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Abstract. The Learning with Errors (LWE) problem has been widely used as a hardness assump-
tion to construct public-key primitives. In this paper, we propose an efficient instantiation of a
PKE scheme based on LWE with a sparse secret, named as spLWE. We first construct an IND-CPA
PKE and convert it to an IND-CCA scheme in the quantum random oracle model by applying
a modified Fujisaki-Okamoto conversion of Unruh. In order to guarantee the security of our base
problem suggested in this paper, we provide a polynomial time reduction from LWE with a uni-
formly chosen secret to spLWE. We modify the previous attacks for LWE to exploit the sparsity
of a secret key and derive more suitable parameters. We can finally estimate performance of our
scheme supporting 256-bit messages: our implementation shows that our IND-CCA scheme takes
313 µ seconds and 302 µ seconds respectively for encryption and decryption with the parameters
that have 128-quantum bit security.

Keywords: practical, post-quantum, IND-CCA, PKE, sparse secret, LWE, quantum random ora-
cle model

1 Introduction

With advances in quantum computing, many people in various fields are working on mak-
ing their information security systems resistant to quantum computing. The National Security
Agency (NSA) has announced a plan to change its Suite B guidance [42], and the National
Institute of Standards and Technology (NIST) is now beginning to prepare for the transition
into quantum-resistant cryptography [41]. There have been also substantial support for post-
quantum cryptography from national funding agencies including the PQCRYPTO projects [18]
in Europe.

In that sense, lattice-based cryptography is a promising field to conduct practical quantum-
resistant research. This is due to the seminal work of Ajtai [1] who proved a reduction from
the worst-case to the average-case for some lattice problems. This means that certain prob-
lems are hard on average, as long as the related lattice problems are hard in all cases. This
enables provably secure constructions unless all instances of related lattice problems are easy to
solve. Another remarkable work in lattice-based cryptography is the introduction of Learning
with Errors problem by Regev in [47]. This work shows that there exists a quantum reduction
from some worst-case lattice problems (the shortest independent vectors problem, the short-
est vector problem with a gap) to LWE. With a strong security guarantee, LWE makes versatile
cryptographic constructions possible including fully homomorphic encryption, multi-linear map,
etcetera. For more details, we refer to the recent survey [44].

In order to increase efficiency on lattice-based cryptographic schemes, ring structured prob-
lems such as Learning with Errors over the ring (RLWE) and NTRU [37], [32] have received
much attentions. A major advantage of using a ring structure is that one can get a relatively
smaller key size and faster speed. For that reason, a lot of works about cryptographic schemes
with practical implementation have been proposed in RLWE and NTRU settings: public-key
encryptions ([19], [49], [36]), signatures ([23], [22], [27]), key-exchanges ([12], [5], [51]). However,
additional ring structures may give some advantages to attackers. As an example, some analyses
using the ring structure have been proposed recently. In particular, some NTRU-based fully ho-
momorphic encryptions proved valueless [39], [16] and some parameters of RLWE are confirmed
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to be weak [30, 31]. Hence, there are growing concerns about the security gap for ring-structured
cryptosystems.

On the other hand, it is reported that LWE-based signatures [22], [27], [17] achieve good
performance without the use of RLWE, and studies of practicality of LWE-based key exchange
protocols have been recently started in [11]. However, less attention has been paid to practical
instantiations of LWE-based cryptosystems. In this sense, proposing of a practical LWE-based
public-key cryptosystem and evaluation its performance would be an interesting topic in lattice-
based cryptography. However, construction of public-key cryptosystem, which satisfies both high
levels of security and efficiency, is a very non-trivial and hard task. it requires the right balance
between security and efficiency to constitute a complete proposal, which considers the possibility
of practical use.

Our first contribution is that we are suggesting a practical post-quantum public-key cryp-
tosystem based on spLWE that is a variant of LWE with a sparse secret vector: Based on spLWE,
we propose an IND-CPA PKE inspired from [43] and convert it into an IND-CCA version in
the quantum random oracle model by applying the modified Fujisaki-Okamoto conversion of
Unruh [52]. We identify its practicality from our implementation on a PC. The implementation
result shows that our proposal enables relatively fast encryption and decryption that take about
hundreds of microseconds.

Our second contribution is that we are providing the analysis for spLWE: We proved that
spLWE can be reduced from LWE, which means that the hardness of spLWE can also be based on
the worst-case lattice problems. We also extend all known LWE attacks to investigate concrete
hardness of spLWE. As a result, we could derive concrete parameters based on those attacks.
We would like to note that we exclude the parameters which have provable security from our
reduction under the consideration about practicality. Our reduction serves to guarantee the
hardness of spLWE, but is not tight enough to be useful in setting concrete parameters for our
scheme.

1.1 Results and Techniques

We have suggested concrete parameters for both classical and quantum security, implemen-
tation results of our scheme and a comparison table with the previous LWE-based PKE [48]
and RLWE-based PKE [37] in section 5.2. In 128-quantum bit security, the IND-CPA version of
our encryption took about 314µs and the IND-CCA version of our encryption takes 313µs for
256-bit messages on Macbook Pro with CPU 2.6GHz Intel Core i5 without parallelization.

To achieve this result, we chose a variant of LWE with a sparse secret. In most LWE-based
encryptions, it is necessary to compute uTA or uTA + e for u ∈ Zmq , e ∈ Znq and A∈ Zm×nq .
When the vector u has low hamming weight, real computation cost is similar to that of θ-length
vector. Moreover, the cost can be reduced further when restricting the non-zero components by
power of two.

Unfortunately, the use of sparse secret has one drawback. It requires relatively larger di-
mension than that of LWE to maintain security. This is a significant factor for the performance
of LWE-based schemes. A important question then arises: How large dimension is needed to
maintain security? We can observe that the problem of increase in dimension can be relieved by
using a small modulus q. Since the security of LWE is proportional to the size of dimension and
error rate, smaller modulus leads to larger error rate. We can choose a relatively small modulus
q in spLWE case from Theorem 3: The decapsulation error completely depends on inner product
of secret and error vectors. We were able to identify the effect concretely from the attacks in
Section 4.2 and Appendix for spLWE by extending all known attacks of LWE, which can be
improved by exploiting the sparsity of secret: The dimension of spLWE still remains below 520.
We also provide a reduction from LWE to spLWE under certain parameters in Section 4.1. This
implies that the hardness of spLWE can be also based on the worst-case lattice problems. It can
be done by generalizing the reduction of [13] from LWE to the binary LWE.
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Finally, we can prove IND-CCA security of our scheme in the random oracle model. More
specifically, we applied the result of the recent paper [52] to construct our PKE, which gives
a slight modification of the Fujisaki-Okamoto transform in a quantum adversary setting. The
modification only needs simple operations such as hashing and XOR to convert a IND-CPA
PKE into IND-CCA one, and hence converting overhead is expected to be small.

1.2 Related Works

Practical instantiations and implementation results about post-quantum primitives in lattice-
based cryptography have been reported mostly in the RLWE case rather than in the LWE one
(e.g. [36], [49], [19], etc). In particular, Peikert [43] presented efficient and practical lattice-based
protocols for key transport and encryption on RLWE that are suitable for Internet standards and
other open protocols. We also use the idea of KEM-based construction for improved efficiency.
In our spLWE-based construction, the ciphertext size of an IND-CPA encryption scheme for
`-bit message is (n log q+ 2`)-bit. This is smaller than that of the known LWE-based PKEs [46,
48] which have (n log q + ` log q)-bit ciphertext size.

In the case of LWE-based PKEs [46], [25], [45], [48], [40], there are a few works on efficiency
improvement. Galbraith [24] proposed variants of LWE where the entries of the random matrix
are chosen to be smaller than a modulus q or binary to reduce the size of a public-key. However,
there was no complete proposal which inclues attacks and parameters for practical usage. Bai
et al. [7] considered LWE with binary secret to reduce the size of their signature. However, the
effect on parameter and speed of their scheme was not fully investigated.

2 Preliminaries

Notations. In this paper, we use upper-case bold letters to denote matrices, and lower-case bold
letters for column vectors. For a distribution D, a← D denotes choosing an element according
to the distribution of D and a← Dm means that each component of a is sampled independently
from D. In particular, if the xi’s are independent and each xi follows a Bernoulli distribution
with ρ for a vector x = (x1, . . . , xn), then we say that a vector x follows Ber(n, ρ). For a given
set A, U(A) means a uniform distribution on the set A and a← A denotes choosing an element
according to the uniform distribution on A. We denote by Zq = Z/qZ = {0, 1 · · · , q − 1} and
T = R/Z the additive group of real numbers modulo 1, and Tq the a subgroup of T having order
q, consisting of {0, 1q , · · · ,

q−1
q }. The 〈 , 〉 means the inner product of two vectors and [x]i means

the its i-th component. A function f(λ) is called negligible if f(λ) = o(λ−c) for any c > 0, i.e.,
f decrease faster than any inverse polynomial.

2.1 Security Definitions

Definition 1 (γ-spread, [52]). A PKE is γ-spread if for every public-key generated by Keygen
algorithm and every message m,

max
y

Pr[y ← Encpk(m)] ≤ 1

2γ
.

In particular, we say that a PKE is well-spread if γ = ω(log(λ)).

Definition 2 (One-way secure). A PKE is One-Way secure if no (quantum) polynomial time
algorithm (adversary) A can find a message m from Encpk(m), given only public-key except with
probability at most negl(λ).
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2.2 Key Encapsulation Mechanism

A key encapsulation mechanism (in short, KEM) is a key exchange algorithm to transmit
an ephemeral key to a receiver with the receiver’s public key. It differs from encryption scheme
where a sender can choose a message. The sender cannot intend to make a specific ephemeral
key. A KEM with ciphertext space C and key space K consists of polynomial time algorithms
Setup, Keygen, Encap(may be randomized), Decap(should be deterministic).

• Params outputs a public parameters.

• Keygen outputs a public encapsulation key pk and secret decapsulation key sk.

• Encap takes an encapsulation key pk and outputs a ciphertext c ∈ C and a key k ∈ K.

• Decap takes a decapsulation key sk and a ciphertext c, and outputs some k ∈ K∪{⊥}, where
⊥ denotes decapsulation failure.

2.3 Lattice and Lattice Reduction Algorithm

A lattice L ⊆ Rm is a set of integer linear combinations of a {b1, · · · , bn} which is a subset
of independent column vectors in Rm,

L = {
n∑
i=1

aibi : ai ∈ Z}

The set of vectors {b1, . . . ,bn}, and its matrix form B are called a basis, and basis matrix of L
respectively. Two bases matrices B1 and B2 describe the same lattice, if and only if B2 = B1U,
where U is a unimodular matrix, i.e. det(U) = ±1, U ∈ Zm×m. Dimension of a lattice is defined
as cardinality of a basis, i.e. n = dim(L). If n = m, we call lattice L to a full rank lattice. A
sublattice is a subset L′ ⊂ L which is also a lattice. We define determinant (volume) of L by

det(L) :=
√

det(BTB)

A length of the shortest vector in a lattice L(B) is denoted by λ1(L(B)). More generally, the i-th
successive minima λi(L) is defined as the smallest radius r such that dim(span(L ∩B(r))) ≥ i
where B(r) is a n dimensional ball with radius r. There exist several bounds and estimations
for the length of the shortest vector in a lattice.

• Minkowski’s first theorem: λ1(L(B)) ≤
√
n(detL(B))1/n

• Gaussian heuristic: λ1(L(B)) ≈
√

n
2πedet(L(B))1/n for random lattice L.

The dual lattice of L, denoted L̄, is defined to be L̄ = {x ∈ Rn : ∀v ∈ L, 〈x,v〉 ∈ Z}. We recall
the Gram-Schmidt orthogonalization that is closely related with lattice basis reduction. The
Gram-Schmidt algorithm computes orthogonal vectors {b∗1, . . . ,b∗m} iteratively as follows:

b∗i = bi −
∑
j<i

µi,jb
∗
j where µi,j =

bi·b∗j
b∗j ·b∗j

.

The goal of lattice (basis) reduction is to find a good basis for a given lattice. A basis is
considered good, when the basis vectors are almost orthogonal and correspond approximately
to the successive minima of the lattice. Performance of lattice reduction algorithms is evaluated
by the root Hermite factor δ0 defined by

δ0 = (||v||/det(L)1/n)1/n

where v is the shortest vector of the reduced output basis.
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2.4 Discrete Gaussian Distribution

For given s > 0, a discrete Gaussian distribution over a lattice L is defined as DL,s(x) =
ρs(x)/ρs(L) for any x ∈ L, where

ρs(x) = exp(−π‖x‖2/s2) and ρs(L) :=
∑
x∈L

ρs(x).

We note that the standard deviation is σ = s/
√

2π. When L = Z, we omit the subscript L. For a
lattice L, the smoothing parameter ηε(L) is defined by the smallest real number s′ > 0 such that
ρ1/s′(L̄ \ {0}) ≤ ε. We collect some useful lemmas related to a discrete Gaussian distribution
and the smoothing parameter.

Lemma 1 ([9], Lemma 2.4). For any real s > 0 and T > 0, and any vector x ∈ Rn, we have

Pr[|〈x, Dn
Z,s〉| ≥ T · s‖x‖] < 2 exp(−π · T 2).

Lemma 2 ([46], Corollary 3.10). Let L be an n-dimensional lattice, let u, z ∈ Rn be arbitrary
vectors, and let r, α be positive real numbers. Assume that (1/r2 + (‖z/α‖)2)−1/2 ≥ ηε(Λ) for
some ε < 1/2. Then the distribution of 〈z, v〉 + e where v ← DL+u,r and e ← Dα is within
statistical distance 4ε of Dβ for β =

√
(r‖z‖)2 + α2.

Lemma 3 ([25], Lemma 3.1). For any ε > 0 and an n-dimensional lattice Λ with basis matrix
B, the smoothing parameter ηε(Λ) ≤ ‖B̃‖ ln(2n(1+1/ε))/π where ‖B̃‖ denotes the length of the
longest column vector of B̃ which is the Gram-Schmidt orthogonalization of B.

2.5 Learning with Errors

For integers n, q ≥ 1, a vector s ∈ Znq , and a distribution φ on R, let Aq,s,φ be the distribution
of the pairs (a, b = 〈a, s〉+ e) ∈ Tnq × T, where a← Tnq and e← φ.

Definition 3 (Learning with Errors (LWE)). For integers n, q ≥ 1, an error distribution
φ over R, and a distribution D over Znq , LWEn,q,φ(D), is to distinguish (given arbitrarily many
independent samples) the uniform distribution over Tnq × T from Aq,s,φ with a fixed sample
s← D.

We note that a search variant of LWE is the problem of recovering s from (a, b) = (a, 〈a, s〉+
e) ∈ Tnq×T sampled according to Aq,s,φ, and these are also equivalently defined on Znq×Zq rather
than Tnq × T for discrete (Gaussian) error distributions over Zq. Let LWEn,m,q,φ(D) denotes the
case when the number of samples are bounded by m ∈ N. We simply denote LWEn,q,φ when the
secret distributionD is U(Znq ). In many cases, φ is a (discrete) Gaussian distribution so we simply
denote by LWEn,m,q,s instead of LWEn,m,q,φ. We denote binLWE by the LWE problem whose secret
vector is sampled from uniform distribution over {0, 1}n. For a set Xn,ρ,θ which consists of the
vectors s ∈ Zn whose nonzero components are in {±1,±2,±4, · · · ,±ρ}, and the number of
nonzero components is θ, we write spLWEn,m,q,s,ρ,θ as the problem LWEn,m,q,s(U(Xn,ρ,θ)). We
also consider a variant of LWE, LWEn,q,≤α, in which the amount of noise is some unknown β ≤ α
as in [13]. Similarly, spLWEn,q,≤α,ρ,θ can be defined by the same way.

The following lemma will be used to derive some parameters from the modified attacks in
section 4 and appendix.

Lemma 4 ([48]). Given LWEn,m,q,s samples and a vector v of length ‖v‖ in the lattice L =
{w ∈ Zmq : wTA ≡ 0 mod q}, the advantage of distinguishing 〈v, e〉 from uniform random is
close to exp(−π(‖v‖s/q)2).

We give some variants of LWE and some notion, which were introduced in [13] to show the
reduction between binLWE and LWE.
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Definition 4 (“first-is-errorless” LWE). For integers n, q ≥ 1 and an error distribution φ
over R, the “first-is-errorless” variant of the LWE problem is to distinguish between the following
two scenarios. In the first, the first sample is uniform over Tnq × Tq and the rest are uniform
over Tnq × T. In the second, there is an unknown uniformly distributed s ∈ {0, . . . , q − 1}n, the
first sample we get is from Aq,s,{0} (where {0} denotes the distribution that is deterministically
zero) and the rest are from Aq,s,φ.

Definition 5 (extLWE problem). For integers n,m, q, t ≥ 1, a set X ⊆ Zm, and a distribution
χ over 1

qZ
m, the extLWEn,m,q,χ,X is as follows. The algorithm gets to choose x ∈ X and then

receives a tuple (A, (bi)i∈[t], (〈ei,x〉)i∈[t]) ∈ Tn×mq × (Tmq )t × (1qZ)t. Its goal is to distinguish

between the following two cases. In the first, A ∈ Tn×mq is chosen uniformly, ei ∈ 1
qZ

m are

chosen from χ, and bi = AT si + ei mod 1 where si ∈ {0, . . . , q − 1}n are chosen uniformly.
The second case is identical, except that the bi are chosen uniformly in Tmq independently of
everything else.

Definition 6 (Quality of a set). A set X ⊂ Zm is said of quality ξ if given any x ∈ X, we
can efficiently find a unimodular matrix U ∈ Zm×m such that if U ′ ∈ Zm×(m−1) is the matrix
obtained from U by removing its leftmost column then all of the columns of U ′ are orthogonal
to z and its largest singular value is at most ξ. It denoted by Qual(X).

We give a lemma to show a reduction to spLWE from the standard LWE in section 4.1.

Lemma 5. The quality of a set X ⊆ {0,±1,±2, . . . ,±ρ}m, ρ = 2l is bounded by 1 +
√
ρ.

Proof. Let x ∈ X and without loss of generality, we assume leftmost k components of x are
nonzero, remainings are zero, and |[x]i| ≤ |[x]i+1| for nonzero components after reordering. We
have [x]i+1 = ±2ti [x]i for some ti ≤ l. Now consider the upper bidiagonal matrix U whose
diagonal is all 1 and whose diagonal above the main diagonal is y ∈ Zm−1 such that [x]i+1 −
[y]j [x]i = 0 for 1 ≤ j ≤ k − 1, and rightmost (m − k) components of y are 0. Since [x]i+1 =
±2ti [x]i, it follows that [y]j is 2tj or −2tj . Then U is clearly unimodular (det(U) = 1) and
all the columns except the first one are orthogonal to x. Moreover, by the triangle inequality,
we can bound the norm (the largest singular value) of U by the sum of that of the diagonal 1
matrix and the off-diagonal matrix of which clearly have norm at most

√
ρ. ut

3 Our spLWE-Based PKE

In this section, we introduce a public key encryption scheme whose security is based on
spLWE, whose ciphertext size is smaller than those of the previous works [46, 48]. We use a noisy
subset sum in our encryption algorithm which is proposed in the previous LWE-based encryption
scheme [48], but our message encoding is differents: we first construct a key encapsulation
mechanism based on LWE, and conceal a message with an ephemeral key shared by KEM.

We propose two versions of one encryption scheme based on the spLWE-based KEM, where
one is IND-CPA secure and the other is an IND-CCA conversion of IND-CPA by the transfor-
mation proposed in [52]. We note that these different types of schemes can be applied to various
circumstances.

3.1 Our Key Encapsulation Mechanism

We use a reconciliation technique in [43] which is the main tool to construct our spLWE-
based KEM. In our KEM, the sender generates a random number v ∈ Z2q for some even integer
q > 0, and sends 〈v〉2 where 〈v〉2 := [b2q · vc]2 ∈ Z2 to share bve2 := [b1q · ve]2 ∈ Z2 securely. For

all vectors v ∈ Zk2q, 〈v〉2 and bve2 are naturally defined by applying 〈〉2 and be2 component-wise,
respectively. The receiver recovers bve2 from 〈v〉2 and sk using a special function named rec.
The reconciliation function rec is defined as follows.



7

Definition 7. For disjoint intervals I0 :=
{

0, 1, · · · ,
⌊ q
2

⌉
− 1
}
, I1 :=

{
−
⌊ q
2

⌋
, · · · ,−2,−1

}
and

E =
[
− q

4 ,
q
4

)
∩ Z, we define

rec : Z2q × Z2 → Z2 where rec(w, b) :=

{
0 if w ∈ Ib + E mod 2q,

1 otherwise.

It is naturally extended to a vector-input function rec : Zk2q×Zk2 → Zk2 by applying rec component-
wise.

The following lemmas show that 〈v〉2 reveals no information about bve2, and rec decapsulates
bve2 correctly when it is provided with a proper approximation of v.

Lemma 6. If v ∈ Z2q is uniformly random, then bve2 is uniformly random given 〈v〉2.

Proof. Suppose that 〈v〉2 = b ∈ Z2. It implies that v is uniform over Ib ∪ (q+ Ib). If v ∈ Ib, then
bve2 = 0, and if v ∈ (q + Ib), then bve2 = 1. Therefore bve2 is uniformly random over {0, 1}
given 〈v〉2. ut

Lemma 7. For v, w ∈ Z2q, if |v − w| < q/4, then rec(w, 〈v〉2) = bve2.

Proof. Let 〈v〉2 = b ∈ Z2, then v ∈ Ib ∪ (q + Ib). Then bve2 = 0 if and only if v ∈ Ib. Since
(Ib +E)−E = Ib + (− q

2 ,
q
2) and (q+ Ib) are disjoint (mod 2q), we know that v ∈ Ib if and only

if w ∈ Ib + E. ut

The purpose of our KEM is sharing the ephemeral key from uTAs + error and the recon-
ciliation function between two parties as in [43]. Here, we describe our spLWE-based KEM for
k-bit sharing as follows.

– KEM.Params(λ): generate a bit-length of shared key k, a bit-length of seed y and spLWE pa-
rameters n,m, q, s, ρ, θ, s′, ρ′, θ′ with λ-bit security. Publish all parameters by pp.

– KEM.Keygen(pp): sample seedA ← {0, 1}y,A← Gen(seedA),E← Dm×k
Z,s and S← U(Xn,ρ,θ)

k,

and compute B = AS + E ∈ Zm×kq . For a secret key sk = S, publish a corresponding public
key pk = (seedA,B).

– KEM.Encap(pk,pp): sample u ← Xm,ρ′,θ′ , (e1, e2) ← Dk
Z,s′ × Dn

Z,s′ and e3 ∈ {0, 1}k. Let

v = uTB+e1 ∈ Zkq and v̄ = 2v+e3 ∈ Zk2q. Compute c1 = 〈v̄〉2 ∈ Zk2 and c2 = uTA+e2 ∈ Znq
from A← Gen(seedA). Send a ciphertext c = (c1, c2) ∈ Zk2 × Znq to the receiver, and store

an ephemeral secret key µ = bv̄e2 ∈ Zk2.

– KEM.Decap(c, sk): If q is odd, compute w = 2c2
TS ∈ Zkq , and ouput µ = rec(w, c1).

We would like to note that if q is even, the doubling process in the encapsulation phase, i.e.
converting v = uTB + e1 to v̄ = 2v + e3, is not required.

3.2 Our KEM-Based Encryption Scheme

We now construct a public key encryption scheme based on the spLWE-based KEM in the
previous section. When the message slot increases by one, the ciphertext spaces of our scheme
grow only one or two bits, which is more efficient than the known LWE based encryption schemes
[46], [48], where the growth is about log q bits.
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PKE1 (IND-CPA) : With a key exchange mechanism which shares a `-bit length key, it is
well-known that one can convert it into a public key encryption of the `-bit length message
having the same security as the key exchange mechanism. This conversion only includes XOR
operations after generating an ephemeral key. Note that the ciphertext space is given as Znq×Z2`

2 ,

which is very efficient than Zn+`q , ciphertext spaces of other LWE-based scehems.

PKE1 is described as follows.

– PKE1.Params(λ): let ` be a message length, and run KEM.Params(λ) with k = `. Publish all
parameters by pp.

– PKE1.Keygen(pp): output a key pair (pk, sk)← KEM.Keygen(pp).

– PKE1.Enc(pk,m, pp): for c,µ← KEM.Encap(pk,pp), let c′ = m⊕µ and output a ciphertext
(c, c′).

– PKE1.Dec((c, c
′), sk): for µ = KEM.Decap(c, sk), output m = c′ ⊕ µ.

PKE2 (IND-CCA) : We can apply the transformation suggested in [52], which can improve
security of the existing public key encryption schemes. As a trade-off of security, this scheme
requires a more complex construction than PKE1, but note that this also use light operations
such as XOR or hashing, which are not serious tasks for implementation.

We specially denote the encryption phase of PKE1 by PKE1.Enc(pk,m, pp; r) to emphasize
that a random bit-string r is used for random sampling. Here, PKE1.Enc(pk,m, pp; r) becomes
deterministic.

It also requires quantumly secure hash functions G : {0, 1}k1+` → {0, 1}∗, H : {0, 1}k1 →
{0, 1}k2 and H ′ : {0, 1}k1 → {0, 1}k3 , where ki will be determined later. With these parameters,
our scheme has a ciphertext space Znq × Zk1+k2+k3+`2 , which also gradually increases with the
growth of message slot.

PKE2 is described as follows.

– PKE2.Params(λ): let ` be a message length and ki > 0 be integers such that hash functions
G : {0, 1}k1+` → {0, 1}∗, H : {0, 1}k1 → {0, 1}k2 and H ′ : {0, 1}k1 → {0, 1}k3 have λ-bit
security. Let pp be an output of KEM.Params(λ) with k = k1. Publish `, pp and ki.

– PKE2.Keygen(pp): output a key pair (pk, sk)← KEM.Keygen(k1).

– PKE2.Enc(pk,m, pp, ki): randomly choose ω ← {0, 1}k1 , and let cm = H(ω)⊕m. Compute
ch = H ′(ω) and (c, c′)← PKE1.Enc(pk,ω;G(ω||cm)). Output a ciphertext (c, c′, ch, cm).

– PKE2.Dec((c, c
′, ch, cm), sk, pp, ki): compute ω = PKE1.Dec((c, c

′), sk) and m = H(ω) ⊕
cm. Check whether (c, c′) = PKE1.Enc(pk,ω;G(w||cm)) and ch = H ′(ω). If so, output m,
otherwise output ⊥ .

3.3 Security

In this section, we show (IND-CPA, IND-CCA) security of our encryption scheme (PKE1,
PKE2). Security of our encryption scheme is reduced to security of KEM and security of KEM
comes from hardness of spLWE. Consequently, under the hardness of spLWE, PKE1 can reach to
IND-CPA security and PKE2 achieves further quantumly IND-CCA security with the random
oracle assumption. Here is a statement for security of KEM.
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Theorem 1. Assuming the hardness of spLWEn,m,q,s,ρ,θ, and spLWEn,m,q,s′,ρ′,θ′, our KEM is
IND-CPA secure.

Proof. (Sketch) By Lemma 3, one cannot extract any information about µ = bve2 with c1.
Moreover, even if one can know some information of v, the distribution of (c2,v) can be regarded
as LWE instances as :

(c2,v) = (uT ·A + e2,u
T ·B + e1) = (C,C · S + e′)

for C = uT ·A + e2 and for some e′. Thus, hardness of spLWE insures that the distribution of
(c2,v) is indistinguishable from the uniform distribution over Znq × Zkq . ut

We refer [43] for the detailed IND-CPA game-based proof, where the only difference is that we
assume the hardness of spLWE, not RLWE.

It is well-known in many cryptographic texts that PKE1 has the same security level with
KEM. Hence, security of PKE1 has been demonstrated from the previous theorem. Moreover,
the transformation of [52] gives quantumly IND-CCA security for PKE2, when it is converted
from an IND-CPA secure PKE with random oracle modeled hashes. When the aforementioned
statements are put together, we can establish the following security theorem.

Theorem 2. Assuming the hardness of spLWEn,m,q,s,ρ,θ, spLWEn,m,q,s′,ρ′,θ′, PKE1 is IND-CPA
secure, and PKE2 is quantumly IND-CCA secure with further assumption that the function
G,H and H ′ are modeled as random oracles.

Proof. (Sketch) We only need to show that PKE2 is IND-CCA secure. The transformation of
[52] actually make an IND-CCA secure public key encryption from a public key encryption
which is well-spread and one-way, and we briefly explain why (IND-CPA) PKE1 is well-spread
and one-way.

– Well-spreadness: Note that a ciphertext of PKE1 is of the form

(c1, c2) =
(
〈2(uTB + e1) + e3〉2,uTA+ e2

)
,

where u ← Xm,ρ′,θ′ , (e1, e2) ← Dk
Z,s′ × Dn

Z,s′ . From hardness of spLWE, distributions of

uTB + e1 ∈ Zkq and uTA + e2 ∈ Znq are statistically close to uniform distributions over Zkq
and Znq , and then PKE1 is well-spread.

– One-wayness: With an oracleO findingm from PKE1.Enc(pk,m) for any pk with probability
ε, an adversary equipped with O wins the IND-CPA game for PKE1 with bigger advantage
than ε

2 : After given PKE1.Enc(pk,mb), the adversary outputs the answer of O. It can be
easily shown that the advantage is bigger than ε

2 . ut

3.4 Correctness

Similar to the security case, correctness of our (IND-CPA, IND-CCA) encryption scheme is
dependent on that of our spLWE-based KEM. We remark that generally, one can obtain some
correctness condition for all LWE variants by examining a bound of error term in the proof
below. Here, we assume s = s′, ρ = ρ′ and θ = θ′, which is used for our parameter instantiation.

Theorem 3. Let n,m, σ, ρ, θ be parameters in spLWEn,m,q,σ,ρ,θ, and ` be the shared key length
in KEM. For a per-symbol error probability γ, the KEM decapsulates correctly if

q ≥ 8sρ

√
2θ

π
ln(2/γ).
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Proof. As shown in the description of KEM.Decap, the ephemeral key is decapsulated correctly
if |v̄ −w| < q/4 by lemma 7. Since v̄ = 2uTAS + 2uTE + 2e1 + e3, and w = 2uTAS + 2e2S,
it is rephrased by

|2uT ·E− 2e1 · S + 2e2 + e3| < q/4,

which is equivalent to

|2〈u, [E]j〉+ 2〈−e1, [S]j〉+ 2[e2]j + [e3]j | < q/4, 1 ≤ j ≤ `

where u ← Xm,ρ′,θ′ , [S]j ← Xn,ρ,θ, [E]j ← Dm
Z,s, e1 ← Dn

Z,s′ , [e2]j ← DZ,s′ , [e3]j ← {0, 1}. For
simplicity, we ignore the small term 2[e2]j + [e3]j . (This is compensated in our final choice of
parameters.) By applying lemma 1 to a (m+n) dimensional vector x = (u, [S]j) and the bound
Ts‖x‖ = q/8, we came to have per-symbol error probability γ,

γ = 2 exp(−π(
q

8sρ
√

(2θ)
)2)

from T = q

8sρ
√
2θ

. From the equation above, we get the bound on q as the statement.

4 The Hardness of spLWE

In this section, we show the hardness of spLWE via a security reduction and concrete attacks.
First, we show spLWE is as hard as worst-case lattice problems to solve. For that, we provide a
reduction from LWE to spLWE by generalizing the reduction [13]. Next, we also present modified
attacks for spLWE, which exploit the sparsity of a secret from all known attacks for LWE and
binLWE [8, 14].

4.1 A Reduction from LWE to spLWE

To show our reduction for spLWE, we need extLWEm problem whose hardness was proved
in [13]. They showed that for a set X of quality ξ, there exists a reduction from LWEk,m,q,s to
extLWEm

(k+1,n,q,β=
√
s2ξ2+s2,X)

. (Here, n ≤ m) Based on a reduction from LWE to extLWE in [13],

we prove a reduction of spLWE as shown in the diagram below. Here, ω, γ and s are constant
satisfying

ω = sρ
√

2θ(2 + 2
√
ρ+ ρ), γ = ρs

√
θ(2 + 2

√
ρ+ ρ), β ≥ (ln(2n(1 + 1/ε))/π)1/2/q.

Because Qual(Xn,ρ,θ) < 1 +
√
ρ by lemma 5, extLWE

k+1,n,q,s
√

(1+
√
ρ)2+1,Xn,ρ,θ

is hard based

on the hardness of LWEk,n,q,s. Following theorem shows that spLWEn,m,q,≤ω,ρ,θ problem can be
hard based on the hardness of LWEk,m,q,γ and extLWE

n,m,q,s
√

(1+
√
ρ)2+1,Xn,ρ,θ

for the ω, γ > 0

as above. In particular, if log
((
n
θ

)
· (2l + 2)θ

)
≥ k log q + 2 log(1/δ), there is a reduction from

LWEk,m,q,s to spLWEn,m,q,≤ω,ρ,θ.
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LWE(k,m,q,s)

1st-LWE(k+1,n,q,s)

extLWE
(k+1,n,q,s

√
ξ2+1,Xn,ρ,θ)

extLWEm
(k+1,n,q,s

√
ξ2+1,Xn,ρ,θ)

spLWE(n,m,q,≤ω,ρ,θ)

LWE(k+1,m,q,γ)

Theorem4

Qual(Xn,ρ,θ) ≤ ξ = 1 +
√
ρ, Adv < 33ε/2

Qual(Xn,ρ,θ) ≤ ξ = 1 +
√
ρ, Adv < m

Theorem 4. Let k, n, m, ρ = 2l, θ, q ∈ N, ε ∈ (0, 1/2), and δ, ω,β,γ > 0 such that

β ≥
√

2 ln(2n(1 + 1/ε))/π/q where β = s
√

(1 +
√
ρ)2 + 1,

ω = ρβ
√

2θ, γ = ρβ
√
θ, log

((
n

θ

)
· (2l + 2)θ

)
≥ k log q + 2 log(1/δ).

There exist (two) reductions to spLWEn,m,q,≤ω,ρ,θ from extLWEmk,n,q,β,Xn,ρ,θ , LWEk,m,q,γ. An ad-

vantage of A for spLWEn,m,q,≤ω,ρ,θ(D) is bounded as follows:

Adv[A] ≤ 2Adv[C1] +Adv[C2] + 4mε+ δ

for the algorithms (distinguishers) of extLWEmk,n,q,β,Xn,ρ,θ , LWEk,m,q,γ, C1 and C2 respectively.

Proof. The proof follows by a sequence of distribution to use hybrid argument as stated in [13].
We take into account the following six distributions:

H0:= {(A,b = ATx + e) | A← Tn×mq ,x← Xn,ρ,θ, e← Dm
α′ for α′ =

√
β2‖x‖2 + γ2 ≤ ρβ

√
2θ = ω}.

H1:={(A,ATx−NTx + ê mod 1) | A← Tn×mq ,x← X,N← Dn×m
1
q
Z,β , ê← Dm

γ }.

H2:= {(qCTB + N, qBTCx + ê) | B← Tk×mq ,C← Tk×nq , x← X,N← Dn×m
1
q
Z,β , ê← Dm

γ }.

H3:= {(qCTB + N,BT s + ê) | s← Zkq , B← Tk×mq ,C← Tk×nq , N← Dn×m
1
q
Z,β , ê← Dm

γ }.

H4:= {(qCTB + N,u) | u← Tm, B← Tk×mq ,C← Tk×nq , N← Dn×m
1
q
Z,β}.

H5:= {(A,u) | A← Tn×mq ,u← Tm}.

Let Bi be the distinguisher for the distributions between Hi and Hi+1 for 0 ≤ i ≤ 4. There
are some efficient transformations from the distributions (C,A,NT z), (C, Â,NT z) to H1, H2,
from (B,BT s + ê), (B,u) to H3, H4, and from (C, Â), (C,A) to H4, H5. In fact, the samples
(C, Â,NT z), (B,BT s + ê), and (C, Â) are extLWEmk,n,q,β,X , LWEk,m,q,γ and extLWEmk,n,q,β,{0n}
samples respectively. The others are uniform distribution samples in the corresponding do-
main. It follows that Adv[B1], Adv[B3], Adv[B4] are bound by the distinguishing advantages of
extLWEmk,n,q,β,X , LWEk,m,q,γ , extLWEmk,n,q,β,{0n} respectively.
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Since ‖x‖ ≤ ρ
√
θ, and β ≥

√
2 ln(2n(1 + 1/ε))/π/q ≥

√
2ηε(Zn)/q from lemma 3, it follows

that the statistical distance between −NTx + ê and Dm
α′ is at most 4mε by lemma 2. This

gives Adv[B0] ≤ 4mε. The last Adv[B2] is bound by δ from the Leftover hash lemma. To sum
up, Adv[A] ≤ 2Adv[C1] + Adv[C2] + 4mε + δ with trivial reduction to extLWEmk,n,q,β,{0n} from
extLWEmk,n,q,β,X . ut

4.2 Attacks for spLWE

There exist many attacks for LWE including a dual attack and primal attacks ([4], [20]). Here,
we exclude a combinatorial BKW algorithm, the Arora and Ge algorithm and their variants, as
they are not suitable in our case ([2], [6], [21], [33], [28]). Since the analysis of traditional dual
attack is based on the (discrete) Gaussian error (and secret in the LWE normal form), these
traditional attacks are not directly applicable to spLWE. Therefore, we modify those attacks to
analyze concrete hardness of spLWE. We also consider random guess on a sparse secret vector s
as in appendix.

Dual (distinguish) Attack Assume that we are given (A, b) ∈ Zm×nq × Zmq and want to
distinguish whether they are uniform random samples or spLWE samples. For a constant c ∈ R
with c ≤ q, consider a lattice Lc(A) defined by

Lc(A) =
{

(x,y/c) ∈ Zm × (Z/c)n : xTA = y mod q
}
.

If the samples (A, b) came from spLWE, for (x,y) ∈ Lc(A), we have

〈x, b〉 = 〈x,As+ e〉
= 〈x,As〉+ 〈x, e〉
= c〈y, s〉+ 〈x, e〉 mod q

For a sufficiently small vector (v,w) ∈ Lc(A), the value 〈v, b〉 mod q becomes small when the
samples are spLWE ones, and 〈v, b〉 mod q is uniformly distributed when (A, b) came from the
uniform distribution. Hence, one can decide whether the samples came from spLWE distribution
or uniform distribution from the size of 〈v, b〉 mod q with some success probability. We now
determine how small a vector (v,w) must be found as follows. First, we estimate the length of
(v,w) ∈ Lc(A). One can easily check that

Im 0

1

c
AT q

c
In


is a basis matrix of Lc(A). Hence, we can figure out dim(Lc(A)) = m + n and det(Lc(A)) =
(q/c)n.

Therefore, a lattice reduction algorithm with a root Hermite factor δ0 gives (v,w) ∈ Lc(A),
such that

||(v,w)|| = δm+n
0 (q/c)

n
m+n , (1)

and the length is minimized when m =
√
n(log q − log c)/ log δ0 − n.

Next, we consider the distribution of c〈w, s〉 + 〈v, e〉 mod q. Here, we assume that the
coefficients of sparse vector s are independently sampled by (b1d1, b2d2, . . . , bndn) where di ←
Ber(n, θ/n), bi ← {±1,±2,±4, . . . ,±ρ}, and ρ = 2l for some l ∈ Z≥0. Since c〈w, s〉 is the sum
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of many independent random variables, asymptotically it follows a Gaussian distribution with

mean 0, and variance (c||w||)2 · 2θ(4
l+1−1)

3n(2l+2) . From that 〈v, e〉 follows a Gaussian distribution with

mean 0, variance (σ||v||)2, and lemma 4, we have distinguishing advantage

exp(−π(s′/q)2) where s′ =
√

2π

√
σ2||v||2 + c2

2θ(4l+1 − 1)

3n(2l + 2)
||w||2. (2)

From above equations 1, 2 with distinguishing advantage ε, we need to find small δ0 such that

δ0 = (c/q)
−n

(m+n)2 (
q

M

√
ln(1/ε)/π)1/(m+n) where M =

√
2π

√
σ2

m

m+ n
+ c2

2θ(4l+1 − 1)

3n(2l + 2)

n

m+ n

5 Parameter Selection and Implementation Result

5.1 Parameter Selection

To deduce some appropriate parameters, we assume that the best known classical and
quantum SVP (sieving) algorithm in dimension k runs in time 20.292k and 20.265k respec-
tively [10, 34]. The BKZ 2.0 lattice basis reduction algorithm gives the root Hermite factor
δ0 ≈ ( k

2πe(πk)1/k)1/2(k−1) for block size k [15], and the iteration number of exact SVP solver is
n3

k2
log n [29].
We consider a direct CVP attack by sieving [35], modified dual (distinguish) and embedding

attack. Moreover, since our secret key is a sparse vector, our attack can be improved if one can
guess some components of secret to be zero. After that, we can apply the attack to a smaller
dimensional spLWE instances. We denote the probability of the correct guessing t components
from n components by pn,t,θ. It can be computed as

(
n−θ
t

)
/
(
n
t

)
.

To sum up the previous sections, the parameters must satisfy the followings for the quantum
security:

• n log q · (2l+ 1)θ ·
(
n
θ

)
> 22λ from bruteforce attack (grover algorithm), where

(
n
θ

)
= n!

(θ!)(n−θ!)
(For classical security, 2λ becomes λ)

• Let T (n, q, θ, s, l) be a BKZ 2.0 running time to get root Hermite factor δ0, which satisfies
the following equation:

δ0 = max
1<c<q,1≤m≤n

{
(c/q)

−n
(m+n)2 (

q

M

√
ln(1/ε)/π)1/(m+n)

}
where

M =
√

2π ·

√
σ2

m

m+ n
+ c2

2θ(4l+1 − 1)

3n(2l + 2)

n

m+ n
.

Taking into the probability pn,t,θ, our parameters should satisfy the following:

min
t

{
1

pn,t,θ
· T (n− t, q, θ, s, l)

}
> 2λ where pn,t,θ =

(
n− θ
t

)
/

(
n

t

)
.

• To prevent the direct CVP attack, n and θ should satisfy the following equation:

min
t

{
1

pn,t,θ
· 20.265(n−t)

}
> 2λ

For classical security, 0.265 becomes 0.292.

• For the correctness, q ≥ 8sρ
√

2θ
π ln(2/γ) by the Lemma 7.

• The parameters k1 and k2 are a symmetric key length of XOR operations, and k3 is a length
of hash value. For λ-bit security, it is known that k1 and k2 should be λ (2λ) and k3 should
be 2λ (3λ) in classical (quantum) security model.
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5.2 Implementation Result

We use C++ on a Linux-based system, with GCC compiler and apply the Eigen library
(www.eigen.tuxfamily.org), which makes vector and matrix operations fast. To sample u effi-
ciently in our encryption algorithm, we assume that there are only one non-zero element in
each n/θ-size block. To follow the previous reduction and security proof, we need a sampling of
discrete Gaussian distribution when we generate error vectors in key generation and encryption
algorithm. We use box-muller transformation to generate discretized Gaussian distribution. In
the case below, message space length is 32-byte and secret key is ternary vector. We used PC
(Macbook Pro) with CPU 2.6GHz Intel Core i5 without parallelization.

Parameters IND-CPA IND-CCA
λ n q s θ Setup(ms) Enc(µs) Dec(µs) Cptx(byte) Enc(µs) Dec(µs) Cptx(byte)

72 300 382 5 27 9.8 96 41 401 116 130 435
96 400 441 5 36 16.3 167 62 513 181 182 548
128 565 477 5 42 29.3 273 102 700 291 282 733

Table 1: Implementation result in classical hardness with 256 bit message

Parameters IND-CPA IND-CCA
λ n q s θ Setup(ms) Enc(µs) Dec(µs) Cptx(byte) Enc(µs) Dec(µs) Cptx(byte)

72 300 410 5 31 9.8 96 41 401 108 130 435
96 400 477 5 42 16.0 163 56 514 186 191 548
128 565 520 5 50 129.5 314 106 770 313 302 804

Table 2: Implementation result in quantum hardness with 256 bit message

We also compare our implemetation with software implementation in [26], which implements
LWE-based PKE [48] and Ring version PKE [37, 38]. Their implementation is executed on an
Intel Core 2 Duo CPU running at 3.00 GHz PC. Parameters in each rows are secure in same
security parameters.

Our scheme [26] LWE RLWE
(n, q, s, θ) Enc Dec (n, q, s) Enc Dec Enc Dec

(150, 285, 5.0, 15) 0.027 0.011 (128, 2053, 6.77) 3.01 1.24 0.76 0.28
(300, 396, 5.0, 29) 0.063 0.019 (256, 4093, 8.87) 11.01 2.37 1.52 0.57
(400, 545, 5.0, 55) 0.109 0.026 (384, 4093, 8.35) 23.41 3.41 2.51 0.98
(560, 570, 5.0, 60) 0.223 0.04 (512, 4093, 8.0) 46.05 4.52 3.06 1.18

Table 3: Our scheme vs. LWE vs. RLWE: Time in milliseconds for encryption and decryption
for a 16-byte plaintext.

The table above shows that our PKE scheme is about 20 times faster than RLWE-based PKE
scheme in [37, 38]. The sparsity of secret vector make modulus size q smaller and complexity in
encryption/decryption algorithm lower.
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our reduction, and Duhyeong Kim for pointing out some typos in our reduction. We also thank
Yongsoo Song and the ICISC reviewers for their useful comments. This work was supported
by Samsung Research Funding Center of Samsung Electronics under Project Number SRFC-
TB1403-00.

6 Appendix

6.1 Attacks for Search spLWE

Dual (search) Attack. In this section, we assume the Geometric Series Assumption (GSA)
on q-ary lattices, introduced by Schnorr [50], and this will be used to estimate the length of last
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vector of BKZ 2.0 reduced basis. Let B = {b1, · · · , bn} be a basis for an n-dimensional lattice
Λ, which is reduced by the BKZ 2.0 with root Hermite factor δ0, then the GSA says:

‖b∗i ‖ = βi−1 · ‖b∗1‖ for some constant 0 < β ≤ 1,

where {b∗1, · · · , b∗n} is the Gram-schmidt orthogonalization of {b1, · · · , bn}. From ‖b1‖ = δn0 ·
det(B)1/n, we have:

det(B) =

n∏
i=1

‖b∗i ‖ =

n∏
i=1

βi−1 · ‖b∗1‖ = β
(n−1)n

2 · δn2

0 · det(B).

From the equation above, it follows that β = δ
−2n2/(n−1)n
0 . Since BKZ reduced basis satisfies

bi = b∗i +
i−1∑
j=0

µij · b∗j with |µij | ≤ 1/2, one can show that,

‖bi‖ ≤ ||b1|| ·

√
1− β2i−2

4− 4β2
+ β2i−2.

We now describe the dual attack against a small number of LWE instances (A,As + e) =
(A, b) ∈ Zm×n × Zm. For some constant c ∈ N with c ≤ q, we consider a scaled lattice Λc(A).

Λc(A) = {(x,y/c) ∈ Zm × (Zn/c) : xA = y mod q}.

A dimension and determinant of the lattice Λc(A) is n + m and (q/c)n respectively. With the
assumptions above, we can obtain vectors {(vi,wi)}1≤i≤n in Λc(A) such that,

‖(vi,wi)‖ ≤ δm+n
0 · (q/c)

n
m+n ·

√
1− β2i−2

4− 4β2
+ β2i−2 ≈ δm+n

0 (q/c)
n

m+n ·
√

1

4− 4β2
.

Clearly, the element (vi,wi) in Λc(A) satisfies

vi · b = vi · (A · s+ e) = 〈c ·wi, s〉+ 〈vi, e〉 = 〈(vi,wi), (e, c · s)〉 mod q.

If, for 1 ≤ i ≤ n, (vi,wi) is short enough to satisfy ‖(vi,wi)‖ · ‖(e, c · s)‖ < q/2, the above
equation hold over Z. Then we can recover e and s by solving the system of linear equations.
Since, ‖(e, cs)‖ ≈

√
n · σ2 + c2 · ‖s‖2, condition for attack is following:

δn+m0 · (q/c)
n

m+n ·

√
n · σ2 + c2 · ‖s‖2

4− 4β2
<
q

2

for constant 0 < c ≤ q. To find an optimized constant c, we assume m = n. In this case, the size
is optimized with c =

√
n · σ2/||s||2. Therefore, final condition to success attack is following:

2δ4n0 · σ · ‖s‖ ·
√
n < q(1− β2).

Modified Embedding Attack. One can reduce the LWE problem to unique-SVP problem
via Kannan’s embedding technique. First, we consider a column lattice

Λq(A
′) = {y ∈ Zm+1 : y = A′x mod q} for A′ =

(
1 0
−b A

)
.

The vector (1, e)T is in lattice Λq(A
′) and its size is approximately σ

√
m. If this value is

sufficiently smaller than λ2(Λq(A
′)) (≈

√
m
2πeq

(m−n)/m), one can find the vector (1, e)T via
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some lattice reduction algorithms. In particular, the vector (1, e)T can be found with high
probability with the BKZ algorithms in [3], if

λ2(Λm+1)

λ1(Λm+1)
=
λ2(Λq(A))

||(1, e)||
≥ τ · δm0 ,

where τ ≈ 0.4. For spLWE case, we can obtain a much larger gap than that of the ordinary
attack for LWE. We now consider a scaled lattice Λc(B) generated by the following matrix:

B =

 1 0 0
0 cIn 0
−b A qIm


for a constant 0 < c < 1. The vector (1, cs, e)T is in this lattice and its size is approximately√
m · σ2 + c2‖s‖2. Define a matrix B′ as following,

B′ =

(
cIn 0
A qIm

)
.

We have λ1(Λc(B)) =
√
m · σ2 + c2 · ||s||2 and λ1(Λc(B

′)) =
√

n+m
2πe · det(Λc(B

′))1/(n+m) =√
n+m
2πe · (q

mcn)1/n+m. Therefore, it is necessary to find the root Hermite factor δ0 such that:√
n+m

2πe
· (qmcn)1/n+m ≥ 0.4 · δn+m0 ·

√
m · σ2 + c2‖s‖2 (3)

⇔
√

n+m

2πe · (m · σ2 + c2‖s‖2)
· (qmcn)1/n+m ≥ 0.4 · δn+m0 (4)

The left part of inequality above is maximized when c =
√
nσ2/‖s‖, so we have:√

1

2πe · σ2

(
qm ·

(
σ
√
n

‖s‖

)n)1/(n+m)

≥ 0.4 · δn+m0

6.2 Improving Lattice Attacks for spLWE

A time complexity of all attacks suggested in this paper is heavily depend on the dimension
of lattices used in the attacks. Therefore, if one can reduce the dimension of lattices, one can
obtain a high advantage to solve the LWE problem. In this section, we introduce two techniques
to improve lattice-based attacks for spLWE instances. The first thing is a method of ignoring
some components of a sparse secret and the other is a method of trading between dimension and
modulus, which has been introduced in [13]. For convenience, we denote T (m) as the expected
time of solving m-dimensional LWE.

Ignoring Components on Secret Vectors. Most entries of a secret vector s are zero.
Therefore, by ignoring some components, one can reduce the dimension of LWE. More precisely,
we delete k entries of secret vector s and its corresponding column of A. For convenience, we
denote it as s′ and A′, respectively. If the deleted components of s are zero, the following
equation also hold:

A · s+ e = A′ · s′ + e mod q.

The probability Pk that the selected k entries are zero is
(
n−θ
k

)
/
(
n
k

)
. It implies that one can

reduce the n-dimensional LWE to (n−k)-dimensional LWE with probability Pk. In other words,
solving 1/Pk instances in (n − k)-dimensional LWE, one can expect to solve the n dimension
LWE. Hence, in order to guarantee λ bits security, it gives:

T (n− k)/Pk ≥ 2λ. (5)



17

Modulus Dimension Switching. In [13], they describe a modulus dimension switching tech-
nique for LWE instances. Using the corollary 3.4 in [13], for n, q, θ, w that divides n and
ε ∈ (0, 1/2), one can reduce a LWEn,q,≤α instances to LWEn/w,qw,≤β instances, where β is
a constant satisfying β2 ≥ α2 + (4/π) ln(2n(1 + 1/ε)) · θ/q2 ≈ α2. Along this reduction, a
secret vector s = (s1, s2, · · · , sn) of spLWEn,q,≤α,ρ,θ is changed to s′′ = (s1 + qs2 + · · · +
qw−1sw, · · · , sn−w+1 + · · · + qw−1sn) of spLWEn/w,qw,≤β,ρ′,θ′ . Hence, if one can recover the s′′

by solving LWEn/w,qw,≤β,ρ′,θ′ instances, one can also reveal the vector s. Let t be the number of
a set W = {swi|swi 6= 0, 1 ≤ i ≤ n/w} and P ′w be the probability of t = 0, i.e. P ′w is equal to(
n−θ
n/w

)(
n
n/w

) . When t is not zero, the expected size of ‖s′′‖ is
√
tqw. In that case, applying the attacks

in section 4.2, 6.1 and 6.2 to converted n/w-dimensional LWE instances is not a good approach
to obtain higher the advantage. Hence, we only consider the case t = 0. We can obtain the
following conditions to get λ-bit security:

T (n/w)/P ′w ≥ 2λ. (6)

By combining the ignoring k components with modulus dimension switching techniques, we
can reach the final condition to obtain the λ-bit security:

T ((n− k)/w)/(PkP
′
w) ≥ 2λ. (7)
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