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Abstract. The Learning with Errors (LWE) problem has been widely used as a hardness assump-
tion to construct public-key primitives. In this paper, we propose an efficient instantiation of a
public-key encryption scheme based on LWE with a sparse secret, named as spLWE. We first con-
struct an IND-CPA public-key encryption and convert it to an IND-CCA scheme in the quantum
random oracle model by applying the modified Fujisaki-Okamoto conversion. To guarantee security
of our base problem, we provide a polynomial time reduction to spLWE from the standard LWE
with a uniformly chosen secret and Gaussian errors. We consider modified attacks for spLWE which
exploit its sparsity of secret, to derive more suitable parameters. We finally estimate performance
of our scheme: our implementation shows that our IND-CPA scheme takes 81 u seconds and 21 p
seconds respectively for encryption and decryption with the parameters which have 128-quantum
bit security.
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1 Introduction

Recently, practical instantiations of post-quantum primitives have received more attention
after announcements of NIST and NSA about quantum resistant cryptographic standards with
the advance of quantum computers [18,27]. The Learning with Errors (LWE) problem is one of
promising hard problems for efficient quantum resistant cryptographic schemes. This problem
was introduced by Regev [37] with a hardness proof of (quantum) reduction from worst-case lat-
tice problems (SIVP, GapSVP). This work showed that LWE also has a self-random reducibility
which results in a lot of constructions of cryptographic primitives (e.g. [22,12, 32]).

In order to use LWE-based public-key encryptions in practical fields, like internet or IoT
environments, improvement on speed and bandwidth is an important issue to be solved. How-
ever, their practical use have been limited since most of LWE-based public-key encryptions have
relatively large size of parameters and slow speed. As one solution, Learning with Errors over
the ring (RLWE) was introduced in [32]. RLWE brings more efficiency than LWE, but hardness
of RLWE is not fully understood yet. Reductions related to LWE and its variants are not directly
applied to RLWE, and RLWE could be weakened due to its additional ring structure.

In this paper, we introduce a practical post-quantum public-key encryption cryptosystem
based on spLWE which is a variant LWE with a sparse secret vector. Based on splWE, we
propose a fast IND-CPA public-key encryption scheme and convert it to an IND-CCA version
in quantum random oracle model by applying the modified Fujisaki-Okamoto conversion of
Unruh [41]. To obtain better efficiency, we adapt the RLWE-based key encapsulation mechanism
(KEM) in [35] to spLWE setting, and use the modified KEM as a component in the construction
of our scheme. We obtain smaller ciphertext size by encrypting a message with a shared key of
the KEM, differently from the previous LWE-based schemes [37, 38].

We generalize the reduction [11] from LWE with a uniformly chosen secret vector to LWE
with a binary secret vector. As a result, we prove that spLWE can be reduced to the standard
LWE, which means that the hardness of spLWE can also be based on the worst-case lattice
problems. Moreover, we propose extended LWE attacks which exploit sparsity of secret vectors
and derive concrete parameters based on those attacks. We present the performance of our



encryption scheme by implementing our scheme for the selected parameters. In 128-quantum
bit security, the IND-CPA version of our encryption takes about 81us and the IND-CCA version
of our encryption takes 83us for 128-bit message (PC with CPU 2.6GHz Intel Core i5 without
parallelization).

1.1 Contributions

We propose an efficient public-key encryption based on spLWE and prove hardness of spLWE.
We give concrete parameters for quantum security and implementation results of our scheme.
Our main contributions are as follows:

1. We construct a spLWE-based public-key encryption scheme with two versions of security.
One is IND-CPA secure and the other is IND-CCA secure under quantum random oracle
model. In our construction, the ciphertext size of an IND-CPA encryption scheme for ¢-bit
message is (nlogq + 2¢)-bit. This is smaller than that of the known LWE-based public-key
encryptions [37,38] which have (nlogq + ¢log ¢)-bit ciphertext size.

2. We extend the range of LWE variants which has the provable hardness. It has been known
that there exists a security reduction for the binary LWE [11]. We generalize this result to
derive a reduction from LWE to spLWE. This enables us to consider sparse non-binary secret
which is more suitable to improve our scheme.

3. We investigate attacks for spLWEby extending all known attacks of LWE which can be
improved by exploiting the sparsity of secret. From the attacks, we give concrete parameters
for both of classical and quantum security, and implement our schemes for some parameters.
One of our implementation result gives 81us (IND-CPA version), 135us (IND-CCA version)
encryption speed for 128-bit message, and 453 byte (IND-CPA version), 683 byte (IND-CCA
version) ciphertext size with 128-quantum bit security.

1.2 Related Works

Practical instantiations and implementation results about post-quantum primitives in lattice
based cryptography have been reported mostly in RLWE case rather than LWE one (e.g. [31],
[39], [16], etc). In particular, Peikert [35] presented efficient and practical attice-based protocols
for key transport, and encryption on RLWE that are suitable for proposed Internet standards
and other open protocols. More recently, LWE-based key transport protocol was considered
and evaluated its performance in [10]. Unlike the common belief about inefficiency of LWE, the
literatures [10, 15] demonstrated that their LWE-based (not RLWE) key-exchange and signature
scheme have sufficiently good performance compared to RLWE one.

In case of LWE-based public-key encryptions [37,23, 36,38, 33], it is hard to find concrete
proposals. Many people only focus on efficiency or asymptotic security improvement. In effi-
ciency aspect, Galbraith [20] proposed variants of LWE where the entries of random matrix are
chosen to be small or binary to reduce the size of public-key. However, there was no complete
proposal including attacks, and parameters for practical usage.

2 Preliminaries

Notations. In this paper, we use upper-case bold letters to denote matrices, and lower-case
bold letters for column vectors. For a distribution D, a < D denotes choosing an element
according to the distribution of D, and a < D™ means that each components of a is sampled
independently from D. For a given set A, U(.A) means a uniform distribution on the set A, and
a + A denotes choosing an element according to the uniform distribution on A. We denote by
Zy=7/qZ ={0,1---,q— 1} and T = R/Z the additive group of real numbers modulo 1, and
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1
A
product of two vectors. A function f(A) is called negligible if f(X) = o(A™¢) for any ¢ > 0, i.e.,
f decrease faster than any inverse polynomial.

T, the a subgroup of T having order ¢, consisting of {0 - %}. The (, ) means the inner

2.1 Security Definitions

Definition 1 (y-spread, [41]). A public-key encryption is y-spread if for every public-key
generated by Keygen algorithm and every message m,

1
max Prly < Encpr(m)] < >

In particular, we say that a public-key encryption is well-spread if v = w(log())).

Definition 2 (One-way secure). A public-key encryption is One- Way secure if no (quantum)
polynomial time algorithm (adversary) A can find a message m from Encpi(m), given only
public-key except with probability at most negl(\).

2.2 Key Encapsulation Mechanism

A key encapsulation mechanism (in short, KEM) is a key exchange algorithm to transmit
an ephemeral key to a receiver with the receiver’s public key. It differs from encryption scheme
where a sender can choose a message. The sender cannot intend to make a specific ephemeral
key. A KEM with ciphertext space C and key space K consists of probabilistic polynomial time
algorithms Setup, Keygen, Encap(may be randomized), Decap(should be deterministic).

e Keygen outputs a public encapsulation key pk and secret decapsulation key sk.

e Encap takes an encapsulation key pk and outputs a ciphertext ¢ € C and a key k € K.

e Decap takes a decapsulation key sk and a ciphertext ¢, and outputs some k € KU{_L}, where
1 denotes decapsulation failure.

2.3 Lattice and Lattice Reduction Algorithm

A lattice L C R™ is a set of integer linear combinations of a {b1,--- ,b,} which is a subset
of independent column vectors in R™,

L= {Zazbz ta; € Z}
=1

The set of vectors {by,...,b,}, and its matrix form B are called a basis, and basis matrix of L
respectively. Two bases matrices B; and By describe the same lattice, if and only if Bo = B U,
where U is a unimodular matrix, i.e. det(U) = £1, U € Z™*™. Dimension of a lattice is defined
as cardinality of a basis, i.e. n = dim(L). If n = m, we call lattice L to a full rank lattice. A
sublattice is a subset L’ C L which is also a lattice. We define determinant (volume) of L by

det(L) := /det(BT B)

A length of the shortest vector in a lattice L(B) is denoted by A;(L(B)). More generally, the i-th
successive minima A;(L) is defined as the smallest radius r such that dim(span(L N B(r))) >
where B(r) is a n dimensional ball with radius r. There exist several bounds and estimations
for the length of the shortest vector in a lattice.

e Minkowski’s first theorem: \;(L(B)) < y/n(detL(B))"/"



e Gaussian heuristic: A\;(L(B)) ~ , /%edet(L(B))I/” for random lattice L.

The dual lattice of L, denoted L, is defined to be L = {x € R" : Vv € L, (x,v) € Z}. We recall
the Gram-Schmidt orthogonalization that is closely related with lattice basis reduction. The

Gram-Schmidt algorithm computes orthogonal vectors {bj,..., b} } iteratively as follows:
* , b;-b’
bz’ = bi — Z ,U,Z‘,jbj where ,ui,j = ISASE
j<’i J 77

The goal of lattice (basis) reduction algorithms is to find a good basis for a given lattice. A basis
is considered good, when the basis vectors are almost orthogonal and correspond approximately
to the successive minima of the lattice. Performance of lattice reduction algorithms is evaluated
by the root Hermite factor §y defined by

80 = (||| /det(L)"/™)/"

where v is the shortest vector of the reduced output basis.

2.4 Discrete Gaussian Distribution

For given s > 0, a discrete gaussian distribution over a lattice L is defined as Dy 4(z) =
ps(x)/ps(L) for any x € L, where

ps(@) = exp(—rz]|?/s%) and py(L) = 3 py(a).
xEL

We note that the standard deviation o = s/v/27. For a lattice L, the smoothing parameter
ne(L) is defined by the smallest real number s’ > 0 such that p; o (L\{0}) < e. We collect some
useful lemmas related to a discrete gaussian distribution and the smoothing parameter.

Lemma 1 ([8], Lemma 2.4). For any real s >0 and T > 0, and any © € R"™, we have
Prl[(, Dy )| 2 T - sl|z|] < 2exp(~7 - T?).

Lemma 2 ([37], Corollary 3.10). Let L be an n-dimensional lattice, let u, z € R™ be arbitrary
vectors, and let r,a be positive real numbers. Assume that (1/r2 + (||z/a]))?)~/2 > n.(A) for
some € < 1/2. Then the distribution of (z,v) + e where v <= D, and e < D, is within
statistical distance 4e of Dg for B = +/(r| z|])? + o2

Lemma 3 ([23], Lemma 3.1). For any € > 0 and an n-dimensional lattice A with basis matriz
B, the smoothing parameter n.(A) < || Bl In(2n(1+1/¢€))/m where || B|| denotes the length of the
longest column vector of B which is the Gram-Schmidt orthogonalization of B.

2.5 Learning with Errors

For integers n,q > 1, a vector s € Zy, and a distribution ¢ on R, let A, s 4 be the distribution
of the pairs (a,b = (a,s) +e¢) € Ty x T, where a <~ T and e «+ ¢.

Definition 3 (Learning with Errors (LWE)). For integers n,q > 1, an error distribution
¢ over R, and a distribution D over Zy, LWE, 4 4(D), is to distinguish (given arbitrarily many
independent samples) the uniform distribution over Ty x T from Ay sy with a fized sample
s+ D.



We note that a search variant of LWE is the problem of recovering s from (a,b) = (a, (a,s)+
e) € Ty x T sampled according to Ay s e, and these are also equivalently defined on Zy X
Zq rather than Ty x T for discrete (Gaussian) error distributions over Z,. Let LWE,, 1, ¢,6(D)
denotes the case when the number of samples are bounded by m € N. We simply denote
LWE,, 4,4 when the secret distribution D is U(Zy). In many cases, ¢ is a (discrete) Gaussian
distribution so we simply denote by LWE, ,, 4 s instead of LWE, ;, , 4. Especially, we denote
binLWE by the LWE problem whose secret vector is sampled from uniform distribution over
{0,1}". For a set X, , 9 which consists of the vectors s € Z™ whose nonzero components are in
{£1,£2,44,--- ,+p}, and the number of nonzero components is 6, we write spLWE
the problem LWE,, , 4,s(U(X5 p.0))-

The following lemma will be used to derive some parameters from the modified attacks in
section 4, and appendix.

n,m,q,s,p,0 45

Lemma 4 ([38]). Given LWE, ;, 45 samples and a vector v of length ||v|| in the lattice L =
{wezZy wl'A =0 mod ¢}, the advantage of distinguishing (v, ) from uniform random is
close to exp(—7(||v]|s/q)?).

We give some variants of LWE and some notion, which were introduced in [11] to show the
reduction between binLWE and LWE.

Definition 4 (“first-is-errorless” LWE). For integers n,q > 1 and an error distribution ¢
over R, the “first-is-errorless” variant of the LWE problem is to distinguish between the following
two scenarios. In the first, the first sample is uniform over Ty x Ty and the rest are uniform
over Ty x T. In the second, there is an unknown uniformly distributed s € {0,...,q—1}", the
first sample we get is from Ay s 10y (where {0} denotes the distribution that is deterministically
zero) and the rest are from Ag s 4.

Definition 5 (extLWE problem). For integersn,m,q,t > 1, a set X C Z™, and a distribution
X over %Zm, the extLWEy, p, 4.v,x 15 as follows. The algorithm gets to choose x € X and then
receives a tuple (A, (b;);cy, ((€i, @))icyy) € Tp™ x (T x (%Z)t. Its goal is to distinguish
between the following two cases. In the first, A € Ty*™ is chosen uniformly, €; € %Zm are

chosen from x, and b; = ATs; + e; mod 1 where s; € {0,...,q — 11" are chosen uniformly.
The second case is identical, except that the b; are chosen uniformly in Ty" independently of
everything else.

Definition 6 (Quality of a set). A set X C Z™ is said of quality & if given any x € X, we
can efficiently find a unimodular matriz U € Z™ ™ such that if U € Z™*(m=Y s the matriz
obtained from U by removing its leftmost column then all of the columns of U’ are orthogonal
to z and its largest singular value is at most &.

We give a lemma to show a reduction to spLWE from the standard LWE in section 4.1.
Lemma 5. The quality of a set X C {0,41,42,...,+p}™, p =2 is bounded by 1 + NI

Proof. Let x € X and without loss of generality, we assume leftmost k components of x are
nonzero, remainings are zero, and |x;| < |x;41| for nonzero components after reordering. We
have x;,1 = +2%x; for some t; < I. Now consider the upper bidiagonal matrix U whose diagonal
is all 1s and whose diagonal above the main diagonal is y € Z™ ! such that x;1 — [y] ;X; = 0 for
1 < j < k-1, and rightmost (m — k) components of y are 0. Since x;;1 = 42%x; it follows that
[yl; is 2% or —2%. Then U is clearly unimodular(det(U) = 1) and all the columns except the
first one are orthogonal to x. Moreover, by the triangle inequality, we can bound the norm(the
largest singular value) of U by the sum of that of the diagonal 1 matrix and the off-diagonal
matrix of which clearly have norm at most /p. O



3 Our spLWE-based public-key Encryption

In this section, we introduce a public key encryption scheme whose security is based on
spLWE, whose ciphertext size is smaller than previous works [37,38]. We use noisy subset sum
in our encryption algorithm which is proposed in previous LWE-based encryption scheme [3§],
but our message encoding is different from it: we first construct a key encapsulation mechanism
based on LWE, and conceal a message with an ephemeral key shared by KEM.

We propose two versions of one encryption scheme based on the spLWE-based KEM, where
one is IND-CPA secure and the other is an IND-CCA conversion of IND-CPA one by the
transformation proposed in [41]. We note that these different types of the scheme can be applied
to various circumstances.

3.1 Owur Key Encapsulation Mechanism

We use a reconciliation technique in [35] which is a main tool to construct our spLWE-based
KEM. In our KEM, the sender generate a random number v € Zsa, for some even integer ¢ > 0,

and send (v)y where (v)e = [L% -v|]a € Zg to share |v]y := [L% -v|]a € Zg securely. For all

vectors v € Zlgq, (v)g and |v]g are naturally defined by applying ()2 and |]2 component-wise,

respectively. The receiver recovers |v|s from (v)2 and sk using a special function named as rec.
The reconciliation function rec is defined as follows.

Definition 7. For disjoint intervals Iy := {0,1,---, [3] =1}, I :={—[%],--- ,—2,—-1} and
E=[-%,9NZ, we define

0 ifwely+FE mod2q,

rec : ZLog X Lo — Ly where rec(w,b) :=
1 otherwise.

It is naturally extended to a vector-input function rec : Z’gq x 7k — 75 by applying rec component-
wise.

Following lemmas show that (v)s reveals no information about |v]2, and rec decapsulates
|v]g correctly when it is provided with a proper approximation of v.

Lemma 6. If v € Zy, is uniformly random, then |v]2 is uniformly random given (v)a.

Proof. Suppose that (v)s = b € Zy. It implies that v is uniform over I U (¢ + I). If v € I, then
|v]2 = 0, and if v € (¢ + Ip), then [v]2 = 1. Therefore |v]z is uniformly random over {0,1}
given (v)s. O

Lemma 7. For v,w € Zag, if |v —w| < q/4, then rec(w, (v)2) = |v]2.

Proof. Let (v)a = b € Zg, so v € I U (q+ I). Then |v]2 = 0 if and only if v € I;. Since
(Iy+E)—E =1+ (—4%,%) and (¢ + I;) are disjoint (mod 2¢), we know that v € I, if and only
fwely,+ E. a

The main idea of our KEM is sharing MSB of u’ As + error between two parties as in [35].
Here we describe our spLWE-based KEM for k-bit sharing as follows.

— KEM.Params(\): generate a bit-length of shared key k, a bit-length of seed y and spLWE pa-
rameters n,m,q, s, p,0,s’, p', 0’ with A\-bit security. Publish all parameters by pp.

— KEM.Keygen(pp): sample seed g < {0,1}Y, A < Gen(seeda),E Dg‘;k and S <+ Z/I(Xnyp,g)k,
and compute B=AS+E € Z;”Xk. For a secret key sk = S, publish a corresponding public
key pk = (seeda, B).
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— KEM.Encap(pk,pp): sample u < X, v o, (e1,e2) < D%S/ x Dy o and e3 € {0,1}%. Let
v=u'B+e; € Z’; and v = 2v+e3 € Zé’q. Compute ¢; = (D)2 € Z’§ and ca = ul' A+eq € Zg
from A < Gen(seed,). Send a ciphertext ¢ = (€1, ¢2) € Z§ x Z7 to the receiver, and store
an ephemeral secret key p = |9]2 € Z5.

— KEM.Decap(c, sk): If ¢ is odd, compute w = 2¢37'S € Z’;, and ouput p = rec(w, cy).

We remark that if ¢ is even, the doubling process in the encapsulation phase, i.e. converting
v=u'B+e; to? = 2v + e, is not required.

3.2 Our KEM-based Encryption Scheme

We now construct a public key encryption scheme based on the spLWE-based KEM in pre-
vious section. When message slot increases by one, ciphertext spaces of our scheme grow only
one or two bits, which is more more efficient than known LWE based encryption schemes [37,
38], where the growth is about log ¢ bits.

PKE; (IND-CPA) : With a key exchange mechanism which shares ¢-bit length key, it is
well-known that one can convert it to a public key encryption of ¢-bit length message having
same security with the key exchange mechanism. This conversion only include XOR operations
after generating an ephemeral key, We note that the ciphertext space is given Zg x Z%Z, which
is very efficient to other LWE-based schemes ciphertext space Z;H'ﬁ .

PKE; is described as follows.

— PKE;.Params(\): let £ be a message length, and run KEM.Params(\) with & = ¢. Publish all
parameters by pp.

— PKE;.Keygen(pp): output a key pair (pk, sk)« KEM.Keygen(pp).

— PKE;.Enc(pk, m, pp): for ¢, p < KEM.Encap(pk,pp), let ¢’ = m@® p and output a ciphertext
(c.c).

— PKE;.Dec((e, ¢'),sk): for u = KEM.Decap(e, sk), output m = ¢’ & p.

PKE; (IND-CCA) : We can apply the transformation suggested in [41], which gives more
security for existing public key encryption scheme. As a trade-off for security, this scheme
requires a more complex construction than PKE;, but note that this also use light operations
such as XOR or hashing which are not serious tasks for implementation.

We specially denote the encryption phase of PKE; by PKE;.Enc(pk, m, pp; r) to emphasize
that a random bit-string 7 is used for random sampling. Here PKE;.Enc(pk, m, pp; ) becomes
deterministic.

We also require quantumly secure hash functions G : {0, 1}*1+¢ — {0,1}*, H : {0,1}f1 —
{0,1}*2 and H' : {0,1}* — {0, 1}*3, where k; will be determined later. With these parameters,
our scheme has a ciphertext space Z; x Zl§1+k2+k3+£’ which also increases slowly with the growth
of message slot.

PKE, is described as follows.
— PKEjy.Params()\): let £ be a message length and k; > 0 be integers such that hash functions

G :{0,1}1+0 — {0,1}*, H : {0,1}** — {0,1}*2 and H' : {0,1}*1 — {0,1}* have A-bit
security. Let pp be an output of KEM.Params(\) with k£ = k;. Publish ¢, pp and k;.



— PKEy.Keygen(pp): output a key pair (pk, sk)«— KEM.Keygen(k1).

— PKEs.Enc(pk, m, pp, , ¢, k;): randomly choose w < {0,1}*1, and let ¢, = H(w) ® m.
Compute ¢, = H'(w) and (c,c’) + PKE;.Enc(pk,w; G(w||em)). Output a ciphertext
(C,CI,Ch,Cm>.

— PKEs.Dec((e, &, cn, em), sk, pp, ¢, k;): compute w = PKE;.Dec((c, '), sk) and m = H(w) &
¢m.- Check whether (¢, ¢’) = PKE;.Enc(pk, w; G(w||ep,)) and ¢, = H'(w). If so, output m,
otherwise output L .

Remark that w € {0,1}* and H(w) € {0,1}*2 are used as symmetric keys for XOR
operations. It is known that that in classical security model, the one-time pad key length
should be at least A, and it should be increased twice against a quantum adversary. In contrast,
H'(w) € {0,1}"*3 is used as a hash value, and hence k3 should be larger than 2\ and 3\ to avoid
the birthday attack, in classical and quantum security models, respectively. To sum up, our
ciphertext space is at least Zj x Zg)‘M (Zy x ZSAM), in a classical (quantum) security model.

3.3 Security

In this section, we show (IND-CPA, IND-CCA) security of our encryption scheme (PKE,
PKEy). Security of our encryption scheme is reduced to security of KEM, and security of KEM
comes from hardness of spLWE. Consequently, under the hardness of spLWE, PKE; can be
reached to IND-CPA security, and PKE, achieves further quantumly IND-CCA security with
the random oracle assumption. Here is a statement for security of KEM.

Theorem 1. Assuming the hardness of spLWE,

n,M,q,8,p,07 and SPLWE
IND-CPA secure.

/
n,m,q,s",p

Nz our KEM s

Proof. (Sketch) By Lemma 3, one cannot extract any information about g = |v]2 with ¢;.
Moreover, even if one can know some information of v, the distribution of (¢g, v) can be regarded
as LWE instances as :

(c2,v) = (u’ -A+ez,u’ B+e)=(C,C-S+¢)

for C = uT - A 4 e and for some e’. Thus hardness of spLWE insures that the distribution of
(c2,v) is indistinguishable from the uniform distribution over Zg x Z’;. ad

We refer [35] for the detailed IND-CPA game-based proof, where the only difference is that we
assume the hardness of spLWE, not RLWE.

It is well-known in many cryptographic texts that PKE; has same security level with KEM.
Hence security of PKE; is given straightforward from the previous theorem. Moreover, the
transformation of [41] gives quantumly IND-CCA security for PKEy, when it is converted from
an IND-CPA secure PKE with random oracle modeled hashes. When put together the above
statements, we can establish the following security theorem.

Theorem 2. Assuming the hardness of spLWE,, ., ;s 9, SPLWE,, 1 o o1 .0, PKEy is IND-CPA
secure, and PKFEy is quantumly IND-CCA secure with further assumption that the function

G,H and H' are modeled as random oracles.

Proof. (Sketch) We only need to show that PKEy is IND-CCA secure. The transformation of
[41] actually make an IND-CCA secure public key encryption from a public key encryption
which is well-spread and one-way, and we briefly explain why (IND-CPA) PKE; is well-spread
and one-way.



— Well-spreadness: Note that a ciphertext of PKE; is of the form
(c1,¢2) = ((2(u"' B +e1) + e3)a, u’ A+ es),

where u — X, g, (€1,€2) Dg o X D7 . From hardness of spLWE, distributions of

ul'B+e € Z’; and uT A+ ey € ZZL are statistically close to uniform distributions over Z’;
and Zg, and then PKE; is well-spread.

— One-wayness: With an oracle O finding m from PKE;.Enc(pk, m) for any pk with probability
€, an adversary equipped with O wins the IND-CPA game for PKE; with advantage bigger
than §: After given PKE;.Enc(pk, m;), the adversary outputs the answer of O. It can be

easily shown that the advantage is bigger than §.

3.4 Correctness

Similar to the security case, correctness of our (IND-CPA, IND-CCA) encryption scheme
depends on that of our spLWE-based KEM. We remark that generally, one can obtain some
correctness condition for all LWE variants by examining a bound of error term in the proof
below. Here, we assume s = s', p = p/, and 6 = ¢, which is used for our parameter instantiation.

Theorem 3. Let n,m,o,p,0 be parameters in spLWE, ., ., ,9, and £ be the shared key length
in KEM. For a per-symbol error probability v, the KEM decapsulates correctly if

0> 85p\) 2 m(2/7).
™

Proof. As shown in the description of KEM.Decap, the ephemeral key is decapsulated correctly
if |o — w| < q/4 by lemma 7. Since © = 2u’ AS + 2u” E + 2e; + e3, and w = 2u’ AS + 2e5 S,
it is rephrased by

2u” - E — 2e; - S + 2eq + e3] < q/4,

which is equivalent to
12(u, [EY) + 2(—e1, [S]) + 2[ea]; + [es];| < q/4,1<j </

where u + Xm,p’,é’a [S]] — me,g, [E]] — D’ers,el — D%,s” [62]]' < DZ,S’7 [63]j < {0, 1}. For
simplicity, we ignore the small term 2[es]; + [es];. (This is compensated in our final choice of
parameters.) By applying lemma 1 to a (m+n) dimensional vector & = (u, [S]?) and the bound
T's||x|| = q/8, we have the per-symbol error probability -,

v =2exp(—m

(—L )
8sp+/(20)

9 _ . From the above equation, we get the bound on ¢ as the statement.

8spv'20

from T =

4 The Hardness of spLWE

In this section, we show spLWE is as hard to solve as worst-case lattice problems. For that,
we prove a reduction from standard LWE to spLWE by generalizing the reduction [11]. We also
present modified attacks for spLWE which exploit the sparsity of a secret from all known attacks
for LWE, binLWE[7, 13].
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4.1 Reduction from standard LWE to spLWE

To show our reduction about spLWE, we need extLWE™ problem whose security was proved
in [11]. They showed that for a set X of quality &, there exists a reduction from LWE,;,_1 y, 4.» tO

extLWEEn g/ TEEX) Based on reduction from LWE to extLWE in [11], we prove a reduction

of spLWE as in diagram below. Here w,~, o are constant satisfying

w < 0\/2n02(2 +2Vp+p), 7= pa\/9(1 +2vp+p), 0> (In(2n(1 4 1/€)) /)% /q.

Because Qual(X,,,0) < 1+ /p by lemma 5, extLWE, 0:0r/ ATV L, X p0 is secure based
219 I, P,

on LWEg_15,40. Following theorem shows that spLWE, ., ., .y problem is secure based on
LWEj 1,4, and extLWEn’m’qﬁa e for some w,~vy > 0. This shows if (Z) (21 +2)
klog g + 2log(1/0), there is reduction between spLWE,, ,, ., , o and LWEy_1 , 4 » problems.

LWE (k1 g

1 LWE (4 g.0)
Qual(X) < &, Adv < 33¢/2

extLWE | qov/E51.x)

<
Qual(X) <&, Adv <m LWE(j

extLWE™
(k,n,q,04/€241,X)
w)rem4

SPLWE (n,m,q,w,0,l)

4Y)

Theorem 4. Let k, n, m, ¢ € N, e € (0,1/2), and 6,w,a,y > 0 such that

a>+/2In(2n(1 +1/€))/7/q, B=ay/(1+/p)2+1

w=ppV20, v = pBVo, <Z> (204 2)? > klog g + 2log(1/9).

There exist (two) reductions to spLWE,, ., o, , 9 from extLWEY', . 5 x, LWE . 4. Advantage of
A for LWE,, 1,.q.<a(D) is bounded as follow:

Adv[A] < 2Adv[Cq] + Adv[Co] + 4me + 6
for the algorithms (distinguishers) of extLWE, . 5 x» LWEkm q~, C1 and Cy respectively.

Proof. The proof follows by a sequence of distribution to use hybrid argument as in [11]. We
consider the following six distributions:
Ho={(A,b=ATx+e) | A« T x + X,e < D7 for o/ = \/B2|x][2 + 72 < pBV20 = w}.

Hy={(A,A"x —N"x+é& mod 1) | A« T}, x + X,N «+ D’;;’;é + D'}
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Hy:= {(¢qC"B + N,¢BTCx +¢&) | B+ TF*™ C + TF*" x « X,N + D}*" &<« DI'}.

22,8’

Hs:={(¢qC"B+N,B"s +&) | 5+ Zg, B+ Tg"™,C « Tg*", N« Di;". &« D'},
1z,

Hy= {(¢qC"B+N,u) |u« T", B+ TF*™, C+«+ TF*", N+ D"
1z,

Hy:= {(A,u) | A« T)™ u+ T"}.

Let B; be the distinguisher for the distributions between H; and H;q for 0 < ¢ < 4. There
exist some efficient transformations from the distributions (C, A, N7z), (C, A, N7'z) to Hy, Hs,
from (B,B's + é),(B,u) to Hz, Hy, and from (C,A), (C,A) to Hy, Hs. In fact, the samples
(C,A,N"z), (B,B”s +¢), and (C, A) are extLWE}", . 5 ', IWEk .., eXtLWE}, 5 oy sam-
ples respectively. The others are uniform distribution samples in the corresponding domain.
It follows that Adv[Bi], Adv[Bs], Adv[B4] are bounded by the distinguishing advantages of
extLWEL", 5 x» LIWEk m g, extLWEZ?n7q7/37{0n} respectively.

Since ||| < pV0, and B > \/2In(2n(1 + 1/¢))/7/q > V/2n(Z™)/q from lemma 3, it follows
that the statistical distance between —N7x + & and D7) is at most 4me by lemma 2. This
gives Adv[By| < 4me. The last Adv[Bs] is bounded by ¢ from the Leftover hash lemma. To sum
up, Adv[A] < 2Adv[C1] + Adv[Cs] + 4me + § with trivial reduction to exttWE", 5 «jny from
extlWEY', 5. O

4.2 Attacks for spLWE

There exist many attacks for LWE including dual attack, primal attacks. ([3], [17]). Here, we
do not consider the combinatorial BKW algorithm, its variants or attacks based on the Arora
and Ge algorithm that are not suitable in our case.([1], [5], [19], [28], [25]). Since the analysis of
traditional dual attack is based on the (discrete) Gaussian error (and secret in the LWE normal
form), these traditional attacks are not directly applicable for spLWE. Therefore we modified
those attacks for analysis of spLWE including random guess about 0 component in a sparse
secret vector s.

Dual (distinguish) Attack Assume that we are given (A,b) € Z7"*" x Z*, and want to
distinguish whether they are uniform random samples or spLWE samples. For a constant ¢ € R

with ¢ < ¢, consider a lattice L.(A) defined by
Lo(A) = {(z,y/c) € Z™ x (Z/c)" : x" A=y mod q}.
If the samples (A, b) are come from spLWE, for (z,y) € L.(A), we have

(x,b) = (x,As+e)
= (x,As) + (x,e)
=c(y,s) + (x,e) mod q

We see that, for a sufficiently small vector (v,w) € L.(A), the value (v,b) mod g becomes
small when the samples are spLWE ones, and (v,b) mod ¢ is uniformly distributed when (A, b)
are come from the uniform distribution. Hence one can decide whether the samples come from
spLWE distribution or uniform distribution from the size of (v,b) mod ¢ with some success
probability. We now determine how small a vector (v, w) must be found as follows. First, we
estimate the length of (v, w) € L.(A). One can easily check that
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I, 0

1
—AT -1,
C C

is a basis matrix of L.(A). Hence we know dim(L.(A)) = m + n and det(L.(A)) = (¢/c)".
Therefore a lattice reduction algorithm with a root Hermite factor dy gives (v, w) € L.(A),
such that ;
[[(v, w)[| = 36" (g/c) ™+, (1)

and the length is minimized when m = \/n(log g — log c)/log 6y — n.

Next, we consider the distribution of ¢(w,s) + (v,e) mod q. Here, we assume that the
coefficients of sparse vector s are sampled independently by (b1dy,bads, ..., b,d,) where d; <
Ber(n,0/n), by + {£1,+2,44,...,4p}, and p = 2! for some [ € Z>¢. Since c¢(w, s) is the sum
of many independent random variables, asymptotically it follows a Gaussian distribution with

mean 0, and variance (c||w||)?- 20(41+1

WJ:Q)I). From that (v, e) follows a Gaussian distribution with

mean 0, variance (o||v||)?, and lemma 4, we have distinguishing advantage

20(4!+1 — 1
exp(—7(s'/q)?) where s’ = \/27r\/02|]v|\2 + 2 o )HwH2 (2)

3n(20 +2)

From above equations 1, 2 with distinguishing advantage €, the attacker need to find small g
such that

E)n(qln(l/e))l/mﬂb where M — v/2ms |02 m 220(4l+1_1) n

0 =
0 (q M m—i—n+c 3n(2l+2) m+n

5 Parameter Selection and Implementation Result

5.1 Parameter Selection

To deduce some parameters, we assume that the best known classical and quantum SVP
(sieving) algorithm in dimension k runs in time 20-292k+0(k) and 20-265k+0(k) pespectively[9, 29].
The BKZ 2.0 algorithm gives the root Hermite factor y ~ (5% (7k)/*¥)1/2:=1) for block size k
[14], and the iteration number of exact SVP solver is Z—Z’ logn [26].

We consider direct CVP attack by sieving [30], the modified dual (distinguish), and embed-
ding attack. We also consider a trade-off, ignoring components on secret vectors, specified to
spLWE. More details are provided in appendix 6.2. To sum up, the parameters must satisfy the
following for the quantum security:

n!

e nlogq-(20+1)%- () > 22} from bruteforce attack (grover algorithm), where (}) = Gl

(For classical security, 2\ becomes \)
e Let T'(n,q,0,s,l) be a BKZ 2.0 running time to get root Hermite factor dy satisfying following
equation:

_ (C)n(qln(l/e))l/m-l-n}

0= max
1<e<q,1<m<n { q Mm

20(4+1 — 1
M:\/27r-\/0'2 m +c2 4 ) _n

m-+n 3n(2l+2) m+n’

where
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Since our secret key is a sparse vector, one can guess some components to be zero. To take
A-bit secure parameters, it should satisfy the following:

1 _
mkin {pnk,e -T(n—k,q,6,s, Z)} > 2 where DPnko = (n i 9)/(2)

e To prevent direct CVP attack, n,  should satisfy following equation:

1
mkin { . 20'265("k)} > 2* for classical security, 0.265 becomes 0.292.
DPn k.0

e For the correctness, ¢ > 88/)\/2?911'1(2/”}/) by the Lemma 7. We set the v = 0.01 in our
parameter setting.

Proposed parameters. From numerical optimization, we propose various parameters for
security parameter X\ from 72 to 128. The result is in the table below.

(A n g s 0] log(taua) log(tsvp)]
721 225 228 5 22 82 73
96 | 290 261 5 29 102 97
128 390 302 5 39 130 130

Table 1: Parameters with sparse secret key for s; € {0, £1} (classical).

’ A ‘ n q s 0 ‘ log(tgua) log(tsvp) ‘
72 1300 233 5 30 85 76

96 | 375 265 5 37 105 100

128 | 500 305 5 50 133 134

Table 2: Parameters with sparse secret key for s; € {0, £1} (quantum).

5.2 Implementation Result

We use C++ on a Linux-based system, with GCC compiler and apply the Eigen library
(www.eigen.tuxfamily.org) which makes vector and matrix operations fast. To sample u effi-
ciently in our encryption algorithm, we assume that there are only one non-zero element in
each n/f-size block. To follow the previous reduction and security proof, we need sampling of
discrete Gaussian distribution when we generate error vectors in key generation and encryption
algorithm. We use boz-muller transformation to generate discretized Gaussian distribution. In
below case, message space length is 32-byte and secret key is ternary vector. We used PC with
CPU 2.6GHz Intel Core i5 without parallelization.

IND-CPA IND-CCA
l A ‘ n ‘ q ‘ s ‘ 0 H Setup(ms) Enc(us) Dec(us) Cptx(byte)‘ Enc(us) Dec(us) Cptx(byte)‘
721225 270 | 5 |22 3.4 43 15 259 57 69 279
96 (290 320 | 5 |29 5.1 52 17 333 60 70 365
128(390| 400 | 5 |39 8.4 81 21 453 83 91 501

Table 3: Implementation result in classical hardness with 256 bit message

IND-CPA IND-CCA
l A ‘ n ‘ q ‘ s ‘ 0 H Setup(ms) Enc(us) Dec(us) Cptx(byte)‘ Enc(us) Dec(us) Cptx(byte)‘
72 13001 320 | 5 |30 5.4 55 16 344 61 69 400
96 (375| 370 | 5 |37 7.9 70 26 431 89 96 511
128(500| 470 | 5 |50 13.2 135 26 586 135 142 698

Table 4: Implementation result in quantum hardness with 256 bit message
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We also compare with software implementation in [24], which implements LWE based PKE

[38] and Ring version PKE [32]. Their implementation is executed on an Intel Core 2 Duo CPU
running at 3.00 GHz PC. Parameters in each rows are secure in same security parameters.

Our scheme [24] LWE RLWE
(n,q,s,0) ‘ Enc ‘ Dec (n,q,s) ‘ Enc ‘ Dec ‘ Enc ‘ Dec
150,240,5,15) | 0.02 |0.012|| (128,2053,6.77) | 3.01 | 1.24 | 0.76 | 0.28
290,320,5,29) | 0.04 |0.015|| (256,4093,8.87) [11.01| 2.37 | 1.52 | 0.57
390,400,5,39) | 0.05 |0.017|| (384,4093,8.35) |23.41| 3.41 | 2.51 | 0.98
550,470,5,49) | 0.08 | 0.02 | (512,4093,8.0) |46.05| 4.52 | 3.06 | 1.18

N N /N

Table 5: Our scheme vs. LWE vs. RLWE: Time in milliseconds for encryption, and decryption
for a 32-byte plaintext.
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6 Appendix

6.1 Attacks for search spLWE

Dual (search) Attack In this section, we assume the Geometric Series Assumption (GSA)
on g-ary lattices, introduced by Schnorr [40], and this will be used to estimate the length of last
vector of BKZ 2.0 reduced basis. Let B = {by,--- ,b,,} be a basis for an n-dimensional lattice
A which is reduced by the BKZ 2.0 with root Hermite factor g, then the GSA says:

|bf|| = B~ - ||b%|| for some constant 0 < 3 < 1,
where {b},---,b}} is the Gram-schmidt orthogonalization of {by,---,b,}. From ||bi| = oy -
det(B)'/", we have:

n

& * i— * (n—m 2
det(B) = [ lIbsll = [ 8" - I6il =B =2 - 65 - det(B).
=1

i=1

—2n2/(n—1)n

From the above equation, it follows that 3 = 4, . Since BKZ reduced basis satisfies

i—1
b, = b; + >_ pij - b with |p;5] < 1/2, one can show that,
j=0

1 _BZi_2 )
i < ||b . 2272.

We now describe the dual attack against a small number of LWE instances (A, As + e) =
(A,b) € Z™*™ x Z™. For some constant ¢ € N with ¢ < ¢, we consider a scaled lattice A.(A).

Ac(A) ={(z,y/c) € Z™ x (Z"c) : ®A = y mod ¢}.

A dimension and determinant of the lattice A.(A) is n +m and (q/c)", respectively. With the
above assumptions, we can obtain vectors {(v;, w;)}1<i<n in A.(A) such that,

m-+n L 1_62172 i m+n _n_ 1
(i wi)| < 65 -<q/c>m+"'\/4_4gz+52 SR TR ey

Clearly, the element (v;, w;) in A.(A) satisfies

vi-b=v;-(A-s+e)=(c-w;s)+ (vi,e) = ((vi,w;), (e,c-s)) mod gq.

If, for 1 < i < n, (v;,w;) is short enough to satisty ||(v;, w;)|| - ||(e,c- s)|| < ¢/2, the above
equation are hold over Z. Then we can recover e and s by solving a system of linear equations.
Since, ||(e,cs)|| = \/n- 02 + % - ||s||?, condition for attack is following:

2 2 2

for constant 0 < ¢ < ¢. To find an optimized constant ¢ we assume m = n. In this case, the size
is optimized with ¢ = y/n - 02/||s||2. Therefore final condition to success attack is following:

265" -0 - [ls]| - v < q(1 = 5%).
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Modified Embedding Attack One can reduce the LWE problem to unique-SVP problem via
Kannan’s embedding technique. First, we consider a column lattice

Ag(A)={y € 2™ .y = A’z mod ¢} for A’ = (—1b 2) :
The vector (1,e)T is in lattice A,(A’), and its size is approximately o+/m. If this value is
sufficiently smaller than Aa(/A,(A")) (= %q(m_”)/ ). In [2], they showed a shortest vector
of m 4+ 1 dimension lattice A,,11 can be found with high probability if

AA) o
M)~ e =7 %

where 7 &~ 0.4. In this case, the BKZ algorithms are used as a SVP solver. For spLWE case, we
can obtain more larger gap than the ordinary attack. We also consider a scaled lattice A.(B)
generated by following matrix:

1 0 0
B=|0¢, O
-b A qI,,

for a constant 0 < ¢ < 1. The vector (1,cs,e)” is in this lattice, and its size is approximately

/m - o2+ c2||s]]2. Let define a matrix B’ as following,

;_fcl, 0
B_<Aqlm>.

Now we have \;(A.(B)) = /m - 02 + 2 - [[s][2 and A1 (A.(B')) = /%2 - det(A.(B')) "/ (+m) =

2me

1/ ”2‘;’;1 - (qmc”)l/ "M Therefore it is needed to find the root Hermite factor dy such that:

PLI (et s 04 gt o AR (3)
e
n+m m _n\1l/n+m n+m
< : >0.4-9, 4
\/27re-(m-a2+c2|ysy2) (") 2 0405 @

The left part of the above inequality is maximized when ¢ = vV'no?/||s||, so we have:

1 O'\/ﬁ n\ 1/(n+m)
— (g™ = > 0450t
Vo (- (7)) zoea

6.2 Improving Lattice Attacks for spLWE

Since the attacks described in section 4.2, 6.1, and 6.2, time complexity of them are heavily
rely on the lattice reduction algorithm used. Namely, if one can reduce the dimension of lattice
in attacks, one can obtain a high advantage to solve the LWE problem. In this section, we
introduce two dimension reducing techniques to improve lattice attacks for spLWE instances.
The first one is ignoring components of a sparse secret and the other one is the dimension
modulus switching technique in [11]. For convenience, we denote T'(m) as the expected time of
solving m-dimensional LWE.
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Ignoring Components on Secret Vectors Most entries of secret vector s are zero. Therefore,
ignoring some components, one can reduce the dimension of LWE. More precisely, we delete k
entries of secret vector s and its corresponding column of A. For convenience, we denote it as
s’ and A’, respectively. If the deleted components of s are zero, the following equation is also
hold:

A-s+e=A"-s +emody.

n—~0

The probability Py, that the selected k entries are zero is ( i ) / (Z) It implies that one can reduce
the n-dimensional LWE to (n — k)-dimensional LWE with probability Pj. Namely, solving 1/ P
instances in (n — k)-dimensional LWE, one can expect to solve the n dimension LWE. Hence to
guarantee A bits security it gives:

T(n—k)/P, > 2" (5)

Modulus Dimension Switching In [11], for LWE instances, the authors describe a modulus
dimension switching technique. Using the corollary 3.4 in [11], for n, ¢, 8, w that divides n and € €
(0,1/2), one can reduce a LWE,, 4 <o instance to LWE,, /,, qw < instances, where 3 is a constant
satisfying 82 > o+ (4/m) In(2n(1+1/¢€))-0/q* ~ o?. Especially, in this reduction, a secret vector
s = (81,82, -+ ,8p) of LWE,, 4 <o is changed to s” = (s14+¢s2+-- g sy Sl
q“"s,) of LWE, Jw,qw,<p- 1t means that if one can recover the s” solving LWE,, Jw,qw,<p lnstances,
one can also reveal the vector s. Let ¢ be the number of set W = {syi|swi # 0,1 < i < n/w}
(/)
(n?w)
of ||s”]] is v/tq®. Thus, in that case, its size is not sufficiently short and applying the solving
LWEalgorithms in section 4.2, 6.1, and 6.2 to new n/w-dimensional LWE instances are not
appropriate to gain the advantage. Hence, we only consider the case ¢ = 0. As a similar reason
to ignoring components on secret vectors, to get A-bit security, we can obtain the following
conditions:

and P), be the probability of ¢ = 0. P/ is equal to . When t is not zero, the expected size

T(n/w)/P, > 2" (6)

Combining the ignoring k components and modulus dimension switching techniques for
n/w-dimension, one can reach the final conditions to obtain the A-bit security:

T((n— k)/w)/(PyP,) = 2*. (7)



