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Abstract. In 1978, Rivest, Adleman and Dertouzos asked for algebraic
systems for which useful privacy homomorphisms exist. To date, the only
acknownledged result is noise based encryption combined with bootstrap-
ping. Before that, there were several failed attempts.
We prove that fully homomorphic schemes are impossible for several
algebraic structures. Then we develop a characterisation of all fully ho-
momorphic schemes and use it to analyse three examples. Finally, we
propose a conjecture stating that secure FHE schemes must either have
a significant ciphertext expansion or use unusual algebraic structures.
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1 Introduction

In 1978 Rivest, Adleman and Dertouzos [32] posed two questions about privacy
homomorphisms:

Q1 Does this approach have enough utility to make it worthwhile in practice?
Q2 For what algebraic systems U does a useful privacy homomorphism exist?

A privacy homomorphism was defined to be an encryption function that would
permit direct computations on the encrypted data. Gentry’s construction of the
first fully homomorphic encryption (FHE) scheme [19] answers this goal, but
in a slightly different manner than what Rivest et al. envisioned. The original
problem considered clear algebraic structures and mappings between these, while
Gentry succeeded using noise-based constructions, putting less emphasis on the
mappings.

One could say that both questions are still open. Gentry’s breakthrough [19]
in creating the first fully homomorphic encryption scheme has been followed by
a number of much more efficient schemes [8, 10, 14, 15, 21, 26]. There have been
several earlier attempts at finding privacy homomorphisms, but none successful.
Instead, there have been some negative results. Ahituv et al. [1] proved that an
vector space isomorphism on Fn2 cannot be secure.

? A previous version of this manuscript was named “Fully homomorphic encryption
must be fat or ugly?”
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The answer to the first question seems to be positive. Some FHE applica-
tions have been demonstrated, but the list of theoretical applications is far more
extensive than what anyone has tried to implement yet.

The first part of this work aims at closing some doors for the second question.
To do this, we try to analyse the possibility for natural schemes based on auto-
morphisms or isomorphisms on various structures. An example of such a scheme
is the Pohlig-Hellman blockcipher. For completeness, we also survey previous
results in this line of research.

Note that this analysis does not include the modern, noise-based FHE schemes.
Although one can define operations on the ciphertext spaces by always perform-
ing a bootstrapping operation after an addition or multiplication, the ciphertext
spaces do not become rings or any other well-known structure.

A second approach to achieve security is to embed the plaintexts into a larger
set, such as for instance in ElGamal. We extend our arguments to show that also
this kind of scheme is impossible for some of the structures we study. In this part
of the work we do not assume a public encryption key, only that the adversary
can perform evaluation of ciphertexts.

Furthermore, we extend the characterisation of Armknecht et al. [4] to handle
all public key FHE schemes over any algebraic structure. This yields a simple
transformation from any scheme to a suitable decision problem in order to anal-
yse whether the scheme can be secure or not. Our results immediately allow us
to prove that two proposed schemes are insecure, while our analysis supports
the existing work on a third scheme.

The sum of our results make us propose the conjecture that FHE schemes
either need to have a rather big expansion, or have a less favourable structure.
This conjecture is an initial answer Gentry’s challenge to the mathematical com-
munity [20, p. 616].

The paper is organised as follows. In Section 3, we analyse the possibility
of fully homomorphic schemes on a number of common algebraic structures,
and reach negative answers for the most useful structures. This technique does
not allow us to consider the current FHE schemes, so we proceed to extend
Armknecht et al.’s characterisation in Section 4. A brief recap of the algebra
used in this paper is provided in the next section.

Throughout the text, P will denote the plaintext space and C will denote the
ciphertext space.

1.1 Our contribution

All of the aknowledged FHE schemes in existence today are based on lattices,
and usually feature a large ciphertext expansion. While one could say that some
schemes are almost practical [13], we should not expect to see them in widespread
use just yet. The main reason is probably the communcation cost, which then
again influences the computational cost. The big question is to find out if this
can be reduced significantly while maintaining usefulness and security.
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We are not proposing new schemes, and any discussion of existing schemes
is only to demonstrate our new techniques for analysis. Our contribution can be
summarised in two points.

– We provide a general tool for analysing new public key FHE schemes, and
we believe that the technique will easily distinguish between weak and good
constructions.

– We extend existing results by proving that a number of possible FHE schemes
must be insecure.

1.2 Related work

Following the original problem, there were a few attemts at creating privacy
homomorphisms, usually followed by attacks, see Yu et al. [34] for a brief survey.
Earlier impossibility results include Ahituv et al. [1] as mentioned above, and
Yu et al. who proved that a FHE scheme cannot achieve IND-CCA2 security.

Boneh and Lipton [7] demonstrated that any deterministic fully homomor-
phic encryption scheme over Z/nZ is breakable in sub-exponential time.

Finally, Armknecht et al. [3] have proven that a group homomorphic scheme
will be vulnerable against a quantum adversary. A subset of the same authors
also showed that no group homomorphic scheme with a prime order ciphertext
group can be IND-CPA secure [5].

Our characterisation extends the construction provided by Armknecht et
al. [4].

2 Preliminaries

We assume that the reader has some familiarity to fully homomorphic encryp-
tion, so we only give a brief overview. The interested reader should look up the
survey by Armknecht et al. [2].

The term FHE has come to mean two things: Either that the scheme can
evaluate both addition and multiplication, or that it can evaluate any circuit of
any multiplicative depth. The scheme is i-hop if it can evaluate i ciruits after each
other, or∞-hop if there is no limit. Note that all somewhat homomorphic scheme
with a sufficiently small decryption circuit can be made fully homomorphic and
∞-hop using Gentry’s original bootstrapping idea [19]. A levelled scheme can
compute any circuit with multiplicative depth up to its designated level.

2.1 Algebraic structures

The reader should know the definition of groups, rings, fields and vector spaces.
Recall that a division rings a ring where every nonzero element has an inverse,
and that all finite division rings are commutative, hence fields. We assume that
all rings have identity.

Furthermore, we also need two more concepts, namely modules and algebras.
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A module is a generalization of vectors spaces where the coefficients come
from a ring. For a ring R, a (left) R-module is an additive abelian group M
together with a scalar multiplication with ring elements on the left. We also
have right R-modules, but for commutative rings, left and right R-modules are
the same.

It is well known that any vector space of dimension n is isomorphic to n
copies of the field. This is not true for modules. In particular, even the word
“dimension” is not even well-defined, and not all modules have a basis. Those
that have, are called free modules, and if every basis has the same number of
elements, say n, we say that the module is of rank n.

– If I is an ideal of R, then I is also an R-module. In particular, R itself is an
R-module.

– Any vector space over a field or division ring is also a module.
– Matrices over a ring R forms an R-module.

We are interested in mappings between modules. LetM andN be R-modules.
An R-homomorphism f is a function f : M → N such that for all r ∈ R and
m,m1,m2 ∈M ,

f(rm) = rf(m)

f(m1 +m2) = f(m1) + f(m2).

For a field k, a k-algebra A is a k-vector space which is also equipped with
a multiplication operation compatible with the scalar multiplication, such that
A is a ring in its own respect. An algebra mapping is a function which is both a
linear transformation on A as a vector space and a ring homomorphism on A.

2.2 The Wedderburn-Artin theorem

Recall that the structure theorem for finitely generated abelian groups states
that any such group is isomorphic to a direct sum of copies of Z and cyclic
groups of prime order. Rings generally lack a corresponding theorem. However,
for certain classes of rings, we know the structure in detail. For instance, every
finite field with the same cardinality is isomorphic. In the case of semisimple
rings, we have the Wedderburn-Artin theorem.

Theorem 1 ( [6], p. 382). Let R be a left (or right) artinian ring with unity
and no nonzero nilpotent ideals. Then R is isomorphic to a finite direct sum of
matrix rings over division rings.

The first sentence of the theorem is one of several equivalent definitions of
a semisimple ring. An artinian ring is one where any descending chain (under
inclusion) of ideals becomes constant after a finite number. Any finite ring is
trivially artinian, while the integers Z are not. Consider this chain of ideals

(2) ⊇ (22) ⊇ (23) ⊇ · · ·

to see that it need not stabilise.
Also recall that an ideal I is nilpotent if there exists an integer n such that

In = (0).
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3 Automorphisms on structures

We now consider specific structures. In this section, we treat them in the sym-
metric case. This is partly for a practical reason – one motivation behind this
work was to explore the possibility for very efficient schemes without any expan-
sion. The conclusion seems to be that they are unlikely or at best not practical.
We divide our potential schemes into four types.

1. Identical spaces P = C
2. Isomorphic spaces P ' C (but possibly with different descriptions)
3. C is larger than P, but only with a constant expansion
4. C is larger than P, and the expansion depends on the parameters

In all scenarios, we assume that both P and C share the same kind of algebraic
structure. For instance, if P is a vector space over a field k, then C must also
be a k-vector space. For schemes of the second type, we stress that the spaces
really must be isomorphic. The next section will deal with the situation where
P is isomorphic to the residue classes of C.

Since we are primarily looking for very efficient schemes, we will not use any
energy on schemes of Type 4. Note that there still is a certain jump from that to
the state of art today. The ciphertext spaces of modern noise based schemes are
not rings, not even if you consider bootstrapping as a part of every multiplication
operation. One should rather use the techniques of Section 4 to analyse these
schemes.

From now on, we will refer to these cases by their numbers.
It is trivial to observe that any scheme of Type 1 or 2 must be determinis-

tic, and hence not achieve semantical security, while those of Type 3 typically
should be randomised, such as ElGamal or Paillier, which always feature a data
doubling.

3.1 Achievable security

For security, we use a variant of the standard notion of semantic security, where
the adversary is challenged to decide whether we are using an instance of the
cryptosystem, or simply a random permutation. Obviously, it can be easy to
distinguish any homomorphism from a permutation, so we need to change the
game slightly. We assume that we have access to a black box that can efficiently
compute any mapping ε into C such that there exists another mapping δ : C → P
such that δ ◦ ε acts as the identity on P. For instance, in the first setting above,
ε would be any automorphism on P. Essentially, the black box should be able
to compute everything that could have been an encryption, whereas the scheme
is limited to the automorphisms indexed by the keys.

Definition 1. We say that a symmetric fully homomorphic scheme of Type 1
or 2 is secure if a polynomial time algorithm is unable to distinguish an encryp-
tion from a random automorphism. Furthermore, any automorphism used for
encryption must be hard to invert.
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We allow the adversary to query a number of encryptions before giving his
answer, but no decryptions.

3.2 Groups

Homomorphic schemes on groups are well known, and there are known secure
examples.

Theorem 2. There exist secure group homomorphic schemes of Type 1, and
therefore of Type 2–4 as well.

The theorem is easily proved by example, for instance the Pohlig-Hellman
exponentiation cipher [30]. Let G be a cyclic group of secret order n, and choose
e, d such that ed ≡ 1 (mod φ(n)). Encryption and decryption is as with RSA.
Then all automorphisms on the group are indexed by e, so the scheme is trivially
secure. Reassuringly, it has also withstood cryptanalysis.

It is easy to construct an example to show that this implies the existence of
a secure scheme when the groups are isomorphic but with different descriptions,
or if we add further copies of the group. However, ElGamal is a better example
in that respect.

Textbook RSA is not secure according to our definition. For simplicity, as-
sume that n = pq = (2p′ + 1)(2q′ + 1) with p, q, p′, q′ prime, and let G be the
group of multiplicative units in Z/nZ. We then know that, as groups

G ' Z/p′Z× Z/q′Z× Z/2Z× Z/2Z.

This group has 6p′q′ automorphisms [22], where the factor 6 comes from the
permutation of the order 2 elements in the Klein 4 subgroup V . RSA is able
to produce p′q′ of these automorphisms, all of which leave the four elements of
V fixed. The automorphisms outside the RSA subset either leave -1 alone, or
swap it with one of the other order 2 elements. In the latter case, it is easy
to distinguish. In the first case, a distinguisher must find one of the two other
special elements. That will allow the adversary to factor n, using the same idea
as in Rabin’s oblivious transfer [31].

3.3 Vector spaces

Ahituv, Lativ and Neumann [1] showed that a homomorphism f : Fn2 → Fn2
cannot be secure, by using f on the basis to essentially compute the inverse.
Their argument easily extends to a vector space over any field.

For spaces of different sizes, fix a field k, and let P and C be k-vector spaces,
with p = dimP ≤ dim C = q. Get encryptions of at least pq linearly independent
vectors. There exists a matrix D such that Dci = mi for each pair (m, c). Solve
the resulting system for D, which is essentially the decryption key. Clearly, such
a scheme cannot be secure.

An apparent counterexample would be the Goldwasser-Micali cryptosystem.
Let n be a product of two primes, let y be a non-quadratic residue modulo n
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and let xi be units modulo n. To encrypt a vector m in F`2, compute a tuple
(c1, · · · , c`) where ci = ymix2i modulo n. The ciphertext space is then a Z/nZ-
module where addition is given by pointwise multiplication and scalar multipli-
cation is done by exponentiation. Decrypt by checking whether each component
is a quadratic residue or not. However, C is not a F2-vector space, so it does not
fit in our system. However, it shows that one doesn’t need to go far away from
these constructions to find something that is secure, although with a certain
expansion factor.

Theorem 3. Let k be a field and let P and C be k-vector spaces. Then there are
no secure encryption schemes between P and C.

3.4 Fields

We only consider finite fields, and we can separate them into prime fields and
extension fields. For prime fields, there are only fields of the kind Z/pZ, possibly
with some strange description, but nonetheless easy to convert into the canonical
form. There is only the identity automorphism.

For extension fields, where P ' C, an algorithm by Lenstra [23] demonstrates
that it is easy to convert everything into practical descriptions of the fields, and
then compute any isomorphisms between those fields. Hence, there can be no
secure homomorphic schemes between fields of the same size.

Let us tackle the third type. First note that the fields must have the same
characteristic, otherwise there would be no structure preserving mappings be-
tween them. We can therefore assume that both P and C are extensions of the
same prime field Fp. Therefore, we can also view P and C as Fp-vector spaces,
reducing the problem to the one in the previous subsection.

Alternatively, one can adjoin extra elements to P to make it isomorphic to C,
and then compute an isomorphism based on known plaintext-ciphertext pairs.

If the encryption is merely a deterministic injection into a larger ciphertext
space it can still not be secure, as we can view the image as a field in its own
right.

Theorem 4. Let P and C be k fields. Then there are no secure encryption
schemes between P and C.

3.5 Rings

Rings are far harder to tackle than the previous structures, and we are not able
to give a definitive answer. The key information is the set of automorphisms on
a ring. We start by getting an overview over those for reduced rings, that is,
rings with no nonzero nilpotent elements.

Reduced rings Note that since R is finite, it is in particular left (and right) ar-
tinian. Assume that R has no nonzero nilpotent ideals, then R is semisimple. By



8 Kristian Gjøsteen and Martin Strand

the Wedderburn-Artin theorem, R is then isomorphic to a finite direct product
of matrix rings over division rings,

R 'Mn1
(D1)⊕ · · · ⊕Mn`

(D`).

We have assumed that R has no nilpotent ideals. Since R is artinian, nil
and nilpotent ideals are the same, so we have simultaneously assumed there are
no nonzero nil ideals. In particular, this means that the radical of R, which is
precisely all nil elements, is the zero ideal.

Now, if at least one ni ≥ 2, then one can create a nilpotent element in that
matrix ring, a contradiction. Furthermore, a finite division ring is always a field,
so we reach the simplification

R ' k1 ⊕ · · · ⊕ k`.

Assume that there are m distinct fields up to isomorphism, and with `i fields in
each set, 1 ≤ i ≤ m. Gather isomorphic fields together. For each i, let di be the
degree of the field extension. Let φ be an automorphism on R. We can write it
as (φ1,1, . . . φ1,`1 , . . . , φ1,`m). There are di automorphisms on each field, and one
can use any permutation on each set of isomorphic field. This yields a total of

m∏
i=1

(di − 1)! `i!

automorphisms on R, which bounds the size of the key space.
To see why there are no more isomorphisms, consider R = k1 + k2, where

k1 = k2 are extension fields over k. Define a function φ : R → R which is
the identity on k × k, and swaps the components otherwise. Take (x1, x2) ∈ k2
and (x′1, x

′
2) /∈ k2. If one applies φ on the sum, one can see that it differs from

φ(x1, x2) + φ(x′1, x
′
2), so φ cannot be a ring homomorphism.

Now consider the special case where we let R be a k-algebra. Friedl and
Rónyai and others [11,16] have described polynomial time algorithms to compute
a Wedderburn-Artin decomposition explicitly. We say “a” rather than “the”,
since there can be several isomorphic decompositions, given by permutations on
isomorphic summands. One can therefore compute the automorphisms for each
field separately by the techniques described above. The feasibility of the compu-
tation of any automorphism therefore depend only on

∏m
i=1 `i! being sufficiently

large.

Semisimple k-algebras We shift the assumptions slightly. We now allow more
nilpotent elements, but only for algebras over a field k. The aforementioned
algorithms also work in this setting. It computes orthogonal idempotents in the
center of each summand, and next a basis for each matrix ring. Computing
the mapping between the algebra and the decomposition is easy: Multiply with
the idempotents to decompose the element, and then use linear algebra. We
therefore have a canonical description of any ring element, up to permutations
of components and bases.
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In particular, this setting includes many matrix rings. Note that we cannot
automatically use our reasoning about vector spaces here, since linear mappings
are different from ring homomorphisms. However, vector transformations form
a subset of algebra homomorphisms. Brakerski [9] have proven that whenever
decryption is an inner product computation involving the secret key, then the
scheme cannot be CPA secure. In particular, this involves all schemes using inner
automorphisms on matrix rings, i.e. where a square matrix M (possibly encoding
the ciphertext from a subring) is conjugated, C = A−1MA. In particular, by the
Skolem-Noether theorem, every automorphism of a matrix ring over a field is
inner.

Large ciphertext rings Finally, consider the case where both P and C are
rings, and let I = kerDec = Dec−1(0). By the reasoning in Section 4 and the
first isomorphism theorem, we therefore know that P ' C/I, so we can identify
P as a subring of C. If P is commutative, then C trivially becomes an associative
P-algebra. When P is a field, this reduces to the vector space scenario above,
hence not secure.

The general challenge is to distinguish elements of I and R.

3.6 Modules

Modules can be quite similar to vector spaces, so in particular for free modules
over well behaved rings, one would expect that the same techniques should apply.
On the other hand, an abelian group is a Z-module, and Z is certainly a very
well behaved ring, despite its lack of nontrivial units.

4 Characterisation

In this section we treat fully homomorphic schemes with as much generality as we
can, by considering various algebraic structures. By that we mean something that
consists of a set of elements, is closed under at least one operation and satisfies
certain axioms on the operations. Examples include groups, rings, vector spaces
and so on. Note in particular that we ignore somewhat and levelled homomorphic
schemes, although some of the reasoning can also be applied to those. The short
version of this section is that any homomorphic encryption consists of a mapping
into the ciphertext space and an addition with a random encryption of zero.
For the scheme to be secure, at least one of those operations must protect the
message.

We also return to the more conventional security definition IND-CPA for the
remainder of the paper.

Fix a structure S with n ≥ 1 operations ∗1, . . . , ∗n, where ∗1 is a binary
operation such that for any object O with structure S, we have a neutral element
0 with respect to ∗1, and that ∗1 is a bijection when the second coordinate is fixed.
This implies that all elements have inverses with respect to the first operation.
We stress that we do not put any assumptions on the other operations.
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Any structure that contains a group structure satisfies this requirement when
∗1 is taken to be the group operation, typically addition. For the binary case,
it requires either XOR or AND. If the set of binary operators is functionally
complete, we can add either to the set and rearrange.

Let P be an object with structure S, let C be a set (without any structure)
with operations ∗′1, . . . , ∗′n, and let 1P be the identity map on P. Let ε : P → C
and δ : C → P be maps such that δ ◦ ε = 1P , and for all 1 ≤ i ≤ n and all
c1, . . . , cai where ai is the number of elements that ∗i takes as input, we have

δ(∗′i(c1, . . . , cai)) = ∗i(δ(c1), . . . , δ(cai)).

We call (P, C, ε, δ) a S-homomorphic tuple.
Now assume we have a set (Instance, Epsilon, Sample, Delta, Op) of algorithms

such that

Instance takes in security parameter λ and returns a S-homomorphic tuple
Sample takes in (C, ε) and returns a random element from δ−1(0)
Epsilon takes in (C, ε,m) and computes ε(m)
Delta takes in (C, δ, c) and computes δ(c)
Op takes (C, ε, i, c1, . . . , cai) as input and computes ∗′i(c1, . . . , cai).

Based on this, we can now construct an abstract encryption scheme.

Definition 2. The Abstract Homomorphic Encryption Scheme (AHES) is an
encryption scheme (Gen, Enc, Eval, Dec) defined by

Gen Run Instance(1λ) to get (C, ε, δ). Output pk = evk = (C, ε) and sk = (C, δ),
Enc On input pk,m, return

Op(C, ε, 1,Epsilon(pk,m),Sample(pk)),

Dec On input sk, c, return Delta(C, δ, c) = δ(c),
Eval On input evk, ∗i, c1, . . . , cai , output

Op(C, ε, i, c1, . . . , cai).

To see why this encryption makes sense, observe that we can induce the
structure from P onto a subset of C through ε and δ. Define a equivalence relation
∼ on C by c1 ∼ c2 if δ(c1) = δ(c2). Each equivalence class now corresponds to
a unique plaintext, so we can identify P with C

/
∼. For each m, we mark ε(m)

as a distinguished representative of its class, creating the subset. Encryption
is therefore to go to the corresponding equivalence class, and then using the
operator ∗′1 with something that decrypts to 0. That amounts to using ∗1 with
the neutral element in the second coordinate, i.e. nothing (“adding encryptions
of zero”). The result will be in the same class, but randomly distributed.

Let c0 be sampled from δ−1(0) using Sample. Correctness is ensured since

Dec(sk,Enc(pk,m)) = δ(Op(evk, 1,Epsilon(pk,m),Sample(pk)))

= δ(∗′1(ε(m), c0))

= ∗1(δ(ε(m)), δ(c0)) = m ∗1 0 = m.
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Evaluation is well-defined by the properties of the S-homomorphic tuple and the
same arguments as above.

Theorem 5. The Abstract Homomorphic Encryption Scheme is a homomor-
phic ∞-hop scheme. Any homomorphic ∞-hop scheme E over a given algebraic
structure S can be expressed in terms of the above.

Proof. The scheme is clearly fully homomorphic. Express any evaluation in terms
of the operations on P. Note that the evaluation and ciphertext spaces are the
same, so it is ∞-hop.

Now for a given homomorphic∞-hop scheme (E.Gen, E.Enc, E.Eval, E.Dec),
we need to construct the algorithms for our abstract scheme. Define operations
∗1, . . . , ∗n on P based on the allowed computations, and identify the neutral
element 0 with respect to ∗1.

Instance Run E.Gen to get E.C and keys. Let a be a fixed randomness, and define
ε(m) = E.Enc(E.pk,m) using a, and δ(c) = E.Dec(E.sk, c). Return (C, ε, δ).

Sample Compute a random encryption of 0.
Op Use E.Eval.

The algorithms Epsilon and Delta follows from ε and δ.
The homomorphic properties of ε and δ are satisfied by definition, and we

can use the construction above to create an instance of the AHES.

The security is based on an assumption that all the equivalence classes are of
about the same size. The following lemma ensures that this is the case in certain
special cases.

Lemma 1. If ∗′1 is a bijection when the first element is fixed, and the whole
of δ−1(0) is samplable, then all equivalence classes as described above in the
ciphertext space of the Abstract Homomorphic Encryption Scheme have the same
cardinality.

Proof. Let m be an arbitrary message, c = ε(m) and let c0 be the element
sampled from δ−1(0) in the encryption algorithm. Recall that the encryption is
then defined as

Op(C, ε, 1,Epsilon(pk,m),Sample(pk)) = ∗′1(c, c0).

Then the restricted function fc : δ−1(0)→ δ−1(m) given by fc(x) = c ∗′1 x is an
injection (as it is a bijection on all of C), so it is clear that |δ−1(0)| ≤ |δ−1(m)|.

Now let m′ be such that m′ ∗1 m = 0, which we know exists. Consider the
images A = fc(δ

−1(0)), B = δ−1(m) and C = fε(m′)(B). By the homomorphic
property, fε(m′) maps elements of δ−1(m) to δ−1(0), so C ⊆ δ−1(0).

Since fε(m′) is an injection, then |δ−1(m)| = |B| = |fε(m′)(B)| = |C| ≤
|δ−1(0)|, but then |δ−1(0)| = |δ−1(m)| for any m.

The scheme is semantically secure if it is hard to decide if an element is in a
given equivalence class.
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Definition 3 (Subset membership problem (SMP)). Let C be an effi-
ciently samplable set, and let R be a subset of C. The challenger selects a random
bit b. If b = 0, c is sampled uniformly from R, else from C, and sent to the ad-
versary. The adversary wins if he outputs the correct b.

We modify the standard problem slightly. Replace the subset R with an
efficient structure preserving mapping δ : C → P as above. We now sample from
the subset δ−1(0).

The following theorem should not come as a surprise, as it is to a large extent
a reformulation of IND-CPA security. However, its proof contains a transforma-
tion that can be used on any FHE scheme, and that should return a suitable
problem to study. As the following examples will show, this enables us to quickly
analyse schemes proposed in good faith, and may as such be a valuable tool.

Theorem 6. Assume that the equivalence classes in C are of about the same

size, that is, for all m1,m2 ∈ P the inequality |1 − |δ
−1(m1)|
|δ−1(m2)| | ≤ ε holds where

ε is negligible. The scheme is then secure if and only if the subset membership
problem is hard.

Proof. First we show that an adversary AAHES with non-negligible advantage ε
against a real-or-random game implies a distinguisher for the subset membership
problem SMP. Our adversary ASMP receives the challenge (C, δ−1, x) from SMP.
We create an instance of AHES with C and δ−1 as a part of the public key.
Note that we can construct ε by selecting an element from δ−1(m) for each m.
It is clear that δ ◦ ε = 1P , and this will induce the required structure on the
equivalence classes δ−1(m) on C. The homomorphic property holds since δ is
defined to be structure preserving.

Transmit the public key. Upon receiving the plaintext m from the adversary,
we encrypt it as c ← Op(evk, 1,Epsilon(pk,m), x), and return the challenge ci-
phertext. When AAHES returns a d with d = 0 if c is an encryption of m, we
simply set b′ = d and replies with b′ to the SMP instance.

If b = 0, then x is an encryption of 0, and the encryption is as usual. Oth-
erwise, x can be interpreted as a random ciphertext, so c encrypts a random
element, and the distribution is near uniform since the equivalence classes are
of the approximately same size. It is clear that ASMP has the same advantage
against SMP as AAHES has against Abstract Homomorphic Encryption Scheme.

For the opposite direction we again play a real-or-random game with a similar
idea as AKP are using. Set up an Abstract Homomorphic Encryption Scheme
instance (AHES), and send the public key to the adversary AAHES. He selects a
message m. Note that the message will be invertible with respect to ∗1. AHES
responds with a ciphertext c, and AAHES computes x ← c ∗′1 Epsilon(pk,m−1)
and submits x to ASMP along with C and ε. Upon receiving d from ASMP, AAHES

forwards b′ = d to the AHES instance.
If b = 0, then the ciphertext was real, which means that x encrypts 0, and

hence selected from the inverse image of δ. Otherwise, c will be a random en-
cryption, and it will just be shifted by AAHES, so it will still be a random
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element selected from C. This means that AAHES will have the same advantage
as ASMP.

Remark 1. We can define the SOAP problem (Splitting Oracle-Assisted Subgroup
Membership Problem) in the same way as in AKP [5], replacing “subgroup” with
“subset”. Informally, the SOAP problem is the same as the SMP problem, except
that before receiving the challenge, the adversary has access to an oracle that on
input c outputs (ε(m), c0) where c = ε(m)∗′1 c0, thus ”splitting“ a ciphertext into
the distinguished representative of its equivalence class and its corresponding
encryption of 0. Theorem 3 from AKP will then hold with only the obvious
changes to the proof. To find out if the SOAP problem is hard outside a generic
group remains an interesting problem.

We give the theorem with the few relevant words changed.

Theorem 7 (Characterization of IND-CCA Security, Theorem 3, [5]).
Let E = (Gen,Enc,Eval,Dec) be an∞-hop fully homomorphic encryption scheme.
Then:

E is IND-CCA1 secure⇔ SOAP is hard

4.1 Examples

We now apply our construction to a successful and two less successful scheme to
prove the power of our approach. Our attacks spring directly from our charac-
terisation. For the Nuida-Kurosawa scheme [29], it does not provide new insight,
as the scheme is already quite close to this construction.

FHE over integers with non-binary space Nuida and Kurosawa have sugg-
sted a simple scheme over the integers [29]. Let Q be a fixed prime, and let p and
q0 be large, secret primes such that N = pq0 is hard to factor. A base encryption
of m is of the form m + pk + Qr, and decryption is given by taking modulo p
and then Q. Let x′ be an encryption of 1 and {xi} be a set of encryptions of 0.
The public key is (N, x′, {xi}). To encrypt using the public key, transform the
message m from ZQ into ZN by multiplying with x′, and add a random sum of
encryptions of 0. See the original paper for details on the bootstrapping.

Note that this scheme by design is similar to our general description. The base
problem that needs to be hard is therefore easily isolated, namely distinguishing
the following two distributions,

{m+ pk +Qr | m < Q� p} = Zpq0

and

{pk +Qr | Q� p} ,

along with additional data available for bootstrapping. This is essentially the
same problem studied by Cheon et al. [12].
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Liu’s scheme In May 2015, Liu published a candidate scheme on IACR’s ePrint
archive [25]. Although it was quickly proven insecure [33], it provides a series of
valuable lessons. We refer to the original paper for details about the scheme.

The instance algorithms outputs P = Z/qZ as a field and C = (Z/qZ)
n+1

as
a P-algebra with ordinary addition and scalar multiplication, but with a key-
dependent multiplication operation. Let ∗1 be addition.

The public key is the tuple (Θ,Φ, {Enc(skiskj)}i,j=1,...n+1), and the private
key is the vector sk = (sk1, . . . , skn+1).

Define ε as encryption using 0 for all randomisers. Now, δ is just the linear
mapping Pn+1 → P given by x 7→ 〈sk, x〉, and the problem is to decide whether
the given element is in the kernel. It is clear that the kernel is an n-dimensional
subspace of Pn+1. Sample m ≥ n vectors from the subspace, and append x to
form a matrix, and compute the rank. If x /∈ δ−1(0), then the rank will be n+ 1
with high probability, giving the adversary an advantage.

The scheme can therefore not be secure.

Li-Wang scheme Wang and Li proposed a new scheme based on multiplication
of matrices over noncommutative rings [24]. As key, select a secret invertible
matrix H and compute H−1. To encrypt, place the message m in the top left
corner of a upper triangular matrix M . The remaining places are filled with
random values. Then compute the ciphertext as C = HMH−1. Addition and
multiplication works in the natural way.

The authors speculate that the scheme may be IND-CCA1 secure. However,
we believe that it is insecure. Note that the scheme is symmetric, but the same
reasoning as above implies that we only need to be able to distinguish encryptions
of 0 from a random encryption.

Observe that the diagonal of M completely determines the invertibility of
C, and that an encryption of 0 cannot be invertible. However, there is not an
equivalence, since it can also be non-invertible if any element of the diagonal
is a non-unit. To improve the probability, we can ask the encryption oracle for
additional encryptions of 0, and add them to C, and checking the invertibility
for each.

With high probability, one can then distinguish encryptions of units from
encryptions of non-units, which is already sufficient to win a left-or-right game.
The advantage against a real-or-random game will depend on the number of
non-units in the ring. If the underlying ring is a division ring, then there are no
other non-units than 0.

One can efficiently compute inverses by using a variant of LU decomposition
suited for noncommutative rings.

Another tool for deciding invertibility, and which could give further infor-
mation on the linear dependencies of the rows and columns, is the notion of
quasideterminants, introduced by Gelfand and Retakh in 1991 [17]. In contrast to
determinants for matrices over commutative rings is there not only one quaside-
terminant for an n × n matrix, but n2. They may not always be computable,
but provide useful information whenever they are.
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Proposition ( [18], Proposition 1.4.6). If the quasideterminant |A|ij is defined,
then the following statements are equivalent.

1. |A|ij = 0
2. the i-th row of the matrix A is a left linear combination of the other rows of

A.
3. the j-th column of the matrix A is a right linear combination of the other

columns of A

The multiplicative identities for quasideterminants could also provide addi-
tional equations in order to perform a message recovery attack.

4.2 Can we do better?

The characterisation could still be more powerful by modelling noise-based en-
cryption schemes in a precise way. Our work has not resulted in a concrete result
for this case, but this section contains the arguments that have been tried. The
main finding is that noise-based systems may depend on an embedding in some
infinite space. This section can be skipped without any loss of continuity.

Remark 2 (Topology and metrics). This is a short introduction to the main tools
in this section. We feel that a long introduction to these topics would interupt
the reading too much, and rather refer to other sources for those who do not
already feel comfortable with this branch of mathematics.

A topology is a selection of subsets that are defined to be open, and they
– roughly speaking – generalise the open intervals from the real line and the
interior of circles in the plane, that is, all points strictly within some distance
from a set centre. Open sets in a topology can be used to measure concepts such
as nearness and connectedness, although one could claim that the main objective
is to study what continuous functions can do.

A metric is real-valued symmetric function which is positive for all pairs of
points x and y unless x = y. Furthermore, we also require that the triangle
inequality holds.

We are unable to model the concept of growing noise using our algebraic
characterisation. Hence, it cannot be used to give a natural description of some-
what homomorphic schemes. This could be solved if we were able to describe
metrics or perhaps a topology on the ciphertext space. Any metric will describe
a topology, but the converse is not true. The most general approach is therefore
to search for a topology, and hope that it has a corresponding metric.

The motivation for this thought is Gentry’s construction of a metric in his
dissertation [19]. Define the distance d(L, t) from the lattice L to a vector t by
taking the minimum distance in Rn from a lattice vector to t. Each lattice vector
is an encryption of 0, so we can measure how far a ciphertext is from being the
canonical 0 encryption.

Forgetting Gentry’s distance function, consider the following construction.
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To equip C and P with a reasonable topology, we make a few assumptions. All
operations should be continuous (this corresponds with the definition of topo-
logical groups and rings), and encryption and decryption should be continuous
functions between the spaces. It is also reasonable to require that each equiv-
alence class is an open set, i.e. having a neighbourhood around any ciphertext
inside it. If encryption can reach the whole corresponding equivalence class, then
P has the discrete topology, since the preimage of an open set must be open.
The discrete topology hardly gives any information.

This also proves that C is disconnected. We get |P| clopen sets in C, since
the complement (a closed set) of an equivalence class is the union of the other
classes, hence open. Then every class is both open and closed. For the moment
being, we don’t know anything more about the structure inside these sets.

For the sake of argument, assume that C is finite, as it is in classical group
based constructions, or would be if we were working in some finite extension of
Z/nZ.

It is a fact that a finite topological space is metrisable if and only if it is dis-
crete. Hence, we can only measure how far a ciphertext is from its distinguished
representative if we sacrifice all other topological structure on the space.

To relax the requirements, consider a pseudometric instead. A pseudometric
does not require non-degeneracy, i.e. the distance between two points may be
0 even if they are different points. One can then define a pseudometric on C
by d(x, y) = 1 only if the points have neighbourhoods not contained in each
other, otherwise 0. This, however, means that the distance between all points in
the same equivalence classes have distance 0, so the topology will not give any
information about the noise.

These arguments together seem to suggest that it is too restrictive to assume
that C is finite. Further noise-based constructions of FHE schemes should there-
fore continue to focus on ciphertexts inside some infinite set. This is precisely
what happens when existing schemes use rounding, as well as describing secret
keys as rational numbers instead of inverses in a finite ring.

We ignore the topology for now, and restrict our attention to metric spaces.
Assume that our scheme has a function f that can embed the noise into Rn
for some n. In the case of ElGamal, this would be to output the discrete log of
the first coordinate, whereas for the DGHV scheme, it could be to identify the
small random noise, by reducing modulo the key and subtracting the plaintext.
Generally, it is (part of) the random input used to sample the random encryption
of 0.

Now define d : C × C → [0,∞] as follows

d(c1, c2) =

{
∞ if δ(c1) 6= δ(c2)

‖f(c1)− f(c2)‖ otherwise

A metric that can also output infinite distances is sometimes called an ex-
tended metric, and does not alter any of the usual properties of ordinary metrics.
As it is becoming more common, we will simply call it a metric. Notice that d
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is a metric if any only if f is injective. That may not be the case, and then d is
a pseudometric, which is sufficient, albeit not optimal.

One could circumvent this problem by stating that f should output all ran-
domness that went info the ciphertext. Then it is injective. However, then we
might lose our main goal, which is to measure the noise. In the case of the
symmetric DGHV scheme, it would be a tuple with the coefficient to the key
along with the small random noise. For the ordinary 2-norm, the first component
would dominate the second, leaving the distance function useless.

For the special case of RLWE, we have the canonical embedding into Cn [27],
in which one can compute distances properly.

5 Conclusion

Table 1. ×: No secure schemes. ?: No final conclusion. X: Examples of secure schemes
exist.

Structure Abelian groups Vector spaces Fields Rings

Identical sets X × × ?
Non-trivially isomorphic X × × ?
Constant expansion X × × ?

We summarise the findings of Section 3 in Table 1. Clearly, we cannot give a
definitive answer to Rivest et al.’s questions, but the trend seems to be that nice
structures also make it easy to break schemes. This is unfortunate, as we would
like to be able to perform our computations over nicely behaved structures.
The contemporary solution to this is to allow a nice plaintext space – even
fields – but compensate by having ciphertext spaces with very little structure.
In particular, they are not closed under addition and multiplication until the
expensive bootstrapping procedure is introduced.

Nuida [28] has proposed a framework for noise-free FHE schemes, but he
also notes that the schemes look “somewhat ‘artificial’ ”, and continues: “more
‘natural’ constructions of the underlying groups [...] would be more desirable [...].
Here we note, however, that such a natural instantiation of our schemes seems
not easy to find.” [28, p. 3]

We propose the following conjecture.

Conjecture. The security of a fully homomorphic encryption scehme either de-
pends on a massive ciphertext expansion or a weak or strange algebraic structure,
limiting the applicability of the scheme.

The results from Section 4 can contribute to the understanding of new
schemes.
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