
Hickory HashTM: Implementing an Instance of an Algebraic

EraserTM Hash Function on an MSP430 Microcontroller

Iris Anshel, Derek Atkins, Dorian Goldfeld, and Paul E. Gunnells

SecureRF Corporation
100 Beard Sawmill Rd #350, Shelton, CT 06464

ianshel@securerf.com, datkins@securerf.com, dgoldfeld@securerf.com, pgunnells@securerf.com

Abstract. Recently a novel family of braid based cryptographic hash function candidates was pub-
lished, claiming to be suitable for use in low resource environments. It was shown that the new hash
function family performed extremely well on a range of cryptographic test suites. In this paper we
instantiate an instance of the hash family, called Hickory Hash, fix a set of parameters, implement it
on a Texas Instruments MSP430 16-bit microcontroller, and compare its performance characteristics
to SHA2. We show that the Hickory Hash can be a viable tool for low-power, constrained devices like
those associated with the Internet of Things.

Keywords: Algebraic eraser, group theoretic cryptography, braid groups, hash functions, IoT

1 Introduction

In 2005 the Algebraic EraserTM Key Agreement Protocol (AEKAP, also called Algebraic Eraser Diffie–
Hellman, AEDH) [1] introduced a novel one-way function, E-Multiplication. AEDH (and as a consequence,
E-Multiplication) have been implemented on several low-power, constrained devices and has proven to run
extremely quickly, with low power use and minimal computation and storage requirements.

While that original paper on AEDH used E-Multiplication only to create the key agreement protocol, the
authors have since created additional cryptographic constructions all based on the same E-Multiplication one-
way function. In particular, one interesting construction is the Algebraic Eraser Hash (AEHash) construction
[2], a cryptographic hash based on braids, matrices, finite fields, and E-Multiplication.

All currently known attacks on AEDH ([3], [4], [5]) have been refuted ([6], [7], [12]). These refuted attacks
focused on the construction of the AEDH shared secret and not on the hard problem that is the foundation
of the E-Multiplication one-way function. Therefore, these refuted attacks are not relevant to the AEHash
construction, since it does not use the same formulation. The successful refutation of these attacks makes
the one-way function an interesting base on which to build various cryptographic constructions.

In April, 2016, the authors of AEHash published a paper where they more succinctly introduced the hash
family [8] based on the E-Multiplication one-way function. In that paper they also run various test suites,
including the NIST Statistical Test Suite [14], and they show that AEHash passes1. However, while that
paper introduced the hash algorithm mathematics and analysis, it did not provide any parameters.

Previous Work

The AEKAP has been implemented in a range of constrained and low footprint devices where there is
very little space for additional functionality, especially where operations like ECC or RSA cannot fit due to
available code, RAM, power, or computational resources. Since the new AEHash runs on the same already
implemented E-multiplication engine it can also fit on such devices, furthering their cryptographic capability.

Braid-based hash functions have been studied for over a decade. Patrick Dehornoy published a survey
[11] which discusses several potential braid-based hash methods. The AEHash uses E-Multiplication as its
irreversible, one-way function to map from a braid word in BN to a finite set of bits.

1 We show the results of the various statistical tests, including the NIST tests, in Appendix C

Our Contribution

As presented in [8] the AEHash is presented in theoretical form. Specifically, it is lacking specific hash braids
and initialization data. This makes it hard to test and, more importantly, hard to analyze.

In this paper we introduce a fully-defined instance of AEHash that we call Hickory HashTM, define
initialization and hash processing data, then implement that instance on a low-powered, constrained device (a
Texas Instruments MSP430FR5969 16-bit microcontroller), and compare Hickory Hash to expected behavior
of SHA2 on the same platform.

2 The Braid Group, Colored Burau matrices, and the Algebraic Eraser

Let BN denote the N -strand braid group, and let {b1, b2, . . . , bN−1} denote the Artin generators. An element
β ∈ BN can be viewed as an expression in the Artin generators, β = bǫ1i1 bǫ2i2 · · · bǫkik , where ij ∈ {1, . . . , N−1},
and ǫj ∈ {±1}, and where the generators themselves satisfy the following identities: for i = 1, . . . , N − 1, we
have

bibi+1bi = bi+1bibi+1,

and for all i, j with |i− j| ≥ 2, we have
bibj = bjbi.

By associating each generator bi with the transposition σi = (i i + 1) ∈ SN , the permutation group on N
letters, each braid β ∈ BN determines a permutation in SN :

β = bǫ1i1 bǫ2i2 · · · bǫkik 7−→ σβ = σi1 · · ·σik .

Each generator bi, and its inverse b−1
i , also determines an N × N colored Burau matrix as follows. Let

{t1, . . . , tN} be a set of N indeterminates. The colored Burau matrices of bi and b−1
i , denoted CB(bi) and

CB(b−1
i) respectively, are defined by

CB(bi) =

















1
. . .

ti −ti 1
. . .

1

















, CB(b−1
i) =

















1
. . .

1 − 1
ti+1

1
ti+1

. . .

1

















(1)

where the indicated variables appear in row i. In the case of CB(b1) the leftmost t1 is omitted, and likewise
in the case of CB(b−1

1) the leftmost 1 is omitted Thus each braid generator b±1
i determines a colored

Burau/permutation pair (CB(b−±1
i), σi). We now wish to define a multiplication of colored Burau pairs so

that they form a group and the natural mapping from BN to said group is a homomorphism. To accomplish
this, we require the following observation. Given a Laurent polynomial

f(t1, . . . , tN) ∈ Z[t±1 , t
±

2 , . . . , t
±

N],

a permutation in σ ∈ SN can act (on the left) by permuting the indices of the variables. We denote this
action by f 7→ σf :

σf(t1, t2, . . . , tN) = f(tσ(1), tσ(2), . . . , tσ(N)).

We extend this action to N ×N matrices over Z[t±1
1 , t±1

2 , . . . , t±1
N] denoted, M, by acting on each entry in

the matrix, and denote the action in the same way. The general definition for multiplying two colored Burau
pairs is now defined as follows from the definition of M⋊SN : given b±i , b

±1
j , the colored Burau/permutation

pair associated with the product b±1
i · b±1

j is

(CB(b±1
i), σi) ◦ (CB(b±1

j), σj) =
(

CB(b±1
i) · (σiCB(b±1

j)), σi · σj

)

.

2

Given any braid
β = bǫ1i1 b

ǫ2
i2
· · · bǫkik ,

the colored Burau pair (CB(β), σβ) is given by

(CB(β), σβ) =

(CB(bǫ1i1) ·
σi1CB(bǫ2i2) ·

σi1
σi2CB(bǫ3i3)) · · · σi1

σi2
···σik−1CB(bǫkik), σi1σi2 · · ·σik).

As the length of the braid β increases, the entries in the matrix CB(β) become very high degree Laurent
polynomials. In order to make use of the above colored Burau representation we require an additional
component. Let q be a prime power, and let Fq be the finite field of q elements. A vector of t-values is a
collection of non-zero field elements:

{τ1, τ2, . . . , τN} ⊂ F
×

q .

Given a vector of t-values, we can evaluate any Laurent polynomial f(t1, t2, . . . , tN) to obtain an element of
Fq:

f(t1, t2, . . . , tN) ↓t-values = f(τ1, τ2, . . . , τN).

We extend this notation to matrices over Laurent polynomials in the obvious way. Further, if σ ∈ SN and
m ∈ M we define

σ
m ↓t-values = (σm) ↓t-values .

We can now define E-multiplication which is in essence a right action of M ⋊ SN on Nq × SN . Given the
ordered pairs,

(M,σ), (CB(β), σβ),

where β ∈ BN , σβ ∈ SN , and M ∈ GLN (q) (the group of N ×N invertible matrices with entries in Fq), and
σ ∈ SN , E-multiplication, (denoted by ⋆) is given by

(M ′, σ′) = (M,σ) ⋆ (CB(β), σβ) ∈ (M ′, σ′) ∈ Nq × SN .

We define E-multiplication inductively. When the braid β = b±i is a single generator or its inverse, we put

(M,σ) ⋆
(

CB(b±i
)

, σb
±

i
) =

(

M · σ
(

CB(b±i
)

) ↓t-values, σ · σb
±

i

)

.

In the general case, when β = bǫ1i1 b
ǫ2
i2
· · · bǫkik , we put

(M,σ) ⋆ (CB(β), σβ) = (M,σ) ⋆ (CB(bǫ1i1), σbi1
) ⋆ (CB(bǫ2i2), σbi2

) ⋆ · · · ⋆ (CB(bǫkik), σbik
), (2)

where the right side of (2) is evaluated left-to-right. One can check that this is independent of the expression
of β in the Artin generators.

The above definition lies at the core of Algebraic Eraser based protocols; for details and examples, we refer
to [1]. We will require a slight modification in the definition of E-multiplication to construct the AEHash.
In the definition of ⋆ above the t-values remain the same at every step of the iterative process (2). Now we
wish to define a new operation, denote ⋆′, in which the t-values themselves are permuted along the way.
Assuming as above that β = bǫ1i1 b

ǫ2
i2
· · · bǫkik , we define

T1 = t-values = {τ1, . . . , τN},

and let
T2 =

σ0·σbi1 T1.

The second step of the E-multiplication,

(M,σ0) ⋆
(

CB(β), σβ

)

= (M,σ0) ⋆
(

CB(bǫ1i1), σbi1

)

⋆
(

CB(bǫ2i), σbi2

)

⋆ · · · ⋆
(

CB(bǫkk), σbik

)

,

3

is given by
(

M ·σ0 (CB(bǫ1i1)) ↓T1
, σ0 · σbi1

)

⋆
(

CB(bǫ2i), σbi2

)

. (3)

We modify the original definition of E-multiplication by defining a new operation ⋆′ in the following way.
Modify the second step of the E-multiplication in (3) by using the set T2 for t-values to obtain,

(

M ·σ0 (CB(bǫ1i1)) ↓T1
· σ0σbi1 (CB(bǫ2i2)) ↓T2

, σ0 · σbi1
· σbi2

)

.

Iterating this process we obtain the operation ⋆′. It is this variation of E-multiplication that we will use to
define our hash function. We remark that one can also define an algebraic eraser-based hash function by
replacing the operation ⋆′ with the original E-multiplication operation ⋆. Unlike ⋆, the ⋆′-operation does not
define an action of M⋊ SN on Nq × SN .

3 The AEHash Function

Let S denote a string of bits and let λ denote a fixed non-zero positive integer. Upon padding S sufficiently
we can assume that the length of S (denoted Card(S)) is divisible by λ, and S can be broken into a union
of DS = Card(S)/λ disjoint blocks, each of which has length λ:

S =

DS
⋃

i=1

Block(i).

By letting v(i) denote the integer that the binary string Block(i) represents, we have, that 0 ≤ v(i) ≤ 2λ−1.
The AEHash function, HAE is specified by the following data:

{

BN , q, λ, t-values = {τ1, . . . , τN}, {c0, c1, . . . , c2λ−1} ⊂ BN , (n0, σ0) ∈ Nq × SN

}

,

where

• BN is the braid group on N strands;

• q is a power of a 2, the t-values are invertible elements in Fq;

• the collection of braid group elements {c0, c1, . . . , c2λ−1} is fixed and assumed to generate a free sub-
monoid of BN ;

• (n0, σ0) ∈ GLN (q)× SN is an ordered pair.

The output of the AEHash is defined to be the sequence of bits that specify the matrix, which is evaluated
through a sequence of E-multiplications ⋆′. The length of the AEHash is given by

N2 · ceil
(

log2(q)
)

,

where for x > 0, the function ceil(x) denotes the ceiling of x (i.e., the smallest integer n such that x ≤ n).

The lengths of the elements ci, will impact the efficiency of the hash function. In our initial testing we
chose the length to be in the range of 2N .

Each element ci is given as a fixed expression in the Artin generators and is thus associated with a fixed
sequence of colored Burau matrices/permutations pairs. We evaluate the operation ⋆′ using this explicit
sequence of colored Burau pairs and, abusing the notation slightly, we denote the output by (CB(ci), σci).
It is important to remark that since ⋆′ is not an action, the braids ci must be used as specified and not
rewritten using the braid relations2.

2 Implementing ⋆
′ implies iterating down each Artin generator of each hash braid element ci, in order, and permuting

the t-values at each step

4

The string S, having been broken into blocks of length λ, is associated with a sequence of braid words:

cv(1), cv(2), . . . , cv(DS).

Thus S is associated with a sequence colored Burau/permutation pairs:
(

CB(cv(1)
)

, σc(v(1))
),

(

CB(cv(2)), σcv(2)

)

, . . . ,
(

CB(cv(DS)), σcv(DS)

)

.

The hash of the string S, denoted HAE(S), is defined to be the matrix part of the output of the iterative
modified E-multiplication

(n0, σ0) ⋆
′ (CB(cv(1)), σcv(1)

) ⋆′ (CB(cv(2)), σcv(2)
) ⋆′ · · · ⋆′ (CB(cv(DS)), σcv(DS)

).

4 Basic Analysis of the AEHash

The output of AEHash is, definitionally, a string of bits of length N2 · ceil
(

log2(q)
)

. An upper bound for the
size of the collection of all possible hashes the AEHash can generate is given by

qN
2

.

Recalling the assumption that the subgroup of BN generated by {c0, c1, . . . , c2λ−1}, is free on the set of fixed
braids {c0, c1, . . . , c2λ−1}. The number of possible sequences in the fixed braids of length DS , is given by

2DS ·λ,

and thus reversing the first step of the AEHash has DS · λ - bit security. Note that DS · λ coincides with the
length of the message, so the security will only be high for long messages.

The only known method for reversing E-multiplication, to date, is a brute force procedure, resulting in
DS · λ - bit security. Furthermore, given two distinct strings S1, S2 whose block decomposition is given by

Sj =

DSj
⋃

i=1

Block(ji), (j = 1, 2),

where DSj
=

Card(Sj)
λ

, the braids defined by the associated sequences of the fixed braids, say

{cS1,v(1), cS1,v(2)), . . . , cS1,v(DS1
)},

{cS2,v(1), cS2,v(2)), . . . , cS2,v(DS2
)},

will necessarily be distinct: in a free group two (reduced) words are equal if and only if their expressions
are identical. Thus any collisions the AEHash might have cannot emerge when the string is replaced by
the sequence of braid elements, and must stem from either an element in the kernel of the function that
takes braids to colored Burau/permutations pairs, or colored Burau/permutation pairs to matrices with field
entries/permutation pairs.

An upper bound for the running time of the AEHash can be obtained as follows. Let

LC = Max
{

ArtinLength(ci)
∣

∣ i = 0, . . . , 2λ − 1
}

.

Then AEHash(S) requires at most

LC · Card(S)
λ

E-multiplications in order to obtain the N × N matrix. Once this matrix is in place the entries must be
converted to bits. The individual braids, ci, must have sufficiently long length so that the initial matrix the
AEHash produces does not have too many zeros.

We remark that the homomorphic Hash function introduced by Zémor’s [17], which is shown to be robust
in [13], is somewhat structurally similar to the Hickory Hash function, in the case there are only two hash
braids which are chosen to be pure. The additional complexity of non-pure braids, which ensures the one-way
nature E-multiplication is in place, serves support to the Hickory hash function.

5

5 Generating the AEHash Parameters for Hickory Hash

The choices of the parameters N , q, and λ, and the length of the braids ci, impact of the running time
and memory requirements of the AEHash. In a constrained environment keeping q ≤ 5 and λ ≤ 8 is clearly
appropriate. While it is possible to use N ≥ 8, in order to insure sufficient mixing in the course of evaluating
the AEHash, the lengths of the braid ci would be greater that 2 ·N , and hence the run time begins to become
an issue were we to use larger N .

The central question is how to choose the braids used in the Hickory Hash. What emerges from our initial
study has been the need for each braid ci to impact each of the nodes {1, 2, . . . , N} by displacing them (at
least) twice to the right. This property insures that every generator will appear in each ci, and the length of
ci is at least 2n. In order to prevent cancellations between the ci’s we will choose them to be positive braids.
As an example, let N = 4, and consider the braids

x = b2 b3 b2 b3 b1 b2 b1 b2,

and

y = b3 b2 b2 b1 b3 b2 b1 b1.

Focussing on x, note that the node 2 initially moves twice to the right via the initial sub word b2 b3, and
then move three to the left. Following node 4, it moves three to the left until the final subword b1 b2 moves
it twice to the right. The braid y is itself the product of two words each of which move each node once to
the right, and hence y moves each node twice to the right.

Braids constructed with this property will almost always have nontrivial permutations, and said permu-
tations will impact the entries of the colored Burau matrix of other braids of this nature. The number of
braids that move each node twice at a time (to the right) grows very rapidly. While it is outside the scope
of this paper, given N ≥ 4 it can be shown that the number of possible such braids is,

1

4

(

−2−
(

1−
√
2
)N

(1 +
√
2) + (−1 +

√
2)

(

1 +
√
2
)N

)

.

The parameters we chose can be found in Appendix A, and include explicit choices of the braids.

6 Implementing Hickory Hash on an MSP430

The Texas Instruments MSP430 is a class of 16-bit microcontrollers frequently used for low-power embedded
devices and numerous other Internet of Things endpoints. Different processors within the family provide
different amounts of flash and RAM, different onboard peripherals, and varying clock speeds.

For our implementation we used C, and compiled the code to the MSP using TI’s GCC compiler with
the -O3 compiler optimization option. For our test cases we decided not to pack the data as compactly as
possible, and we hard-coded the parameters. The finite field math was performed by lookup tables (because
we’re using F16, which results in a 256-byte multiplication table). These tables were included in the code
size, as were the braids, initial matrix, permutation, and t-values.

In a straightforward implementation, each E-Multiplication requires two branches, 2N or 3N finite-field
multiplications, and N or 2N finite-field additions3. Based on either set of selected parameters, each block of
λ input bits requires 16 E-Multiplications. This results in a total of 16 ∗ ⌈InputLength/λ⌉ E-Multiplications.

During development we decided to elide several possible speed optimizations, including loop unrolling
or writing the core functions in assembly language. We also decided to permute all the t-values each round
instead of only the required entry for that particular braid generator. We are confident based on exploration
of E-Multiplication in other avenues that we can achieve an addtional 2-3x speed improvement in C.

The implementation pseudocode can be found in Appendix B.

3 We know that a hardware implementation of E-Multiplication can perform one E-Multiplication per clock cycle

6

7 Hickory Hash Performance

Using the implementation on the MSP, we ran several tests and measured the computation time to hash
64-byte messages. We tested both the λ = 5 and λ = 7 parameters on the MSP using a clock speed of 8MHz.
As expected, the latter parameter set ran faster but used more ROM.

When we used the parameters for λ = 5, the code used a total of 2012 bytes of ROM (848 rodata, 1164
text) and 110 bytes of RAM. The runtime for a 64 byte message was 61ms, which is 1049 bytes per second.

When we set the program to use the paramters for λ = 7 the code space increased to 3546 bytes of ROM
(2384 rodata, 1162 text), and RAM usage increased marginally to 112 bytes. However the runtime dropped
to 44ms, yielding 1454 bytes per second.

As noted before, we are confident we could achieve an additional 2-3x speed improvement using techniques
we’ve learned from different Algebraic Eraser implementations on this platform. This would increase our
speeds to 2098-3147 bytes per second for λ = 5 and 2908-4362 bytes per second for λ = 7. Conversion to
ASM should yield an additional speedup, and other additional speedups are possible.

Let’s compare Hickory Hash to SHA2-256. According to Christian Wenzel-Benner et al, SHA2-256 on the
MSP430 requires an area (4 * RAM bytes + ROM bytes) of approximately 4096 [16]. This is closer to the
space required by the λ = 7 parameter set versus λ = 5.

8 Conclusions

The AEHash construction defines a family of hash algorithms based on the Algebraic Eraser E-Multiplication
one-way function. We have instantiated two specific sets of parameters, one using λ = 5 and another using
λ = 7, both providing a 256-bit hash, which we call Hickory Hash. Then we implemented the Hickory Hash
with those parameters on a Texas Instruments MSP430 16-bit microcontroller.

Comparing Hickory Hash to SHA2, the size of Hickory Hash is smaller than SHA2. In particular the
λ = 5 parameter set was 30% smaller than SHA2, and the λ = 7 parameter set was just slightly smaller than
SHA2.

We believe there are several optimizations that can speed up the Hickory Hash implementation, including
major changes like an implementation in assembler and minor changes like directly computing the permuted
t-values.

Moreover, we believe a hardware implementation of Hickory Hash would be interesting when combined
with other AE-based E-Multiplication constructions. This is because the underlying E-Multiplication en-
gine can be re-used between the different constructions, reducing the amount of silicon and/or program
ROM required. Previous experience with hardware implementations has shown a single clock cycle per E-
Multiplication, which would result in a processing speed of λ bits per 16 cycles. A size/speed comparison
with SHA2 in hardware would be interesting.

References

1. Anshel, Iris; Anshel, Michael; Goldfeld, Dorian; and Lemieux, Stephane, Key agreement, the Algebraic EraserTM ,

and Lightweight Cryptography, Algebraic methods in cryptography, Contemp. Math., vol. 418, Amer. Math. Soc.,
Providence, RI, 2006, pp. 1–34.

2. Anshel, Iris; Goldfeld, Dorian, Cryptographic hash function, US Patent number 8,972,715, March 3, 2015.

3. Blackburn, Simon R.; Robshaw, M.J.B.; On the Security of the Algebraic Eraser Tag Authentication Protocol,

http://eprint.iacr.org/2016/091 (2016).

4. A. Ben-Zvi, S. Blackburn, and B. Tsaban, A Practical Cryptanalysis of the Algebraic Eraser, November, 2015.

5. A. Kalka, M. Teicher, and B. Tsaban, Short expressions of permutations as products and cryptanalysis of the

Algebraic Eraser, Adv. in Appl. Math. 49 (2012), no. 1, 57–76.

6. Atkins, Derek; Goldfeld, Dorian, Addressing the Algebraic Eraser Diffie–Hellman Over-the-Air Protocol,

http://eprint.iacr.org/2016/205 (2016).

7

7. Anshel, Iris; Atkins, Derek; Goldfeld, Dorian; Gunnells, Paul E., Defeating the Ben-Zvi, Blackburn, and Tsaban

Attack on the Algebraic Eraser, http://arxiv.org/abs/1601.04780 (2016).

8. Anshel, Iris; Atkins, Derek; Goldfeld, Dorian; Gunnells, Paul E., A Class of Hash Functions Based on the Algebraic

EraserTM, preprint, Groups Complexity Cryptology, ISSN 1869-6104, April, 2016.

9. Birman, Joan; Ko, Ki Hyoung; Lee, Sang Jin; A new approach to the word and conjugacy problems in the braid

groups, Adv. Math. 139 (1998), no. 2, 322–353.

10. Dehornoy, Patrick; A fast method for comparing braids, Adv. Math. 125 (1997), no. 2, 200–235.

11. Dehornoy, Patrick; Braid-based cryptography, http://www.math.unicaen.fr/∼dehornoy/Surveys/Dgw.pdf

12. Goldfeld, Dorian; Gunnells, Paul E. Defeating the Kalka–Teicher–Tsaban linear algebra attack on the Algebraic

Eraser, http://arxiv.org/abs/1202.0598 (2012).

13. Ciaran Mulland, Boaz Tsaban; SL2 homomorphic hash functions: Worst case to average case reduction and short

collision search, arXiv:1306.5646v3 [cs.CR] (2015).

14. National Institute of Standards and Technology; NIST Statistical Test Suite, available from
http://csrc.nist.gov/groups/ST/toolkit/rng/documentation software.html

15. G. Seroussi, Table of low-weight binary irreducible polynomials, Technical Report HP-98-135, Computer Systems
Laboratory, Hewlett–Packard, 1998.

16. Wenzel-Benner, Christian; Gräf, Jens; Kaps, Jens-Peter; Pham, John, XBX Bench-

marking Results January 2012, NIST SHA-3 Conference, March, 2012, available from
http://csrc.nist.gov/groups/ST/hash/sha-3/Round3/March2012/documents/

presentations/WENZEL BENNER presentation.pdf

17. G. Zémor; Hash functions and graphs with large girths, Eurocrypt ’91, Lecture Notes in Computer Science 547
(1991), 508–511.

8

Appendix A Hickory Hash Parameters

The following two sections detail two instantiations of the AEHash family that we call Hickory Hash. In the
first instance λ is 5; in the second instance λ is 7. In both cases we selected a 256-bit hash result. The testing
results show a time/space tradeoff. The λ = 7 case requires more space (to hold the 128 braids) however it
requires fewer blocks to encode the message so requires fewer E-Multiplications, resulting in a faster execution.
In all cases represent the finite field F16 as F2[x]/(f), where f is the irreducible polynomial x4+x+1 (cf. [15]).
Elements of F16 are then represented as 4-bit numbers: the finite field element a3x

3 + a2x
2 + · · ·+ a0 mod f

is converted to the bitstring a3a2 · · · a0 (note that the coefficients of high degree monomials become the
high-order bits in the bitstring).

A.1 λ = 5

– N = 8
– q = 16
– t-values: (4 15 8 4 8 4 7 12)
– Initial Permutation: (5 3 4 7 2 1 0 6)
– Initial Matrix:

























14 14 1 4 7 5 10 2
12 6 7 9 4 5 9 10
14 9 7 10 0 0 13 0
15 5 7 8 15 2 5 8
13 2 14 5 8 10 2 8
0 9 7 9 2 6 9 15
12 14 12 8 0 5 7 0
11 13 5 7 3 9 7 10

























– Hash Braids:

0. b6b7b5b6b4b5b3b4b2b3b1b2b1b2b1b2
1. b6b7b5b6b4b5b3b4b2b3b2b3b2b3b1b2
2. b6b7b5b6b4b5b3b4b3b4b3b4b2b3b1b2
3. b6b7b5b6b4b5b4b5b4b5b3b4b2b3b1b2
4. b6b7b5b6b5b6b5b6b4b5b3b4b2b3b1b2
5. b6b7b6b7b6b7b5b6b4b5b3b4b2b3b1b2
6. b6b7b6b7b5b6b5b6b4b5b3b4b2b3b1b2
7. b6b7b6b7b5b6b4b5b4b5b3b4b2b3b1b2
8. b6b7b6b7b5b6b4b5b3b4b3b4b2b3b1b2
9. b6b7b6b7b5b6b4b5b3b4b2b3b2b3b1b2
10. b6b7b6b7b5b6b4b5b3b4b2b3b1b2b1b2
11. b6b7b5b6b5b6b4b5b4b5b3b4b2b3b1b2
12. b6b7b5b6b5b6b4b5b3b4b3b4b2b3b1b2
13. b6b7b5b6b5b6b4b5b3b4b2b3b2b3b1b2
14. b6b7b5b6b5b6b4b5b3b4b2b3b1b2b1b2
15. b6b7b5b6b4b5b4b5b3b4b3b4b2b3b1b2

16. b6b7b5b6b4b5b4b5b3b4b2b3b2b3b1b2
17. b6b7b5b6b4b5b4b5b3b4b2b3b1b2b1b2
18. b6b7b5b6b4b5b3b4b3b4b2b3b2b3b1b2
19. b6b7b5b6b4b5b3b4b3b4b2b3b1b2b1b2
20. b6b7b5b6b4b5b3b4b2b3b2b3b1b2b1b2
21. b6b7b6b7b6b7b4b5b4b5b3b4b2b3b1b2
22. b6b7b6b7b6b7b4b5b3b4b3b4b2b3b1b2
23. b6b7b6b7b6b7b4b5b3b4b2b3b2b3b1b2
24. b6b7b6b7b6b7b4b5b3b4b2b3b1b2b1b2
25. b6b7b5b6b5b6b5b6b3b4b3b4b2b3b1b2
26. b6b7b5b6b5b6b5b6b3b4b2b3b2b3b1b2
27. b6b7b5b6b5b6b5b6b3b4b2b3b1b2b1b2
28. b6b7b5b6b4b5b4b5b4b5b2b3b2b3b1b2
29. b6b7b5b6b4b5b4b5b4b5b2b3b1b2b1b2
30. b6b7b5b6b4b5b2b3b2b3b2b3b1b2b1b2
31. b6b7b6b7b5b6b3b4b3b4b2b3b1b2b1b2

– Test Case:
• Input: “This is a test” (Hex: 54 68 69 73 20 69 73 20 61 20 74 65 73 74)
• Result: 256-bit packed result, in Hex:
2f 5b 19 73 9d c1 74 b6 50 ab 8d 0d aa 1f 36 28

2d 20 69 44 b6 c7 88 04 45 57 c9 e2 c7 64 4b 78

9

A.2 λ = 7

– N = 8
– q = 16
– t-values: (4 15 8 4 8 4 7 12)
– Initial Permutation: (5 3 4 7 2 1 0 6)
– Initial Matrix:

























14 14 1 4 7 5 10 2
12 6 7 9 4 5 9 10
14 9 7 10 0 0 13 0
15 5 7 8 15 2 5 8
13 2 14 5 8 10 2 8
0 9 7 9 2 6 9 15
12 14 12 8 0 5 7 0
11 13 5 7 3 9 7 10

























– Hash Braids:

0. b6b7b6b7b6b7b5b6b4b5b3b4b2b3b1b2
1. b6b7b6b7b5b6b5b6b4b5b3b4b2b3b1b2
2. b6b7b5b6b5b6b5b6b4b5b3b4b2b3b1b2
3. b6b7b6b7b6b7b4b5b4b5b3b4b2b3b1b2
4. b6b7b6b7b5b6b4b5b4b5b3b4b2b3b1b2
5. b6b7b5b6b5b6b4b5b4b5b3b4b2b3b1b2
6. b6b7b6b7b4b5b4b5b4b5b3b4b2b3b1b2
7. b6b7b5b6b4b5b4b5b4b5b3b4b2b3b1b2
8. b6b7b6b7b6b7b5b6b3b4b3b4b2b3b1b2
9. b6b7b6b7b5b6b5b6b3b4b3b4b2b3b1b2
10. b6b7b5b6b5b6b5b6b3b4b3b4b2b3b1b2
11. b6b7b6b7b6b7b4b5b3b4b3b4b2b3b1b2
12. b6b7b6b7b5b6b4b5b3b4b3b4b2b3b1b2
13. b6b7b5b6b5b6b4b5b3b4b3b4b2b3b1b2
14. b6b7b6b7b4b5b4b5b3b4b3b4b2b3b1b2
15. b6b7b5b6b4b5b4b5b3b4b3b4b2b3b1b2
16. b6b7b6b7b5b6b3b4b3b4b3b4b2b3b1b2
17. b6b7b5b6b5b6b3b4b3b4b3b4b2b3b1b2
18. b6b7b6b7b4b5b3b4b3b4b3b4b2b3b1b2
19. b6b7b5b6b4b5b3b4b3b4b3b4b2b3b1b2
20. b6b7b6b7b6b7b5b6b4b5b2b3b2b3b1b2
21. b6b7b6b7b5b6b5b6b4b5b2b3b2b3b1b2
22. b6b7b5b6b5b6b5b6b4b5b2b3b2b3b1b2
23. b6b7b6b7b6b7b4b5b4b5b2b3b2b3b1b2
24. b6b7b6b7b5b6b4b5b4b5b2b3b2b3b1b2
25. b6b7b5b6b5b6b4b5b4b5b2b3b2b3b1b2
26. b6b7b6b7b4b5b4b5b4b5b2b3b2b3b1b2
27. b6b7b5b6b4b5b4b5b4b5b2b3b2b3b1b2
28. b6b7b6b7b6b7b5b6b3b4b2b3b2b3b1b2
29. b6b7b6b7b5b6b5b6b3b4b2b3b2b3b1b2
30. b6b7b5b6b5b6b5b6b3b4b2b3b2b3b1b2
31. b6b7b6b7b6b7b4b5b3b4b2b3b2b3b1b2
32. b6b7b6b7b5b6b4b5b3b4b2b3b2b3b1b2
33. b6b7b5b6b5b6b4b5b3b4b2b3b2b3b1b2
34. b6b7b6b7b4b5b4b5b3b4b2b3b2b3b1b2

35. b6b7b5b6b4b5b4b5b3b4b2b3b2b3b1b2
36. b6b7b6b7b5b6b3b4b3b4b2b3b2b3b1b2
37. b6b7b5b6b5b6b3b4b3b4b2b3b2b3b1b2
38. b6b7b6b7b4b5b3b4b3b4b2b3b2b3b1b2
39. b6b7b5b6b4b5b3b4b3b4b2b3b2b3b1b2
40. b6b7b6b7b6b7b4b5b2b3b2b3b2b3b1b2
41. b6b7b6b7b5b6b4b5b2b3b2b3b2b3b1b2
42. b6b7b5b6b5b6b4b5b2b3b2b3b2b3b1b2
43. b6b7b6b7b4b5b4b5b2b3b2b3b2b3b1b2
44. b6b7b5b6b4b5b4b5b2b3b2b3b2b3b1b2
45. b6b7b6b7b5b6b3b4b2b3b2b3b2b3b1b2
46. b6b7b5b6b5b6b3b4b2b3b2b3b2b3b1b2
47. b6b7b6b7b4b5b3b4b2b3b2b3b2b3b1b2
48. b6b7b5b6b4b5b3b4b2b3b2b3b2b3b1b2
49. b6b7b6b7b6b7b5b6b4b5b3b4b1b2b1b2
50. b6b7b6b7b5b6b5b6b4b5b3b4b1b2b1b2
51. b6b7b5b6b5b6b5b6b4b5b3b4b1b2b1b2
52. b6b7b6b7b6b7b4b5b4b5b3b4b1b2b1b2
53. b6b7b6b7b5b6b4b5b4b5b3b4b1b2b1b2
54. b6b7b5b6b5b6b4b5b4b5b3b4b1b2b1b2
55. b6b7b6b7b4b5b4b5b4b5b3b4b1b2b1b2
56. b6b7b5b6b4b5b4b5b4b5b3b4b1b2b1b2
57. b6b7b6b7b6b7b5b6b3b4b3b4b1b2b1b2
58. b6b7b6b7b5b6b5b6b3b4b3b4b1b2b1b2
59. b6b7b5b6b5b6b5b6b3b4b3b4b1b2b1b2
60. b6b7b6b7b6b7b4b5b3b4b3b4b1b2b1b2
61. b6b7b6b7b5b6b4b5b3b4b3b4b1b2b1b2
62. b6b7b5b6b5b6b4b5b3b4b3b4b1b2b1b2
63. b6b7b6b7b4b5b4b5b3b4b3b4b1b2b1b2
64. b6b7b5b6b4b5b4b5b3b4b3b4b1b2b1b2
65. b6b7b6b7b5b6b3b4b3b4b3b4b1b2b1b2
66. b6b7b5b6b5b6b3b4b3b4b3b4b1b2b1b2
67. b6b7b6b7b4b5b3b4b3b4b3b4b1b2b1b2
68. b6b7b5b6b4b5b3b4b3b4b3b4b1b2b1b2
69. b6b7b6b7b6b7b5b6b4b5b2b3b1b2b1b2
70. b6b7b6b7b5b6b5b6b4b5b2b3b1b2b1b2
71. b6b7b5b6b5b6b5b6b4b5b2b3b1b2b1b2

10

72. b6b7b6b7b6b7b4b5b4b5b2b3b1b2b1b2
73. b6b7b6b7b5b6b4b5b4b5b2b3b1b2b1b2
74. b6b7b5b6b5b6b4b5b4b5b2b3b1b2b1b2
75. b6b7b6b7b4b5b4b5b4b5b2b3b1b2b1b2
76. b6b7b5b6b4b5b4b5b4b5b2b3b1b2b1b2
77. b6b7b6b7b6b7b5b6b3b4b2b3b1b2b1b2
78. b6b7b6b7b5b6b5b6b3b4b2b3b1b2b1b2
79. b6b7b5b6b5b6b5b6b3b4b2b3b1b2b1b2
80. b6b7b6b7b6b7b4b5b3b4b2b3b1b2b1b2
81. b6b7b6b7b5b6b4b5b3b4b2b3b1b2b1b2
82. b6b7b5b6b5b6b4b5b3b4b2b3b1b2b1b2
83. b6b7b6b7b4b5b4b5b3b4b2b3b1b2b1b2
84. b6b7b5b6b4b6b4b5b3b4b2b3b1b2b1b2
85. b6b7b6b7b5b6b3b4b3b4b2b3b1b2b1b2
86. b6b7b5b6b5b6b3b4b3b4b2b3b1b2b1b2
87. b6b7b6b7b4b5b3b4b3b4b2b3b1b2b1b2
88. b6b7b5b6b4b5b3b4b3b4b2b3b1b2b1b2
89. b6b7b6b7b6b7b4b5b2b3b2b3b1b2b1b2
90. b6b7b6b7b5b6b4b5b2b3b2b3b1b2b1b2
91. b6b7b5b6b5b6b4b5b2b3b2b3b1b2b1b2
92. b6b7b6b7b4b5b4b5b2b3b2b3b1b2b1b2
93. b6b7b5b6b4b5b4b5b2b3b2b3b1b2b1b2
94. b6b7b6b7b5b6b3b4b2b3b2b3b1b2b1b2
95. b6b7b5b6b5b6b3b4b2b3b2b3b1b2b1b2
96. b6b7b6b7b4b5b3b4b2b3b2b3b1b2b1b2
97. b6b7b5b6b4b5b3b4b2b3b2b3b1b2b1b2
98. b6b7b6b7b6b7b5b6b3b4b1b2b1b2b1b2
99. b6b7b6b7b5b6b5b6b3b4b1b2b1b2b1b2

100. b6b7b5b6b5b6b5b6b3b4b1b2b1b2b1b2
101. b6b7b6b7b6b7b4b5b3b4b1b2b1b2b1b2
102. b6b7b6b7b5b6b4b5b3b4b1b2b1b2b1b2
103. b6b7b5b6b5b6b4b5b3b4b1b2b1b2b1b2
104. b6b7b6b7b4b5b4b5b3b4b1b2b1b2b1b2
105. b6b7b5b6b4b5b4b5b3b4b1b2b1b2b1b2
106. b6b7b6b7b5b6b3b4b3b4b1b2b1b2b1b2
107. b6b7b5b6b5b6b3b4b3b4b1b2b1b2b1b2
108. b6b7b6b7b4b5b3b4b3b4b1b2b1b2b1b2
109. b6b7b5b6b4b5b3b4b3b4b1b2b1b2b1b2
110. b6b7b6b7b6b7b4b5b2b3b1b2b1b2b1b2
111. b6b7b6b7b5b6b4b5b2b3b1b2b1b2b1b2
112. b6b7b5b6b5b6b4b5b2b3b1b2b1b2b1b2
113. b6b7b6b7b4b5b4b5b2b3b1b2b1b2b1b2
114. b6b7b5b6b4b5b4b5b2b3b1b2b1b2b1b2
115. b6b7b6b7b5b6b3b4b2b3b1b2b1b2b1b2
116. b6b7b5b6b5b6b3b4b2b3b1b2b1b2b1b2
117. b6b7b6b7b4b5b3b4b2b3b1b2b1b2b1b2
118. b6b7b5b6b4b5b3b2b2b3b1b2b1b2b1b2
119. b7b7b6b5b4b3b2b1b7b6b6b5b4b3b2b1
120. b7b7b6b5b4b3b2b1b7b6b5b5b4b3b2b1
121. b7b7b6b5b4b3b2b1b7b6b5b4b4b3b2b1
122. b7b7b6b5b4b3b2b1b7b6b5b4b3b3b2b1
123. b7b7b6b5b4b3b2b1b7b6b5b4b3b2b2b1
124. b7b7b6b5b4b3b2b1b7b6b5b4b3b2b1b1
125. b7b6b6b5b4b3b2b1b7b6b5b5b4b3b2b1
126. b7b6b5b5b4b3b2b1b7b6b5b4b4b3b2b1
127. b7b6b5b4b3b3b2b1b7b6b5b4b3b2b2b1

Appendix B Hickory Hash Pseudocode Implementation

The following is a C pseudocode implementation of AEHash. We call it pseudocode because it is not a fully
compilable as-is; several obvious functions are elided for clarity, and the full set of parameters are elided for
space considerations. The full parameter set can be found in Appendix A, and the elided functions are left
as an exercise for the reader.

// These data are from the hash parameters.

// Some data is elided here for brevity

#define INDEX 8

static const int lambda = 5;

static const unsigned int tvalues[] = {4, 15, 8, 4, 8, 4, 7, 12};

static const unsigned int perm[] = {5, 3, 4, 7, 2, 1, 0, 6};

static const unsigned int matrix[INDEX][INDEX] = {

{ 14, 14, 1, 4, 7, 5, 10, 2 }, ... };

static const AeBraidlist braids[] = {

{ 16, { 5 6 4 5 3 4 2 3 1 2 0 1 0 1 0 1 } }, ... };

void ae_hash_emultiply_braid(AeHashCtx *ctx, const AeBraidlist braid)

{

int i, nrow;

unsigned int t, ti;

11

unsigned int tempTvalues[INDEX];

// Iterate down the braid generators

for (i = 0; i < braid->len; i++) {

unsigned int gen = braid->generator[i];

// permute the t-values

for (nrow=0; nrow < INDEX; nrow++)

tempTvalues[nrow] = tvalues[ctx->perm[nrow];

// Determine the t-value (and inverse) for this braid generator

t = tempTvalues[ctx->perm[gen]];

ti = FF_NEG(t);

// Multiply in the CB Matrix for this generator

for (nrow=0; nrow < INDEX; nrow++) {

if (gen >= 1) {

ctx->matrix[nrow][gen-1] =

FF_ADD(ctx->matrix[nrow][gen-1],

FF_MULT(ctx->matrix[nrow][gen], t));

}

if (gen < INDEX-1) {

ctx->matrix[nrow][gen+1] =

FF_ADD(ctx->matrix[nrow][gen-1],

FF_MULT(ctx->matrix[nrow][gen], 1));

}

ctx->matrix[nrow][gen] =

FF_MULT(ctx->matrix[nrow][gen], ti);

}

// Update the permutation

t = ctx->perm[gen];

ctx->perm[gen] = ctx->perm[gen+1];

ctx->perm[gen+1] = t;

}

}

void ae_hash(const unsigned char* data, size_t data_len,

unsigned char* hash size_t *hashlen)

{

AeHashCtx ctx;

AePackCtx pack;

unsigned int c;

size_t i, j, len;

// Initialize context with initial Matrix, Permutation, and t-values

ae_hash_init_ctx(&ctx);

// Initialize the packing context to pull out lamdba bits at a time

ae_pack_init_ctx(&pack, data, data_len, lambda);

12

// Compute the number of lambda blocks in data_len

len = (data_len*8 + lambda - 1) / lambda;

// Iterate over the input, E-multiply in the braid for

// each lambda-length block of the input data

for (i = 0; i < len; i++) {

c = ae_pack_get_value(&pack);

ae_hash_emultiply_braid(&ctx, braids[c]);

}

// output the hash by building a string of the matrix

// re-initialize the packing context to build the result

// (note that we’re using F16, so there are 4 bits per entry)

ae_pack_init_ctx(&pack, hash, *hashlen, 4);

// Now iterate over the matrix and pack the result.

for (i = 0; i < INDEX; i++) {

for (j = 0; j < INDEX; j++) {

ae_pack_add_value(&pack, ctx.matrix[i][j]);

}

}

// And we’re done

}

Appendix C Statistical Testing of the AE Hash Function

This section describes the various statistical tests performed on the AE Hash Function.

Bit Flip Test

In this test one first chooses a random message of length from 1 to 256 bytes. One computes the hash of the
original message and then iterate through the full message, flipping one bit at a time. After each bitflip one
computes another hash (and then reverts the bitflip before continuing on). Then one compares the Hamming
distance between each “flipped” hash digest to the original hash.

Using the parameters in this paper we obtained the following test results.

Case 1: λ = 5 bit-flip test (2088408 checks):

min: 47
max: 166
mean: 127.87
median: 128
stddev: 8.24

Case 2: λ = 7 bit-flip test (2056088 checks):

min: 50
max: 165
mean: 127.91
median: 128
stddev: 8.14

For N = 8 and q = 16 = 24, the AEHash length is N2 log2(q) = (82) · 4 = 256. Hence, for a good hash
function, the median of the Hamming distance (of the hash before and after bit flips) should be 256/2 = 128.

13

Collision Test

This test is looking for collisions at specified offsets in the hash. In particular this test chooses the offset(s)
into the hash output to check by iterating through every possible offset or offset-combination depending on
the test configuration. Once the offset values are fixed it loops for a number of trials. In each trial it chooses
two random messages of length twice that of a hash, then hashes them, and compares the hash values at the
chosen offsets. We expect this to find a collision every 1 in 2b trials, where b = 8o and o is the number of
offset bytes checked, i.e., we expect to find a collision every 1 in 256 trials with a single offset, and every 1
in 65536 trials when checking for two offsets.

Using the parameters in this paper we obtained the following test results.

Case 1: λ = 5

• 1-octet collisions (25600 iterations per offset, so expecting 100):

min: 81
max: 124
mean: 101.63
median: 101.5
stddev: 9.97

• 2-octet collisions (655360 iterations, expecting 10):

min: 1
max: 23
mean: 9.96
median: 10
stddev is 3.16

Case 2: λ = 7

• 1-octet collisions (25600 iterations per offset, so expecting 100):

min: 88
max: 127
mean: 100.16
median: 97
stddev: 8.99

• 2-octet collisions (655360 iterations, expecting 10):

min: 1
max: 22
mean: 10.03
median: 10
stddev is 3.29

NIST Statistical Test Suite

We ran the AEHash through the NIST Statistical Test Suite [14]. This is a statistical package that was
developed to test the randomness of (arbitrarily long) binary sequences produced by either hardware or
software based cryptographic random or pseudorandom number generators. The tests focus on a variety of
different types of non-randomness that could exist within a given sequence. The package then applies standard
statistical significance methodology to produce a p-value for each test, which can then be compared to a
(standard) level of significance α. For our tests, we chose α = 0.01, as recommended by [14].

Altogether there are fifteen different tests in the suite, some of which are broken up into various subtests.
Among the full set of tests are the following:

14

– The Frequency (Monobit) Test, which gives a most basic test of randomness of a sequence. It determines
whether the number of ones and zeros in a sequence are approximately the same as would be expected
for a truly random sequence.

– The Runs Test. By definition a run in a sequence is a subsequence of identical elements. This test decides
whether the number of runs of ones and zeros of various lengths is as expected for a random sequence.
In particular, it detects whether the oscillation between such zeros and ones is too fast or too slow.

– The Binary Matrix Rank Test, which checks for linear dependencies among fixed length substrings of the
original sequence.

– The Non-overlapping Template Matching Test. This test counts the number of occurrences of a fixed
set of pre-specified target strings, and rejects sequences exhibiting too many or too few occurrences of a
given aperiodic pattern For a given target string of length m, an m-bit window is used to search for this
pattern. If the pattern is not found, the window slides one bit position to the right, and the search is
continued. If the pattern is found, then the window is reset to the bit after the found pattern, and again
the search continues. The NIST suite uses a collection of 149 aperiodic patterns for this test.

For full details of all the tests in the suite, we refer to [14].

In our tests we generated the test data by creating an 8-byte input message using a counter and then
hashing the input message (counter) until we had sufficient data to produce 10 streams of 100,000 bits each.
These streams were run through the test suite. Overall the AE Hash function performed extremely well. For
only 6 of the 149 non-overlapping template tests did any bitstream appear nonrandom according to the test,
and in each case it was only 1 of the 10 bitstreams. All 161 computed p-values were above α = 0.01 save
for two, which were 0.0043 and 0.0088. To put these results in perspective, we also tested 10 bitstreams of
100,000 bits generated using output from /dev/random, which is a special file found on Unix-like systems
that gathers environmental noise from device drivers and other sources to produce a blocking pseudorandom
number generator. These bitstreams exhibited similar behavior, and in fact failed 22 of the non-overlapping
template tests. Two p-values from the bitstreams from /dev/random were also found to be lower than our
threshold.

15

