
Randomized stopping times and provably secure
pseudorandom permutation generators ?

Michal Kulis1, Pawel Lorek2, and Filip Zagorski1

1 Wroclaw University of Science and Technology
Faculty of Fundamental Problems of Technology

Department of Computer Science

2 Wroclaw University
Faculty of Mathematics and Computer Science

Mathematical Institute

Abstract. Conventionally, key-scheduling algorithm (KSA) of a cryp-
tographic scheme runs for predefined number of steps. We suggest a
different approach by utilization of randomized stopping rules to gen-
erate permutations which are indistinguishable from uniform ones. We
explain that if the stopping time of such a shuffle is a Strong Stationary
Time and bits of the secret key are not reused then these algorithms are
immune against timing attacks.
We also revisit the well known paper of Mironov [16] which analyses a
card shuffle which models KSA of RC4. Mironov states that expected
time till reaching uniform distribution is 2nHn − n while we prove that
nHn + n steps are enough (by finding a new strong stationary time for
the shuffle).
Nevertheless, both cases require O(n log2 n) bits of randomness while one
can replace the shuffle used in RC4 (and in Spritz) with a better shuffle
which is optimal and needs only O(n logn) bits.
Our analysis gives also insights to the (in)security of Spritz stream cipher.

Keywords: Pseudo-random permutation generator, Markov chains, mix-
ing time, stream cipher, timing-attacks.

1 Introduction

The applicability of card shuffles to cryptography was noticed many years
ago by e.g., Naor [18] for Thorp shuffle. The shuffles can be categorized
into two groups. The first one are the oblivious shuffles, meaning that
the trajectory of a card during the shuffle can be traced without tracing
trajectories of other cards. Thus oblivious shuffles can be seen as block
ciphers. The other group of card shuffles – non-oblivious shuffles require
? Authors were supported by Polish National Science Centre contract number DEC-
2013/10/E/ST1/00359.

2

tracing all the cards in order to trace a single one. Since one needs to trace
each of the n cards, straightforward application of non-oblivious shuffles
as block ciphers would be inefficient. But non-oblivious shuffles are used
in cryptographic schemes anyway, just in a slightly different role – often
as a building block of a stream cipher.

Let us use the naming convention used by RC4 – a stream cipher
designed in 1987 by Ronald Rivest. There is also a long line of stream
ciphers: RC4A [24], Spritz [21], RC4+ [22], VMPC [26] – all of them are
very similar – they are composed from two algorithms:

1. KSA (Key Scheduling Algorithm) uses a secret key to transform iden-
tity permutation of n cards into some other permutation (one can
model KSA as a card shuffle).

2. PRGA (Pseudo Random Generation Algorithm) starts with a permu-
tation generated by KSA and outputs random bits from it updating
permutation at the same time.

Thus, KSAs of all aforementioned algorithms (RC4, RC4A, Spritz, RC4+,
VMPC) can be seen as performing some card shuffling, where a secret
key corresponds to/replaces randomness. If we consider a version of the
algorithm with purely random secret key of infinite length then we indeed
consider a card shuffling procedure. Following [16], we call such a version
of the algorithm an idealized version. In the case of KSA used by RC4 the
idealized version (mathematical model) of the card shuffle is called Cyclic-
to-Random Transpositions shuffle which indeed is an example of non-
oblivious shuffle. Recently, in 2013, Rivest and Schuldt presented a new
version of an RC4-like cipher (Spritz [21]) which has a new sponge-like KSA
which performs more complicated shuffle: 6N steps of Cyclic-to-Random
Transpositions (as part of Whip procedure, see Figure 7; compared to
only N steps of in RC4) and in between, partial sorting (so called Crush)
of elements in the internal state is performed twice (after 2-nd and 4-th
shuffling).

The KSAs of mentioned ciphers perform shuffling for some predefined
number of steps. The security of such a scheme is mainly based on ana-
lyzing idealized version of the algorithm and corresponds to the “quality of
a shuffling”. Roughly speaking, shuffling is considered as a Markov chain
on permutations, all of them converge to uniform distribution (perfectly
shuffled cards). Then we should perform as many steps as needed to be
close to this uniform distribution, what is directly related to the so-called
mixing time. This is one of the main drawbacks of RC4: it performs Cyclic-
to-Random Transpositions for n steps, whereas the mixing time is of order
n log n.

3

There is a long list of papers which point out weaknesses of the RC4 al-
gorithm. Attacks exploited both weaknesses of PRGA and KSA or the way
RC4 was used in specific systems [13,11,10,14,5]. As a result, in 2015 RC4
was prohibited in TLS by IETF, Microsoft and Mozilla.

In the paper we use so-called Strong Stationary Times (SST) for
Markov chains. The main area of application of SSTs is studying the rate
of convergence of a chain to its stationary distribution. However, they
may also be used for perfect sampling from stationary distribution of a
Markov chain, consult [20] (on Coupling From The Past algorithm) and [9]
(on algorithms involving Strong Stationary Times and Strong Stationary
Duality).

1.1 Our contribution

(1) Strong stationary time based KSA algorithm(s) Instead of
running a KSA algorithm (i.e., performing the shuffle) for some pre-
defined number of steps, we make it randomized (Las Vegas algorithm).
To be more specific we suggest utilization of so-called Strong Station-
ary Times (SST) for Markov chains. We use SST to obtain samples
from uniform distribution on all permutations (we actually perform per-
fect sampling). We show benefits of such approach:

1. Use of SST may allow to close the gap between theoretical models and
practice. As a result of Mironov’s [16] work, one knows that idealized
version of RC4’s KSA would need keys of length ≈ 23 037 in order to
meet the mathematical model. In fact one may use a better shuffling
than the one that is used in RC4 i.e., time-reversed riffle shuffle which
requires (on average) 4096 bits – not much more than 2048 bits which
are allowed for RC4 (see Section 4.1).

2. Coupling methods are most commonly used tool for studying the rate
of convergence to stationarity for Markov chains. They allow to bound
so-called total variation distance between the distribution of given
chain at time instant k and its stationary distribution. However, the
(traditional) security definitions require something “stronger”. It turns
out that bounding separation distance is what one actually needs. It
fits perfectly in the notion of Strong Stationary Times we are using
(see Section 4.2).

3. By construction, the running time of our model is key dependent.
In extreme cases (very unlikely) it may leak some information about
the key but it does not leak any information about the resulting
permutation to an adversary. We also discuss how one can mask such
a leakage (see Section 4.3).

4

(2) Better SST for RC4’s KSA Our complementary contribution (Sec-
tion 5.2) is the analysis of RC4 showing a new upper bound on number
of steps the algorithm should perform. Similarly as in [16], we propose
SST which is valid for Cyclic-to-Random Transpositions and Random-to-
Random Transpositions, for the latter one we calculate the mixing time,
which is however “faster” than the one given in [16]. It is known that
Random-to-Random Transpositions card shuffling needs 1

2n log n steps to
mix. It is worth mentioning that although Random-to-Random Transpo-
sitions and Cyclic-to-Random Transpositions are similar in the spirit it
does not transfer automatically that the latter one also needs 1

2n log n
steps to mix. Mironov [16] states that expected time till reaching uniform
distribution is upper bounded by 2nHn−n, we show in Lemma 3 that the
expected running time for this SST in Random-to-Random Transpositions
is equal to:

E[T] = nHn + n+O(Hn)

and empirically check that the result is similar for Cyclic-to-Random
Transpositions. This directly translates into the required steps that should
be performed by RC4’s KSA.
(3) Note on Spritz construction. We also have a look at Spritz (Sec-
tion 6), a newer sponge-like construction. We explain why the Sign distin-
guisher attack cannot be successful and provide arguments why the KSA
algorithm in Spritz may not perform enough steps.

2 Preliminary

Throughout the paper, let Sn denote a set of all permutations of a set
{1, . . . , n} =: [n].

2.1 Markov chains and rate of convergence

Consider ergodic Markov chain X = {Xk, k ≥ 0} on finite state space
E = {0, . . . ,M − 1} with stationary distribution ψ. Let L(Xk) denote the
distribution of a chain at time instant k. By the rate of convergence we
understand the knowledge on how fast a distribution of a chain converges
to its stationary distribution. We have to measure it according to some
distance dist. Define

τdistmix(ε) = inf{k : dist(L(Xk), ψ) ≤ ε},

5

which is called mixing time (w.r.t. given distance dist). In our case the
state space is the set of all permutations of [n], i.e., E := Sn. The sta-
tionary distribution is the uniform distribution over E, i.e., ψ(σ) = 1

n!
for all σ ∈ E. In most applications the mixing time is defined w.r.t. total
variation distance:

dTV (L(Xk), ψ) =
1

2

∑
σ∈Sn

∣∣∣∣Pr(Xk = σ)− 1

n!

∣∣∣∣ .
The separation distance is defined by

sep(L(Xk), ψ) := max
σ∈E

(1− n! · Pr(Xk = σ)) .

It is relatively easy to check that dTV (L(Xk), ψ) ≤ sep(L(Xk), ψ).

Strong Stationary Times The definition of separation distance fits
perfectly into notion of Strong Stationary Time (SST) for Markov chains.
This is a probabilistic tool for studying the rate of convergence of Markov
chains allowing also perfect sampling. We can think of stopping time as
of a running time of algorithm which observes Markov chain X and which
stops according to some stopping rule (depending only on the past).

Definition 1. Random variable T is a randomized stopping time if it is
a running time of the Randomized Stopping Time algorithm.

Algorithm Randomized Stopping Time
1: k := 0
2: coin :=Tail
3: while coin ==Tail do
4: At time k, (X0, . . . , Xk) was observed
5: Calculate fk(X), where fk : (X0, . . . , Xk)→ [0, 1]
6: Let p = fk(X0, . . . , Xk). Flip the coin resulting in Head with probability p and

in Tail with probability 1− p. Save result as coin.
7: k := k + 1
8: end while

Definition 2. Random variable T is Strong Stationary Time (SST)
if it is a randomized stopping time for chain X such that:

∀(i ∈ E) Pr(Xk = i|T = k) = ψ(i).

6

Having SST T for chain with uniform stationary distribution lets us bound
the following (cf. [3])

sep(L(Xk), ψ) ≤ Pr(T > k). (1)

We say that T is an optimal SST if sep(L(Xk), ψ) = Pr(T > k).

2.2 Distinguishers and security definition

We consider three distinguishers: Sign distinguisher and Position distin-
guisher which are exactly the same as defined in [16], we also consider
Permutation distinguisher – we consider his advantage in a traditional cryp-
tographic security definition. That is, Permutation distinguisher is given a
permutation π and needs to decide whether π is a result of a shuffle or if it
is a permutation selected uniformly at random from the set of all permuta-
tions of a given size. The important difference is that the upper bound on
Permutation distinguisher’s advantage is an upper bound on any possible
distinguisher – even those which are not bounded computationally.

Position distinguisher Sign distinguisher

Input: S, t, table (p(t)i,j),
threshold A
Output: b
p:=0
for i:=0 to n− 1 do
p:=p+ log(np)

(t)

i,S[i]

if p < A
then return false
else return true

Input: S, t
Output: b
if sign(S)=(−1)t
then return false
else return true

Position distinguisher Because of the nature of the process (in fact
both: Random-to-Random Transpositions and Cyclic-to-Random Trans-
positions), the probability that ith card is at jth position depends on t:
p
(t)
i,j = P (S[j] = i at time t) which can be pre-computed according to

recursion: p(0)i,j =

{
1 if i = j
0 otherwise and for t > 0 :

p
(t)
i,j =

{
p
(t−1)
i,j

(
1− 1

n

)
+ 1

np
(t−1)
t0,j

if i 6= t0,
1
n otherwise,

7

where t0 = t mod n. The advantage of Position distinguisher dissolves in
time – we will upper bound the time needed for this distinguisher to lose
his advantage.

Sign distinguisher For a permutation π which has a representation of
non-trivial transpositions π = (a1b1)(a2b2) . . . (ambm) the sign is defined
as: sign(π) = (−1)m. So the value of the sign is +1 whenever m is even
and is equal to −1 whenever m is odd.

Permutation distinguisher The distinguishability game for the adver-
sary is as follows:

Definition 3. The permutation indistinguishability ShuffleS,A(n, r) exper-
iment.

Algorithm ShuffleS,A(n, r)
Let S be a shuffling algorithm which in each round requires m bits.

1. S is initialized with:
(a) a key generated uniformly at random K ∼ U({0, 1}rm),
(b) S0 = π0 (identity permutation)

2. S is run for r rounds: Sr := S(K) and produces a permutation πr.
3. We set:

• c0 := πrand a random permutation from uniform distribution is chosen,
• c1 := πr.

4. A challenge bit b ∈ {0, 1} is chosen at random, permutation cb is sent to the
Adversary.

5. Adversary replies with b′

6. The output of the experiment is defined to be 1 if b′ = b, and 0 otherwise.

In the case when adversary wins the game (if b = b′) we say that A
succeeded. Adversary wins the game if she can distinguish the random
permutation from the permutation being a result of the PRPG algorithm.

Definition 4. A shuffling algorithm S generates indistinguishable permu-
tations if for all adversaries A there exists a negligible function negl such
that

Pr [ShuffleS,A(n, r) = 1] ≤ 1

2
+ negl(n).

The above translates into:

8

Definition 5. A shuffling algorithm S generates indistinguishable permu-
tations if for any adversary A there exists a negligible function negl such
that: ∣∣∣∣ Pr

K←{0,1}keyLen
[A(S(K)) = 1]− Pr

R←U(Sn)

[A(R) = 1]

∣∣∣∣ ≤ negl(n).

3 Related Work

3.1 RC4 algorithm

RC4 is a stream cipher, its so-called internal state is (S, i, j), where S
is a permutation of [n] and i, j are some two indices. As input it takes
L−byte message m1, . . . ,mL and a secret key K and returns ciphertext
c1, . . . , cL. The initial state is the output of KSA. Based on this state PRGA
is used to output bits which are XORed with the message. The actual KSA
algorithm used in RC4 is presented in Figure 1 together with its idealized
version KSA∗ (where a secret key-based randomness is replaced with pure
randomness) and our version of the algorithm KSA∗∗ (where, in addition
to KSA∗, it does not run pre-defined number of steps, but the number
depends on a key and is determined by some stopping procedure ST). The
details on KSA∗∗ will be given in Section 4.1.

KSA(K) KSA∗ KSA∗∗

for i := 0 to n− 1 do
S[i] := i

end for

j := 0
for i := 0 to n− 1 do
j := j + S[i] +K[i mod l]
swap(S[i], S[j])

end for
i, j := 0

for i := 0 to n− 1 do
S[i] := i

end for

for i := 0 to n− 1 do
j :=random(n)
swap(S[i], S[j])

end for
i, j := 0

for i := 0 to n−1 do
S[i] := i

end for

while (¬ ST) do
j :=random(n)
swap(S[i], S[j])
i := i+ 1 mod n

end while

Fig. 1. KSA of RC4 algorithm and its idealized version KSA∗. The KSA∗∗ has some
additional procedure ST (stopping time) which is computed during the execution of the
algorithm (for original RC4 simply ST is: stop after n steps).

A closer look at KSA∗ reveals that it is actually so-called Cyclic-to-
Random Transpositions. If we identify elements [n] with cards then we do
the following: at step t exchange card t mod n with randomly chosen one.

9

Throughout the paper, let Z = {Z}t≥0 denote the chain corresponding to
this shuffling and let L(Zt) denote the distribution of the chain at time t.

3.2 Sign distinguisher for RC4’s KSA

It was observed in [16] that the sign of the permutation at the end of
KSA algorithm is not uniform. And as a conclusion it was noticed that
the number of discarded shuffles (by PRGA) must grow at least linearly
in n. Below we present this result obtained in a different way than in [16],
giving the exact formula for advantage at any step t. This form will be
used by us to draw conclusions about Spritz algorithm in Section 6.1.

One can look at the sign-change process for the Cyclic-to-Random
Transpositions as follows: after the table is initialized, sign of the permu-
tation is +1 since it is identity so the initial distribution is concentrated
in v0 = (Pr(sign(Z0) = +1), P r(sign(Z0) = −1)) = (1, 0).

Then in each step the sign is unchanged if and only if i = j which
happens with probability 1/n. So the transition matrix Mn of a sign-
change process induced by the shuffling process is equal to:

Mn :=

(
1
n 1− 1

n
1− 1

n
1
n

)
.

This conclusion corresponds to looking at the distribution of the sign-
change process after t steps: v0 ·M t

n, where v0 is the initial distribution.
The eigenvalues and eigenvectors of Mn are (1, 2−nn) and (1, 1)T , (−1, 1)T
respectively. The spectral decomposition yields

v0 ·Mt
n = (1, 0)

 1 −1

1 1

 1 0

0 2−n
n

t 1
2
− 1

2

− 1
2

1
2

 =

(
1

2
+

1

2

(
2

n
− 1

)t

,
1

2
−

1

2

(
2

n
− 1

)t
)
.

For n = 256 (which corresponds to the value of n used in RC4) and
initial distribution being identity permutation after t = n = 256 steps one
gets: v0 ·M256

256 = (0.567138, 0.432862).
In [14] it was suggested that the first 512 bytes of output should be

dropped. The Table 3 in Appendix A presents the advantage ε of a sign-
adversary after dropping k bytes of the output (so after n+k steps of the
shuffle, for the mathematical model).

3.3 Position distinguisher for RC4’s KSA

Mironov suggested analysis of idealized version of KSA algorithm. Being
in permutation S ∈ Sn at step i, the idealized version swaps element

10

S[i] with purely random S[j]. Treating the permutation as a permutation
of a deck of cards, this is exactly a known Cyclic-to-Random Transposi-
tions card shuffling. On the other hand if both, S[i] and S[j] are chosen
uniformly at random, the procedure is called Random-to-Random Trans-
positions card shuffling. It is known that Random Transposition requires
around 1

2n log n to reach uniform distribution, see [8]. Moreover, authors
showed that “most of the action” actually happens at this step – the
process exhibit so called cut-off phenomena. The analysis of Position dis-
tinguisher uses Strong Stationary Time (called Strong Uniform Times in
[16]), based on Broder’s construction for Random-to-Random Transpo-
sitions. Unfortunately Mironov’s “estimate of the rate of growth of the
strong uniform time T is quite loose” and results “are a far cry both from
the provable upper and lower bounds on the convergence rate”. He:

• proved an upper bound O(n log n). More precisely Mironov showed
that there exists some positive constant c such that P [T > cn log n]→
0 when n→∞. Author experimentally checked that P [T > 2n lg n] <
1/n for n = 256 which corresponds to P [T > 4096] < 1/256.
• experimentally showed that E[T] ≈ 11.16n ≈ 1.4n lg n ≈ 2857 (for
n = 256) – which translates into: on average one needs to drop ≈ 2601
initial bytes.

Later Mosel, Peres and Sinclair [17] proved a matching lower bound
establishing mixing time to be of order Θ(n log n). However, the constant
was not determined.

4 Randomized stopping times and cryptographic schemes

4.1 Strong stationary time based KSA algrorithms

We propose to use the KSA∗∗Shuffle,ST(n) algorithm which works as follows.
It starts with identity permutation. Then at each step it performs some
card shuffling procedure Shuffle. Instead of running it for a pre-defined
number of steps, it runs until an event defined by a procedure ST occurs.
The procedure ST is designed in such a way that it guarantees that the
event is a Strong Stationary Time. At each step the algorithm uses new
randomness – one can think about that as of an idealized version but when
the length of a key is greater than the number of random bits required
by the algorithm then we end up with a permutation which cannot be
distinguished from a random (uniform) one (even by a computationally
unbounded adversary).

11

Algorithm KSA∗∗Shuffle,ST(n)
Require: Card shuffling Shuffle procedure, stopping rule ST which is a Strong Sta-
tionary Time for Shuffle.

for i := 0 to n− 1 do
S[i] := i

end for

while (¬ ST) do
Shuffle(S)

end while

Notational convention: in KSA∗∗Shuffle,ST(n) we omit parameter n. More-
over, if Shuffle and ST are omitted it means that we use Cyclic-to-
Random Transpositions as shuffling procedure and stopping rule is clear
from the context (as in KSA∗∗ given earlier in Fig. 1). Note that if we use
for stopping rule ST “stop after n steps” (which of course is not SST), it
is equivalent to RC4’s KSA∗ (also in Fig. 1).

Given a shuffling procedure Shuffle one wants to have a “fast” stop-
ping rule ST (perfectly one wants an optimal SST which is stochasti-
cally the smallest). The stopping rule ST is a parameter, since for a given
shuffling scheme one can come up with a better stopping rule(s). This is
exactly the case with Cyclic-to-Random Transpositions and Random-to-
Random Transpositions, we recall Mironov’s [16] stopping rule as well as
new “faster” rule called StoppingRuleKLZ is given (in Section 5.2).

4.2 RST and security guarantees

Coupling method is a commonly used tool for bounding the rate of con-
vergence of Markov chains. Roughly speaking, a coupling of a Markov
chain X with transition matrix P is a bivariate chain (X′,X′′) such that
marginally X′ and X′′ are Markov chains with transition matrix P and
once the chains meet they stay together (in some definitions this condi-
tion can be relaxed). Let then Tc = infk{X ′k = X ′′k} i.e., the first time
chains meet, called coupling time. The coupling inequality states that
dTV (L(Xk), ψ) ≤ Pr(Tc > k).

On the other hand separation distance is an upper bound on total
variation distance, i.e., dTV (L(Xk), ψ) ≤ sep(L(Xk), ψ). At first glance
it seems that it is better to directly bound dTV , since we can have dTV
very small, whereas sep is (still) large. However, knowing that sep is small
gives us much more than just knowing that dTV is small, what turns out

12

to be crucial for proving security guarantees (i.e., Definition 5). In our
case (E = Sn and ψ is a uniform distribution on E) having dTV small, i.e.,
dTV (L(Xk), ψ) = 1

2

∑
σ∈Sn

∣∣Pr(Xk = σ)− 1
n!

∣∣ ≤ ε does not imply that
|Pr(Xk = σ)− 1

n! | is uniformly small (i.e., of order 1
n!). Knowing however

that sep(L(Xk), ψ) ≤ ε implies

∀(σ ∈ E)
∣∣∣∣Pr(Xk = σ)− 1

n!

∣∣∣∣ ≤ ε

n!
. (2)

Above inequality is what we need in our security definitions and shows
that the notion of separation distance is an adequate measure of mixing
time for our applications.

It is worth noting that dTV (L(Xk),U(E)) ≤ ε implies (see Theorem 7
in [2]) that sep(L(X2k),U(E)) ≤ ε. This means that proof of security
which bounds directly total variation distance by ε would require twice
as many bits of randomness compared to the result which quarantees ε
bound on separation distance.

4.3 RST and timing-attacks

One of the most serious threats to any cryptographic scheme are side-
channel attacks. One type of such attacks are timming-attacks where an
attacker by observing the running time of the execution of a cryptosystem
derives information about the key used. Timing attacks are especially pow-
erful [1,23] since an attacker may perform them remotely, over the network
(while most of other types of side-channel attacks can be performed only
when an attacker is nearby). In order to limit threat of timing-attacks,
attempts to implement constant-time cryptographic schemes are made.
The problem is that such attempts are usually unsuccessful [19] even if
the underlying architecture (“claims”) allows for that [25,12].

The running time of an SST-based algorithm strictly depends on the
secret key. However, in this section we explain why algorithms using ran-
domized stopping times are immune to timing-attacks, we discuss sepa-
rately security of two assets: (1) resulting permutation, (2) secret key.

Timing-attacks and the security of the resulting permutation We
already defined SST (Definition 2) in Section 2.1 but one can define SST
differently.

Definition 6. Random variable T is Strong Stationary Time (SST)
if it is a randomized stopping time for chain X such that:

XT has distribution ψ and is independent of T.

13

Corrolary 1 The information about the number of rounds that an SST-
algorithm performs does not reveal any information about the resulting
permutation.

Corrolary 1 comes from the fact that the Definition 2 which defines SST
as a certain randomized stopping time is equivalent to the Definition 6
which defines SST as a variable independent of the resulting distribution.
For the proof of the equivalence see [4].

Timing attacks and the security of the secret key Unfortunately,
although no information about the resulting permutation leaks, some in-
formation about the secret key may leak. Shuffling may reveal randomness
through the running time (see Example 2 in Appendix D). In practical
implementations, one may use some function of a key instead of pure
randomness in each step. Then (at least) two following cases may happen:

1. Bits of the keystream are re-used: the running time of the algorithm
(SST) may leak both: information about key and the information
about permutation (compare with Example 1 in Appendix D).

2. Bits of the keystream are “fresh” (never re-used): the running time of
the algorithm (SST) may leak information about the key but it does
not leak any information about the produced permutation! (compare
with the Example 2 in Appendix D).

Masking SST One can prevent obtaining information about the secret
key by timing-attacks by performing a simple masking. For a stopping
rule ST that results in expected running time ET one runs the algorithm
for at least ET steps even if the ST occurred earlier.

This eliminates very short executions which could reveal information
about the key.

On the other hand, for practical implementation one may want to
eliminate the extremely long executions. This can be done by letting the
algorithm to run for e.g., ET + c ·

√
V arT (where c is a parameter and

V arT is the variance for the ST).

5 (Not so) random shuffles of RC4 – revisited

5.1 Mironov’s stopping rule – details

The goal of KSA of original RC4 is to produce a pseudorandom permu-
tation of n = 256 cards. The original algorithm performs 256 steps of
Cyclic-to-Random Transpositions. However it is known that the mixing

14

time of Cyclic-to-Random Transpositions is Θ(n log n). Then performing
only 256 (i.e., n) steps seems much too less. In fact, it is recommended to
perform at least 3072 steps, see Mironov [16]. Generally, the more steps
are performed, the closer to uniformity the final permutation is. Mironov
considered idealized version of the algorithm together with the following
marking rule:

“At the beginning all cards numbered 0, . . . , n−2 are unchecked,
the (n − 1)th card is checked. Whenever the shuffling algorithm
exchanges two cards, S[i] and S[j], one of the two rules may apply
before the swap takes place:
a. If S[i] is unchecked and i = j, check S[i].
b. If S[i] is unchecked and S[j] is checked, check S[i].
The event T happens when all cards become checked. ”

Then the author proves that this is a SST for Cyclic-to-Random Transpo-
sitions and shows that there exists constant c (can be chosen less than 30)
such that Pr[T > cn log n] → 0 when n → ∞. Empirically, for n = 256
he shows that Pr[T > 2n log n] < 1/n. Note that this marking scheme is
also valid for Random-to-Random Transpositions shuffling.

Lemma 1. The expected running time of Random-to-Random Transpo-
sitions shuffling with Mironov stopping rule is:

ET = 2nHn − n+O(Hn).

Proof. We start with one card checked. When k cards are checked, then
probability of checking another one is equal to pk =

(n−k)(k+1)
n2 . Thus, the

time to check all the cards is distributed as a sum of geometric random
variables and its expectation is equal to:

n−1∑
k=1

1

pk
= 2

n2

n+ 1
Hn − n = 2nHn − n+O(Hn).

5.2 Better stopping rule

We suggest another “faster” SST which is valid for both Cyclic-to-Random
Transpositions and Random-to-Random Transpositions. We will calculate
its expectation and variance for Random-to-Random Transpositions and
check experimentally (see Appendix C) that it is similar if the stopping
rule is applied to Cyclic-to-Random Transpositions. As a result (proof
given at the end of this Section) we have:

15

Theorem 1. Let A be an adversary. Let K ∈ {0, 1}rn be a secret key. Let
S(K) be KSA∗RTRT (i.e., with Random-to-Random Transpositions shuffling)
which runs for

r = n(Hn + 1) +
πn

2

1√
n!ε

steps with 0 < ε < 1
n! . Then∣∣∣∣ Pr

K←{0,1}rm
[A(S(K)) = 1]− Pr

R←U(Sn)

[A(R) = 1]

∣∣∣∣ ≤ ε
The stopping rule is given in StoppingRuleKLZ algorithm.

Algorithm StoppingRuleKLZ
Input set of already marked cardsM⊆ {1, . . . , n}, round r, Bits
Output {YES,NO}

j =n-value(Bits)
if there are less than d(n− 1)/2e marked cards then

if both π[r] and π[j] are unmarked then
mark card π[r]

end if
else

if (π[r] is unmarked and π[j] is marked) OR (π[r] is unmarked and r = j) then
mark card π[r]

end if
end if

if all cards are marked then
STOP

else
CONTINUE

end if

Lemma 2. The resulting permutation of KSA∗∗ with ST =StoppingRuleKLZ
has a uniform distribution over Sn.

Proof. We will show that the running time of the algorithm is a SST,
i.e., that the card marking procedure specified in StoppingRuleKLZ is
a SST for Cyclic-to-Random Transpositions. First phase of the proce-
dure (i.e., the case when there are less than d(n − 1)/2e cards marked)
is constructing a random permutation of marked cards by placing un-
marked cards on randomly chosen unoccupied positions, this is actually
first part of Matthews’s marking [15] scheme. Second phase is simply a

16

Broder’s construction. Theorem 9. of [16] shows that this is a valid SST
for Cyclic-to-Random Transpositions. Both phases combined produce a
random permutation of all cards.

Remark 1. One important remark should be pointed. Full Matthews’s
marking [15] scheme is “faster” than ours. However, although it is a SST for
Random-to-Random Transpositions, this is not SST for Cyclic-to-Random
Transpositions.

Calculating ET or V arT seems to be a challenging task. But note that
marking scheme StoppingRuleKLZ also yields a valid SST for Random-
to-Random Transpositions. In next Lemma we calculate ET and V arT
for this shuffle, later we experimentally show that ET is very similar for
both marking schemes.

Lemma 3. Let T be the running time of KSA∗∗ with Random-to-Random
Transpositions shuffling and ST=StoppingRuleKLZ. Then we have

E[T] = nHn + n+O(Hn),

V ar[T] ∼ π2

4 n
2,

(3)

where Hn is the n−th harmonic number and f(k) ∼ g(k) means that
limk→∞

f(k)
g(k) = 1.

The details of the proof of the Lemma 3 are in Appendix B.

Proof. Define Tk to be the first time when k cards are marked (thus T ≡
Tn). Let d = d(n−1)/2e. Then Td is the running time of the first phase and
(Tn − Td) is the running time of the second phase. Denote Yk := Tk+1−Tk.

Assume that there are k < d marked cards at a certain step. Then the
new card will be marked in next step if we choose two unmarked cards
what happens with probability: pa(k) = (n−k)2

n2 . Thus Yk is a geometric
random variable with parameter pa(k) and

E[Td] = n2
(
H(2)
n −H

(2)
n−d

)
.

Now assume that there are k ≥ d cards marked at a certain step. Then,
the new card will be marked in next step with probability:

pb(k) =
(n− k)(k + 1)

n2

17

and Yk is a geometric random variable with parameter pa(k). Thus:

E[Tn − Td] = nHn −
n

n+ 1
Hn +

n2

n+ 1
(Hn−d −Hd) .

For variance we have:

V ar[Tn] = V ar[Td] + V ar[Tn − Td] ∼
π2

4
n2.

�

From Lemma 3 we immediately have the following:

Corrolary 2 Consider the chain corresponding to KSA∗∗ with Random-
to-Random Transpositions shuffling and ST=StoppingRuleKLZ. Then we
have

τ sepmix(ε) ≤ n(Hn + 1) +
πn

2

1√
ε
.

Proof (of Theorem 1). In Theorem 1 we perform Random-to-Random
Transpositions for r = τ sepmix(n!ε) steps, i.e., sep(L(Xr), ψ) ≤ n!ε Inequal-
ity (2) implies that |Pr(Xr = σ) − 1

n! | ≤ ε for any permutation σ and
thus completes the proof. �

5.3 Predefined number of steps vs SST-based algorithms

There is a subtle difference between the randomized stopping time (like
the one suggested in the paper) and an algorithm that performs a pre-
defined number of steps. If one wants to achieve security level of e.g.,
ε = O(1/nk), k > 2 then the number of steps that would assure that
the advantage is smaller than ε would need to be equal to: τmix(ε) ≤
n(Hn + 1) + πn

2 n
k/2 = O

(
n1+k/2

)
.

As we can see the estimated running time of Cyclic-to-Random Trans-
positions with both stopping rules is similar to the theoretical results
for Random-to-Random Transpositions. Recall that for Cyclic-to-Random
Transpositions it is known that the mixing time is of order Θ(n log n), see
[17], however the constant was not determined. Based on our new SST
and simulations (see Appendix C)one can conjecture the following

Conjecture 1. The mixing time τ sepmix for Cyclic-to-Random Transpositions
converges to n log n as n→∞.

18

6 A note on Spritz

Spritz [21] is a new stream cipher that was proposed in 2014 by Rivest
and Schuldt as a possible replacement for RC4.

The first cryptanalytic results were already achieved: inefficient state
recovery attack [6] (with 21400 complexity) later improved by [7] (with
21247 steps). The second paper presents also a devastating distinguishing
attacks of complexity 244.8 (multiple key-IV setting) and 260.8 (single key-
IV setting).

Here we analyze the distribution of the internal state of Spritz after
the main part of the scheme (procedure Shuffle()) is run. Similarly
to the previous approach we replace the deterministic part of Update()
function: j := k+S[j+S[i]], with its idealized version: j := random(n)).

The definitions of Spritz’ procedures that are of our interest are pre-
sented in Appendix E.

6.1 Sign distinguisher

Although we did not find strong stationary time for “KSA” part of Spritz
algorithm, one can easily notice that the Sign Distinguisher has no advan-
tage at all. This property is achieved thanks to Crush procedure. Dur-
ing this procedure, the table S is partially sorted i.e., elements at posi-
tions v and n − 1 − v (for v = 0 . . . bN/2c − 1) are swapped whenever
S[v] > S[n − 1 − v]. So this corresponds to multiplying the sign process
by:

Mcrush :=

(1
2

1
2

1
2

1
2

)
.

If Spritz is used as stream cipher, as part of Squeeze procedure, at least
one call to Shuffle is made. So the distribution of sign can be described as

v0 ·M2n
n M

n/2
crushM

2n
n M

n/2
crushM

2n
n =

(
1

2
,
1

2

)
.

This means that advantage of Sign Distinguisher for Spritz equals to 0.

6.2 Position distinguisher

Let us recall what was one of the main drawback of original RC4: it per-
formed n steps instead of cn log n. The underlying mathematical model is
simply a Cyclic-to-Random Transpositions card shuffling. This is some-
how similar to Random-to-Random Transpositions for which it takes of

19

order of n log n steps. More exactly, there is so-called cutoff phenomena
at 1

2n log n. Roughly speaking, lower and upper bounds are of this or-
der. Analysis of Cyclic-to-Random Transpositions seemed to be harder,
recently [17] the matching lower bound was established showing that mix-
ing time is of order Θ(n log n).

Recall that Spritz performs: in total 6n steps of Cyclic-to-Random
Transpositions (as part of Whip procedure) and partial sorting of elements
(Crush procedure) in the internal state is performed twice (after 2-nd and
4-th shuffling). This is of course more complicated shuffling than just
repeating Cyclic-to-Random Transpositions.

Clever use of Crush lets Spritz to get rid of the Sign Distinguisher but
at the same time it seems that it may badly influence the mixing time.

Imagine that there exists some SST which during the Spritz execution
performs marking of the elements. Marked elements satisfy property that
their mutual position is equally distributed. Now, take a look at the step
when Crush is performed and there are two marked elements at positions
v and N − 1− v. Then after Crush their relative position will be uniquely
determined! This observation suggests that mixing time for Spritz would
be greater than n log n.

7 A note on optimal shuffling

Cyclic-to-Random Transpositions is the shuffle used in RC4 and in Spritz.
To reach stationarity (i.e., produce random permutation), as we shown,
one needs to perform O(n log n) steps. In each step we use a random
number from interval [0, . . . , n−1], thus this shuffling requires O(n log2 n)
random bits.
One can ask the following question: Is this shuffling optimal in terms of
required bits? The answer is no. The entropy of the uniform distribution
on [n] is O(n log n) (since there are n! permutations of [n]), thus one could
expect that optimal shuffling would require this number of bits.

We will shortly describe (time reversal of) Riffle Shuffle, for details
see [2]. For a given permutation σ ∈ Sn we assign each element a random
bit. Then we put all the elements (cards) with assigned bit 0 to the top
keeping their relative ordering. The following is a known SST for this
shuffle: At the beginning all

(
n
2

)
pairs of cards are unmarked. At each step

one marks a pair (i, j) if elements i and j were assigned different bits. Let
T be the first time all pairs are marked.

20

The above SST of Riffle Shuffle has ET = 2 lg n, at each step n random
bits are used, thus this shuffling requires 2n lg n random bits, matching
the requirement of optimal shuffle (up to a constant).

In this paper we mainly focused on RC4 and thus on Cyclic-to-Random
Transpositions shuffle. However, we wanted to point out that using Riffle
Shuffle (or other shuffling schemes) can result in better efficiency of the
whole scheme.

8 Conclusions

We presented the benefits of using Strong Stationary Times in crypto-
graphic schemes (pseudo random permutation generators). These algo-
rithms have a “health-check” built-in and guarantee the best possible
properties (when it comes to the quality of randomness of the resulting
permutation). We showed that use of SST does not lead to timing attacks.
We showed that algorithms using SST achieve better security guarantees
than any algorithm which runs predefined number of steps.

RC4 Mironov KSA∗∗ RS
#bits used 40 to 2 048

#bits asymptotics (2nHn − 1) lgn n(Hn + 1) lgn 2n lgn

#bits required 23 037 14 590 4 096

Fig. 2. Comparison between number of bits used by RC4 (40 to 2048) and required
by mathematical models (Mironov [16] and ours) versus length of the key for the
time-reversed riffle shuffle. Bits asymptotics approximates the number of fresh bits
required by the mathematical model (number of bits required by the underlying markov
chain to converge to stationary distribution). Bits required is (rounded) value of # bits
asymptotics when n = 256.

Complementarily, we proved better bound for the mixing-time of the
Cyclic-to-Random Transpositions shuffling process which is used in RC4
and showed that different, more efficient shuffling methods (i.e., time re-
versal of Riffle Shuffle) may be used as KSA. This last observation shows
that the gap between mathematical model (4096 bits required) and reality
(2048 allowed as maximum length of RC4) is not that big as previously
thought (bound of 23037 by Mironov [16]).

21

References

1. Martin R. Albrecht and Kenneth G. Paterson. Lucky Microseconds: A Timing
Attack on Amazon’s s2n Implementation of TLS. Advances in Cryptology - EU-
ROCRYPT, 9665:622—-643, 2016.

2. David Aldous and Persi Diaconis. Shuffling cards and stopping times. American
Mathematical Monthly, 1986.

3. David Aldous and Persi Diaconis. Strong Uniform Times and Finite Random
Walks. Advances in Applied Mathematics, 97:69–97, 1987.

4. David Aldous and Persi Diaconis. Strong uniform times and finite random walks.
Advances in Applied Mathematics, 1987.

5. Nadhem AlFardan, Daniel J Bernstein, Kenneth G Paterson, Bertram Poettering,
and Jacob C N Schuldt. On the Security of RC4 in TLS. In Presented as part
of the 22nd USENIX Security Symposium (USENIX Security 13), pages 305–320,
Washington, D.C., 2013. USENIX.

6. Ralph Ankele, Stefan Kölbl, and Christian Rechberger. State-Recovery Analysis
of Spritz. pages 204–221. Springer International Publishing, 2015.

7. Subhadeep Banik and Takanori Isobe. Cryptanalysis of the Full Spritz Stream
Cipher. In FSE 2016, pages 63–77. Springer Berlin Heidelberg, 2016.

8. Persi Diaconis and Mehrdad Shahshahani. Generating a random permutation with
random transpositions. Zeitschrift fur Wahrscheinlichkeitstheorie und Verwandte
Gebiete, 57(2):159–179, 1981.

9. James Allen Fill. An interruptible algorithm for perfect sampling via Markov
chains. The Annals of Applied Probability, 8(1):131–162, feb 1998.

10. S Fluhrer, I Mantin, and A Shamir. Weaknesses in the key scheduling algorithm
of RC4. Selected areas in cryptography, 2001.

11. Scott R Fluhrer and David a. McGrew. Statistical Analysis of the Alleged RC4
Keystream Generator. Fast Software Encryption, 7th International Workshop,
pages 19–30, 2000.

12. Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. A Survey of Microarchi-
tectural Timing Attacks and Countermeasures on Contemporary Hardware. IACR
Eprint, 2016.

13. J Golic. Linear Statistical Weakness of Alleged RC4 Keystream Generator. In
Walter Fumy, editor, Advances in Cryptology — EUROCRYPT ’97, volume 1233 of
Lecture Notes in Computer Science. Springer Berlin Heidelberg, Berlin, Heidelberg,
jul 1997.

14. Itsik Mantin and Adi Shamir. A Practical Attack on Broadcast RC4. Fast Software
Encryption, 8th International Workshop, Yokohama, Japan, pages 152–164, 2001.

15. Peter Matthews. A strong uniform time for random transpositions. J. Theoret.
Probab., 1(4):411–423, 1988.

16. Ilya Mironov. (Not So) Random Shuffles of RC4. Advances in Cryptol-
ogy—CRYPTO 2002, 2002.

17. Elchanan Mossel, Yuval Peres, and Alistair Sinclair. Shuffling by semi-random
transpositions. Foundations of Computer Science, pages 572–581, 2004.

18. Moni Naor and Omer Reingold. On the construction of pseudo-random permu-
tations. In Proceedings of the twenty-ninth annual ACM symposium on Theory
of computing - STOC ’97, pages 189–199, New York, New York, USA, may 1997.
ACM Press.

19. Cesar Pereida García, Billy Bob Brumley, and Yuval Yarom. Make Sure DSA
Signing Exponentiations Really are Constant-Time.

22

20. J G Propp and D B Wilson. Exact sampling with coupled Markov chains and
applications to statistical mechanics. Random Structures & Algorithms, 9:223–
252, 1996.

21. Jacob C. N. Schuldt; Ronald L. Rivest. Spritz—a spongy RC4-like stream cipher
and hash function, 2014.

22. Bart Preneel Souradyuti Paul. A New Weakness in the RC4 Keystream Genera-
tor and an Approach to Improve the Security of the Cipher. In Bimal Roy and
Willi Meier, editors, Fast Software Encryption, volume 3017 of Lecture Notes in
Computer Science. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004.

23. Francois-Xavier Standaert, Olivier Pereira, Yu Yu, Jean-Jacques Quisquater, Moti
Yung, and Elisabeth Oswald. Leakage resilient cryptography in practice. Towards
Hardware-Intrinsic Security, pages 99–134, 2010.

24. Goutam Paul Subhamoy Maitra. Analysis of RC4 and Proposal of Additional
Layers for Better Security Margin. In Dipanwita Roy Chowdhury, Vincent Rijmen,
and Abhijit Das, editors, Progress in Cryptology - INDOCRYPT 2008, volume
5365 of Lecture Notes in Computer Science. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2008.

25. Yuval Yarom, Daniel Genkin, and Nadia Heninger. CacheBleed : A Timing Attack
on OpenSSL Constant Time RSA. CHES, 2016.

26. Bartosz Zoltak. VMPC One-Way Function and Stream Cipher. In Fast Software
Encryption, pages 210–225. 2004.

Appendix

A Sign distinguisher advantage

k +1 −1 ε

0 .5671382998250798 .4328617001749202 2−3.89672

256 .509015 .490985 2−6.79344

512 .5012105173235390 .4987894826764610 2−9.69016

768 .500163 .499837 2−12.5869

1024 .5000218258757580 .4999781741242420 2−15.4836

2048 .5000000070953368 .4999999929046632 2−27.0705

4096 .5000000000000007 .4999999999999993 2−50.2442

8192 .5 .5 2−96.5918

Fig. 3. The advantage (ε) of Sign distinguisher of RC4 after discarding initial k bytes.

B Detailed proof of Lemma 3

Proof. Define Tk to be the first time when k cards are marked (thus T ≡
Tn). Let d = d(n−1)/2e. Then Td is the running time of the first phase and
(Tn − Td) is the running time of the second phase. Denote Yk := Tk+1−Tk.

23

Assume that there are k < d marked cards at a certain step. Then the
new card will be marked in next step if we choose two unmarked cards
what happens with probability:

pa(k) =
(n− k)2

n2
.

Thus Yk is a geometric random variable with parameter pa(k) and

E[Td] =

d−1∑
k=0

E[Yk] =

d−1∑
k=0

1

pa(k)
=

d−1∑
k=0

n2

(n− k)2
= n2

n∑
k=n−d+1

1

k2

= n2
(
H(2)
n −H

(2)
n−d

)
= n2

(
1

n
+O

(
1

n2

))
= n+O(1).

Now assume that there are k ≥ d cards marked at a certain step. Then,
the new card will be marked in next step with probability:

pb(k) =
(n− k)(k + 1)

n2

and Yk is a geometric random variable with parameter pa(k). Thus:

E[Tn − Td] =
d−1∑
k=0

E[Yk] =

n−1∑
k=d

1

pb(k)
=

n−1∑
k=d

n2

(n− k)(k + 1)

=
n2

n+ 1

n−1∑
k=d

(
1

n− k
+

1

k + 1

)
=

n2

n+ 1

(
n−d∑
k=1

1

k
+

n∑
k=d+1

1

k

)

=
n2

n+ 1
(Hn−d +Hn −Hd) =

n2

n+ 1
Hn +

n2

n+ 1
(Hn−d −Hd)

= nHn − n
n+1Hn +

n2

n+1 (Hn−d −Hd) = nHn +O(Hn) +O(1) = nHn +O(Hn).

24

For variance we have:

V ar[Td] =
d−1∑
k=0

V ar[Yk] =
d−1∑
k=0

1− pa(k)
(pa(k))

2 =
d−1∑
k=0

1− (n−k)2
n2(

(n−k)2
n2

)2 ≈ ∫ n
2

0

1− (n−x)2
n2(

(n−x)2
n2

)2 dx =
4

3
n.

V ar[Tn − Td] =
n−1∑
k=d

V ar[Yk] =
n−1∑
k=d

1− pb(k)
(pb(k))

2 =
n−1∑
k=d

1− (n−k)(k+1)
n2

(n−k)2(k+1)2

n4

= n2
n−1∑
k=d

n(n− 1) + k(1− n) + k2

(n− k)2(k + 1)2
≈ n2 · 1

2

n−1∑
k=0

n(n− 1) + k(1− n) + k2

(n− k)2(k + 1)2

≈ n2

2

[(
2

n
− 4

n2

)
Hn + 3H(2)

n

]
∼ π2

4
n2.

Finally

V ar[Tn] = V ar[Td] + V ar[Tn − Td] ∼
π2

4
n2.

�

C Experimental results

The expected running time of KSA∗∗RTRT (i.e., with Random-to-Random
Transpositions shuffling) is known:

• with ST=StoppingRuleKLZ it is n(Hn + 1)
• with stopping rule used in [16] it is 2nHn − n

For both stopping rules applied to Cyclic-to-Random Transpositions no
precise results on expected running times are known. Instead we estimated
them via simulations, simply running 10.000 of them. The results are given
in Fig. 4.

StoppingRuleKLZ Mironov’s ST

ET
n = 256 1811 2854
n = 512 3994 6442
n = 1024 8705 14324

V arT
n = 256 111341 156814
n = 512 438576 597783
n = 1024 1759162 2442503

n(Hn + 1) 2nHn − n
n = 256 1823.83 2879.66
n = 512 4002.05 6468.11
n = 1024 8713.39 14354.79

Fig. 4. Simulations’ results for Mironov’s and StoppingRuleKLZ stopping rules.

25

D Timing-attacks and KSA**

Example 1. (Top to random shuffle T2R – timing attack – re-used ran-
domness)

Consider algorithm KSA∗∗T2R,ST with shuffling procedure corresponding
to Top-To-Random card shuffling (put the card S[1] which is currently
on top to the position j defined by the randomness in the current
round) and following stopping time ST:
• before the start of the algorithm, mark the last card (i.e., the card
n is marked3),

• stop one step after the marked card reaches the top of the deck.

The sample execution of the algorithm is given in Fig. 5.

step: 1 step: 2 step: 3 step: 4 step: 5 step: 6 step: 7 step: 8

1

2

3

4

5

6

7

8

2

3

4

5

6

7

8

1

K[1] 111

3

4

5

6

7

8

2

1

K[2]
110

111

4

5

6

7

8

2

1

3

K[3]

101

110

111

5

6

7

8

2

1

3

4

K[4] = K[1]

6

7

8

2

1

3

5

4

K[5] = K[2]

7

8

2

1

3

5

4

6

K[6] = K[3]

8

2

1

3

5

4

6

7

K[7] = K[1]

2

1

3

5

4

6

8

7

K[8] = K[2]

Fig. 5. Example run of top-to-random shuffle with “reused randomness” which is taken
from the key K of the length equal to three 8-value bytes (9-bits). Let us assume that
the running time of SST was exactly 8. Conditioning on the number of steps one can
figure out that the first word of the key must be equal to 111 while the second part
K[2] ∈ {110, 111} with the same probability. Finally K[3] ∈ {101, 110, 111} and for the
step i: K[i] = K[i mod 3]. So now, instead of possible 29 = 512 permutations which
can be generated from 9 bits of key, only 6 are possible (based on the fact that SST
has stoped exactly after 8 steps).

3 It is known [2] that optimal SST for top to random initially marks second from the
bottom card.

26

Example 2. (Top-to-random – timing attack – fresh randomness) Let us
now consider a very similar situation with one important difference. Now
no portion of the key is re-used. An example run of the algorithm is
presented on the Figure 6. Based on the knowledge on the number of
performed steps, one can learn some information about the secret key
(i.e., K[1] = 000, K[2] is either 110 or 111) but still no adversary can
learn anything about the resulting permutation because any information
is generated with exactly the same probability.

step: 1 step: 2 step: 3 step: 4 step: 5 step: 6 step: 7 step: 8

1

2

3

4

5

6

7

8

2

3

4

5

6

7

8

1

K[1] ∈ {000}

= [8] \ [7]

3

4

5

6

7

8

2

1

K[2]
110

111

4

5

6

7

8

2

1

3

K[3]

101

110

111

5

6

7

8

2

1

4

3

K[4] ∈ [8] \ [4]

6

7

8

2

5

1

4

3

K[5] ∈ [8] \ [3]

7

8

6

2

5

1

4

3

K[6] ∈ [8] \ [2]

8

6

2

5

1

7

4

3

K[7] ∈ [8] \ {000}

6

8

2

5

1

7

4

3

K[8] ∈ [8]

Fig. 6. Example run of top-to-random shuffle with “fresh randomness” taken from the
key K of the length equal to 8 8-value bytes (24-bits). Conditioning on the number of
steps of the SST (in this case 8) one can find out that: out of the possible 224 keys only
(exactly) 8! keys are possible (due to the fact that SST stopped after 8 steps) and every
of 8! permutations are possible (based on the fact that SST has stopped exactly after
8 steps) – moreover each permutation with exactly the same probability. SST leaks
bits of the key i.e., K[1] = 111 but does not leak any information about the produced
permutation.

27

E Spritz definition

Crush() Update()
for v := 0 to bN/2c − 1 do

if S[v] > S[N − 1− v] then
swap(S[v], S[N − 1− v])

end if
end for

i = i+ w
j = k + S[j + S[i]]
k = i+ k + S[j]
swap(S[i], S[j])

Whip(r) Shuffle()
for v := 0 to r − 1 do

Update()
end for

repeat
w = w + 1

until GCD(w,N) = 1

Whip(2N)
Crush()
Whip(2N)
Crush()
Whip(2N)

Fig. 7. Building blocks of Spritz

	Randomized stopping times and provably secure pseudorandom permutation generators

