPGA

Brian Koziel1, Reza Azarderakhsh2, and Mehran Moza�ari-Kermani3

1Texas Instruments, kozielbrian@gmail.com.
2CEECS Dept and I-SENSE FAU, razarderakhsh@fau.edu.

3EME Dept, RIT, mmkeme@rit.edu.

Abstract. In this paper, we present a constant-time hardware imple-
mentation that achieves new speed records for the supersingular isogeny
Di�e-Hellman (SIDH), even when compared to highly optimized Haswell
computer architectures. We employ inversion-free projective isogeny for-
mulas presented by Costello et al. at CRYPTO 2016 on an FPGA. Mod-
ern FPGA's can take advantage of heavily parallelized arithmetic in Fp2 ,
which lies at the foundation of supersingular isogeny arithmetic. Further,
by utilizing many arithmetic units, we parallelize isogeny evaluations to
accelerate the computations of large-degree isogenies by approximately
57%. On a constant-time implementation of 124-bit quantum security
SIDH on a Virtex-7, we generate ephemeral public keys in 10.6 and
11.6 ms and generate the shared secret key in 9.5 and 10.8 ms for Al-
ice and Bob, respectively. This improves upon the previous best time in
the literature for 768-bit implementations by a factor of 1.48. Our 83-bit
quantum security implementation improves upon the only other imple-
mentation in the literature by a speedup of 1.74 featuring fewer resources
and constant-time.

Key Words: Post-quantum cryptography, elliptic curve cryptography,
isogeny-based cryptography, �eld programmable gate array

1 Introduction

Post-quantum cryptography (PQC) has been gaining a large amount of in-
terest in the wake of NIST's announcement to standardize post-quantum
cryptosystems for use by the US government [1]. Fears of the emergence of
a quantum computer that could break today's current cryptosystems and
expose a wealth of private information have been increasing the demand
for systems to be quantum-safe. Notably, Shor's algorithm [2] could be
used in conjunction with a quantum computer to quickly break elliptic
curve cryptography (ECC) and RSA. Fortunately, such computers do not
currently exist, but it is unclear how long this will last. As such, there is
a need to consider viable alternatives to today's popular cryptosystems
before the next major quantum computing breakthrough. Similar to ECC,
isogeny-based cryptography also uses points on an elliptic curve to provide

security. However, as opposed to security based on the di�culty to fac-
tor large point multiplications (which is the case for ECC), isogeny-based
cryptography has security based on the di�culty to compute isogenies be-
tween supersingular elliptic curves. Currently, this is considered di�cult
even for quantum computers. An isogeny can be thought of as a unique al-
gebraic map from one elliptic curve to another elliptic curve that satis�es
group homomorphism. With the emergence of the supersingular isogeny
Di�e-Hellman protocol from Jao and De Feo [3] in 2011, numerous aspects
of the protocol have also been studied. Most recently, Costello, Longa, and
Naehrig [4] have proposed projective isogeny formulas, which e�ectively
eliminate the numerous inversions in the SIDH protocol and allow for a
constant-time implementation. This is naturally immune to most types of
simple power analysis and timing analysis. Although the SIDH protocol
has been slower than other quantum-resistant schemes, it does feature
smaller keys, smaller signatures, and forward secrecy, making it a viable
candidate in NIST's PQC standardization workshop. In this paper, we
provide the �rst implementation of the projective isogeny formulas pre-
sented in [4] on recon�gurable hardware. This constant-time implemen-
tation features 83-bit and 124-bit quantum security. Field programmable
gate arrays (FPGA) can take advantage of a large amount of parallelism
in basic arithmetic in the extension �eld Fp2 as well as the computation of
large-degree isogenies. Aside from presenting a new speed record for SIDH,
the goal of this paper is to show that hardware architectures can take
advantage of the large amount of parallelism in SIDH and make it more
viable in NIST's PQC workshop. The main contributions of this paper can
be summarized as follows: (i) First constant-time SIDH implementation
on recon�gurable hardware, 83-bit and 124-bit quantum security levels,
utilizing projective isogeny formulas featured in [4], (ii) This SIDH imple-
mentation is approximately 50% faster than any other implementation in
the literature. (iii) New approach to parallelizing isogeny evaluations to
speed-up large-degree isogeny computations by over a factor of 1.5.

2 Preliminaries

Here, we brie�y discuss the basis for isogeny-based cryptography. The
isogeny-based Di�e-Hellman key exchange was �rst published by Rostovt-
sev and Stolbunov in [5]. This was originally de�ned over ordinary elliptic
curves and was thought to feature quantum resistance. However, Childs,
Jao, and Stolbunov [6] discovered a quantum algorithm to compute iso-
genies between ordinary curves in subexponential time. Later, David Jao,
Luca De Feo, and Jerome Plut adapted the isogeny-based key exchange
to be over supersingular elliptic curves in [3] and [7], which features no

2

Double Point

Multiplication

Public SIDH

Parameters

Alice s Private Keys

Isogeny Computation

Ephemeral Public

Key to Bob

Isogenous Curve

Image of Bob s Basis

Input Curve

Alice s

Basis

Bob s

Basis

Fig. 1. Alice's �rst round computations for the SIDH protocol

known quantum attack. As we review elliptic curve and isogeny theory,
we point the reader to [8] for a much more in-depth explanation of elliptic
curve theory.
SIDH Protocol: In the SIDH scheme, Alice and Bob decide on a smooth
isogeny prime p of the form `aA`

b
B · f ± 1 where `A and `B are small

primes, a and b are positive integers, and f is a small cofactor to make the
number prime. They further decide on a base supersingular elliptic curve
E0(Fq) where q = p2. Over this starting supersingular curve E0, Alice and
Bob pick the bases {PA, QA} and {PB, QB} which generate the torsion
groups E0[`

eA
A] and E0[`

eB
B], respectively, such that 〈PA, QA〉 = E0[`

eA
A]

and 〈PB, QB〉 = E0[`
eB
B]. The SIDH protocol proceeds as follows. Alice

and Bob each perform a double-point multiplication with two selected pri-
vate keys that span Z/`aZ and Z/`bZ, respectively. This generates a secret
kernel point on each side that is used to e�ciently perform a large-degree
isogeny. In the �rst round, Alice calculates φA : E → EA/〈mAPA+nAPA〉
and Bob calculates φB : E → EB/〈mBPB+nBPB〉, wherem and n are the
party's secret keys. For the �rst round, the opposite party's basis points
are pushed through the isogeny. At the end of the �rst round, Alice and
Bob each exchange their new supersingular elliptic curve and the basis
points of the opposite party on that new curve. With the exchanged in-
formation, Alice computes φBA : EB → EBA/〈mAφB(PA) + nAφB(PA)〉
and Bob computes φAB : EA → EAB/〈mBφA(PB)+nBφA(PB)〉. The two
now share isomorphic curves with a common j-invariant that can be used
as a shared secret. We illustrate the computations necessary for the �rst
round from the perspective of Alice in Figure 1. A round can essentially be
broken down into a double point multiplication and a large-degree isogeny
computation.
Optimizations to the SIDH Protocol: The supersingular isogeny
Di�e-Hellman protocol was �rst proposed by David Jao and Luca De Feo
in [3] in 2011. Since then it has been interesting to see how further papers

3

have improved the protocol. The two main papers that have improved
the protocol are [7] by De Feo, Jao, and Plut and [4] by Costello, Longa,
and Naehrig. Here, we highlight the main protocol optimizations that we
adapt. As introduced in [7], we utilize points on Montgomery curves [9]
and optimize arithmetic around them. We de�ne a Montgomery curve, E,
as the set of all points (x, y) that satisfy E(A,B) : By2 = x3 + Ax2 + x
and a point at in�nity. When the value A24 = (A+ 2)/4 is known, these
curves feature extremely fast point arithmetic along their Kummer line,
(x, y) → (X : Z), where x = X/Z. Isogenies still work for this represen-
tation because P and −P generate the same set subgroup of points. This
reduces the total number of computations as the y-coordinate does not
need to be updated for point arithmetic or when the point is pushed to
a new curve by evaluating an isogeny. Projective isogeny formulas over
Montgomery curves were introduced in [4]. These formulas projectivize
the curve equation with a numerator and denominator, similar to projec-
tive point arithmetic. We de�ne a projective Montgomery curve, Ê, as the
set of all points (x, y) that satisfy Ê(Â,B̂,Ĉ) : B̂y2 = Ĉx3 + Âx2 + Ĉx and
a point at in�nity. In this representation, the corresponding a�ne Mont-
gomery curve would have coe�cients A = Â/Ĉ and B = B̂/Ĉ. To perform
a double point multiplication, we specify that one of Alice and Bob's se-
cret keys is 1, as introduced in [7]. Costello et al. [4] also greatly simpli�ed
the starting parameters for SIDH by proposing to use the starting Mont-
gomery curve E0/Fp2 : y2 = x3 +x. By specifying points in the base �eld
and trace-zero torsion subgroup, the �rst round of the SIDH protocol can
be performed as a Montgomery [9] ladder followed by a point addition,
with all operations in Fp. The second round of the protocol involves a
double-point multiplication with elements in Fp2 . For this, we utilize the
3-point ladder proposed in [7] that computes P + mQ in log2(m) steps.
Each step requires 2 point additions and 1 point doubling. We closely fol-
low the projective isogeny formulas presented in [4] for isogenies of degree
`Alice = 4 and `Bob = 3. For the �rst round, we push the Kummer coordi-
nates of the other party's basis P , Q, and Q−P through the large-degree
isogeny rather than the projective version of P and Q to remove a point
subtraction before the 3-point ladder. As proposed by [10], large-degree
isogenies can be decomposed into a chain of smaller degree isogeny com-
putations and computed iteratively. From a base curve E0 and point R of
order `e, we compute a chain of `-degree isogenies: Ei+1 = Ei/〈`e−i−1Ri〉,
φi : Ei → Ei+1, Ri+1 = φi(Ri). This problem can be visualized as an
acylic graph, which is shown in Figure 3 in Section 4.3. In Figure 4 In
Section 4.3, we further illustrate a sample strategy to compute each of the

4

Table 1. SIDH Public Parameters

Curve: E0/Fp2 : y2 = x3 + x

Prime
Classical/Quantum

PA PBSecurity (bits)

p503 = 22503159 − 1 125/83 [3159](14,
√
143 + 14) [2250](6,

√
63 + 6)

p751 = 23723239 − 1 186/124 [3239](11,
√
113 + 11) [2372](6,

√
63 + 6)

`-degree isogenies at the peak of the triangle by saving points at certain
nodes to a point queue.
SIDH Protocol Parameters: To make our implementation comparable
to the �rst hardware implementation of a�ne SIDH in [11] and the �rst
software implementation of projective SIDH in [4], we chose to test our
architecture over the primes p503 = 22503159 − 1 and p751 = 23723239 − 1.
These primes o�er 83 and 124 bits of quantum security, respectively.

Similar to the strategy proposed by Costello et al. [4], we begin with
a simple Montgomery curve, technically also a short Weierstrass curve:
E0/Fp2 : y2 = x3 + x. To determine generator points for the torsion
subgroups `eAA and `eBB , we again turn to Costello et al.'s method [4].
For the `eAA -torsion points PA and QA, we �nd a point PA ∈ E0(Fp)[`

eA
A]

as [f`eBB](z,
√
z3 + z), where z is the smallest positive integer such that√

z3 + z ∈ Fp and PA has order `eAA . We apply a distortion map over
E0 to PA to �nd QA such that it is the endomorphism τ : E0(Fp2) →
E0(Fp2),(x+ 0i, y+ 0i)→ (−x+ 0i, 0 + iy). Thus, QA = τ(PA). The `eBB -
torsion points are found in a similar matter. We �nd PB ∈ E0(Fp)[`

eB
B]

as [f`eAA](z,
√
z3 + z), where z is the smallest positive integer such that√

z3 + z ∈ Fp and PB has order `eBB . Lastly, QB = τ(PB). For the selected
primes, our starting parameters are given in Table 1.

3 Proposed Architectures for Isogeny Computations

In this section, we investigate the design of an SIDH core, focusing on
optimizing �nite-�eld addition and multiplication. The goal is to design a
scalable architecture that features a secure and e�cient implementation
of SIDH. The proposed projective SIDH formulas presented in [4] make
it reasonable to exclude a dedicated inversion module. Further, the sim-
pli�cation of the SIDH parameters allow for a reduction of the number of
registers to store the SIDH parameters as well as the ability to perform
Montgomery's powering ladder [9] in a base �eld rather than the 3-point
di�erential Montgomery ladder over a quadratic �eld �rst proposed in [3].
In fact, the Montgomery ladder used to perform the �rst double point mul-
tiplication for both Alice and Bob may demonstrate a slight advantage to

5

Public SIDH

Parameters Controller

ALU

Adder/

Subtractor

Multiplier/

Squarer

Dual-Port

Block

RAM

ROM

Fig. 2. Proposed High-level Architecture of an SIDH Core

implementing a more e�cient squaring unit. However, this squaring unit
would not see much action as it is only used in the ladder of the �rst
round of the key exchange and inversion. A dedicated squaring unit was
not implemented for this paper, but should be investigated in the future.
The high level design of the isogeny core is depicted in Figure 2. This
core features a single adder unit, multiplier unit with replicated multi-
pliers, dual-port RAM �le for registers, and a program ROM �le for the
controls. The RAM �le contained 256 values in Fp, or 256 m-bit entries.
For our implementations, m = 512 and m = 752 for the choices of p503
and p751, noted in Section 2. The RAM �le contains constants for the
parameters of the protocol, intermediate values within the protocol, and
intermediate values for Fp2 computations. The major constants that are
initially put into the RAM �le are the constants 0, 1, 2, 4−1, and 6, the
base Montgomery curve coe�cients A, B, and A24, and the basis points
PA, QA, QA−PA, PB, QB, QB−PB. There are more intermediate values
necessary for higher key sizes as the graph traversal of the large degree
isogeny is more expansive, but 256 values is more than enough, even for
768-bit SIDH, which allows more �exibility and optimization with rou-
tines. The program ROM contains the controls for the adder, multiplier,
and RAM for every cycle for various SIDH routines (listed in Section 4.4).
The size of the program ROM unit depends on the number of replicated
multipliers as more multipliers will allow for fewer clock cycles. A stall
counter was added to the control unit to diminish the impact of stall
cycles that �ll the program ROM.

3.1 Finite Field Adder

Finite-�eld addition computes the sum C = A + B, where A,B,C ∈ Fp.
If the sum C is greater than p, then there is a reduction by performing
the subtraction C = C − p to have C ∈ Fp. A similar situation occurs
for �nite-�eld subtraction, C = A − B, where A,B,C ∈ Fp. An adder

6

can be used as a subtractor if the second operands input bits are �ipped.
The input operands to our adder/subtractor were selected with two 3:2
multiplexers. Operand 1 could be a value from port A of the RAM, the
result from the adder/subtractor, or result from the multiplier. Operand 2
could be a value from port B of the RAM, zero, or the prime. Based on the
interface between the RAM unit and the adder/subtractor module, which
incurs delays from the register �le logic and the 3:2 multipliexer into the
adder/subtractor module, we decided to split the addition/subtraction
into multiple cycles by cascading multiple, smaller adder/subtractors.
We tried to match the critical path delay of the adder with that of the
multiplier to ensure that both modules operated e�ciently. Our smaller
adder/subtractor units were based around 256-bit addition and subtrac-
tion. In practice, we utilized 252-bit and 251-bit adder/subtractor units
for p503 and one 250-bit and two 251-bit adder/subtractor units for p751.
Xilinx's default IP was used to create these blocks. Partial sums and
operands were pipelined to achieve a high-throughput adder/subtractor.
An addition or subtraction was �nished in 2 cycles for p503 and 3 cycles
for p751.

3.2 Field Multiplier

Finite-�eld multiplication computes the product C = A×B, whereA,B,C ∈
Fp. Since the product is double the size of the inputs, a reduction must be
performed so that the product is still within the �eld. The two known mul-
tiplier architectures targeting smooth isogeny primes are in [12] and [11].
Both utilize Montgomery [13] multiplication and reduction to e�ciently
perform the large modular multiplications. Montgomery multiplication
performs a modular multiplication by transforming integers tom-residues,
or the Montgomery domain, and performing multiplications with this rep-
resentation. Montgomery multiplication converts time-consuming trial di-
visions to shift operations, which is simple to do in hardware. At the end of
computations, the result can be converted out of the Montgomery domain
with a single Montgomery multiplication. Algorithm 1 demonstrates the
Montgomery reduction procedure. In [12], the authors present an e�cient
method for modular multiplication over smooth isogeny primes of the form
p = 2 · 2a3b − 1 by using the representation A = a12

a3b + a22
a/23b/2 + a3,

determining smaller partial products, and then performing an e�cient
division with some precalculations. The results appear interesting for a
software implementation, achieving a 62% speed-up in modular reduc-
tion and 43% speed-up in modular multiplication. However, the hardware
architecture for the multiplication algorithm appears to su�er. For a 768-
bit prime, the Virtex-6 architecture required 11,924 registers and 12,790

7

Algorithm 1 High-Radix Montgomery Multiplication Algorithm [15]

Input: M = p, M ′ = −M−1mod p, A =
∑m+2

i=0 (2k)iai, ai ∈ {0, 1 . . . 2k − 1}, am+2 = 0

B =
∑m+1

i=0 (2k)ibi, bi ∈ {0, 1 . . . 2k − 1}, M = (M ′ mod 2k)M =
∑m+1

i=0 (2k)imi

A,B < 2M ; 4M < 2km, R = 2dlog2pe

1. S0 = 0
2. for i = 0 to m+ 2 do

3. qi = (Si) mod 2k

4. Si+1 = (Si + qiM)/2k + aiB
5. end for

6. return Sm+3 = A×B ×R−1 mod M

lookup-tables, while operating at only 31 MHz and taking 236 cycles per
modular multiplication. The other modular multiplier in [11] featured a
systolic Montgomery multiplier based on [14]. Using a 216radix for a 1024-
bit modular multiplication, the basic multiplier proposed in [14], operates
at a clock frequency of 101.86 MHz, requires 5,709 slices and 131 DSP48's,
and performs a modular multiplication in 199 clock cycles, all on a Virtex2
Pro. Further, this multiplier can perform 2 multiplications simultaneously.
This already runs rings over the multiplier proposed in [12]. The tar-
get of this implementation is a high-throughput and fast multiplier. The
implementation in [11] improved this systolic multiplier to allow higher
throughput by featuring interleaving multiplications approximately 2/3 of
the multiplication latency as well as one fewer stage in the systolic array.
Thus, this allows for a 99 cycle multiplication and 68 cycle interleaving
for a 512-bit multiplication.

Ultimately, we chose to go with the same interleaved systolic Mont-
gomery multiplier proposed in [11]. This multiplier utilizes the high-radix
Montgomery multiplication procedure, which is shown in Algorithm 1. As
was originally proposed in [14], we can use a systolic architecture to per-
form the iterative computations in Algorithm 1. Consider a systolic array
of m+ 2 processing elements that each compute Si+1 = (Si + qimj)/2

k +
aibj , where j is the number of the processing element in the array. We
can e�ectively setup a �pump� that pushes ai and qi = (Si)mod 2k from
processing element j to processing element j + 1. Thus, to perform the
high-radix Montgomery multiplication, we start by pushing a 0 through
the systolic arrays so that q0 = 0. Following that, we push ai through the
processing elements, such that it performs aibj and adds that result to
(Si + qimj)/2

k in each processing element. Essentially, each processing el-
ement performs qimj and aibj in parallel, and then performs a 4-operand

8

addition with qimj , aibj , Si, and a carry. After m + 3 cycles, the least
signi�cant k-bit word of the result is ready. The last word is ready after
3m + 7 cycles. Interestingly, for a given multiplication, only half of the
processing elements are used on a speci�c cycle. Thus, we can use a sin-
gle multiplier architecture to handle two multiplications simultaneously,
at the cost of multiplexers on the input and output that cycle between
an even or odd multiplication. The design in [11] features an interleaved
version of [14]. As one multiplication is �nishing up, the earlier processing
elements are no longer in use. Thus, we can interleave multiplications ev-
ery 2m+ 3 cycles by gradually �lling in these processing elements whose
previous task just �nished. As is also noted in [11], M̄ = M since M ′ = 1
for SIDH primes of the form 2ea`ebb f−1, which is applicable to both of our
test primes. This simpli�cation reduces the total size of the systolic ar-
ray by one processing element and reduces the latency by 3 cycles. Since
a DSP48 block e�ectively computes up to an 18x18 multiplication, we
decided to make our Montgomery multiplier with radix 216. Using this,
we calculated the latency of multiplication and interleaving. For p503, a
multiplication required 99 cycles and multiplications could be interleaved
68 cycles into a multiplication. For p751, a multiplication required 144
cycles and multiplications could be interleaved every 98 cycles. We also
implemented a larger multiplier unit that featured replicated multiplier
units. Multiplications are the main bottleneck in the �nite-�eld operations
given by the smooth isogeny primes. As such, we implemented a �rst-in-
�rst-out circular bu�er. Multiplication instructions are issued cyclically
starting from multiplier 0 to multiplier 2n− 1 for n dual multipliers. This
comes at the cost of a large multiplexer of size 2n : log22n for the output.

4 Parallelizing SIDH

This section details our attempt to maximize the throughput of our archi-
tecture throughout the SIDH protocol. Since we used the same even-odd
multiplier as [11], we scheduled our instructions with a greedy algorithm
that incurs stalls if a multiplication is not on the right even-odd cycle.

4.1 Scheduling

Our program ROM features many di�erent routines such as a small scalar
point multiplication or isogeny evaluation of degree 4. Each instruction is
26 bits long and proceeds as follows: bits 0-7 determine the address for port
A of the RAM, bits 8-15 determine the address for port B of the RAM,
bit 16 signals a write to port A, bits 17-19 indicate the adder operation,
bit 20 indicates a read from both RAM ports, bits 21-22 indicate multi-
plier operation, bits 23 and 24 indicate if operand A and B, respectively,

9

should point to the address of the �nal point in the isogeny point queue,
and bit 25 indicates if the previous bits are a stall counter. We utilized
a greedy algorithm to assemble our own assembly code that consists of
addition, subtraction, multiplication, and squaring in Fp or Fp2 to 26-bit
aligned instructions. It is assumed that every routine starts on an even
cycle. Since a store is the �nal instruction in a routine, we also reset the
multiplier even_odd at the last cycle of a routine so that the next routine
starts on an even cycle from the multiplier's perspective. Every instruc-
tion was compiled in order, so if an instruction needed the result from
a previous instruction, then pipeline stalls were incurred until that value
was ready. The greedy algorithm to schedule each operation would check
that the RAM, addition, or multiplier unit were available for the particu-
lar instruction. For instance, an addition in Fp could be scheduled if the
memory unit at time t, addition unit at time t + mem_latency,addition
unit at time t + mem_latency+add_latency, and memory unit at time
t+mem_latency+ 2 ∗ add_latency were each available, as the entire op-
eration must go through that exact sequence. Based on the speci�cations
of the dual-port RAM unit, memory load operations require 2 cycles and
memory write operations require 1 cycle. The add latency is 2 cycles for
p503 and 3 cycles for p751. The multiplication and multiplication interleave
delays are 99 cycles and 68 cycles for p503, respectively, and 144 cycles and
98 cycles for p751, respectively. If a multiplication occurred on the wrong
even_odd cycle, we reschedule the operations by pushing the multiplica-
tion a single cycle forward, and pushing any previous instructions that
are not a load or multiply by 1 or more cycles, according to the algorithm
provided by [11].

4.2 Extension Field Arithmetic

As was previously stated, SIDH operates in the extension �eld Fp2 . For
this extension �eld, we use the irreducible polynomial x2 + 1, applicable
to SIDH primes of the form 2ea`ebb f − 1. With this, we propose reduced
arithmetic in Fp2 based on fast arithmetic in Fp. These equations were
made in a Karatsuba-like fashion to reduce the total number of mul-
tiplications and squarings. Let i =

√
−1 be the most signi�cant Fp in

Fp2 . Let A,B ∈ Fp2 and a0, b0, a1, b1 ∈ Fp, where A = a0 + ia1 and
B = b0 + ib1 Then we de�ne the extension �eld arithmetic Fp2 in terms
of Fp as: A + B = a0 + b0 + i(a1 + b1), A − B = a0 − b0 + i(a1 − b1),
A × B = (a0 + a1)(b0 − b1) + a0b1 − a1b0 + i(a0b1 + a1b0), A

2 = (a0 +
a1)(a0 − a1) + i2a0a1, A

−1 = (a0 − ia1)(a20 + a21)
−1. Based on these rep-

resentations, parallel calculations could easily be performed for a single
operation in Fp2 . For instance, three separate multiplications in Fp could

10

be carried out simultaneously for the calculation of a multiplication in Fp2 .
With other non-dependent instructions in the scheduling, many multipli-
ers can be used in parallel. Unfortunately, an inversion in Fp was di�cult
to parallelize, and su�ered as a result. We utilized a k-ary method with
k = 4 to perform Fermat's little theorem for inversion. We were able to
parallelize the generation of the windows 1, 2, 3, · · · , 2k−1, but after that,
the inversion was done serially. k squarings were done in serial followed by
a multiplication. The inversion added many lines to the program ROM,
and was di�cult to parallelize, showing that there may still be some merit
to having a dedicated inversion unit.

4.3 Scheduling Isogeny Computations and Evaluations

Large-degree isogeny calculations were performed by traversing a large
directed acyclic graph in the shape of a triangle to the leaves, where
a smaller degree isogeny was computed. This is illustrated in Figure 3.
From a node in the graph, a point multiplication by ` moves to the left
and an evaluation of a `-isogeny moves to the right. Based on the cost
of an isogeny evaluation and point multiplication, there exists an optimal
strategy that traverses the graph to the leave with the minimal compu-
tational cost. Notably, an optimal strategy is composed of two optimal
sub-strategies. Thus, by recursively optimizing sub-strategies, the over-
all strategy is determined. We calculated the optimal strategy with the
Magma code provided by [4]. In this code, we used the relative ratio of a
single point multiplication by ` and half of a single `-isogeny evaluation to
create an optimal strategy that emphasized point evaluations. In our im-
plementation, we utilize a recursive function to compute the large-degree
isogeny with an optimal strategy. We utilized a look-up-table in ROM
to hold the optimal strategy and e�ciently traverse the acyclic graph. A
queue was used to keep track of multiple points on the current curve. As
isogenies were computed, these points were pushed through the isogenous
mapping to the corresponding point on the new curve. As a method for
further parallelization, we noticed that isogeny evaluations have typically
been carried out iteratively. Thus, we attempted to parallelize the evalu-
ations by adding additional isogeny evaluation functions for when there
were 2 points, 3 points, · · · , up to 9 points in the queue. Speci�cally,
there were no data dependencies between isogeny evaluations of any of
the points in the queue. Thus, our assembly code reordered many instruc-
tions in a row that had no limiting data dependency, similar to unrolling
the loop in a software implementation. We unrolled a max of 6 iterations
of the loop at a time to ensure that enough hardware registers were avail-
able to hold intermediate values. We found this greatly increase the speed

11

Point mult

by

Apply -

isogeny

Input point

Get -isogeny

Point in queue

Fig. 3. Acyclic graph structure for performing isogeny computation of `6.

 -point mult (x6) -iso eval (x3) -iso eval (x2)

 -iso eval (x2) -iso eval

 -point mult (x2) -iso eval (x2)

 -point mult

 -iso eval

Fig. 4. Performing an isogeny computation of `6 with a sample strategy and parallel
isogeny evaluations.

of our isogeny computations. For instance, this method reduced the total
time to compute all 4 large-degree isogenies from 7.15 million cycles to
4.54 million cycles for p751 and 4 replicated multipliers. We provide an
example of isogeny evaluation parallelization in Figure 3. Consider com-
puting an `6-degree isogeny. Following an `-degree isogeny computation,
each point in the point queue is pushed through the isogenous mapping.
We do this in parallel to utilize our hardware results more e�ectively. The
parallelization is much more evident in larger degree isogeny computa-
tions. For instance, there is an average of 4.2 points in Alice's queue after

12

each isogeny computation in our p751 implementation. Parallelization of
isogeny evaluation could also be applicable to multi-core CPU implemen-
tations of SIDH. Our particular hardware implementation was able to
parallelize the isogeny evaluations because of the number of multipliers
that were readily available. In a software implementation, the multiplica-
tion and addition arithmetic might be complex and consume most of the
arithmetic units. However, because there is no data dependency, the task
to push all of the points through the isogeny could be divided among dif-
ferent cores. For instance, consider pushing 8 points through an isogenous
mapping in a quad-core CPU. Each core could evaluate an isogeny for 2
points in the queue to better take advantage of resources. Of course, there
would be overhead in distributing the task, but a nice speedup could be
achieved when there are several points in the queue.

4.4 Total Cost of Routines

Here, we break up the relative costs of routines within our implementation
of the SIDH protocol. Table 2 contains the results of various routines,
which closely follows the formulas provided in [4]. Ã, S̃, and M̃ refer to
addition, squaring, and multiplication, respectively, in Fp2 . Routines with
a note of (Fp) count operations in Fp.

� Mont. Ladder Step (Fp): We perform a single step of the Montgomery
ladder [9] in Fp, which requires 1 point addition and 1 point doubling.

� 3-point Ladder Step: We perform a single step of the 3-point Mont-
gomery ladder [7], which requires 2 point additions and 1 point dou-
bling.

� Mont Quadruple/Triple: We perform a scalar point multiplication by
4 in the case of quadrupling and scalar point multiplication by 3 in
the case of tripling.

� Get ` Isog : We compute an isogeny of degree `. Alice operates over
isogenies of degree 4 and Bob operates over isogenies of degree 3.

� Eval ` Isog (x times): We push points through the isogenous mapping
from their old curve to their new curve. This code is unrolled x times
from 1 point to 9 points.

� Fp2 inversion (Fp): We compute the inverse of an element using Fer-
mat's little theorem.

5 FPGA Implementations Results and Discussion

The SIDH core was compiled with Xilinx Vivado 2015.4 to a Xilinx Virtex-
7 xc7vx690t�g1157-3 board. All results were obtained after place-and-
route. The area and timing results of our SIDH core are shown in Table

13

Table 2. Cost of major routines for p751

Routine
Ops in Fp2 #ops in Latency for n mults (cc)

(Ã) (S̃) (M̃) protocol 2 4 6 8 10

Mont. Ladder Step (Fp) 9 4 5 751 619 495 495 495 495

3-point Ladder Step 14 6 9 751 2181 1329 1120 972 908

Mont Quadruple 11 4 8 1276 1874 1306 1151 1151 1151

Mont Triple 15 5 8 1622 1954 1289 1124 1145 1145

Get 4 Isog 7 5 0 370 586 386 367 363 363

Eval 4 Isog 6 1 9 14 1655 1461 1225 1221 1147

Eval 4 Isog (3 times) 18 3 27 255 4537 2855 2104 1917 1642

Eval 4 Isog (5 times) 30 5 45 98 7427 4212 3036 2489 2215

Eval 4 Isog (7 times) 42 7 63 16 10543 6293 4674 4168 3716

Get 3 Isog 8 3 3 478 833 496 471 434 434

Eval 3 Isog 2 2 6 12 1252 1001 812 810 734

Eval 3 Isog (3 times) 6 6 18 309 3442 2026 1461 1306 1103

Eval 3 Isog (5 times) 10 10 30 112 5638 3123 2229 1776 1535

Eval 3 Isog (7 times) 14 14 42 72 7972 4411 3154 2667 2389

Fp2 Inversion (Fp) 2 757 196 4 142307 142059 142059 141973 141973

Table 3. Implementation results of SIDH architectures on a Xilinx Virtex-7 FPGA

Type
Area Time

SIDH/s# # # # # # Freq Latency Total
Mults FFs LUTs Slices DSPs BRAMs (MHz) (cc× 106) time (ms)

p503

6 26,659 19,882 8,918 192 40 181.4 3.80 20.9 47.8
8 32,541 23,404 11,205 256 37.5 186.8 3.63 19.4 51.5
10 39,446 28,520 12,962 320 34.5 175.9 3.48 19.8 50.5

p751

6 36,728 25,975 11,801 282 47 177.3 8.21 46.3 21.6
8 46,857 32,726 15,224 376 45.5 182.1 7.74 42.5 23.5
10 56,979 40,327 18,094 470 44 172.6 7.41 42.9 23.3

3. We focused on 3-5 replicated multipliers in our design to ensure the
parallelism in SIDH could be taken advantage of. The implementation
was optimized to reduce the net delay to maximize the clock frequency.
These are constant-time results. Our SIDH parameters are discussed in
Section 2. As these results show, the architectures continue to reduce the
total number of clock cycles for SIDH, even at 10 multipliers. This is
primarily a result of the parallelism achieved in isogeny evaluation and
the 3-point ladder. Furthermore, the architecture appears fairly scalable.
Moving from a 503-bit prime to a 751-bit prime did not have much impact
on the maximum frequency of the device and added a small proportion
of additional resources. For 5 multipliers under the 751-bit prime, ap-
proximately 16.71% of the Virtex-7's slices were occupied. Many more

14

Table 4. Hardware comparison of SIDH architectures on a Virtex-7 with 3 replicated
multipliers

Work
Area Time

Prime # # # # # Freq Latency Total
(bits) FFs LUTs Slices DSPs BRAMs (MHz) (cc× 106) time (ms)

Koziel et al. [11] 511 30,031 24,499 10,298 192 27 177 5.967 33.7

This Work 503 26,659 19,882 8,918 192 40 181.4 3.80 20.9

Table 5. Comparison to the software implementations of SIDH over 512-bit keys

Work Platform
Smooth Isogeny

Time (ms)
Alice Bob Alice Bob Total

Prime Rnd 1 Rnd 1 Rnd 2 Rnd 2 Time

Jao et al.[3] 2.4 GHz Opt. 225331617− 1 365 318 363 314 1360

Jao et al.[7] 2.4 GHz Opt. 22583161186− 1 28.1 28.0 23.3 22.7 102.1

Azarderakhsh et al.[16] 4.0 GHz i7 22583161186− 1 - - - - 54.0

Koziel et al. [11] Virtex-7 225331617− 1 9.35 8.41 8.53 7.41 33.70

This Work (M = 2× 4) Virtex-7 22503159 − 1 4.83 5.25 4.41 4.93 19.42

resources could be used to attempt more parallelization, but the clock
frequency may su�er as a result, which is evident in our implementations
of 5 replicated dual-multipliers.
Comparison to Previous Works: The only other hardware implemen-
tation is [11], which served as an introductory look into the SIDH protocol
on hardware. We provide a rough comparison for 3 replicated multipliers
at the 512-bit security level. Our architecture performs an entire SIDH
key-exchange approximately 1.61 times faster than that of [11]. This is
most likely a result of using the new projective isogeny formulas as well as
parallelism in the isogeny evaluations. In terms of area, our architecture
requires about 15% less �ip-�ops, look-up-tables, and slices, but requires
about 1.5 times as many 36k block RAM modules.

Overall, this is to be expected as our architecture does not include an
inversion unit. In [11], the Fp2 inversion required about 1886 cycles for
each isogeny computation. Our isogeny computations did not require this
expensive operation and we were able to parallelize the projective isogeny
evaluations that are more complex than their a�ne isogeny couterparts.
The di�erence in prime sizes does not make much of a di�erence for area
because both are based on a radix 216 multiplier. Most importantly, our
implementation is constant-time and the previous one is not, which pro-
vides security against simple power analysis and timing attacks. Next, we
look at the overall speed of this implementation compared to the state-

15

Table 6. Comparison to software implementations of SIDH over 768-bit keys

Work Platform
Smooth Isogeny

Time (ms)
Alice Bob Alice Bob Total

Prime Rnd 1 Rnd 1 Rnd 2 Rnd 2 Time

Jao et al.[7] 2.4 GHz Opt. 22583161186− 1 65.7 54.3 65.6 53.7 239.3

Azarderakhsh et al.[16] 4.0 GHz i7 238632422− 1 - - - - 133.7

Costello et al. [4] 3.4 GHz i7 23723239 − 1 15.0 17.3 13.8 16.8 62.9

This Work (M = 2× 4) Virtex-7 23723239 − 1 10.6 11.6 9.5 10.8 42.5

of-the-art, shown in Tables 5 and 6, which demonstrate the fastest SIDH
implementations over approximately 512 and 768-bit keys. These feature
approximately 85 and 128-bits of quantum security, respectively. We com-
pare against our implementations with 4 replicated dual-multipliers, which
featured the fastest times for our results. These benchmarks have shown
that the total time of the SIDH protocol has continued to drop since its
inception by Jao and De Feo in [3]. Our 512-bit implementation operated
approximately 74% faster than the previous best implementation in hard-
ware in [11]. These results are approximately 48% faster than those of [4],
despite the powerful nature of Haswell architectures. Smaller SIDH imple-
mentations on ARM also exist [17], but these utilize far fewer resources
so it is di�cult to make a fair comparison.

6 Conclusion

Overall, this paper served as the �rst constant-time hardware implemen-
tation of the supersingular isogeny Di�e-Hellman protocol over projective
isogeny formulas. As our results show, our architecture is scalable and is
even faster than the previously fastest implementations of the protocol
on Haswell PC architectures. Hardware can take advantage of much more
parallelism in Fp2 operations and isogeny evaluations over standard soft-
ware. Our implementation runs at 48% faster than a Haswell architecture
running an optimized C version of the same SIDH protocol. By remov-
ing the multitude of inversions in the protocol, this new implementation
features a faster constant-time performance with less resources than the
previous best hardware implementation in the literature. Isogeny-based
cryptography represents one possible solution to the impending quantum
computing revolution because it features forward-secrecy, small keys, and
resembles current protocols based on classical ECC.

7 Acknowledgment
This material is based upon work supported by the NSF CNS-1464118
and NIST 60NANB16D246 grants awarded to Reza Azarderakhsh.

16

References

1. Chen, L., and Jordan, S.: Report on Post-Quantum Cryptography, (2016) NIST
IR 8105.

2. Shor, P.W.: Algorithms for Quantum Computation: Discrete Logarithms and Fac-
toring. In: 35th Annual Symposium on Foundations of Computer Science (FOCS
1994). 124�134 (1994)

3. Jao, D. and De Feo, L.: Towards Quantum-Resistant Cryptosystems from Su-
persingular Elliptic Curve Isogenies. In: Post-Quantum Cryptography�PQCrypto
2011. LNCS 19�34 (2011)

4. Costello, C., Longa, P., and Naehrig, M.: E�cient Algorithms for Supersingular
Isogeny Di�e-Hellman. In: Advances in Cryptology - CRYPTO 2016 - 36th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 14-18,
2016, Proceedings, Part I. Volume 9814 of Lecture Notes in Computer Science.
572�601 (2016)

5. Rostovtsev, A., Stolbunov, A.: Public-Key Cryptosystem Based on Isogenies.
IACR Cryptology ePrint Archive 2006, 145 (2006)

6. Childs, A., and Jao, D., and Soukharev, V.: Constructing Elliptic Curve Isogenies
in Quantum Subexponential Time (2010)

7. De Feo, L., Jao, D., and Plut, J.: Towards Quantum-Resistant Cryptosystems from
Supersingular Elliptic Curve Isogenies. Journal of Mathematical Cryptology 8(3),
209�247 (Sep. 2014)

8. Silverman, J.H.: The Arithmetic of Elliptic Curves. Volume 106 of GTM. Springer,
New York (1992)

9. Montgomery, P. L.: Speeding the Pollard and Elliptic Curve Methods of Factor-
ization. Mathematics of computation, 243�264 (1987)

10. Couveignes, J.-M.: Hard Homogeneous Spaces. Cryptology ePrint Archive, Report
2006/291 (2006)

11. Koziel, B., Azarderakhsh, R., Kermani, M.M., Jao, D.: Post-Quantum Cryptogra-
phy on FPGA Based on Isogenies on Elliptic Curves. Cryptology ePrint Archive,
Report 2016/672 (2016) http://eprint.iacr.org/2016/672.

12. Karmakar, A., Roy, S., Vercauteren, F., and Verbauwhede, I.: E�cient Finite Field
Multiplication for Isogeny Based Post Quantum Cryptography. In: International
Workshop on the Arithmetic of Finite Fields, WAIFI 2016. to appear

13. Montgomery, P. L.: Modular Multiplication without Trial Division. Mathematics
of Computation 44(170), 519�521 (1985)

14. McIvor, C., McLoone, M., and McCanny, J. V.: High-Radix Systolic Modular
Multiplication on Recon�gurable Hardware. In: IEEE International Conference on
Field-Programmable Technology. 13�18 (Dec. 2005)

15. Orup, H.: Simplifying Quotient Determination in High-Radix Modular Multipli-
cation. In: Proceedings of the 12th Symposium on Computer Arithmetic. ARITH
'95, Washington, DC, USA, IEEE Computer Society 193�9 (1995)

16. Azarderakhsh, R., Jao, D., Kalach, K., Koziel, B., Leonardi, C.: Key Compression
for Isogeny-Based Cryptosystems. In: Proceedings of the 3rd ACM International
Workshop on ASIA Public-Key Cryptography. AsiaPKC '16, New York, NY, USA,
ACM 1�10 (2016)

17. Koziel, B., Jalali, A., Azarderakhsh, R., Jao, D., Moza�ari-Kermani, M.: NEON-
SIDH: E�cient Implementation of Supersingular Isogeny Di�e-Hellman Key Ex-
change Protocol on ARM. In: 15th International Conference on Cryptology and
Network Security, CANS 2016

17

