
The Bitcoin Backbone Protocol with Chains of Variable Difficulty

Juan A. Garay∗

Yahoo Research
garay@yahoo-inc.com

Aggelos Kiayias∗†
University of Edinburgh

& IOHK
akiayias@inf.ed.ac.uk

Nikos Leonardos†
National and Kapodistrian

University of Athens
nikos.leonardos@gmail.com

November 7, 2016

Abstract

Bitcoin’s innovative and distributedly maintained blockchain data structure hinges on the
adequate degree of difficulty of so-called “proofs of work,” which miners have to produce in order
for transactions to be inserted. Importantly, these proofs of work have to be hard enough so that
miners have an opportunity to unify their views in the presence of an adversary who interferes
but has bounded computational power, but easy enough to be solvable regularly and enable the
miners to make progress. As such, as the miners’ population evolves over time, so should the
difficulty of these proofs. Bitcoin provides this adjustment mechanism, with empirical evidence
of a constant block generation rate against such population changes.

In this paper we provide the first (to our knowledge) formal analysis of Bitcoin’s target
(re)calculation function in the cryptographic setting, i.e., against all possible adversaries aiming
to subvert the protocol’s properties. We extend the q-bounded synchronous model of the Bitcoin
backbone protocol [Eurocrypt 2015], which posed the basic properties of Bitcoin’s underlying
blockchain data structure and shows how a robust public transaction ledger can be built on top
of them, to environments that may introduce or suspend parties in each round.

We provide a set of necessary conditions with respect to the way the population evolves under
which the “Bitcoin backbone with chains of variable difficulty” provides a robust transaction
ledger in the presence of an actively malicious adversary controlling a fraction of the miners
strictly below 50% at each instant of the execution. Our work introduces new analysis techniques
and tools to the area of blockchain systems that may prove useful in analyzing other blockchain
protocols.

∗Part of this work was done while the authors were visiting the Simons Institute for the Theory of Computing,
supported by the Simons Foundation and by the DIMACS/Simons Collaboration in Cryptography through NSF grant
#CNS-1523467.

†Research partly supported by ERC project CODAMODA, No. 259152, and Horizon 2020 project PANORAMIX,
No. 653497.

1 Introduction

The Bitcoin backbone protocol [GKL15] extracts and analyzes the basic properties of Bitcoin’s
underlying blockchain data structure, such as “common prefix” and “chain quality,” which parties
(“miners”) maintain and try to extend by generating “proofs of work” (POW, aka “cryptographic
puzzle” [DN92, RSW96, Bac97, JB99])1. It is then formally shown in [GKL15] how fundamental
applications including consensus [PSL80, LSP82] and a robust public transaction ledger realizing a
decentralized cryptocurrency (i.e., Bitcoin [Nak09]) can be built on top of them, assuming that the
hashing power of an adversary controlling a fraction of the parties is strictly less than 1/2.

The results in [GKL15], however, hold for the static setting, where the protocol is executed
by a fixed number of parties (albeit not necessarily known to the participants), and therefore with
POWs (and hence blockchains) of fixed difficulty. This is in contrast to the actual deployment of
the Bitcoin protocol where a “target (re)calculation” mechanism adjusts the hardness level of POWs
as the number of parties varies during the protocol execution. In more detail, in [GKL15] the target
T that the hash function output must not exceed, is set and hardcoded at the beginning of the
protocol, and in such a way that a specific relation to the number of parties running the protocol is
satisfied, namely, that the ratio f = qnT/2κ is small, where q is the number of queries to the hash
function that each party is allowed per round, n is the number of parties, and κ is the length of the
hash function output. Security was only proven when the number of parties is n and the choice of
target T is never recalculated, thus leaving as open question the full analysis of the protocol in a
setting where, as in the real world, parties change dynamically over time.

In this paper, we abstract the target recalculation algorithm from the Bitcoin system, and present
a generalization and analysis of the Bitcoin backbone protocol with chains of variable difficulty, as
produced by an evolving population of parties, thus answering the aforementioned open question.

In this setting, there is a parameter m which determines the length of an “epoch” in number of
blocks.2 When a party prepares to compute the j-th block of a chain with j mod m = 1, it uses
a target calculation algorithm that determines the proper target value to use, based on the party’s
local view about the total number of parties that are present in the system, as reflected by the rate
of blocks that have been created so far and are part of the party’s chain. (Each block contains a
timestamp of when it was created; in our synchronous setting, timestamps will correspond to the
round numbers when blocks are created—see Section 2.) To accomodate the evolving population
of parties, we extend the model of [GKL15] to environments that are free to introduce and suspend
parties in each round. In other respects, we follow the model of [GKL15], where all parties have the
same “hashing power,” with each one allowed to pose q queries to the hash function that is modeled
as a “random oracle” [BR93]. We refer to our setting as the dynamic q-bounded synchronous setting.

In order to give an idea of the issues involved, we note that without a target calculation mecha-
nism, in the dynamic setting the backbone protocol is not secure even if all parties are honest and
follow the protocol faithfully. Indeed, it is easy to see that a combination of an environment that in-
creases the number of parties and adversarial network conditions can lead to substantial divergence
(a.k.a. “forks”) in the chains of the honest parties, leading to the violation of the agreement-type
properties that are needed for the applications of the protocol, such as maintaining a robust trans-
action ledger. The attack is simple: the environment increases the number of parties constantly so
that the block production rate per round increases (which is roughly the parameter f mentioned
above); then, adversarial network conditions may divide the parties into two sets A,B and schedule
message delivery so that parties in set A receive blocks produced by parties in A first, and similarly

1In Bitcoin, solving a proof of work essentially amounts to brute-forcing a hash inequality based on SHA-256.
2In Bitcoin, m is set to 2016 and roughly corresponds to 2 weeks in real time—assuming the number of parties

does not change much.

1

for set B. According to the Bitcoin protocol, parties adopt the block they see first, and thus the two
sets will maintain two separate blockchains. While this specific attack could in principle be thwarted
by modifying the Bitcoin backbone (e.g., by randomizing which block a party adopts when they
receive in the same round two blocks of the same index in the chain), it certainly would not cope
with all possible attacks in the presence of a full-blown adversary and target recalculation mecha-
nism. Indeed, such an attack was shown in [Bah13], where by mining “privately” with timestamps
in rapid succession, corrupt miners are able to induce artificially high targets in their private chain;
even though such chain may grow slower than the main chain, it will still make progress and, via
an anti-concentration argument, a sudden adversarial advance that can break agreement amongst
honest parties cannot be precluded.

Given the above, our main goal is to show that the backbone protocol with a Bitcoin-like target
recalculation function satisfies the common prefix and chain quality properties, as an intermediate
step towards proving that the protocol implements a robust transaction ledger. Expectedly, the
class of protocols we will analyze will not preserve its properties for arbitrary ways in which the
number of parties may change over time. In order to bound the error in the calibration of the block
generation rate that the target recalculation function attempts, we will need some bounds on the
way the number of parties may vary. For γ ∈ R+, s ∈ N, we will call a sequence of parties (nr)r∈N
(γ, s)-respecting if it holds that in a sequence of rounds S with |S| ≤ s, maxr∈S nr ≤ γ ·minr∈S nr,
and will determine for what values of these parameters the backbone protocol is secure.

After formally describing blockchains of variable difficulty and the Bitcoin backbone protocol in
this setting, at a high level our analysis goes as follows. We first introduce the notion of goodness
regarding the approximation that is performed on f in an epoch. In more detail, we call a round
r (η, θ)-good for some parameters η, θ ∈ R+, if the value fr computed for the actual number of
parties and target used in round r by some honest party, falls in the range [ηf, θf], where f is
the initial block production rate (note that the first round is always assumed good). Together
with “goodness” we introduce a notion of typical executions, in which, informally, for any set S of
consecutive rounds the successes of the adversary and the honest parties do not deviate too much
from their expectations as well as no “bad” event concerning the hash function occurs (such as a
collision). Using a martingale bound we demonstrate that almost all polynomially bounded (in κ)
executions are typical. We then proceed to show that in a typical execution any chain that an
honest party adopts (1) contains timestamps that are approximately accurate (i.e., no adversarial
block has a timestamp that differs too much from its real creation time) and (2) has a target such
that the probability of block production remains near the fixed constant f , i.e., it is “good.” Finally,
these properties of a typical execution allow us to demonstrate that a typical execution enjoys the
common prefix and chain quality properties which is an intermediate stepping stone towards the
ultimate goal, that of establishing that the backbone protocol with variable difficulty implements a
robust transaction ledger. Specifically, we show the following:
Main result (cf. Theorems 26 and 27). The Bitcoin backbone protocol with chains of variable
difficulty, suitably parameterized, satisfies with overwhelming probability in m,κ the properties
of (1) persistence—if a transaction tx is confirmed by an honest party, no honest party will ever
disagree about the position of tx in the ledger, and (2) liveness—if a transaction tx is broadcast, it
will eventually become confirmed by all honest parties.
Remark. The most important lesson from our analysis is that the length of an epoch, m, is a
security parameter that should be selected to be high enough in order to bound the probability
of an attack by an arbitrary cryptographic adversary. Regarding the actual parameterization of
the Bitcoin system (that uses epochs of m = 2016 blocks), even though it is consistent with all
the constraints of our theorems (cf. Remark 3 in Section 6.1), our martingale analysis is not tight

2

enough to provide a tangible security guarantee. In fact, our probabilistic analysis would require
extremely long epochs to provide a sufficiently small probability of attack; as such, it is primarily of
theoretical interest. Nevertheless, we are confident that the analysis and tools that we introduce will
motivate further research on how the parameters of blockchain systems may be chosen in practice
w.r.t. target recalculation.

Finally, we note that various extensions to our model are relevant to the Bitcoin system and con-
stitute interesting directions for further research. Importantly, a security analysis in the “rational”
setting (see, e.g., [ES14, SSZ15, KKKT16]), and in the “semi-synchronous” network model [PSS16].

2 Model and Definitions

We describe our protocols in a model that extends the synchronous communication network model
presented in [GKL14, GKL15] for the analysis of the Bitcoin backbone protocol in the static setting
with a fixed number of parties (which in turn is based on Canetti’s formulation of “real world” notion
of protocol execution [Can00a, Can00b, Can01] for multi-party protocols) to the dynamic setting
with a varying number of parties. In this section we provide a high-level overview of the model,
highlighting the differences that are intrinsic to our dynamic setting; a more detailed specification
can be found in Appendix A.

As in [GKL14], the protocol execution proceeds in rounds with inputs provided by an environ-
ment program denoted by Z to parties that execute the protocol Π; the underlying communication
graph is not fully connected and messages are delivered through a “diffusion” mechanism that reflects
Bitcoin’s peer-to-peer structure; and our adversarial model in the network is adaptive, meaning that
the adversary (A) is allowed to take control of parties on the fly, and rushing, meaning that in any
given round the adversary gets to see all honest parties’ messages before deciding his strategy.

The parties that may become active in a protocol execution are encoded as part of a control
program C and come from a universe U of parties. The protocol execution is driven by an environ-
ment program Z that interacts with other instances of programs that it spawns at the discretion of
the control program C. The pair (Z, C) forms of a system of interactive Turing machines (ITM’s)
in the sense of [Can00b]. The execution is with respect to a program Π, an adversary A (which
is another ITM) and the universe of parties U . Additionally, C maintains a flag for each instance
of an ITM (abbreviated ITI in the terminology of [Can00b]), that is called the ready flag and is
initially set to false for all parties. Observe that parties are unaware of the set of activated parties.

The parties’ access to the hash function and their communication mechanism is captured by a
joint random oracle/diffusion functionality. The “diffusion” aspect of the functionality, see [GKL14],
allows the order of messages to be controlled by A, i.e., there is no atomicity guarantees in message
broadcast [HT94], and, furthermore, the adversary is allowed to spoof the source information on
every message (i.e., communication is not authenticated). Still, the adversary cannot change the
contents of the messages nor prevent them from being delivered. We will use Diffuse as the
message transmission command that captures this “send-to-all” functionality.

Regarding the random oracle aspect of the functionality, the Bitcoin backbone protocol requires
from parties (miners) to solve a “proof of work” (POW, aka “cryptographic puzzle” [DN92]) in order
to generate new blocks for the blockchain3. This is modeled in [GKL15] as parties having access
to the oracle H(·). In more detail, given a query with a value x marked for “calculation” for the
function H(·) from a honest party Pi and assuming x has not been queried before, the functionality
returns a value y which is selected at random from {0, 1}κ, where κ is the security parameter;
furthermore, it stores the pair (x, y) in the table of H(·), in case the same value x is queried in the

3As mentioned earlier, in Bitcoin a POW essentially amounts to brute-forcing a hash inequality based on SHA-256.

3

future. Each honest party Pi is allowed to ask q queries in each round. Rounds are determined
by the diffusion functionality which keeps track of all activations. On the other hand, each honest
party is given unlimited queries for “verification” for the function H(·). The adversary A, on the
other hand, is given at each round r a number of queries that cannot exceed tr · q the upper bound
on the number of corrupted parties that may be activated in round r. No verification queries are
provided to A. The value q is a polynomial function of κ.

We will refer to the setting defined by the two series n = {nr}r∈N and t = {tr}r∈N, representing
the number of “ready” honest parties and the bound on corrupted parties that may be activated at
each round r, with the above bounded access to the random oracle functionality as allowed by the
control program C, as the dynamic q-bounded synchronous setting.

We will use {viewP,t,n
Π,A,Z(z)}z∈{0,1}∗ to denote the random variable ensemble describing the view

of party P after the completion of an execution running protocol Π with environment Z and ad-
versary A, on input z ∈ {0, 1}∗. Since we will only consider a “standalone” execution without any
auxiliary information, we will restrict ourselves to executions with z = 1κ, and thus we will simply
refer to the ensemble by viewP,t,n

Π,A,Z . The concatenation of the view of all parties ever activated in
the execution will be denoted by viewt,n

Π,A,Z . In our theorems we will be concerned with properties
of protocols Π running in the above setting. Such properties will be defined as predicates over the
random variable viewt,n

Π,A,Z by quantifying over all possible adversaries A and environments Z.
Note that all our protocols will only satisfy properties with a small probability of error in κ as well
as in a parameter k that is selected from {1, . . . , κ} (note that in practice one may choose k to be
much smaller than κ, e.g., k = 6).

The protocol class that we will analyze will not be able to preserve its properties for arbitrary
sequences of parties. To restrict the way the sequence n is fluctuating we will introduce the following
class of sequences.

Definition 1. For γ ∈ R+, we call a sequence (nr)r∈N (γ, s)-respecting if it holds that in a sequence
of rounds S with |S| ≤ s rounds, maxr∈S nr ≤ γ ·minr∈S nr.

Observe that the above sequence is fairly general and can also capture exponential growth; for
example, by setting γ = 2 and s = 10, it follows that every 10 rounds the number of ready parties
may double.4 More formally, a protocol Π would satisfy a property Q for a certain class of sequences
n, t, provided that for all PPT A and locally polynomial bounded Z, it holds that Q(viewt,n

Π,A,Z)
is true with overwhelming probability on the coins of A,Z and the random oracle functionality.

In this paper we will be interested in (γ, s)-respecting sequences n, sequences t suitably restricted
by n, environments restricted according to (γ, s)-respecting sequences (we will call such environ-
ments also (γ, s)-respecting) and protocols Π that are suitably parameterized given n, t. Refer to
Appendix A for further details on the model of protocol execution. For convenience, Table 1 in
Section 6.1 summarizes all the parameters relevant to the analysis.

3 Blockhains of Variable Difficulty

We start by introducing blockchain notation; we use similar notation to [GKL14], and expand the
notion of blockchain to explicitly include timestamps (in the form of a round indicator). Let G(·)
and H(·) be cryptographic hash functions with output in {0, 1}κ. A block with target T ∈ N is a
quadruple of the form B = 〈r, st, x, ctr〉 where st ∈ {0, 1}κ, x ∈ {0, 1}∗, and r, ctr ∈ N are such that

4Note that this will not lead to an exponential running time overall since the total run time is bounded by a
polynomial in κ.

4

they satisfy the predicate validblockTq (B) defined as

(H(ctr,G(r, st, x)) < T) ∧ (ctr ≤ q).

The parameter q ∈ N is a bound that in the Bitcoin implementation determines the size of the
register ctr; in our treatment we allow this to be arbitrary, and use it to denote the maximum allowed
number of hash queries in a round (cf. Section 2). We do this for convenience and our analysis
applies in a straightforward manner to the case that ctr is restricted to the range 0 ≤ ctr < 232 and
q is independent of ctr.

A blockchain, or simply a chain is a sequence of blocks. The rightmost block is the head of
the chain, denoted head(C). Note that the empty string ε is also a chain; by convention we set
head(ε) = ε. A chain C with head(C) = 〈r, st, x, ctr〉 can be extended to a longer chain by appending
a valid block B = 〈r′, st′, x′, ctr′〉 that satisfies st′ = H(ctr,G(r, st, x)) and r′ > r, where r′ is called
the timestamp of block B. In case C = ε, by convention any valid block of the form 〈r′, st′, x′, ctr′〉
may extend it. In either case we have an extended chain Cnew = CB that satisfies head(Cnew) = B.

The length of a chain len(C) is its number of blocks. Consider a chain C of length ` and any
nonnegative integer k. We denote by Cdk the chain resulting from “pruning” the k rightmost blocks.
Note that for k ≥ len(C), Cdk = ε. If C1 is a prefix of C2 we write C1 � C2.

Given a chain C of length len(C) = `, we let xC denote the vector of ` values that is stored in C
and starts with the value of the first block. Similarly, rC is the vector that contains the timestamps
of the blockchain C.

For a chain of variable difficulty, the target T is recalculated for each block based on the round
timestamps of the previous blocks. Specifically, there is a function D : Z∗ → R which receives an
arbitrary vector of round timestamps and produces the next target. The value D(ε) is the initial
target of the system. The difficulty of each block is measured in terms of how many times the block
is harder to obtain than a block of target T0. Specifically, the difficulty of a block with target T
will be equal to T0/T . We will use diff(C) to denote the difficulty of a chain. This is equal to the
sum of the difficulties of all the blocks that comprise the chain.

The target calculation function. Intuitively, the target calculation function D(·) aims at main-
taining the block production rate constant. It is parameterized by m ∈ N and f ∈ (0, 1); Its goal
is that m blocks will be produced every m/f rounds. We will see in Section 6 that the probability
f(T, n) with which n parties produce a new block with target T is approximated by

f(T, n) ≈ qTn

2κ
.

(Note that T/2κ is the probability that a single player produces a block in a single query.)
To achieve the above goal Bitcoin tries to keep qTn/2κ close to f . To that end, Bitcoin waits

for m blocks to be produced and based on their difficulty and how fast these blocks were computed
it computes the next target. More specifically, say the last m blocks of a chain C are for target T
and were produced in ∆ rounds. Consider the case where a number of players

n(T,∆) =
2κm

qT∆

attempts to produce m blocks of target T ; note that it will take them approximately ∆ rounds
in expectation. Intuitively, the number of players at the point when m blocks were produced is
estimated by n(T,∆); then the next target T ′ is set so that n(T,∆) players would need m/f rounds
in expectation to produce m blocks of target T ′. Therefore, it makes sense to set

T ′ =
∆

m/f
· T,

5

because if the number of players is indeed n(T,∆) and remains unchanged, it will take them m/f
rounds in expectation to produce m blocks. If the initial estimate of the number parties is n0, we
will assume T0 is appropriately set so that f ≈ qT0n0/2

κ and then

T ′ =
n0

n(T,∆)
· T0.

Remark 1. Recall that in the flat q-bounded setting all parties have the same hashing power (q-
queries per round). It follows that n0 represents the estimated initial hashing power while n(T,∆)
the estimated hashing power during the last m blocks of the chain C. As a result the new target is
equal to the initial target T0 multiplied by the factor n0/n(T,∆), reflecting the change of hashing
power in the last m blocks.

Based on the above we can give the formal definition of the target (re)calculation function as
follows.

Definition 2. For fixed constants κ, τ,m, n0, T0, the target calculation function D : Z∗ → R is
defined as

D(ε) = T0 and D(r1, . . . , rv) =

1
τ · T if n0

n(T,∆) · T0 <
1
τ · T ;

τ · T if n0
n(T,∆) · T0 > τ · T ;

n0
n(T,∆) · T0 otherwise,

where n(T,∆) = 2κm/qT∆, with ∆ = rm′ − rm′−m, T = D(r1, . . . , rm′−1), and m′ = m · bv/mc.

In the definition, (r1, . . . , rv) corresponds to a chain of v blocks with ri the timestamp of the ith
block; m′,∆, and T correspond to the last block, duration, and target of the last completed epoch,
respectively.

Remark 2. A remark is in order about the case n0
n(T,∆) · T0 /∈ [1

τ T, τT], since this aspect of the
definition is not justified by the discussion preceeding Definition 2. At first there may seem to
be no reason to introduce such a “dampening filter” in Bitcoin’s target recalculation function and
one should let the parties to try collectively to approximate the proper target. Interestingly, in
the absence of such dampening, an efficient attack is known [Bah13] (against the common prefix
property). As we will see, this dampening is sufficient for us to prove security against all attackers,
including those considered in [Bah13] (with foresight, we can say that the attack still holds but it
will take exponential time to mount).

4 The Bitcoin Backbone Protocol with Variable Difficulty

In this section we give a high-level description of the Bitcoin backbone protocol with chains of
variable difficulty; a more detailed description, including the pseudocode of the algorithms, is given
in Appendix B. The presentation is based on the description in [GKL15]. We then formulate two
desired properties of the blockchain—common prefix and chain quality—for the dynamic setting.

4.1 The Protocol

As in [GKL15], in our description of the backbone protocol we intentionally avoid specifying the type
of values/content that parties try to insert in the chain, the type of chain validation they perform
(beyond checking for its structural properties with respect to the hash functions G(·), H(·)), and the
way they interpret the chain. These checks and operations are handled by the external functions

6

V (·), I(·) and R(·) (the content validation function, the input contribution function and the chain
reading function, resp.) which are specified by the application that runs “on top” of the backbone
protocol. The Bitcoin backbone protocol in the dynamic setting comprises three algorithms.

Chain validation. The validate algorithm performs a validation of the structural properties of a
given chain C. It is given as input the value q, as well as hash functionsH(·), G(·). It is parameterized
by the content validation predicate predicate V (·) as well as by D(·), the target calculation function
(Section 3). For each block of the chain, the algorithm checks that the proof of work is properly
solved (with a target that is suitable as determined by the target calculation function), and that the
counter ctr does not exceed q. Furthermore it collects the inputs from all blocks, xC , and tests them
via the predicate V (xC). Chains that fail these validation procedure are rejected. (Algorithm 1 in
App. B.)

Chain comparison. The objective of the second algorithm, called maxvalid (Algorithm 2.), is to
find the “best possible” chain when given a set of chains. The algorithm is straightforward and is
parameterized by a max(·) function that applies some ordering to the space of blockchains. The
most important aspect is the chains’ difficulty in which case max(C1, C2) will return the most difficult
of the two. In case diff(C1) = diff(C2), some other characteristic can be used to break the tie. In
our case, max(·, ·) will always return the first operand to reflect the fact that parties adopt the first
chain they obtain from the network.

Proof of work. The third algorithm, called pow (Algorithm 3), is the proof of work-finding
procedure. It takes as input a chain and attempts to extend it via solving a proof of work. This
algorithm is parameterized by two hash functions H(·), G(·) as well as the parameter q. Moreover,
the algorithm calls the target calculation function D(·) in order to determine the value T that will
be used for the proof of work. The procedure, given a chain C and a value x to be inserted in the
chain, hashes these values to obtain h and initializes a counter ctr. Subsequently, it increments ctr
and checks to see whether H(ctr, h) < T ; in case a suitable ctr is found then the algorithm succeeds
in solving the POW and extends chain C by one block.

The backbone protocol. The core of the backbone protocol with variable difficulty (Algorithm 4
in App. B) is similar to that in [GKL15], with several important distinctions. First is the procedure
to follow when the parties become active. Parties check the ready flag they possess, which is false if
and only if they have been inactive in the previous round. In case the ready flag is false, they diffuse
a special message ‘Join’ to request the most recent version of the blockchain(s). Similarly, parties
that receive the special request message in their Receive() tape broadcast their chains. As before
parties, run “indefinitely” (our security analysis will apply when the total running time is polynomial
in κ). The input contribution function I(·) and the chain reading function R(·) are applied to the
values stored in the chain. Parties check their communication tape Receive() to see whether any
necessary update of their local chain is due; then they attempt to extend it via the POW algorithm
pow. The function I(·) determines the input to be added in the chain given the party’s state st, the
current chain C, the contents of the party’s input tape Input() and communication tape Receive().
The input tape contains two types of symbols, Read and (Insert, value); other inputs are ignored.
In case the local chain C is extended the new chain is diffused to the other parties. Finally, in case a
Read symbol is present in the communication tape, the protocol applies function R(·) to its current
chain and writes the result onto the output tape Output().

4.2 Properties of the Backbone Protocol with Variable Difficulty

Next, we define the two properties of the backbone protocol that the protocol will establish. They
are close variants of the properties in [GKL15], suitably modified for the dynamic q-bounded syn-

7

chronous setting.
The common prefix property essentially remains the same. It is parameterized by a value k ∈ N,

considers an arbitrary environment and adversary, and it holds as long as any two parties’ chains
are different only in their most recent k blocks. It is actually helpful to define the property between
an honest party’s chain and another chain that may be adversarial. The definition is as follows.

Definition 3 (Common Prefix Property). The common-prefix property Qcp with parameter k ∈ N
states that, at any round of the execution, if a chain C belongs to an honest party, then for any valid
chain C′ in the same round such that either diff(C′) > diff(C), or diff(C′) = diff(C) and head(C′)
was computed no later than head(C), it holds that Cdk � C′ and C′dk � C.

The second property, called chain quality, expresses the number of honest-party contributions
that are contained in a sufficiently long and continuous part of a party’s chain. Because we consider
chains of variable difficulty it is more convenient to think of parties’ contributions in terms of the
total difficulty they add to the chain as opposed to the number of blocks they add (as done in
[GKL15]). The property states that adversarial parties are bounded in the amount of difficulty they
can contribute to any sufficiently long segment of the chain.

Definition 4 (Chain Quality Property). The chain quality property Qcq with parameters µ ∈ R
and ` ∈ N states that for any party P with chain C in viewt,n

Π,A,Z , and any segment of that chain of
difficulty d such that the timestamp of the first block of the segment is at least ` smaller than the
timestamp of the last block, the blocks the adversary has contributed in the segment have a total
difficulty that is at most µ · d.

4.3 Application: Robust Transaction Ledger

We now come to the (main) application the Bitcoin backbone protocol was designed to solve. A
robust transaction ledger is a protocol maintaining a ledger of transactions organized in the form of
a chain C, satisfying the following two properties. (Refer to App. C for a more detailed presentation
of ledger terminology.)

Persistence: Parameterized by k ∈ N (the “depth” parameter), if an honest party P , maintaining
a chain C, reports that a transaction tx is in Cdk, then it holds for every other honest party P ′

maintaining a chain C′ that if C′dk contains tx, then it is in exactly the same position.
Liveness: Parameterized by u, k ∈ N (the “wait time” and “depth” parameters, resp.), if a
transaction tx is provided to all honest parties for u consecutive rounds, then it holds that for
any player P , maintaining a chain C, tx will be in Cdk.

We note that, as in [GKL15], Liveness is applicable to either “neutral” transactions (i.e., those
that they are never in “conflict” with other transactions in the ledger), or transactions that are
produced by an oracle Txgen that produces honestly generated transactions.

5 Overview of the Analysis

Our main goal is to show that the backbone protocol satisfies the properties common prefix and chain
quality (Section 4.2) in a (γ, s)-respecting environment as an intermediate step towards proving,
eventually, that the protocol implements a robust transaction ledger. In this section we present a
high-level overview of our approach; the full analysis is then presented in Section 6. To prove the
aforementioned properties we first characterize the set of typical executions. Informally, an execution
is typical if for any set S of consecutive rounds the successes of the adversary and the honest parties

8

do not deviate too much from their expectations and no bad event occurs with respect to the hash
function (which we model as a “random oracle”). Using the martingale bound of Theorem 30 we
demonstrate that almost all polynomially bounded executions are typical. We then proceed to show
that in a typical execution any chain that an honest party adopts (1) contains timestamps that are
approximately accurate (i.e., no adversarial block has a timestamp that differs too much by its real
creation time) and (2) has a target such that the probability of block production remains near a
fixed constant f . Finally, these properties of a typical execution will bring us to our ultimate goal:
to demonstrate that a typical execution enjoys the common prefix and the chain quality properties,
and therefore one can build on the blockchain a robust transaction ledger (Section 4.3). Here we
highlight the main steps and the novel concepts that we introduce.

“Good” executions. In order to be able to talk quantitavely about typical executions, we first
introduce the notion of (η, θ)-good executions, which expresses how well the parties approximate f .
Suppose at round r exactly n parties query the oracle with target T . The probability at least one
of them will succeed is

f(T, n) = 1−
(

1− T

2κ

)qn
.

For the initial target T0 and the initial estimate of the number of parties n0, we denote f0 =
f(T0, n0). Looking ahead, the objective of the target recalculation mechanism is to maintain a
target T for each party such that f(T, nr) ≈ f0 for all rounds r. (For succintness, we will drop the
subscript and simply refer to it as f .)

Now, at a round r of an execution E the honest parties might be querying the random oracle
for various targets. We denote by Tmin

r (E) and Tmax
r (E) the minimum and maximum over those

targets. We say r is a target-recalculation point of a valid chain C, if there is a block with timestamp
r and m exactly divides the number of blocks up to (and including) this block. Consider constants
η ∈ (0, 1] and θ ∈ [1,∞) and an execution E:

Definition 6 (Abridged). A round r is (η, θ)-good in E if ηf ≤ f(Tmin
r (E), nr) and f(Tmax

r (E), nr)
≤ θf . An execution E is (η, θ)-good if every round of E was (η, θ)-good.

We are going to study the progress of the honest parties only when their targets lie in a reasonable
range. It will turn out that, with high probability, the honest parties always work with reasonable
targets. The following bound will be useful because it gives an estimate of the progress the honest
parties have made in an (η, θ)-good execution. We will be interested in the progress coming from
uniquely successful rounds, where exactly one honest party computed a POW. Let Qr be the random
variable equal to the (maximum) difficulty of such rounds (recall a block with target T has difficulty
1/T); 0 otherwise. We refer to Qr also as “unique” difficulty. We are able to show the following.

Proposition 8 (Informal). If r is a (η, θ)-good round in E, then E[Qr(Er−1)] ≥ (1 − θf)pnr,
where Qr(Er−1) is the unique difficulty conditioned on the execution so far, and p = q

2κ .

“Per round” arguments regarding relevant random variables are not sufficient, as we need ex-
ecutions with “good” behavior over a sequence of rounds—i.e., variables should be concentrated
around their means. It turns out that this is not easy to get, as the probabilities of the experiments
performed per round depend on the history (due to target recalculation). To deal with this lack of
concentration/variance problem, we introduce the following measure.

Typical executions. Intuitively, the idea that this notion captures is as follows. Note that at
each round of a given execution E the parties perform Bernoulli trials with success probabilities
possibly affected by the adversary. Given the execution, these trials are determined and we may
calculate the expected progress the parties make given the corresponding probabilities. We then

9

compare this value to the actual progress and if the difference is “reasonable” we declare E typical.
Note, however, that considering this difference by itself will not always suffice, because the variance
of the process might be too high. Our definition, in view of Theorem 30 (App. D), says that either
the variance is high with respect to the set of rounds we are considering, or the parties have made
progress during these rounds as expected. A bit more formally, for a given random oracle query
in an execution E, the history of the execution just before the query takes place, determines the
parameters of the distribution that the outcome of this query follows as a POW (a Bernoulli trial).
For the queries performed in a set of rounds S, let V (S) denote the sum of the variances of these
trials.

Definition 11 (Abridged). An execution E is (ε, η, θ)-typical if, for any given set S of consecutive
rounds such that V (S) is appropriately bounded from above:

The average unique difficulty is lower-bounded by 1
|S|(
∑

r∈S E[Qr(Er−1)]− ε(1−θf)p
∑

r∈S nr);

the average maximum difficulty is upper-bounded by 1
|S|(1 + ε)p

∑
r∈S nr;

the adversary’s average difficulty of “easy” targets is upper-bounded by 1
|S|(1+ε)p

∑
r∈S tr, while

the number of blocks with “hard” targets is bounded below m by a suitable constant; and
no “bad events” with respect to the hash function occur (e.g., collisions).

The following is one of the main steps in our analysis.

Proposition 13 (Informal). Almost all polynomially bounded executions (in κ) are typical. The
probability of an execution not being typical is bounded by exp(−Ω(min{m,κ})).

Recall (Remark 2) that the dynamic setting (specifically, the use of target recalculation func-
tions) offers more opportunities for adversarial attacks [Bah13]. The following important intermedi-
ate lemma shows that if a typical execution is good up to a certain point, chains that are privately
mined for long periods of time by the adversary will not be adopted by honest parties.

Lemma 14 (Informal). Let E be a typical execution in a (γ, s)-respecting environment. If Er is
(η, θ)-good, then, no honest party adopts at round r + 1 a chain that has not been extended by an
honest party for at least O(mτf) consecutive rounds.

An easy corollary of the above is that in typical executions, the honest parties’ chains cannot contain
blocks with timestamps that differ too much from the blocks’ actual creation times.

Corollary 15 (Informal). Let E be a typical execution in a (γ, s)-respecting environment. If
Er−1 is (η, θ)-good, then the timestamp of any block in Er is at most O(mτf) away from its actual
creation time (cf. the notion of accuracy in Definition 7).

Additional important results we obtain regarding (η, θ)-good executions are that their epochs last
about as much as they should (Lemma 16), as well as a “self-correcting” property, which essentially
says that if every chain adopted by an honest party is (ηγ, θγ)-good in Er−1 (which we call “super
good”), then Er is (η, θ)-good (Corollary 19). The above (together with several smaller intermediate
steps that we omit from this high-level overview) allow us to conclude:

Theorem 21 (Informal). A typical execution in a (γ, s)-respecting environment is O(mτf)-accurate
and (η, θ)-good.

Common prefix and chain quality. Typical executions give us the two desired low-level prop-
erties of the blockchain:

Theorems 24 and 25 (Informal). Let E be a typical execution in a (γ, s)-respecting environment.
Under the requirements of Table 1 (Section 6.1), common prefix holds for any k ≥ θγm/8τ and
chain quality holds for ` = m/16τf and µ ≤ 1− δ/2, where for all r, tr < nr(1− δ).

10

Robust transaction ledger. Given the above we then prove the properties of the robust trans-
action ledger:

Theorems 26 and 27 (Informal) Under the requirements of Table 1, the backbone protocol
satisfies persistence with parameter k = Θ(m) and liveness with wait time u = Ω(m+ k) for depth
k.

We refer to Section 6 for the full analysis of the protocol.

6 Full Analysis

In this section we present the full analysis and proofs of the backbone protocol and robust transaction
ledger application with chains of variable difficulty. The analysis follows at a high level the roadmap
presented in Section 5.

6.1 Additional notation, definitions, and preliminary propositions

Our probability space is over all executions of length at most some polynomial in κ. Formally, the
set of elementary outcomes can be defined as a set of strings that encode every variable of every
party during each round of a polynomially bounded execution. We won’t delve into such formalism
and leave the details unspecified. We will denote by Pr the probability measure of this space.
Define also the random variable E taking values on this space and with distribution induced by the
random coins of all entities (adversary, environment, parties) and the random oracle.

Suppose at round r exactly n parties query the oracle with target T . The probability at least
one of them will succeed is

f(T, n) = 1−
(

1− T

2κ

)qn
.

For the initial target T0 and the initial estimate of the number of parties n0, we denote f0 =
f(T0, n0). Looking ahead, the objective of the target recalculation mechanism would be to maintain
a target T for each party such that f(T, nr) ≈ f0 for all rounds r. For this reason, we will drop the
subscript from f0 and simply refer to it as f ; to avoid confusion, whenever we refer to the function
f(·, ·), we will specify its two operands.

Note that f(T, n) is concave and increasing in n and T . In particular, Fact 2 applies. The
following proposition provides useful bounds on f(T, n). For convenience, define p = q/2κ.

Proposition 5. For positive integers κ, q, T, n and f(T, n) defined as above,

pTn

1 + pTn
≤ f(T, n) ≤ pTn ≤ f(T, n)

1− f(T, n)
, where p =

q

2κ
.

Proof. The bounds can be obtained using the inequalities (1 − x)α ≥ 1 − xα, valid for x ≤ 1 and
α ≥ 1, and e−x ≤ 1

1+x , valid for x ≥ 0.

At a round r of an execution E the honest parties might be querying the random oracle for various
targets. We denote by Tmin

r (E) and Tmax
r (E) the minimum and maximum over those targets. We

say r is a target-recalculation point of a valid chain C, if there is a block with timestamp r and m
exactly divides the number of blocks up to (and including) this block.

We now define two desirable properties of executions which will be crucial in the analysis. We
will show later that most executions have these properties.

11

Definition 6. Consider an execution E and constants η ∈ (0, 1] and θ ∈ [1,∞). A target-
recalculation point r in a chain C in E is (η, θ)-good if the new target T satisfies ηf ≤ f(T, nr) ≤ θf .
A chain C in E is (η, θ)-good if all its target-recalculation points are (η, θ)-good. A round r is (η, θ)-
good in E if ηf ≤ f(Tmin

r (E), nr) and f(Tmax
r (E), nr) ≤ θf . We say that E is (η, θ)-good if every

round of E was (η, θ)-good.

For a round r, the following set of chains is of interest. It contains, besides the chains that the
honest parties have, those chains that could potentially belong to an honest party.

Sr =

 C ∈ Er
“C belongs to an honest party” or
“for some chain C′ of an honest party diff(C) > diff(C′)” or
“for some chain C′ of an honest party diff(C) = diff(C′) and

head(C) was computed no later than head(C′)”

 ,

where C ∈ Er means that C exists and is valid at round r.

Definition 7. Consider an execution E. For ε ∈ [0,∞), a block created at round r is ε-accurate if
it has a timestamp r′ such that |r′−r| ≤ εmf . We say that Er is ε-accurate if no chain in Sr contains
a block that is not ε-accurate. We say that E is ε-accurate if for every round r in the execution, Er
is ε-accurate.

Our next step is to define the typical set of executions. To this end we define a few more
quantities and random variables.

In an actual execution E the honest parties may be split across different chains with possibly
different targets. We are going to study the progress of the honest parties only when their targets
lie in a reasonable range. It will turn out that, with high probability, the honest parties always work
with reasonable targets. For a round r, a set of consecutive rounds S, and constant η ∈ (0, 1), let

T (r,η) =
ηf

pnr
and T (S,η) = min

r∈S
T (r,η).

To expunge the mystery from the definition of T (r,η), note that in an (η, θ)-good round all honest
parties query for target at least T (r,η). We now define for each round r a real random variable Dr

equal to the maximum difficulty among all blocks with targets at least T (r,η) computed by honest
parties at round r. Define also Qr to equal Dr when exactly one block was computed by an honest
party and 0 otherwise.

Regarding the adversary, we are going to be interested in periods of time during which he has
gathered a number of blocks in the order of m. Given that the targets of blocks are variable
themselves, it is appropriate to consider the difficulty acquired by the adversary not in a set of
consecutive rounds but rather in a set of consecutive adversarial queries that may span a number
of rounds but do are not necessarily a multiple of q.

For a set of consecutive queries indexed by a set J , we define the following value that will act
as a threshold for targets of blocks that are attempted adversary.

T (J) =
η(1− δ)(1− 2ε)(1− θf)

32τ3γ
· m
|J |
· 2κ.

Given the above threshold, for j ∈ J , if the adversary computed at his j-th query a block of difficulty
at most 1/T (J), then let the random variable A(J)

j be equal to the difficulty of this block; otherwise,
let A(J)

j = 0. The above definition suggests that we collect in A(J)
j the difficulty acquired by the

adversary as long as it corresponds to blocks that are not too difficult (i.e., those with targets less

12

than T (J)). With foresight we note that this will enable a concentration argument for random
variable A(J)

j . We will usually drop the superscript (J) from A.
Let Er−1 contain the information of the execution just before round r. In particular, a value

Er−1 of Er−1 determines the targets against which every party will query the oracle at round r,
but it does not determine Dr or Qr. If E is a fixed execution (i.e., E = E), denote by Dr(E) and
Qr(E) the value of Dr and Qr in E. If a set of consecutive queries J is considered, then, for j ∈ J ,
A(J)
j (E) is defined analogously. In this case we will also write E(J)

j for the execution just before the
j-th query of the adversary.

With respect to the random variables defined above, the following bound will be useful because it
gives an estimate of the progress the honest parties have made in an (η, θ)-good execution. Note that
we are interested in the progress coming from uniquely successful rounds, where exactly one honest
party computed a POW. The expected difficulty that will be computed by the nr honest parties at
round r is pnr. However, the easier the POW computation is, the smaller E[Qr|Er−1 = Er−1] will
be with respect to this value. Since the execution is (η, θ)-good, a POW is computed by the honest
parties with probability at most θf . This justifies the appearance of (1− θf) in the bound.

Proposition 8. If round r is (η, θ)-good in E, then E[Qr|Er−1 = Er−1] ≥ (1− θf)pnr.

Proof. Let us drop the subscript r for convenience. Suppose that the honest parties were split into
k chains with corresponding targets T1 ≤ T2 ≤ · · · ≤ Tk = Tmax. Let also n1, n2, . . . , nk, with
n1 + · · ·+ nk = n, be the corresponding number of parties with each chain. First note that∏

j∈[k]

[
1− f(Tj , nj)

]
≥
∏
j∈[k]

[
1− f(Tmax, nj)

]
= 1− f(Tmax, n) ≥ 1− θf,

where the first inequality holds because f(T, n) is increasing in T . Proposition 5 now gives

E[Qr|Er−1 = Er−1] =
∑
i∈[k]

1

Ti
· f(Ti, ni)

1− f(Ti, ni)
·
∏
j∈[k]

[
1− f(Tj , nj)

]
≥ (1− θf)

∑
i∈[k]

pni.

The properties we have defined will be shown to hold in a (γ, s)-respecting environment, for
suitable γ and s. The following simple fact is a consequence of the definition.

Fact 1. In a (γ, s)-respecting environment, for any set S of consecutive rounds with |S| ≤ s, any
S′ ⊆ S, and any n ∈ {nr : r ∈ S},

1

γ
· n ≤ 1

|S′|
·
∑
r∈S′

nr ≤ γ · n.

Proof. The average of several numbers is bounded by their min and max. Furthermore, the definition
of (γ, s)-respecting implies minr∈S nr ≥ 1

γ maxr∈S nr ≥ 1
γn and maxr∈S nr ≤ γminr∈S ≤ γn. Thus,

1

γ
· n ≤ min

r∈S
nr ≤ min

r∈S′
nr ≤

1

|S′|
·
∑
r∈S′

nr ≤ max
r∈S′

nr ≤ max
r∈S

nr ≤ γ · n.

Our analysis involves a number of parameters that are suitably related. Table 1 summarizes
them, recalls their definitions and lists all the constraints that they should satisfy.

13

(R0) ∀r : tr < (1− δ)nr

(R1) s ≥ τm
f + m

8τf

(R2) δ
2 ≥ 2ε+ θf

(R3) τ − 1/8τ > 1/(1− ε)(1− θf)η

(R4) 17(1 + ε)θ ≤ 8τ(γ − θf)

(R5) 9(1 + ε)ηγ2 ≤ 4(1− ηγf)

(R6) 7θ(1− ε)(1− θf) ≥ 8γ2

nr: number of honest parties mining in round r.
tr: number of activated parties that are corrupted.
δ: advantage of honest parties, ∀r(tr/nr < 1− δ)
(γ, s): determines how the number of parties fluc-
tuates across rounds, cf. Definition 1.
f : probability at least one honest party succeeds
in a round assuming n0 parties and target T0 (the
protocol’s initialization parameters).
τ : the dampening filter, see Definition 2.
(η, θ): lower and upper bound determining the
goodness of an execution, cf. Definition 6.
ε: quality of concentration of random variables in
typical executions, cf. Definition 11.
m: the length of an epoch in number of blocks.

Table 1: Requirements on the parameters. The parameters are as follows: positive integers s,m;
positive reals f, γ, δ, ε, τ, η, θ, where f, ε, δ ∈ (0, 1), and 0 < η ≤ 1 ≤ θ.

Remark 3. We remark that for the actual parameterization of the parameters τ,m, f of Bitcoin5,
i.e., τ = 4,m = 2016, f = 0.03, vis-à-vis the constraints of Table 1, they can be satisfied for
δ = 0.99, η = 0.268, θ = 1.995, ε = 2.93 · 10−8, for γ = 1.281 and s = 2.71 · 105. Given that s
measures the number of rounds within which a fluctuation of γ may take place, we have that the
constraints are satisfiable for a fluctuation of up to 28% every approximately 2 months (considering
a round to last 18 seconds).

6.2 Chain-Growth Lemma

We now prove the Chain-growth lemma. This lemma appears already in [GKL15], but it refers to
number of blocks instead of difficulty. In [KP15] the name “chain growth” appears for the first time
and the authors explicitly state a chain-growth property.

Informally, this lemma says that the honest parties will make as much progress as how many
POWs they obtain. Although simple to prove, the chain-growth lemma is very important, because
it shows that no matter what the adversary does the honest parties will advance (in terms of
accumulated difficulty) by at least the difficulty of the POWs they have acquired.

Lemma 9. Let E be any execution. Suppose that at round u an honest party has a chain of difficulty
d. Then, by round v + 1 ≥ u, every honest party will have received a chain of difficulty at least
d+

∑v
r=uDr(E).

Proof. By induction on v − u. For the basis, v + 1 = u and d +
∑v

r=uDr(E) = d. Observe that
if at round u an honest party has a chain C of difficulty d, then that party broadcast C at a round
earlier than u. It follows that every honest party will receive C by round u.

For the inductive step, note that by the inductive hypothesis every honest party has received
a chain of difficulty at least d′ = d +

∑v−1
r=uDr by round v. When Dv = 0 the statement follows

5Note that in order to calculate f , we can consider that a round of full interaction lasts 18 seconds; If this is
combined with the fact that the target is set for a POW to be discovered approximately every 10 minutes, we have
that 18/600 = 0.3 is a good estimate for f .

14

directly, so assume Dv > 0. Since every honest party queried the oracle with a chain of difficulty
at least d′ at round v, if follows that an honest party successful at round v broadcast a chain of
difficulty at least d′ +Dv = d+

∑v
r=uDr.

6.3 Typical Executions: Definition and Related Proofs

We can now define formally our notion of typical executions. Intuitively, the idea that this definition
captures is as follows. Suppose that we examine a certain execution E. Note that at each round of
E the parties perform Bernoulli trials with success probabilities possibly affected by the adversary.
Given the execution, these trials are determined and we may calculate the expected progress the
parties make given the corresponding probabilities. We then compare this value to the actual
progress and if the difference is reasonable we declare E typical. Note, however, that considering
this difference by itself will not always suffice, because the variance of the process might be too high.
Our definition, in view of Theorem 30, says that either the variance is high with respect to the set
of rounds we are considering, or the parties have made progress during these rounds as expected.

Beyond the behavior of random variables described above, a typical execution will also be
characterized by the absence of a number of bad events about the underlying hash function H(·)
which is used in proofs of work and is modeled as a random oracle. The bad events that are of
concern to us are defined as follows.

Definition 10. An insertion occurs when, given a chain C with two consecutive blocks B and B′,
a block B∗ created after B′ is such that B,B∗, B′ form three consecutive blocks of a valid chain.
A copy occurs if the same block exists in two different positions. A prediction occurs when a block
extends one with earlier creation time.

Given the above we are not ready to specify what is a typical execution.

Definition 11 (Typical execution). An execution E is (ε, η, θ)-typical if the following hold:

(a) If, for any set S of consecutive rounds, pT (S,η)
∑

r∈S nr ≥
ηm

16τγ , then∑
r∈S

Qr(E) ≥
∑
r∈S

E[Qr|Er−1 = Er−1]− ε(1− θf)p
∑
r∈S

nr and
∑
r∈S

Dr(E) ≤ (1 + ε)p
∑
r∈S

nr.

(b) For any set J indexing a set of consecutive queries of the adversary we have∑
j∈J

Aj(E) ≤ (1 + ε)2−κ|J |

and during these queries the adversary has acquired (strictly) less than η(1−ε)(1−θf)
32τ2γ

·m blocks
with targets (strictly) less than τT (J).

(c) No insertions, no copies, and no predictions occurred in E.

Remark 4. Note that if J indexes the queries of the adversary in a set S of consecutive rounds, then
|J | = q

∑
r∈S tr and the inequality in Definition 11(b) reads

∑
j∈J Aj(E) ≤ (1 + ε)p

∑
r∈S tr.

The next proposition simplify our applications of Definition 11(a).

Proposition 12. Assume E is a typical execution in a (γ, s)-respecting environment. For any set
S of consecutive rounds with |S| ≥ m

16τf ,∑
r∈S

Dr ≤ (1 + ε)p
∑
r∈S

nr.

15

If in addition, E is (η, θ)-good, then∑
r∈S

Qr ≥ (1− ε)(1− θf)p
∑
r∈S

nr

and any block computed by an honest party at any round r corresponds to target at least T (r,η), and
so contributes to the random variables Dr and Qr (if the r was uniquely successful).

Proof. We first partition S into several parts with size at least m
16τf and at most s. In view of

Proposition 8, for both of the inequalities, we only need to verify the ‘if’ part of Definition 11(a) for
each part S′ of S. Indeed, by the definition of T (S′,η) and Fact 1, pT (S′,η)

∑
r∈S′ nr ≥ ηf |S′|/γ ≥

ηm
16τγ . The last part, in view of the definition of T (r,η), is equivalent to r being (η, θ)-good.

Almost all polynomially bounded executions (in κ) are typical

Proposition 13. Assuming the ITM system (Z, C) runs for L steps, the event “E is not typical”
is bounded by exp

{
−ηε2(1−2δ)m

64τ3γ
+ 2(lnL+ ln 2)

}
+ 2−κ+1+2 logL.

Proof. Since the length of the execution, L, is fixed we will prove the stated bound for a fixed set of
consecutive rounds S and then apply a union bound over all such sets in the length of the execution.
Let k be the size of S and identify it, without loss of generality, with [k] = {1, 2, . . . , k}. For part
(a), define a sequence of random variables by

X0 = 0; Xr =
∑
i∈[r]

Qi −
∑
i∈[r]

E[Qi|Ei−1], r ∈ [k].

This forms a martingale with respect to the sequence E0, E1, . . . , Ek, because (recalling basic prop-
erties of conditional expectation [McD98]),

E[Xr|Er−1] = E
[
Qr −E[Qr|Er−1]

∣∣Er−1

]
+ E[Xr−1|Er−1] = Xr−1.

Specifically, the above follows from linearity of conditional expectation, and the fact that Xr−1 is a
deterministic function of Er−1.

Now suppose the first inequality of Definition 11(a) fails. Note that the probability of this event
is equal to Pr[Xk < X0 − t], for t = ε(1 − θf)p

∑
r∈S nr. For b and V defined with respect to

Theorem 30, we have b ≤ 1/T (S,η) and V ≤ v, where v = p
∑

r∈S nr/T
(S,η). To prove the bound on

V , note that

var(Xr −Xr−1|Er−1) = E
[(
Qr −E[Qr|Er−1]

)2∣∣Er−1

]
= E[Q2

r |Er−1]−
(
E[Qr|Er−1]

)2
.

Thus, it suffices to show E[Q2
r |Er−1] ≤ pnr/T (r,η) ≤ pnr/T (S,η). To this end, suppose that the honest

parties at round r were split into ` chains with corresponding targets T (r,η) ≤ T1 ≤ T2 ≤ · · · ≤ T`.
Let also n̂1, n̂2, . . . , n̂`, with n̂1 + · · · + n̂` ≤ nr, be the corresponding number of parties with each
chain. Then, for any Er−1,

E[Q2
r |Er−1 = Er−1)] =

∑
i∈[`]

1

T 2
i

· f(Ti, n̂i) ·
∏
j 6=i

[
1− f(Tj , n̂j)

]
≤
∑
i∈[`]

pn̂i
Ti
≤ pnr

T (r,η)
.

Applying Theorem 30 on −X0,−X1, . . . , note that V ≤ v always holds, and recalling the con-
dition pT (S,η)

∑
r∈S nr ≥

ηm
16τγ , we obtain exp{−3ε2(1−θf)2ηm

32(3+ε)τγ } ≤ exp{− ε2(1−δ)ηm
32τγ } (using Require-

ment (R2)).

16

For the bounds on
∑

r∈S Dr(E) and
∑

j∈J Aj(E) the proof follows the same lines. In particular,
replace Q by D and A (in the case of A the martingale will be indexed by J) and note that in these
cases the martingale need not be negated.

In more details, regarding the bound on D in part (a), using the same notation as above, we
have that

E[Dr|Er−1 = Er−1)] =
∑
i∈[`]

1

Ti
· f(Ti, n̂i) ·

i−1∏
j=1

[
1− f(Tj , n̂j)

]
≤
∑
i∈[`]

pn̂i ≤ pnr

and so ∑
r∈S

E[Dr|Er−1] ≤ p
∑
r∈S

nr.

A similar argument provides the bound E[D2
r |Er−1 = Er−1)] ≤ pnr/T (r,η) from which we can obtain

the bound on variance V ≤ v = p
∑

r∈S nr/T
(S,η).

We next focus on part (b). First we will show that for the martingaleX0, X1, X2, . . . with respect
to E(J)

0 , E(J)
1 , E(J)

2 , . . . that is defined as

X0 = 0; Xj =
∑
i∈[j]

Ai −
∑
i∈[j]

E[Ai|E(J)
i−1], j ∈ J,

it holds that b ≤ 1/T (J) and V ≤ v for v = 2−κ|J |/T (J), for the quantities b, V defined as in
Theorem 30. Consider an execution prefix E(J)

j−1 and the target that is selected by the adversary
in its j-th query. Note that we can associate such value to any query of the form (ctr, g) where
g = G(r, st, x) by recovering the chain that corresponds to st. If such value is below T (J), or is not
defined, Aj = 0. Thus, we have E[Aj |E(J)

j−1 = E
(J)
j−1] ≤ 2−κ and E[Aj |E(J)

j−1 = E
(J)
j−1] ≤ 2−κ. From the

above follows the inequality ∑
j∈J

E[Aj |E(J)
j−1] ≤ 2−κ|J |

and the bound on V . We now have the following by setting t = ε2−κ|J |.

Pr
[∑
j∈J

Aj > (1 + ε)2−κ|J |
]

= Pr
[∑
j∈J

Aj > t+ 2−κ|J |
]
≤ Pr

[∑
j∈J

Aj > t+
∑
j∈J

E[Aj |E(J)
j−1]

]
≤ Pr

[∑
j∈J

(Aj −E[Aj |E(J)
j−1]) > t] ≤ exp

{
− t2

2v + 2bt/3

}
≤ exp

{
− 3ε22−κ|J |T (J)

(6 + 2ε)

}
.

Recalling T (J) = η(1−δ)(1−2ε)(1−θf)
32τ3γ

· m|J | ·2
κ, we obtain the bound exp{−3ηε2(1−δ)(1−θf)(1−2ε)m

64(3+ε)τ3γ
}. Using

Requirement (R2) this can be shown to be at most exp{−ηε2(1−2δ)m
64τ3γ

}.
Regarding the second part of part (b), in order to bound the number of blocks of target less

than T (J) the adversary can acquire, define a Boolean random variable Zj , for each j ∈ J as follows.
If the corresponding target is less than T (J) and the query was successful, then Zj = 1, otherwise
Zj = 0. We can then define a martingale as in part (a), by letting k = |J | and replacing Q with Z.
We have b ≤ 1 and V ≤ 2−κτT (J). Since∑

j∈[|J |]

E[Zj |E(J)
j−1] ≤ 2−κτT (J)|J | = η(1− 2ε)(1− θf)

32τ2γ
·m

17

and (1+ ε)(1−2ε) < (1− ε), for t = ε · η(1−2ε)(1−θf)
32τ2γ

·m we have (using Requirement (R2) to simplify
in the last step)

Pr

[∑
j∈[|J |]

Zj >
η(1− ε)(1− θf)

32τ2γ
·m
]
≤ Pr[Xk > X0 + t] ≤ exp

{
− ηε2(1− δ/2)m

32τ2γ

}
.

For part (c) and i ∈ {0, 1, 2, 3}, let Bi = 〈ri, sti, xi, ctri〉 and gi = G(ri, sti, xi). If a block
extends two distinct blocks, then a collision has occurred. To see this, suppose block B3 extents
two distinct blocks B1 and B2. Then st3 = H(ctr1, g1) = H(ctr2, g2); implying a collision either in
H or in G, since B1 and B2 are distinct.

The existence of an insertion or a copy implies a collision as well. Suppose the adversary inserts
a block B2 among two existing blocks B1 and B3. Then, B3 extends both B1 and B2 and since B2

extends B1, r1 < r2 and the blocks are distinct. Similarly, if B3 is a copy of B1 (i.e., B3 = B1),
then there exist two distinct blocks B2 and B0 that are both extended by the same block. To see
this, note that either B0 and B2 are the ones that B1 and B3 extend, or if these are not distinct,
then B2 is a copy of B0 and so on. Eventually, two distinct blocks will be reached, since B1 and B3

are assumed to be on different chains. If the total running time of the system of ITM’s is L then it
holds that there are at most L queries posed to G,H. It follows that the probability of a collision
occurring is

(
L
2

)
2−κ+1 ≤ 2−κ+1+2 logL.

Finally, note that, for polynomially many rounds in κ, the probability that a guessed block
occurs is exponentially small in κ.

6.4 Typical Executions are Good and Accurate

Lemma 14. Let E be a typical execution in a (γ, s)-respecting environment. If Er is (η, θ)-good, then
Sr+1 contains no chain that has not been extended by an honest party for at least m

16τf consecutive
rounds.

Proof. Suppose—towards a contradiction—C ∈ Sr+1 and has not been extended by an honest party
for at least m

16τf rounds. Without loss of generality we may assume that r+1 is the first such round.
Let r∗ ≤ r denote the greatest timestamp among the blocks of C computed by honest parties

(r∗ = 0 if none exists). Define S = {r∗ + 1, . . . , r} with |S| ≥ m
16τf and the index-set of the

corresponding set of queries J = {1, . . . , q
∑

r∈S tr}. Suppose that the blocks of C with timestamps
in S span k epochs with corresponding targets T1, . . . , Tk. For i ∈ [k] let mi be the number of blocks
with target Ti and set M = m1 + · · ·+mk.

Our plan is to contradict the assumption that C ∈ Sr+1, by showing that the honest parties have
accumulated more difficulty than the adversary. To be precise, note that the blocks C has gained
in S sum to

∑
i∈[k]

mi
Ti

difficulty. On the other hand, by the Chain-Growth Lemma 9, all the honest
parties have advanced during the rounds in S by

∑
r∈S Dr(E) ≥

∑
r∈S Qr(E). Since |S| ≥ m

16τf ,
Proposition 12 implies that

∑
r∈S Qr(E) is at least (1− ε)(1− θf)p

∑
r∈S nr. Therefore, to obtain

a contradiction, it suffices to show that∑
i∈[k]

mi

Ti
< (1− ε)(1− θf)p

∑
r∈S

nr. (1)

We proceed by considering cases on M .
First, suppose M ≥ 2M ′, where M ′ = η(1−ε)(1−θf)

32τ2γ
· m (see Definition 11(b)). Partition the

part of C with these M blocks into ` parts, so that each part has the following properties: (1)
it contains at most one target-calculation point, and (2) it contains at least M ′ blocks with the

18

same target. Note that such a partition exists because M ≥ 2M ′ and M ′ < m. For i ∈ [`], let
ji ∈ J be the index of the query during which the last block of the i-th part was computed. Set
Ji = {ji−1 + 1, . . . , ji}, with j0 = 0. Note that Definition 11(c) implies ji−1 < ji, and this is a
partition of J . Recalling Definition 11(b), the sum of the difficulties of all the blocks in the i-th
part is at most

∑
j∈Ji Aj(E). This holds because one of the targets is at least τT (Ji) (since more

than M ′ blocks have been computed in Ji with this target) and so both are at least T (Ji) (since
targets with at most one calculation point between them can differ by a factor at most τ). Thus,∑

i∈[k]

mi

Ti
≤
∑
i∈[`]

∑
j∈Ji

Aj(E) ≤
∑
i∈[`]

(1 + ε)2−κ|Ji| = (1 + ε)p
∑
r∈S

tr < (1 + ε)(1− δ)p
∑
r∈S

nr,

where in the last step we used Requirement (R0). Requirement (R1) implies (1 + ε)(1 − δ) ≤
(1− ε)(1− θf)); thus, Equation (1) holds concluding the case M ≥ 2M ′.

Otherwise, k ≤ 2 and m1 + m2 < 2M ′. Let S′ consist of the first m
16τf rounds of S. We are

going to argue that in this case Equation (1) holds even for S′ in the place of S. Since we are in a
(γ, s)-respecting environment, by Fact 1, γ

∑
r∈S′ nr ≥ nr∗ |S′|. Furthermore, since r∗ is (η, θ)-good,

T1 ≥ T (r∗,η) = ηf/pnr∗ . Recalling also that T2 ≥ T1/τ , we have

m1

T1
+
m2

T2
≤ m1 + τm2

T1
≤ τM

T (r∗,η)
<

2τM ′pnr∗

ηf
≤

2τγM ′p
∑

r∈S′ nr

ηf |S′|
≤

32τ2γM ′p
∑

r∈S nr

ηm
.

and, after substituting M ′, Equation (1) holds concluding this case as well as the proof.

Corollary 15. Let E be a typical execution in a (γ, s)-respecting environment. If Er−1 is (η, θ)-good,
then Er is m

16τf -accurate.

Proof. Suppose—towards a contradiction—that, for some r∗ ≤ r, C ∈ Sr∗ contains a block which
is not m

16τf -accurate and let u ≤ r∗ ≤ r be the timestamp of this block and v its creation time. If
u−v > m

16τf , then every honest party would consider C to be invalid during rounds v, v+1, . . . , u. If
v−u > m

16τf , then in order for C to be valid it should not contain any honest block with timestamp
in u, u+ 1, . . . , v. (Note that we are using Definition 11(c) here as a block could be inserted later.)
In either case, C ∈ Sr∗ , but has not been extended by an honest party for at least m

16τf rounds.
Since Er∗−1 is (η, θ)-good, the statement follows from Lemma 14.

Lemma 16. Let E be a typical execution in a (γ, s)-respecting environment and r∗ an (ηγ, θγ)-good
target-recalculation point of a valid chain C. For r > r∗ + τm

f , assume Er−1 is (η, θ)-good. Then,
either the duration ∆ of the epoch of C starting at r∗ satisfies

m

τf
≤ ∆ ≤ τm

f
,

or C /∈ Su for each u ∈ {r∗ + τm
f , . . . , r}.

Proof. Let T be the target of the epoch in question.
For the upper bound, assume ∆ > τm

f . We show first that in the rounds S = {r∗+ m
16τf , . . . , r

∗+
τm
f −

m
16τf } the honest parties have acquired more than m

T difficulty. Note that the rounds of S
are (η, θ)-good as they come before r. Thus, by Proposition 12, the difficulty acquired in S by the
honest parties is at least

(1− ε)(1− θf)p
∑
r∈S

nr ≥ (1− ε)(1− θf)p · |S|nr
∗

γ
≥ (1− ε)(1− θf)|S|ηf

T
>
m

T
.

19

For the first inequality, we used Fact 1. For the second, recall that r∗ is (ηγ, θ/γ)-good and so
pTnr∗ ≥ f(T, nr∗) ≥ ηγf . For the last inequality observe that |S| = m

f (τ − 1/8τ) and thus follows
from Requirement (R3).

Next, we observe that chain C either has a block within the epoch in question that is computed
by an honest party in a round within the period [r∗, r∗ + m

16τf), or by Lemma 14, C /∈ Su for each
u ∈ {r∗ + m

16τf , . . . , r} ⊇ {r
∗ + τm

f , . . . , r}. Assuming the first happens, it follows that by round
r∗ + τm

f −
m

16τf the honest parties’ chains have advanced by an amount of difficulty which exceeds
the total difficulty of the epoch in question. This means that no honest party will extend C during
the rounds {r∗ + τm

f −
m

16τf + 1, . . . ,∆}. Since it is assumed ∆ > r∗ + τm
f , Lemma 14 can then be

applied to imply that C /∈ Su for u ∈ {r∗ + τm
f , . . . , r}.

For the lower bound, we assume ∆ < m
τf and that C ∈ Su for some u ∈ {r∗ + ∆ + 1, . . . , r},

and seek a contradiction. Clearly, the honest parties contributed only during the set of rounds
S = {r∗, . . . , r∗ + ∆}. The adversary, by Lemma 14, may have contributed only during S′ =
{r∗ − m

16τf , . . . , r
∗ + ∆ + m

16τf }. Let J be the set of queries available to the adversary during the
rounds in S′. We show that in a typical execution the honest parties together with the adversary
cannot acquire difficulty m

T in the rounds in the sets S and S′ respectively. With respect to the
honest parties, Proposition 12 applies. Regarding the adversary, assume first T ≥ T (J) (it is not
hard to verify that the case T < T (J) leads to a more favorable bound). It follows that the total
difficulty contributed to the epoch is at most

(1 + ε)p

(∑
r∈S

nr +
∑
r∈S′

tr

)
≤ (1 + ε)pγnr∗(|S|+ |S′|) < (1 + ε)pγnr∗ ·

17m

8τf
≤ 17(1 + ε)θ

8τ(γ − θf)
· m
T
.

The first inequality follows from Fact 1 using tr < (1 − δ)nr. For the second substitute the upper
bounds on the sizes of S and S′. Next, note that r∗ is an (ηγ, θ/γ)-good recalculation point and so
f(T, nr∗) ≤ θf/γ. By Proposition 5, pTnr∗ < f(T, nr∗)/(1 − f(T, nr∗)) ≤ (θf/γ)/(1 − θf/γ). From
this the last inequality follows and Requirement (R4) makes this less than m

T as desired.

Proposition 17. Assume E is a typical execution in a (γ, s)-respecting environment. Consider
a round r and a set of consecutive rounds S with |S| ≥ m

32τ2f
. If Er−1 is (η, θ)-good, then the

adversary, during the rounds in S, has contributed at most (1− δ)(1 + ε)p
∑

r∈S nr difficulty to Sr.

Proof. Without loss of generality, we will assume in this proof that tr = (1 − δ)nr for each r ∈ S.
Furthermore, we assume |S| ≤ τm

f . If this is not the case, then we can partition S to parts of
appropriate sizes and apply the arguments that follow to each sum. The statement will follow upon
summing over all parts.

By Lemma 14, for any block B in Sr, there is a block in the same chain and computed at most
m

16τf rounds earlier than it. By Lemma 16, there is at most one recalculation point between them.
Let u be the round the honest party computed this block and T its target. Note that since E is
(η, θ)-good, T ≥ T (u,η) = ηf

pnu
and the target of B is at least τ (−1)T . We are going to show that,

with J the set of queries that correspond to S, we have τ−1T ≥ T (J). This will suffice, because
(1 − δ)(1 + ε)p

∑
r∈S nr ≥ (1 + ε)p

∑
r∈S tr, and this is at least

∑
j∈J Aj in a typical execution

(Definition 11(b)).
Note first that, using Fact 1 and the lower-bound on |S|,

2−κ|J | = (1− δ)p
∑
r∈S

nr ≥ (1− δ)p |S|nu
γ
≥ (1− δ)p mnu

32τ3fγ
.

20

Recalling the definition of T (J) and using this bound,

T (J) =
η(1− δ)(1− 2ε)(1− θf)

32τ3γ
· m
|J |
· 2κ ≤ ηf(1− 2ε)(1− θf)

τpnu
<
T (u,η)

τ
≤ T

τ
,

as desired.

Lemma 18. Let E be a typical execution in a (γ, s)-respecting environment and assume Er−1 is
(η, θ)-good. If C ∈ Sr, then C is (ηγ, θ/γ)-good in Er.

Proof. Note that it is our assumption that every chain is (ηγ, θ/γ)-good at the first round. Therefore,
to prove the statement, it suffices to show that if a chain is (ηγ, θ/γ)-good at a recalculation point
r∗, then it will also be (ηγ, θ/γ)-good at then next recalculation point r∗ + ∆.

Let r∗ and r∗+∆ ≤ r be two consecutive target-calculation points of a chain C and T the target
of the corresponding epoch. By Lemma 16 and Definition 2 of the target-recalculation function, the
new target will be

T ′ =
∆

m/f
· T,

where ∆ is the duration of the epoch.
We wish to show that

ηγf ≤ f(T ′, nr∗+∆) ≤ θf/γ.

To this end, let S = {r∗, . . . , r∗+ ∆}, S′ =
{

max{0, r∗− m
16τf }, . . . ,min{r∗+ ∆ + m

16τf , r}
}
, and let

J index the queries available to the adversary in S′. Note that, by Corollary 15, every block in the
epoch was computed either by an honest party during a round in S or by the adversary during a
round in S′.

Suppose—towards a contradiction—that f(T ′, nr∗+∆) < ηγf . Using the definition of f(T, n),
this implies qnr∗+∆ ln

(
1− T ′

2κ

)
> ln(1−ηγf). Applying the inequality − x

1−x < ln(1−x) < −x, valid
for x ∈ (0, 1), substituting the expression for T ′ above and rearranging, we obtain

m

T
>

1− ηγf
ηγ

· p∆nr∗+∆.

By Propositions 12 and 17 it follows that

m

T
≤ 2(1 + ε)p

∑
r∈S′

nr ≤ 2(1 + ε)p ·
∆ + m

8τf

|S′|
·
∑
r∈S′

nr.

By Lemma 16, ∆ ≥ m
τf . Thus,

∆+ m
8τf

∆ ≤ 9
8 . Using this, Requirement (R5), and combining the

inequalities on m
T ,

γnr∗+∆ <
9(1 + ε)ηγ2

4(1− ηγf)
· 1

|S′|
∑
r∈S′

nr ≤
1

|S′|
∑
r∈S′

nr,

contradicting Fact 1.
For the upper bound, assume f(T ′, nr∗+∆) > θf/γ, which (see Proposition 5) implies

m

T
<
γ

θ
· p∆nr∗+∆.

Set S = {r∗ + m
16τf , . . . , r

∗ + ∆ − m
16τf }. Since an honest party posses C at round r, it follows by

Lemma 14 that there is a block computed by an honest party in C during {r∗, . . . , r∗ + m
16τf − 1}

21

and one during {r∗ + ∆ − m
16τf + 1, . . . , r∗ + ∆}. By the Chain-Growth Lemma 9, it follows that

the honest parties computed less than m
T difficulty during S. In particular,

m

T
> (1− ε)(1− θf)p

∑
r∈S

nr ≥ (1− ε)(1− θf)p ·
∆− m

8τf

|S|
·
∑
r∈S

nr.

By Lemma 16, ∆ ≥ m
τf . Thus,

∆− m
8τf

∆ ≥ 7
8 . Using this, Requirement (R6), and combining the

inequalities on m
T ,

nr∗+∆

γ
>

7θ

8γ2
(1− ε)(1− θf) · 1

|S|
∑
r∈S

nr ≥
1

|S|
∑
r∈S

nr,

contradicting Fact 1.

Corollary 19. Let E be a typical execution in a (γ, s)-respecting environment and Er−1 be (η, θ)-
good. If every chain in Sr−1 is (ηγ, θγ)-good, then Er is (η, θ)-good.

Proof. We use notations and definitions of Lemma 16. Let CSr and let r∗ be its last recalculation
point in Er−1. Let T be the target after r∗ and T ′ the one at r. We need to show that f(T ′, nr) ∈
[ηf, θf]. Note that if r is a recalculation point, this follows by Lemma 18. Otherwise, T ′ = T and
ηγ ≤ f(T, nr∗) ≤ θf/γ. Using Lemma 16, r−r∗ ≤ ∆ ≤ τm

f . Thus, 1
γnr∗ ≤ nr ≤ γnr∗ . By Fact 2 we

have f(T, nr) ≤ f(T, γnr∗) ≤ γf(T, nr∗) ≤ θf and f(T, nr) ≥ f(T, 1
γnr∗) ≥

1
γ f(T, nr∗) ≥ ηf.

Corollary 20. Let E be a typical execution in a (γ, s)-respecting environment. Then every round
is (η, θ)-good in E.

Proof. For the sake of contradiction, let r be the smallest round of E that is not (η, θ)-good. This
means that there is a chain C and an honest party that possesses this chain in round r and the
corresponding target T is such that f(T, nr) 6∈ [ηf, θf]. Note that Er−1 is (η, θ)-good, and so, by
Corollary 15, Er is m

16τf -accurate. Let r
∗ < r be the last (ηγ, θ/γ)-good recalculation point of C (let

r∗ be 0 in case there is no such point).
First suppose that there is another recalculation point r′ ∈ (r∗, r]. By the definition of r∗, r′ is

not (ηγ, θ/γ)-good. However, the assumptions of Lemma 18 hold, implying that C is (ηγ, θ/γ)-good.
We have reached a contradiction.

We may now assume that there is no recalculation point in (r∗, r] and so the points r∗ and r
correspond to the same target T with ηγ ≤ f(T, nr∗) ≤ θf/γ. Note that since r∗ is an (ηγ, θ/γ)-good
recalculation point and Er−1 is (η, θ)-good, we have r − r∗ ≤ τm

f . This follows from Lemma 16,
because C belongs to an honest party at round r. Thus, 1

γnr∗ ≤ nr ≤ γnr∗ , and so (by Fact 2)
f(T, nr) ≤ f(T, γnr∗) ≤ γf(T, nr∗) ≤ θf and f(T, nr) ≥ f(T, 1

γnr∗) ≥
1
γ f(T, nr∗) ≥ ηf.

Theorem 21. A typical execution in a (γ, s)-respecting environment is m
16τf -accurate and (η, θ)-

good.

Proof. This follows from Corollaries 20 and 15.

6.5 Common Prefix and Chain Quality

Proposition 22. Let E be a typical execution in a (γ, s)-respecting environment. Any θγm
8τ consec-

utive blocks in an epoch of a chain C ∈ Sr have been computed in at least m
16τf rounds.

22

Proof. Suppose—towards a contradiction—that the blocks of C where computed during the rounds
in S∗, for some S∗ such that |S∗| < m

16τf . Consider an S such that S∗ ⊆ S and |S| = m
16τf and

the property that a block of target T in C was computed by an honest party in some round v ∈ S.
Such an S exists by Lemmas 14 and 16. By Propositions 12 and 17, the number of blocks of target
T computed in S is at most

(1 + ε)(2− δ)pT
∑
u∈S

nu ≤ (1 + ε)(2− δ)pTγnv|S| ≤ (1 + ε)(2− δ)γ|S| · θf

1− θf
≤ θγm

8τ
.

For the first inequality we used Fact 1, for the second Fact 5 and that round v is (η, θ)-good, and
for the last one Requirement (R2).

Let us say that two chains C and C′ diverge before round r, if the timestamp of the last block
on their common prefix is less than r.

Lemma 23. Let E be a typical execution in a (γ, s)-respecting environment. Any C, C′ ∈ Sr do not
diverge before round r − m

16τf .

Proof. Consider the last block on the common prefix of C and C′ that was computed by an honest
party and let r∗ be the round on which it was computed (set r∗ = 0 if no such block exists). Denote
by C∗ the common part of C and C′ up to (and including) this block and let d∗ = diff(C∗) and
S = {i : r∗ < u < r}. We claim that

(1 + ε)(1− δ)p
∑
u∈S

nu ≥
∑
u∈S

Qu. (2)

In view of Proposition 17, it suffices to show that the difficulty which the adversary contributed to
C and C′ is at least the right-hand side of (2). The proof of this rests on the following observation.

Consider any block B extending a chain C1 that was computed by an honest party in a uniquely
successful round u ∈ S. Consider also an arbitrary d ∈ R such that diff(C1) ≤ d < diff(C1B).
We are going to argue that if another chain of difficulty at least d exists, then the block that
“contains” the point of difficulty d was computed by the adversary. More formally, suppose a chain
C2B

′ exists such that B′ 6= B and diff(C2) ≤ d < diff(C2B
′). We observe that B′ was computed

by the adversary. This is because no honest party would extend C2 at a round later than u since
diff(C2) ≤ d < diff(C1B); on the other hand, if an honest party computed B′ at some round u′ < u,
then no honest party would have extended C1 at round u since diff(C1) ≤ d < diff(C2B

′); finally,
note that u is also ruled out since it was a uniquely successful round by assumption.

Returning to the proof of (2) note that, by the Chain-Growth Lemma 9, diff(C′) and diff(C)
are at least d∗ +

∑
u∈S Qu. To show (2) it suffices to argue that for all d ∈ (d∗,

∑
u∈S Qu] there is

always a B′ as above that lies either on C, or on C′, or on their common prefix. But this is always
possible since B cannot be both on C and C′ (note that by the definition of r∗, B cannot be on
their common prefix). To finish the proof note that (2) contradicts Proposition 12 for large enough
S.

Theorem 24 (Common-Prefix). Let E be a typical execution in a (γ, s)-respecting environment.
For any round r and any two chains in Sr, the common-prefix property holds for k ≥ θγm

4τ .

Proof. Suppose common-prefix fails for two chains C and C′ at round r. At least k/2 of the blocks
in each chain after their common prefix, lie in a single epoch. Proposition 22 implies that C and C′
diverge before round r − m

16τf , contradicting Lemma 23.

23

Theorem 25 (Chain-Quality). Let E be a typical execution in a (γ, s)-respecting environment. For
the chain of any honest party at any round in E, the chain-quality property holds with parameters
` = m

16τf and µ = (1 + δ/2)λ < (1− δ/2), where λ = max{tr/nr} < (1− δ).

Proof. Let us denote by Bi the i-th block of C so that C = B1 . . . Blen(C) and consider L consecutive
blocks Bu, . . . , Bv. Define L′ as the least number of consecutive blocks Bu′ , . . . , Bv′ that include the
L given ones (i.e., u′ ≤ u and v ≤ v′) and have the properties (1) that the block Bu′ was computed
by an honest party or is B1 in case such block does not exist, and (2) that there exists a round at
which an honest party was trying to extend the chain ending at block Bv′ . Observe that number
L′ is well defined since Blen(C) is at the head of a chain that an honest party is trying to extend.
Denote by d′ the total difficulty of these L′ blocks. Define also r1 as the round that Bu′ was created
(set r1 = 0 if Bu′ is the genesis block), r2 as the first round that an honest party attempts to extend
Bv′ , and let S = {r : r1 ≤ r ≤ r2}. Note that |S| ≥ m

16τf .
Now let x denote the total difficulty of all the blocks from honest parties that are included in

the L blocks and—towards a contradiction—assume that

x <
[
1−

(
1 +

δ

2

)
λ
]
d ≤

[
1−

(
1 +

δ

2

)
λ
]
d′. (3)

Suppose first that all the L′ blocks {Bj : u′ ≤ j ≤ v′} have been computed during the rounds in
the set S. Recalling Proposition 17, we now argue the following sequence of inequalities.

(1 + ε)(1− δ)p
∑
u∈S

nu ≥ d′ − x ≥
(

1 +
δ

2

)
λd′ ≥

(
1 +

δ

2

)
λ
∑
u∈S

Qu. (4)

The first inequality follows from the definition of x and d′ and Proposition 17. The second one comes
from the relation between x and d′ outlined in (3). To see the last inequality, assume

∑
u∈S Qu > d′.

But then, by the Chain-Growth Lemma 9, the assumption than an honest party is on Bv′ at round
r2 is contradicted as all honest parties should be at chains of greater length. We now observe that
(4) contradicts Proposition 12, since(

1 +
δ

2

)
λ
∑
u∈S

Qu > (1− ε)(1− θf)
(

1− δ

2

)
p
∑
u∈S

nu ≥ (1 + ε)(1− δ)p
∑
u∈S

nu,

where the middle inequality follows by Requirement (R2).
To finish the proof we need to consider the case in which these L′ blocks contain blocks that

the adversary computed in rounds outside S. It is not hard to see that this case implies either a
prediction or an insertion and cannot occur in a typical execution.

6.6 Persistence and Liveness

Theorem 26. Let E be a typical execution in a (γ, s)-respecting environment. Persistence is satis-
fied with depth k ≥ θγm

4τ .

Proof. Suppose an honest party P has at round r a chain C such that Cdk contains a transaction tx.
We first show that the k ≥ θγm

4τ blocks of C cannot have been computed in less than m
16τf rounds.

Suppose—towards a contradiction—that this was the case. By Lemma 16, at least θγm
8τ of the k

blocks belong to a single epoch and Proposition 22 is contradicted.
To show persistence, note that if any party P ′ 6= P has a chain C′ at round r and Cdk is not a

prefix of C′, then Lemma 23 is contradicted. Next, let r′ > r be the first round after r such that

24

an honest party P ′ has a chain C′ such that Cdk is not a prefix of C′. By the note above and the
minimality of r′ it follows that no honest party had a prefix of C′ at round r′−1. Thus, C′ existed at
round r′− 1 and P ′ had another chain C′′ at that round such that Cdk � C′′ and diff(C′′) < diff(C′).
We now observe that C′ and C′′ contradict Lemma 23 at round r′ − 1.

Theorem 27. Let E be a typical execution in a (γ, s)-respecting environment. Liveness is satisfied
for depth k with wait-time m

16τf + γk
ηf(1−ε)(1−θf) .

Proof. Suppose a transaction tx is included in any block computed by an honest party for m
16τf con-

secutive rounds and let S denote the set of γk
ηf(1−ε)(1−θf) rounds that follow these rounds. Consider

now the chain C of an arbitrary honest party after the rounds in S. By Lemma 14, C contains an
honest block computed in the m

16τf rounds. This block contains tx. Furthermore, after the rounds
in the set S, on top of this block there has been accumulated at least

∑
r∈S Qr amount of difficulty.

We claim that this much difficulty corresponds to at least k blocks. To show this, assume |S| ≤ s
(or consider only the first s rounds of S). Let T be the smallest target computed by an honest party
during the rounds in S and let u be such a round. It suffices to show T

∑
r∈S Qr ≥ k. Indeed,

T
∑
r∈S

Qr ≥ (1− ε)(1− θf)pT
∑
r∈S

nr ≥ (1− ε)(1− θf)
pTnu|S|

γ
≥ k.

The first inequality follows from Proposition 12, the second by Fact 1, and for the last one we
substitute the size of S and use that pTnu ≥ f(T, nu) ≥ ηf (since u is (η, θ)-good).

References
[Bac97] Adam Back. Hashcash. http://www.cypherspace.org/hashcash, 1997.

[Bah13] Lear Bahack. Theoretical bitcoin attacks with less than half of the computational power (draft).
IACR Cryptology ePrint Archive, 2013:868, 2013.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In Dorothy E. Denning, Raymond Pyle, Ravi Ganesan, Ravi S. Sandhu, and
Victoria Ashby, editors, CCS ’93, Proceedings of the 1st ACM Conference on Computer and
Communications Security, Fairfax, Virginia, USA, November 3-5, 1993., pages 62–73. ACM,
1993.

[Can00a] Ran Canetti. Security and composition of multiparty cryptographic protocols. J. Cryptology,
13(1):143–202, 2000.

[Can00b] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols.
Cryptology ePrint Archive, Report 2000/067, 2000. http://eprint.iacr.org/2000/067.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols.
In 42nd Annual Symposium on Foundations of Computer Science, FOCS 2001, 14-17 October
2001, Las Vegas, Nevada, USA, pages 136–145, 2001.

[DN92] Cynthia Dwork and Moni Naor. Pricing via processing or combatting junk mail. In Ernest F.
Brickell, editor, CRYPTO, volume 740 of Lecture Notes in Computer Science, pages 139–147.
Springer, 1992.

[ES14] Ittay Eyal and Emin Gun Sirer. Majority is not enough: Bitcoin mining is vulnerable. In
Financial Cryptography, 2014.

[GKL14] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The Bitcoin Backbone Protocol: Analysis
and Applications. IACR Cryptology ePrint Archive, 2014:765, 2014.

25

http://eprint.iacr.org/2000/067

[GKL15] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol: Analysis
and applications. In Elisabeth Oswald and Marc Fischlin, editors, Advances in Cryptology -
EUROCRYPT 2015 - 34th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part II, volume 9057
of Lecture Notes in Computer Science, pages 281–310. Springer, 2015.

[HT94] Vassos Hadzilacos and Sam Toueg. A modular approach to fault-tolerant broadcasts and related
problems. Technical report, 1994.

[JB99] Ari Juels and John G. Brainard. Client puzzles: A cryptographic countermeasure against con-
nection depletion attacks. In NDSS. The Internet Society, 1999.

[KKKT16] Aggelos Kiayias, Elias Koutsoupias, Maria Kyropoulou, and Yiannis Tselekounis. Blockchain
mining games. In Vincent Conitzer, Dirk Bergemann, and Yiling Chen, editors, Proceedings of the
2016 ACM Conference on Economics and Computation, EC ’16, Maastricht, The Netherlands,
July 24-28, 2016, pages 365–382. ACM, 2016.

[KP15] Aggelos Kiayias and Giorgos Panagiotakos. Speed-security tradeoffs in blockchain protocols.
IACR Cryptology ePrint Archive, 2015:1019, 2015.

[LSP82] Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. The byzantine generals problem.
ACM Trans. Program. Lang. Syst., 4(3):382–401, 1982.

[McD98] Colin McDiarmid. Probabilistic Methods for Algorithmic Discrete Mathematics, chapter Concen-
tration, pages 195–248. Springer Berlin Heidelberg, Berlin, Heidelberg, 1998.

[MU05] Michael Mitzenmacher and Eli Upfal. Probability and computing - randomized algorithms and
probabilistic analysis. Cambridge University Press, 2005.

[Nak09] Satoshi Nakamoto. Bitcoin open source implementation of p2p currency.
http://p2pfoundation.ning.com/forum/topics/bitcoin-open-source, February 2009.

[PSL80] Marshall C. Pease, Robert E. Shostak, and Leslie Lamport. Reaching agreement in the presence
of faults. J. ACM, 27(2):228–234, 1980.

[PSS16] Rafael Pass, Lior Seeman, and Abhi Shelat. Analysis of the blockchain protocol in asynchronous
networks. IACR Cryptology ePrint Archive, 2016:454, 2016.

[RSW96] R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock puzzles and timed-release crypto. Tech-
nical report, Cambridge, MA, USA, 1996.

[SSZ15] Ayelet Sapirshtein, Yonatan Sompolinsky, and Aviv Zohar. Optimal selfish mining strategies in
bitcoin. CoRR, abs/1507.06183, 2015.

A Model and Definitions (cont’d)

As mentioned in Section 2, we describe our protocols in a model that extends the synchronous com-
munication network model presented in [GKL14, GKL15] for the analysis of the Bitcoin backbone
protocol in the static setting with a fixed number of parties (which in turn is based on Canetti’s
formulation of “real world” notion of protocol execution [Can00a, Can00b, Can01] for multi-party
protocols) to the dynamic setting with a varying number of parties.

Round structure and protocol execution. As in [GKL14], the protocol execution proceeds in
rounds with inputs provided by an environment program denoted by Z to parties that execute the
protocol Π, and our adversarial model in the network is “adaptive,” meaning that the adversary (A)
is allowed to take control of parties on the fly, and “rushing,” meaning that in any given round the
adversary gets to see all honest players’ messages before deciding his strategy. The parties’ access
to the hash function and their communication mechanism are captured by a joint random oracle /

26

diffusion functionality which reflects Bitcoin’s peer structure. The diffusion functionality, [GKL14],
allows the order of messages to be controlled by A, i.e., there is no atomicity guarantees in message
broadcast [HT94], and, furthermore, the adversary is allowed to spoof the source information on
every message (i.e., communication is not authenticated). Still, the adversary cannot change the
contents of the messages nor prevent them from being delivered. We will use Diffuse as the
message transmission command that captures this “send-to-all” functionality.

The parties that may become active in a protocol execution are encoded as part of a control
program C and come from a universe U of parties.

The protocol execution is driven by an environment program Z that interacts with other in-
stances of programs that it spawns at the discretion of the control program C. The pair (Z, C)
forms of a system of interactive Turing machines (ITM’s) in the sense of [Can00b]. The execution
is with respect to a program Π, an adversary A (which is another ITM) and the universe of parties
U . Assuming the control program C allows it, the environment Z can activate a party by writing
to its input tape. Note that the environment Z also receives the parties’ outputs when they are
produced in a standard subroutine-like interaction. Additionally, the control program maintains a
flag for each instance of an ITM, (abbreviated as ITI in the terminology of [Can00b]), that is called
the ready flag and is initially set to false for all parties.

The environment Z, initially is restricted by C to spawn the adversary A. Each time the
adversary is activated, it may send one or more messages of the form (Corrupt, Pi) to C and C will
mark the corresponding party as corrupted.

Functionalities available to the protocol. The ITI’s of protocol Π will have access to a joint
ideal functionality capturing the random oracle and the diffusion mechanism which is defined in a
similar way as [GKL14] and is explained below.

• The random oracle functionality. Given a query with a value x marked for “calculation” for
the function H(·) from a honest party Pi and assuming x has not been queried before, the
functionality returns a value y which is selected at random from {0, 1}κ; furthermore, it stores
the pair (x, y) in the table of H(·), in case the same value x is queried in the future. Each
honest party Pi is allowed to ask q queries in each round as determined by the diffusion
functionality (see below). On the other hand, each honest party is given unlimited queries for
“verification” for the function H(·). The adversary A, on the other hand, is given a bounded
number queries in each round as determined by diffusion functionality with a bound that is
initialized to 0 and determined as follows: whenever a corrupted party is activated, the party
can ask the bound to be increased by q; each time a query is asked by the adversary the
bound is decreased by 1. No verification queries are provided to A. Note that the value q is
a polynomial function of κ, the security parameter. The functionality can maintain tables for
functions other than H(·) but, by convention, the functionality will impose query quotas to
function H(·) only.

• The diffusion functionality. This functionality keeps track of rounds in the protocol execution;
for this purpose it initially sets a variable round to be 1. It also maintains a Receive() string
defined for each party Pi in U . A party that is activated is allowed to query the functionality
and fetch the contents of its personal Receive() string. Moreover, when the functionality
receives a message (Diffuse,m) from party Pi it records the message m. A party Pi can signal
when it is complete for the round by sending a special message (RoundComplete). With respect
to the adversary A, the functionality allows it to receive the contents of all contents sent in
Diffuse messages for the round and specify the contents of the Receive() string for each party
Pi. The adversary has to specify when it is complete for the current round. When all parties

27

are complete for the current round, the functionality inspects the contents of all Receive()
strings and includes any messages m that were diffused by the parties in the current round but
not contributed by the adversary to the Receive() tapes (in this way guaranteeing message
delivery). It also flushes any old messages that were diffused in previous rounds and not
diffused again. The variable round is then incremented.

The dynamic q-bounded synchronous setting. Consider n = {nr}r∈N and t = {tr}r∈N two
series of natural numbers. As mentioned, the first instance that is spawned by Z is the adversary A.
Subsequently the environment may spawn (or activate if they are already spawned) parties Pi ∈ U .
The control program maintains a counter in each sequence of activations and matches it with the
current round that is maintained by the diffusion functionality. Each time a party diffuses a message
containing the label “ready” the control program C increases the ready counter for the round. In
round r, the control program C will enable the adversary A to complete the round, only provided
that (i) exactly nr parties have transmitted ready message, (ii) the number of (“corrupt”) parties
controlled by A should match tr.

Parties, when activated, are able to read their input tape Input() and communication tape
Receive() from the diffusion functionality. Observe that parties are unaware of the set of activated
parties. The Bitcoin backbone protocol requires from parties (miners) to solve a “proof of work”
(POW, aka “cryptographic puzzle”— see, e.g., [DN92, RSW96, Bac97, JB99]), which, as mentioned
earlier, essentially amounts to brute-forcing a hash inequality based on SHA-256, in order to generate
new blocks for the blockchain. This is modeled in [GKL15] as parties having access to the oracle
H(·). The fact that (active) parties have limited ability to produce such POWs, is captured as
in [GKL15] by the random oracle functionality and the fact that it paces parties to query a limited
number of queries per round. The bound, q, is a function of the security parameter κ; in this sense
the parties may be called q-bounded6. We refer to the above restrictions on the environment, the
parties and the adversary as the dynamic q-bounded synchronous setting.

The term {viewP,t,n
Π,A,Z(z)}z∈{0,1}∗ denotes the random variable ensemble describing the view of

party P after the completion of an execution running protocol Π with environment Z and adversary
A, on input z ∈ {0, 1}∗. We will only consider a “standalone” execution without any auxiliary
information and we will thus restrict ourselves to executions with z = 1κ. For this reason we
will simply refer to the ensemble by viewP,t,n

Π,A,Z . The concatenation of the view of all parties ever
activated in the execution is denoted by viewt,n

Π,A,Z .

Properties of protocols. In our theorems we will be concerned with properties of protocols Π
running in the above setting. Such properties will be defined as predicates over the random variable
viewt,n

Π,A,Z by quantifying over all possible adversaries A and environments Z. Note that all our
protocols will only satisfy properties with a small probability of error in κ as well as in a parameter
k that is selected from {1, . . . , κ} (note that in practice one may choose k to be much smaller than
κ, e.g., k = 6).

The protocol class that we will analyze will not be able to preserve its properties for arbitrary
sequences of parties. To restrict the way the sequence n is fluctuating we will introduce the following
class of sequences.

Definition 28. For γ ∈ R+, we call a sequence (nr)r∈N (γ, s)-respecting if, it holds that in a
sequence of rounds S with |S| ≤ s rounds it holds that maxr∈S nr ≤ γ ·minr∈S nr.

6In [GKL15] this is referred to as the “flat-model” in terms of computational power, where all parties are assumed
equal. In practice, different parties may have different “hashing power”; note that this does not sacrifice generality
since one can imagine that real parties are simply clusters of some arbitrary number of flat-model parties.

28

Observe that the above sequence is fairly general and also can capture exponential growth by
setting e.g., γ = 2 and s = 10, it follows that every 10 rounds the number of ready parties may
double. Note that this will not lead to an exponential running time overall since the total run time
is bounded by a polynomial in κ, (due to the fact that (Z, C) is a system of ITM’s, Z is locally
polynomial bounded, C is a polynomial-time program, and thus [Can00b, Proposition 3] applies).

More formally, a protocol Π would satisfy a property Q for a certain class of sequences n, t,
provided that for all PPT A and locally polynomial bounded Z, it holds that Q(viewt,n

Π,A,Z) is true
with overwhelming probability of the coins of A,Z and the random oracle functionality.

In this paper, we will be interested in (γ, s)-respecting sequences n, sequences t suitably re-
stricted by n, and protocols Π that are suitably parameterized given n, t.

B The Bitcoin Backbone Protocol with Variable Difficulty (cont’d)

In this section we give a a more detailed description of the Bitcoin backbone protocol with chains
of variable difficulty. The presentation is based on the description in [GKL15].

B.1 The protocol

As in [GKL15] in our description oof the backbone protocol we intentionally avoid specifying the type
of values/content that parties try to insert in the chain, the type of chain validation they perform
(beyond checking for its structural properties with respect to the hash functions G(·), H(·)), and the
way they interpret the chain. These checks and operations are handled by the external functions
V (·), I(·) and R(·) (the content validation function, the input contribution function and the chain
reading function, resp.) which are specified by the application that runs “on top” of the backbone
protocol.

The Bitcoin backbone protocol in the dynamic setting is specified as Algorithm 4 and depends
on three sub-procedures.

Chain validation. The validate algorithm performs a validation of the structural properties of a
given chain C. It is given as input the value q, as well as hash functionsH(·), G(·). It is parameterized
by the content validation predicate predicate V (·) as well as by D(·), the target calculation function
(see Section 3). For each block of the chain, the algorithm checks that the proof of work is properly
solved (with a target that is suitable as determined by the target calculation function), and that the
counter ctr does not exceed q. Furthermore it collects the inputs from all blocks, xC , and tests them
via the predicate V (xC). Chains that fail these validation procedure are rejected. (Algorithm 1.)

29

Algorithm 1 The chain validation predicate, parameterized by q,D, the hash functions G(·), H(·),
and the input validation predicate V (·). The input is chain C.
1: function validate(rnow, C)
2: valid← V (xC) ∧ (C 6= ε)
3: if valid = true then . The chain is non-empty and meaningful w.r.t. V (·)
4: r′ ← rnow
5: 〈r, st, x, ctr〉 ← head(C)
6: st′ ← H(ctr,G(r, st, x))
7: repeat
8: 〈r, st, x, ctr〉 ← head(C)
9: T ← D(rCd1) . Calculate target based on Cd1

10: if validblockTq (〈st, x, ctr〉) ∧ (H(ctr,G(r, st, x)) = st′) ∧ (r < r′) then
11: r′ ← r . Retain round timestamp
12: st′ ← st . Retain hash value
13: C ← Cd1 . Remove the head from C
14: else
15: valid← False
16: end if
17: until (C = ε) ∨ (valid = False)
18: end if
19: return valid
20: end function

Chain comparison. The objective of the second algorithm, called maxvalid, is to find the “best
possible” chain when given a set of chains. The algorithm is straightforward and is parameterized
by a max(·) function that applies some ordering in the space of chains. The most important aspect
is the chains’ difficulty in which case max(C1, C2) will return the most difficult of the two. In case
diff(C1) = diff(C2), some other characteristic can be used to break the tie. In our case, max(·, ·) will
always return the first operand to reflect the fact that parties adopt the first chain they obtain from
the network. (Algorithm 2.)

Algorithm 2 The function that finds the “best” chain, parameterized by function max(·). The
input is {C1, . . . , Ck}.
1: function maxvalid(r, C1, . . . , Ck)
2: temp← ε
3: for i = 1 to k do
4: if validate(r, Ci) then
5: temp← max(C, temp)
6: end if
7: end for
8: return temp
9: end function

Proof of work. The third algorithm, called pow, is the proof of work-finding procedure. It takes as
input a chain and attempts to extend it via solving a proof of work. This algorithm is parameterized
by two hash functions H(·), G(·) as well as the parameter q. Moreover, the algorithm calls the target

30

calculation function D(·) om prder to determine the value T that will be used for the proof of work.
The procedure, given a chain C and a value x to be inserted in the chain, hashes these values to
obtain h and initializes a counter ctr. Subsequently, it increments ctr and checks to see whether
H(ctr, h) < T ; in case a suitable ctr is found then the algorithm succeeds in solving the POW and
extends chain C by one block. (Algorithm 3.)

Algorithm 3 The proof of work function, parameterized by q and hash functions H(·), G(·). The
input is (x, C).
1: function pow(r, x, C)
2: if C = ε then . Determine proof of work instance.
3: st← 0
4: else
5: 〈r′, st′, x′, ctr′〉 ← head(C)
6: st← H(ctr′, G(r′, st′, x′))
7: end if
8: ctr ← 1
9: B ← ε

10: T ← D(rC) . Calculate target for next block based on timestamps.
11: h← G(r, st, x)
12: while (ctr ≤ q) do
13: if (H(ctr, h) < T) then . Proof of work succeeds and a new block is created.
14: B ← 〈r, st, x, ctr〉
15: break
16: end if
17: ctr ← ctr + 1
18: end while
19: C ← CB . Chain is extended
20: return C
21: end function

The backbone protocol. The core of the protocol is similar to that of [GKL15], with several
important distinctions. First is the procedure to follow when they become active. Parties check
the ready flag they possess that is false if and only if they have been inactive in the previous
round. In case the ready flag is false, they broadcast a special message ‘Join’ to request the most
recent version of the blockchain(s). Similarly, parties that receive the special request message in
their Receive() tape they broadcast their chain. As before parties, run “indefinitely” (our security
analysis will apply when the total running time is polynomial in κ). The input contribution function
I(·) and the chain reading function R(·) are applied to the values stored in the chain. Parties check
their communication tape Receive() to see whether any necessary update of their local chain is
due; then they attempt to extend it via the POW algorithm pow. The function I(·) determines
the input to be added in the chain given the party’s state st, the current chain C, the contents of
the party’s input tape Input() and communication tape Receive(). The input tape contains two
types of symbols, Read and (Insert, value); other inputs are ignored. In case the local chain C is
extended the new chain is broadcast to the other parties. Finally, in case a Read symbol is present
in the communication tape, the protocol applies function R(·) to its current chain and writes the
result onto the output tape Output(). The pseudocode of the backbone protocol is presented in
Algorithm 4.

31

Algorithm 4 The Bitcoin backbone protocol in the dynamic setting at round “round” on local
state (st, C) parameterized by the input contribution function I(·) and the chain reading function
R(·). The ready flag is false if and only if the party was inactive in the previous round.

1: if ready = true then
2: Diffuse(‘ready’)
3: C̃ ← maxvalid(C, all chains C′ found in Receive())
4: 〈st, x〉 ← I(st, C̃, round, Input(),Receive())
5: Cnew ← pow(round, x, C̃)
6: if (C 6= Cnew) ∨ (‘Join’ ∈ Receive()) then
7: C ← Cnew
8: Diffuse(C) . chain is diffused when it is updated or when someone wants to join.
9: end if

10: if Input() contains Read then
11: write R(xC) to Output()
12: Diffuse(RoundComplete)
13: end if
14: else
15: ready← true
16: Diffuse(Join,RoundComplete)
17: end if

C Robust Public Transaction Ledgers

In this section we reproduce the presentation of public transaction ledgers given in [GKL14, GKL15].
A public transaction ledger is defined with respect to a set of valid ledgers L and a set of valid
transactions T , each one possessing an efficient membership test. A ledger x ∈ L is a vector of
sequences of transactions tx ∈ T . Each transaction tx may be associated with one or more accounts,
denoted a1, a2, . . . etc.

The backbone protocol parties, called miners in the context of this section, process sequences of
transactions of the form x = tx1 . . . txe that are supposed to be incorporated into their local chain
C. The input inserted at each block of the chain C is the sequence x of transactions. Thus, a ledger
is a vector of transaction sequences 〈x1, . . . , xm〉, and a chain C of length m contains the ledger
xC = 〈x1, . . . , xm〉 if the input of the j-th block in C is xj .

The description and properties of the ledger protocol will be expressed relative to an oracle Txgen
which will control a set of accounts by creating them and issuing transactions on their behalf. In
an execution of the backbone protocol, the environment Z as well as the miners will have access
to Txgen. Specifically, Txgen is a stateful oracle that responds to two types of queries (which we
purposely only describe at a high level):

GenAccount(1κ): It generates an account a.
IssueTrans(1κ, t̃x): It returns a transaction tx provided that t̃x is some suitably formed string,
or ⊥.
We also consider a symmetric relation on T , denoted by C(·, ·), which indicates when two trans-

actions tx1, tx2 are conflicting. Valid ledgers x ∈ L can never contain two conflicting transactions.
We call oracle Txgen unambiguous if it holds that for all PPT A, the probability that ATxgen

produces a transaction tx′ such that C(tx′, tx) = 1, for tx issued by Txgen, is negligible in κ.

32

Finally, a transaction tx is called neutral if C(tx, tx′) = 0 for any other transaction tx′. The
presence of neutral transactions in the ledger can be helpful for a variety of purposes, as we will see
next and in the BA protocol that we build on top of the ledger. For convenience we will assume that
a single random nonce ρ ∈ {0, 1}κ is also a valid transaction. Nonces will be neutral transactions
and may be included in the ledger for the sole purpose of ensuring independence between the POW
instances solved by the honest parties.

Next, we determine the three functions V (·), I(·), R(·) that will turn the backbone protocol into
ΠPL, a protocol realizing a public transaction ledger. See Figure 1.

Content validation pred-
icate V (·)

V (〈x1, . . . , xm〉) is true if and only if the vector 〈x1, . . . , xm〉 is a valid
ledger, i.e., 〈x1, . . . , xm〉 ∈ L.

Chain reading function
R(·)

If V (〈x1, . . . , xm〉) = True, the value R(C) is equal to 〈x1, . . . , xm〉;
undefined otherwise.

Input contribution func-
tion I(·)

I(st, C, round, Input()) operates as follows: if the input tape contains
(Insert, v), it parses v as a sequence of transactions and retains the
largest subsequence x′ � v that is valid with respect to xC (and whose
transactions are not already included in xC). Finally, x = tx0x

′ where
tx0 is a neutral random nonce transaction.

Figure 1: The public transaction ledger protocol ΠPL, built on the Bitcoin backbone.

In Section 4.3 we introduced two essential properties for a protocol maintaning a public trans-
action ledger: (i) Persistence and (ii) Liveness. In a nutshell, Persistence states that once an honest
player reports a transaction “deep enough” in the ledger, then all other honest players will report
it indefinitely whenever they are asked, and at exactly the same position in the ledger (essentially,
this means that all honest players agree on all the transactions that took place and in what order).
In a more concrete Bitcoin-like setting, Persistence is essential to ensure that credits are final and
that they happened at a certain “time” in the system’s timeline (which is implicitly defined by the
ledger itself).

Persistence is useful but not enough to ensure that the ledger makes progress, i.e., that transac-
tions are eventually inserted in a chain. This is captured by the Liveness property, which states that
as long as a transaction comes from an honest account holder and is provided by the environment to
all honest players, then it will be inserted into the honest players’ ledgers, assuming the environment
keeps providing it as an input for a sufficient number of rounds.

For more details about the specification of a robust transaction ledger, in particular Bitcoin-like
transactions and ledger, refer to [GKL14, GKL15].

D Martingale Sequences and Other Mathematical Facts

Definition 29. [MU05, Chapter 12] A sequence of random variables X0, X1, . . . is a martingale
with respect to the sequence Y0, Y1, . . . , if, for all n ≥ 0, (1) Xn is a function of Y0, . . . , Yn, (2)
E[|Xn|] <∞, and (3) E[Xn+1|Y0, . . . , Yn] = Xn.

Theorem 30. [McD98, Theorem 3.15] Let X0, X1, . . . be a martingale with respect to the sequence
Y0, Y1, For n ≥ 0, let

V =

n∑
i=1

var(Xi −Xi−1|Y0, . . . , Yi−1) and b = max
1≤i≤n

sup(Xi −Xi−1|Y0, . . . , Yi−1),

33

where sup is taken over all possible assignments to Y0, . . . , Yi−1. Then, for any t, v ≥ 0,

Pr
[
(Xn ≥ X0 + t) ∧ (V ≤ v)

]
≤ exp

{
− t2

2v + 2bt/3

}
.

Fact 2. Suppose f : [0,∞) → [0,∞) is concave and f(0) ≥ 0. Then, for any x, y ∈ [0,∞) and
λ ∈ [1,∞),

f(x/λ) ≥ f(x)/λ, f(λx) ≤ λf(x), f(x+ y) ≤ f(x) + f(y).

The following well-known e-related inequalities are used throughout the analysis, possibly with-
out reference.

Fact 3. (1) 1 + x < ex, for all x. (2) − x
1−x < ln(1− x), for x ∈ (0, 1). (3) x

1+x/2 < ln(1 + x) < x,
for x > 0.

34

	Introduction
	Model and Definitions
	Blockhains of Variable Difficulty
	The Bitcoin Backbone Protocol with Variable Difficulty
	The Protocol
	Properties of the Backbone Protocol with Variable Difficulty
	Application: Robust Transaction Ledger

	Overview of the Analysis
	Full Analysis
	Additional notation, definitions, and preliminary propositions
	Chain-Growth Lemma
	Typical Executions: Definition and Related Proofs
	Typical Executions are Good and Accurate
	Common Prefix and Chain Quality
	Persistence and Liveness

	Model and Definitions (cont'd)
	The Bitcoin Backbone Protocol with Variable Difficulty (cont'd)
	The protocol

	Robust Public Transaction Ledgers
	Martingale Sequences and Other Mathematical Facts

