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Abstract. OCB is neither integrity under releasing unvierified plaintext
(INT-RUP) nor nonce-misuse resistant. The tag of OCB is generated
by encrypting plaintext checksum, which is vulnerable in the INT-RUP
security model. This paper focuses on the weakness of the checksum
processing in OCB. We describe a new notion, called plaintext or ci-
phertext checksum (PCC), which is a generalization of plaintext check-
sum, and prove that all authenticated encryption schemes with PCC
are insecure in the INT-RUP security model. Then we fix the weak-
ness of PCC, and describe a new approach called intermediate (parity)
checksum (I(P)C for short). Based on the I(P)C approach, we provide
two modified schemes OCB-IC and OCB-IPC to settle the INT-RUP
of OCB in the nonce-misuse setting. OCB-IC and OCB-IPC are proven
INT-RUP up to the birthday bound in the nonce-misuse setting if the
underlying tweakable blockcipher is a secure mixed tweakable pseudoran-
dom permutation (MTPRP). The security bound of OCB-IPC is tighter
than OCB-IC. To improve their speed, we utilize a “prove-then-prune”
approach: prove security and instantiate with a scaled-down primitive
(e.g., reducing rounds for the underlying primitive invocations).

Keywords: OCB, INT-RUP, nonce-misuse, checksum, MTPRP, prove-
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1 Introduction

Background. Authenticated encryption (AE) is a cryptographic scheme, which
provides privacy and authenticity concurrently. In classical security models, a
conventional AE scheme consists of an encryption algorithm and a decryption
algorithm. The decryption algorithm includes two phases: plaintext computing
and integrity verification. The plaintext corresponding to the ciphertext is re-
leased only if the tag is successfully verified. However, in certain settings, it
is desirable to release unverified plaintext before verification. This case occurs
when lightweight environments and low-end devices, such as smart cards, have
no enough memory to store the entire plaintext, or when the decrypted plaintext
needs to real-time processing in some special settings. What’s more, releasing



unverified plaintext improves the efficiency of certain applications. For example,
the decryption algorithm of Encrypt-then-MAC composition [5] has two passes:
the first pass to verify the MAC, and the second pass to obtain the plaintext.
If this AE scheme is secure against the release of unverified plaintext, then a
single pass would be sufficient. Moreover, even if the attacker cannot observe
the unverified plaintext directly, it could find some certain properties of the
plaintext through side channel attacks. This occurs, for example, in the padding
oracle attacks introduced by Vaudenay [35], where an error message or the lack
of an acknowledgment indicates whether the unverified plaintext was correctly
padded. Canvel et al. [7] showed how to mount a padding oracle attack on a ver-
sion of OpenSSL by exploiting timing differences in the decryption processing of
TLS. As shown by Paterson and AlFardan [2, 29] for TLS and DTLS, it is very
difficult to prevent an attacker from learning the cause of decryption failures.

The issue of releasing unverified plaintext has lead to in-depth discussions in
the CAESAR competition. For several AE schemes, such as IACBC [20], IAPM
[20], OCB1 [33], OCB2 [31], OCB3 [21], TAE [23, 24], COPA [3], AEGIS [36],
and ALE [6], their designers warned that unverified plaintext cannot be released.
Note that releasing unverified plaintext does not imply omitting verification. Ver-
ification is essential to prevent incorrect plaintexts from being accepted. In this
paper, we consider the security in this scenario where the attacker can observe
the unverified plaintext, or any information relating to it, before verification is
complete. Andreeva et al. addressed the issue of releasing unverified plaintext,
and formalized it as the RUP setting. In their paper [4], they provided two
new notions called PA (Plaintext Awareness) and INT-RUP (Integrity under
Releasing Unverified Plaintext). In the RUP setting, an adversary can obtain
the unverified plaintexts resulting from decryption queries. On the one hand, for
privacy, they proposed using both IND-CPA and PA. At the heart of PA notion
is the plaintext extractor. We say that an encryption scheme is PA if there exists
an efficient plaintext extractor for every adversary. The plaintext extractor is a
stateful algorithm with the goal of mimicking the decryption oracle in order to
fool the adversary. It cannot make encryption nor decryption queries, and does
not know the secret key. An authenticated encryption scheme achieves PA if it
is infeasible to distinguish the decryption oracle from the plaintext extractor.
They defined two notations of plaintext awareness: PA1 and PA2. On the other
hand, an AE scheme is INT-RUP if an adversary can not generate a fresh valid
ciphertext-tag pair given the additional power of access to a unverified decryp-
tion oracle, after the encryption oracle. INT-RUP is stronger than INT-CTXT.
INT-RUP clearly implies INT-CTXT, but the opposite is not necessarily true.

Problem Statement. Andreeva et al. showed that nonce-respecting AE schemes
(OCB [33, 31, 21], GCM [14], CCM [15], etc) and parts of nonce-misuse AE
schemes (COPA [3], McOE-G [16], etc) are not PA1. They proposed two tech-
niques — nonce-decoy and PRF-to-IV — to restore PA1 for nonce-respecting
and nonce-misuse AE schemes, and discussed the INT-RUP in these two cases.
The nonce-respecting AE schemes require that all nonces used in the encryption
queries are distinct, while the nonce-misuse AE schemes do not. The privacy and



integrity of OCB [33, 31, 21] are insecure in the nonce-misuse and RUP settings.
For OCB [33, 31, 21], Andreeva et al. also showed how to construct a forgery in
the INT-RUP security model. The tag of OCB is generated by encrypting plain-
text checksum, which results in an attack in the RUP setting. As the plaintext
and ciphertext blocks can be obtained by the adversary in the RUP setting, the
adversary can forge the same checksum by changing some plaintext or ciphertext
blocks. In their paper [4], they left fixing OCB [33, 31, 21] to be INT-RUP in an
efficient way as an open problem.

Our Contributions. This paper mainly considers the INT-RUP security of
OCB [33, 31, 21] in the nonce-misuse setting. We focus on the weakness of the
checksum processing in OCB [33, 31, 21]. We first set up a concrete INT-RUP
security model, which allows an adversary to make any queries. Our INT-RUP
security model is a stronger notion, which allows an adversary to make any
disorder queries, such as query the encryption oracle before/after the decryp-
tion/verification oracle or interleaved query between the encryption oracle and
the decryption oracle. While, the previous INT-RUP security model only allows
encryption-decryption-verification order queries. The checksum of OCB [33, 31,
21] is generated by XOR-sum of the plaintext blocks, which is vulnerable in the
INT-RUP security model. Then we describe a new notion, called plaintext or
ciphertext checksum (PCC), which is a generalization of plaintext checksum.
It is very easy for an adversary to forge the same checksum by changing some
plaintext or ciphertext blocks. Therefore, all authenticated encryption schemes,
if their tag is generated by encrypting the XOR-sum of the plaintext or cipher-
text blocks, are insecure in the INT-RUP security model. The detail INT-RUP
attack is presented in Supporting Material A.

To fix the weakness of PCC, we provide a new approach called intermediate
(parity) checksum (I(P)C) to generate the checksum. In the I(P)C approach,
the internal states in the encryption algorithm are hidden from adversaries, and
intermediate checksum obtained by the XOR-sum of internal states is again
encrypted once or many times before being output, which guarantees no infor-
mation leakage, except the collision before the last block encryptions for authen-
tication. Based on the I(P)C approach, we propose two modified schemes called
OCB-IC and OCB-IPC to settle the INT-RUP security of OCB [33, 31, 21] in the
nonce-misuse setting. They inherit the advantages of OCB [33, 31, 21]. We prove
that OCB-IC and OCB-IPC are INT-RUP in the nonce-misuse setting if the
underlying tweakable blockcipher (TBC) is a secure mixed tweakable pseudo-
random permutation (MTPRP). They are proven INT-RUP up to the birthday
bound of n/2-bit security, where n is the block-size of the underlying TBC. In
Supporting Materials B and C, we utilize a blockcipher-based TBC to instantiate
OCB-IC and OCB-IPC, respectively, and illustrate that their INT-RUP bounds
are up to the birthday bound too. In this paper, we do not settle the problem
of privacy in the RUP setting. OCB-IC and OCB-IPC are neither PA1 security
nor PA2 security.

Compared with OCB [33, 31, 21], the number of invoking the underlying
primitive in OCB-I(P)C is about twice of it. In other words, the efficiency of



OCB-I(P)C is about half of OCB. OCB-I(P)C compromises the efficiency of the
software and hardware implementations to achieve INT-RUP security, and the
security bound of OCB-IPC is tighter than OCB-IC. OCB-IC and OCB-IPC
are TBC-based authenticated encryption schemes. If this TBC can be instanti-
ated by an AES and the XEX* construction, its cost is larger than the cost of
AES-CTR. Therefore, we utilize a “prove-then-prune” approach [18] — prove
security and instantiate with a scaled-down primitive — to improve their speed.
We can utilize a round-reduced AES instead of full-round AES to instantiate it,
e.g., using AES6 for the block cipher invocations.

Chakraborti et al. [9] considered “rate-1” blockcipher-based affine AE mode,
showed an INT-RUP attack on this mode, and presented a mCPFB (rate 3/4)
which achieves INT-RUP security. In their paper, they left it as an interesting
open problem to find a property that makes “rate-1/2” AE schemes INT-RUP
secure. Our works present a concrete evidence about their works and find a new
approach I(P)C. The I(P)C approach will provide a new direction for settling
the security of “rate < 1” block cipher-based AE schemes in the RUP setting.
We believe that one can further extend it for any “rate < 1”.

Organization of This Paper. Notations and some preliminaries are presented
in Section 2. In Section 3, we describe an INT-RUP security model. In Section 4,
we provide a new approach called intermediate checksum, describe two modified
schemes called OCB-IC and OCB-IPC, and derive their security proofs. We
utilize “prove-then-prune” approach to instantiate with a scaled-down primitive
in Section 5. Finally, this paper ends up with a conclusion in Section 6.

2 Preliminaries

Notations. Let ε denote the empty string, and {0, 1}∗ denote the set containing
all finite bit strings (including ε). Let n be an integer, and ({0, 1}n)+ be the set
of all strings whose lengths are positive multiples of n bits. For a finite string x,
|x| stands for its length. For two finite strings x and y, let x‖y or xy denote the

concatenation of them. If X is a set, then x
$← X is a value randomly chosen

from X, and |X| stands for the number of elements in X. Let ∅ be the empty
set whose cardinality is 0. Let d·e be the operation that rounds up to an integer.
Denote Pr[A|B] as the conditional probability of event A given event B.

Finite Field. Given a basis, the finite field GF (2n) can be viewed as the set
{0, 1}n. For an n-bit string a = an−1 · · · a1a0 ∈ {0, 1}n, we can define a polyno-
mial a(x) ∈ Z[x] by a(x) = an−1x

n−1+· · ·+a1x+a0 over the field GF (2). Hence,
any integer between 0 and 2n−1 can also be viewed as a polynomial with binary
coefficients of degree at most n − 1. For example, 2 corresponds to x, 3 corre-
sponds to x+1, and 7 corresponds to x2+x+1. The addition in the field GF (2n)
is the addition of polynomials over GF (2). We denote this operation by bitwise
XOR, such as a ⊕ b, where a, b ∈ GF (2n). To define multiplication in the field
GF (2n), we need an irreducible polynomial f(x) of degree n over GF (2). The
multiplication of two elements A(x), B(x) ∈ GF (2n) is defined as the polynomial



multiplication over GF (2) reduced modulo f(x), that is A(x)B(x) mod f(x). We
use point doubling (multiply a ∈ {0, 1}n by 2) and XOR operations to compute
the multiplication in actual operation. Such as 3a = 2a ⊕ a, 5a = 2(2a) ⊕ a,
7a = 2(2a)⊕ 2a⊕ a, and so forth.

Block Ciphers and Tweakable Blockciphers. A block cipher E : K ×
{0, 1}n → {0, 1}n is a function that takes as input a key K ∈ K and a plain-
text P ∈ {0, 1}n, and produces a ciphertext C = E(K,P ), where K is a finite
nonempty set and n ≥ 1 is a number. For any K ∈ K, EK(·) = E(K, ·) is a per-

mutation over {0, 1}n. A tweakable blockcipher Ẽ : K × T × {0, 1}n → {0, 1}n
is a function that takes as input a key K ∈ K, a tweak T ∈ T , and a plain-
text P ∈ {0, 1}n, and produces a ciphertext C = E(K,T, P ), where K and n
are defined as above, and T is a finite nonempty set. For any K ∈ K, T ∈ T ,
ẼTK(·) = Ẽ(K,T, ·) is a permutation over {0, 1}n. Here n is called the blocksize,
K is called the key space, T is called the tweak space.

Let Perm(n) be the set of all permutations on n bits. Let Perm(T , n) be the

set of all mappings from T to permutations on n bits. Then π
$← Perm(n) stands

for the choice of a random permutation π(·) on {0, 1}n, and π̃
$← Perm(T , n)

stands for the choice of a random permutation π̃(T, ·) = π̃T (·) on {0, 1}n for
each T ∈ T . For a block cipher E : K × {0, 1}n → {0, 1}n, its inverse is DK =
E−1K for any K ∈ K, where D : K × {0, 1}n → {0, 1}n is defined by DK(Y )
being the unique point X such that EK(X) = Y . For a tweakable blockcipher

Ẽ : K × T × {0, 1}n → {0, 1}n, its inverse is D̃K = Ẽ−1K for any K ∈ K, where

D̃ : K × T × {0, 1}n → {0, 1}n is defined by D̃T
K(Y ) being the unique point X

such that ẼTK(X) = Y .

An adversary is a probabilistic algorithm with access to certain oracles. Let
AO ⇒ 1 be the event that an adversary A outputs 1 after interacting with
the oracle O. Suppose that E : K × {0, 1}n → {0, 1}n is a block cipher, and

Ẽ : K × T × {0, 1}n → {0, 1}n is a tweakable blockcipher.

1) Let A be an adversary with access to an encryption oracle, K
$← K, π $←

Perm(n), and π̃
$← Perm(T , n), then the advantages of A against E and Ẽ are

respectively defined as

AdvprpE (A) = Pr[AEK(·) ⇒ 1]− Pr[Aπ(·) ⇒ 1],

Advp̃rp
Ẽ

(A) = Pr[AẼK(·,·) ⇒ 1]− Pr[Aπ̃(·,·) ⇒ 1],

where the probabilities are taken over the random coins used by the oracles and
also over internal coins of A, if any. If the advantage AdvprpE (A) is negligible,
the underlying block cipher EK is a secure pseudorandom permutation (PRP).

If the advantage Advp̃rp
Ẽ

(A) is negligible, the underlying tweakable blockcipher

ẼK is a secure tweakable pseudorandom permutation (TPRP).

2) Let A be an adversary with access to both encryption and decryption

oracles, K
$← K, π $← Perm(n), and π̃

$← Perm(T , n), then the advantages of



A against E and Ẽ are respectively defined as

AdvsprpE (A) = Pr[AEK(·),E−1
K (·) ⇒ 1]− Pr[Aπ(·),π

−1(·) ⇒ 1],

Advs̃prp
Ẽ

(A) = Pr[AẼK(·,·),Ẽ−1
K (·,·) ⇒ 1]− Pr[Aπ̃(·,·),π̃

−1(·,·) ⇒ 1],

where the probabilities are taken over the random coins used by the oracles
and also over internal coins of A, if any. If the advantage AdvsprpE (A) is negligi-
ble, the underlying block cipher EK is a secure strong pseudorandom permuta-
tion (SPRP). If the advantage Advs̃prp

Ẽ
(A) is negligible, the underlying tweak-

able blockcipher ẼK is a secure strong tweakable pseudorandom permutation
(STPRP).

If the resources used by adversaries are at most R, we define the maximum
advantage as

Adv(R) = maxAAdv(A),

where the resources of interest to us include the running time t, the total of
oracle queries q, the maximum block-length l, and the totally number of blocks
in all queries (queries complexity) σ.

Constructions of Blockcipher-based TBC. One of the most important
methods in blockcipher-based TBC is the XE and XEX constructions. The most
prominent scheme is OCB2 [31], which uses a very simple masking technique:
powering up. Every associated data or message block is transformed using a dif-
ferent tweak whose incrementation can be achieved efficiently by powering up
technique. This technique had been used in second-round CAESAR candidates
AEZ [18], COPA [3], ELmD [13], OTR [26], and POET [1]. Other techniques
to masking include Gray code ordering (used in OCB1 [33], OCB3 [21], and
OMD [10]), LFSR [8], cellular automata map [8], the word-oriented LFSR [8],
and universal hashing [23, 24]. By the XE and XEX constructions, we can trans-
late a block cipher E : K × {0, 1}n → {0, 1}n into a tweakable blockcipher

Ẽ : K × T × {0, 1}n → {0, 1}n, where T = {0, 1}n × I × J is a tweak space,
I is a set of tuples of larger integers, and J is a set of tuples of small integers.
Let N ∈ {0, 1}n, i be an integer from a larger set I, and j be an integer from a
small set J . When we say that a tweak T = (N, i, j) is an increment of another
tweak, we mean that one of i, j got incremented and another stayed the same.
We require tweaks to increase monotonically, and make the “special” operation
from the penultimate block to the final block. The methods of linear separation
and interleaved separation are provided by Chakraborty and Sarkar in [8]. Linear
separation is based on Rogaway’s powering up technique [31], which requires the
computation of a discrete logarithm, however, interleaved separation does not.
They analyzed the efficiency of linear separation and interleaved separation. The
efficiency of interleaved separation is slightly lower than linear separation. The
blockcipher-based TBC constructed by the XEX* (combining XE and XEX)
construction is described as follows.

Given a block cipher E : K × {0, 1}n → {0, 1}n and a secret mask ∆, let
T = {0, 1}n × I × J be a tweak space, I be a set of tuples of lager integers,



and J be a set of tuples of small integers, we obtain a tweakable blockcipher
Ẽ : K × T × {0, 1}n → {0, 1}n by the XEX* construction:

ẼN,i,jK (x) = EK(x⊕∆) and ẼN,i
′,j′

K (x) = EK(x⊕∆′)⊕∆′

where (N, i, j) ∈ T0, (N, i′, j′) ∈ T1, T0 ∩ T1 = ∅, T0 ∪ T1 = T , and ∆ =
2i3jL,∆′ = 2i

′
3j
′
L,L = EK(N).

Let A be an adversary which makes an encryption query ẼK for tweaks from
T0 and makes encryption and decryption queries Ẽ±1K for tweaks from T1. Let

K
$← K, π̃

$← Perm(T0, n), and π̃±1
$← Perm(T1, n). Then the advantage of A

against Ẽ = XEX∗[E, 2I3J ] is defined as

Advm̃prp
Ẽ

(A) = Pr[AẼK ,Ẽ
±1
K (·,·) ⇒ 1]− Pr[Aπ̃,π̃

±1(·,·) ⇒ 1],

where the probabilities are taken over the random coins used by the oracles and

also over internal coins ofA, if any. If the advantage Advm̃prp
Ẽ

(A) is negligible, the

underlying tweakable blockcipher ẼK is a secure mixed tweakable pseudorandom

permutation (MTPRP). Denote Advm̃prp
Ẽ

(q) as the maximum advantage over all
adversaries that make at most q queries. The definition of MTPRP matches
TPRP if (T0, T1) = (T ,∅) and STPRP if (T0, T1) = (∅, T ).

Lemma 1 (XEX*, [31]). Fix a block cipher E : K × {0, 1}n → {0, 1}n and a

tweakable blockcipher Ẽ : K×T ×{0, 1}n → {0, 1}n, where T = {0, 1}n×I ×J
is a tweak space, I is a set of tuples of lager integers, and J is a set of tuples of
small integers. Assume 2i3j 6= 1 for all (i, j) ∈ I×J . Let Ẽ = XEX∗[E, 2I3J ],
one has

Advm̃prp
Ẽ

(t, q) ≤ AdvsprpE (t′, 2q) + 9.5q2/2n,

where t′ = t+ 2cn(q + 1) for some absolute constant c.

Authenticated Encryption (AE). A conventional authenticated encryption
with associated data scheme Π consists of an encryption algorithm and a decryp-
tion algorithm [32]. In order to consider the security of Π in the RUP setting, we
must separate the decryption algorithm from the verification algorithm so that
the decryption algorithm always releases plaintext [4]. A separated AE scheme is
a triplet Π = (E ,D,V) — an encryption algorithm E : K×N ×H×P → C×T ,
a decryption algorithm D: K×N ×H×C ×T → P, and a verification algorithm
V : K ×N ×H× C × T → >/⊥, where we write

(C, T )← EK(N,A, P ),

P ← DK(N,A,C, T ),

>/⊥ ← VK(N,A,C, T ),

where K ∈ K is a key, K = {0, 1}k, k ≥ 1, N ∈ N is a nonce, N ⊆ {0, 1}n, n ≥ 1,
A ∈ H is an associate data, H ⊆ {0, 1}∗, P ∈ P is a plaintext, P ⊆ {0, 1}∗,



C ∈ C is a ciphertext, C ⊆ {0, 1}∗, and T ∈ T is a tag, T ⊆ {0, 1}∗. The
symbols > and ⊥ indicate the success and failure of the verification oracle,
respectively. EK(N,A, P ) = (C, T ) if and only if (iff) DK(N,A,C, T ) = P and
VK(N,A,C, T ) = >. A secure AE scheme returns ⊥ if it receives an error (C, T )
pair. If there is no associated data, A can be omitted. Without loss of generality,
we assume that the adversary doesn’t make redundant queries, that is, i) it
doesn’t repeat prior queries for each oracle, ii) the adversary does not ask the
decryption oracle DK(Y ) or the verification oracle VK(Y ) after receiving Y in
response to an encryption query EK(X), and iii) the adversary does not ask the
encryption oracle EK(X) after receiving X in response to a decryption query
DK(Y ).

3 INT-RUP Security Model

In this section, we set up a concrete INT-RUP security model, which allows
an adversary to make any queries. For an AE scheme Π = (EK ,DK ,VK), we
assume that A is an adversary which makes at most qe queries to the encryption
oracle EK(·), at most qd queries to the decryption oracle DK(·), and at most qv
queries to the verification oracle VK(·) (See Fig. 1). A can perform any queries,
such as query the encryption oracle EK(·) before the decryption oracle DK(·), or
query the decryption oracle DK(·) before the encryption oracle EK(·), or make
the interleaved queries to the encryption oracle EK(·) and the decryption oracle
DK(·). A queries (N i, Ai, P i) and receives (Ci, T i) = EK(N i, Ai, P i), 1 ≤ i ≤
qe. A has access to the decryption oracle DK and obtains unverified plaintext
P ∗j = DK(N∗j , A∗j , C∗j , T ∗j), 1 ≤ j ≤ qd. Without loss of generality, we assume
the adversary doesn’t make redundant oracle. Note that (N∗j , A∗j , C∗j , T ∗j) 6=
(N i, Ai, Ci, T i), 1 ≤ i ≤ qe, 1 ≤ j ≤ qd.

Finally,A forges a challenge ciphertext (N ′, A′, C ′, T ′) 6= (N i, Ai, Ci, T i), 1 ≤
i ≤ qe to the verification oracle VK(·).

The forgery is success if VK(N ′, A′, C ′, T ′) = >, failure otherwise. The INT-
advantage of A against Π = (EK , DK ,VK) is defined as

Advint−rupΠ (A) = Pr[AEK ,DK ,VK ⇒ 1]− Pr[AEK ,DK ,⊥ ⇒ 1]

= Pr[AEK ,DK ,VK forges].

Let Advint−rupΠ (t, q, l, σ) = maxAAdv
int−rup
Π (A) be the maximum integrity

advantage for all adversaries A whose time complexity is at most t, the number
of queries is at most q, each of block-length is at most l, and queries complexity
is at most σ.

4 TBC-based Authenticated Encryption Modes with
Intermediate Checksum

OCB [33, 31, 21] is insecure in the INT-RUP security model. The tag of OCB
is generated by encrypting plaintext checksum, which prompts an attack in the



EK DK VK EK DK

A

Fig. 1. INT-RUP security model. A is an adversary which makes any queries in the
INT-RUP security model. Left of dashed line: Real world, with encryption oracle
EK(·), decryption oracle DK(·), and verification oracle VK(·). Right of dashed line:
Ideal world, with encryption oracle EK(·), decryption oracle DK(·), and failure oracle
⊥ that always outputs ⊥ for all queries. The goal of A is to distinguish real world from
idea world. If the distinguishable advantage of A is negligible, the scheme is INT-RUP.

RUP setting. Andreeva et al. [4] presented how to violate the INT-RUP security
by using the unverified plaintext to construct forgeries for OCB [33, 31, 21]. We
describe a new notation PCC, which is a generalization of plaintext checksum,
and prove that all authenticated encryption schemes with PCC are insecure in
the RUP setting. INT-RUP is a stronger security notation than INT-CTXT,
which gives the adversary the ability to perform decryption queries and observe
the unverified plaintexts. PCC is the XOR-sum of the plaintext or ciphertext
blocks, which leads to easily forge the same checksum by changing parts of the
plaintext or ciphertext blocks for an adversary. The strategy of the attack is
come from [4]. Our attack is an improved version. If an adversary A makes one
encryption query, 2 ≤ p ≤ 2d decryption queries and one forgery attempt, each
consisting of l blocks of n bits, then the adversary makes a successful forgery
with high probability (at least 1−2n−ld) by solving a system of linear equations
in GF (2) with n equations and ld unknowns. The details of proof are presented
in Supporting Material A.

In this section, we fix the weakness of PCC and provide a new approach,
called I(P)C, to generate the checksum. The internal states in the encryption
algorithm are hidden from adversaries and intermediate checksum obtained by
the XOR-sum of internal states is again encrypted once or many times, which
guarantees no information leakage, except the collision before the last block en-
cryptions for authentication in the same nonce. The tag is generated by the
PMAC1 algorithm [31] of either the plaintext or the ciphertext. Moreover, the
decryption algorithm and the verification algorithm share parts of computing
resources. Therefore, the I(P)C approach greatly improves the efficiency in the
software and hardware implementation. Based on the I(P)C approach, we pro-
pose two modified schemes called OCB-IC and OCB-IPC to settle the INT-RUP
security of OCB [33, 31, 21] in the nonce-misuse setting. OCB-IC and OCB-IPC



are TBC-based authenticated encryption schemes, whose structures and analy-
ses are simpler than blockcipher-based authenticated encryption schemes. They
inherit the advantages of OCB [33, 31, 21]. We prove that OCB-IC and OCB-IPC
are INT-RUP in the nonce-misuse setting if the underlying tweakable blockci-
pher is a secure MTPRP. Their INT-RUP is proven up to the birthday bound
and the bound of OCB-IPC is tighter than OCB-IC.

4.1 OCB with Intermediate Checksum: OCB-IC

OCB-IC makes two invocations to the underlying TBC per the plaintext block.
Moreover, the algorithm of generating the tag shares parts of computing re-
sources with encryption/decryption algorithms and the cost of the generating
tag is minimal (only invoking the underlying tweakable blockcipher twice). OCB-

IC[Ẽ] is parameterized by a tweakable blockcipher Ẽ : K×T ×{0, 1}n → {0, 1}n,
where T = {0, 1}n×I ×J is a tweak space, I is a set of tuples of lager integers,
and J is a set of tuples of small integers. We require tweaks to increase mono-
tonically, and perform the “special” operation from the penultimate block to the
final block, such as linear separation (powering up technique) and interleaved
separation [8, 33, 31], which makes tweaks’ update highly efficient. We assume
that the plaintext length is a positive multiple of blocksize n. The length of
associated data is arbitrary.

The overview of OCB-IC[Ẽ] is depicted in Fig. 2. OCB-IC[Ẽ] is made up
of three algorithms — an encryption algorithm EK , a decryption algorithm DK ,
and a verification algorithm VK . The detailed description of OCB-IC[Ẽ] is shown
in Fig. 3.

We analyze and obtain the following theorems for the information theoretic
security of OCB-IC[Ẽ]. If the underlying tweakable blockcipher Ẽ is a secure

MTPRP, OCB-IC[Ẽ] is INT-RUP in the nonce-misuse setting.

Theorem 1 (INT-RUP of OCB-IC with an Ideal TBC). For OCB-IC[Ẽ],

we replace tweakable blockciphers ẼK with tweakable random permutations π̃
$←

Perm(T , n) to obtain OCB-IC[π̃], where T = {0, 1}n × I × J is a tweak space,
I is a set of tuples of lager integers, and J is a set of tuples of small integers.
Let A be a nonce-misusing adversary. Let qv be the number of forgery queries.
Then we have

Advint−rupOCB−IC[π̃](A) ≤ 1.5q2/2n + qvq/2
n.

Proof. We assume that A is an adversary with access to the encryption oracle
E(·), the decryption oracle D(·), and the verification oracle V(·). The adversary A
makes encryption queries (N i, Ai, P i) and receives (Ci, T i) = E(N i, Ai, P i), 1 ≤
i ≤ q. The adversary A has access to the decryption oracle D(·) and obtains
the unverified plaintext P ∗j = D(N∗j , A∗j , C∗j , T ∗j), 1 ≤ j ≤ qd. Note that
(N∗j , A∗j , C∗j , T ∗j) 6= (N i, Ai, Ci, T i), 1 ≤ i ≤ q, 1 ≤ j ≤ qd.

Finally,A forges a challenge ciphertext (N ′, A′, C ′, T ′) 6= (N i, Ai, Ci, T i), 1 ≤
i ≤ q to the verification oracle V(·), where C ′ = C ′1C

′
2 · · ·C ′l′ , Ci = Ci1C

i
2 · · ·Cili .
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Fig. 2. Illustrating OCB-IC[Ẽ] with a tweakable blockcipher Ẽ : K × T × {0, 1}n →
{0, 1}n, where T = {0, 1}n × I × J is a tweak space, I is a set of tuples of lager
integers, and J is a set of tuples of small integers, e.g., I = {0, 1, 2, · · · , 2n −
1},J = {0, 1, 2, · · · , 10}. Top row: the authentication of associated data A: Auth =
PMAC1(A). If the length of associated data |A| is not a positive multiple of n bits,
padding 10∗ to A such that |A10∗| is a positive multiple of n bits. The authentication
of associated data is achieved by a PMAC1 algorithm [31]. If there is no associated
data, then we set Auth = 0. Bottom row: the encryption and authentication of the
plaintext P . The length of the plaintext P is a positive multiple of n bits. The plaintext
P is encrypted twice to produce the ciphertext C and the value of intermediate states
is used to generate the checksum. If Auth is simply xored with the encrypted Check-
sum to obtain the tag, we can get the difference of Auth which can be easily used to
obtain forging attack. Therefore the tag is generated by applying one more encryption
for Checksum and Auth.



/*AD Processing*/
Algorithm Auth(A) //PMAC1N

K(A)
Partition A into A1‖ · · · ‖Aa

|Ai| = n, 1 ≤ i ≤ a− 1, 0 < |Al| ≤ n
for i = 1 to a− 1

Si ← ẼN,i,4
K (Ai)

if |Aa| = n
Σ ← S1 ⊕ S2 ⊕ · · · ⊕ Sa−1 ⊕Aa

Auth = ẼN,a,5
K (Σ)

else
Σ ← S1 ⊕ S2 ⊕ · · · ⊕ Sa−1 ⊕Aa10∗

Auth = ẼN,a,6
K (Σ)

return Auth

/*Encryption Algorithm*/
Algorithm OCB − IC.ENK (A,P ):
Partition P into P1‖ · · · ‖Pl,
|Pi| = n, 1 ≤ i ≤ l
for i = 1 to l

Si ← ẼN,i,1
K (Pi)

Ci ← ẼN,i,2
K (Si)

C ← C1C2 · · ·Cl

Σ ← S1 ⊕ S2 ⊕ · · · ⊕ Sl

T = ẼN,l,3
K (ẼN,l,3

K (Σ)⊕Auth(A))
return C||T

/*Decryption Algorithm*/
Algorithm OCB − IC.DN

K(A,C||T ):
Partition C into C1‖ · · · ‖Cl,
|Ci| = n, 1 ≤ i ≤ l
for i = 1 to l

Si ← (ẼN,i,2
K )−1(Ci)

Pi ← (ẼN,i,1
K )−1(Si)

P ← P1P2 · · ·Pl

return P

/*Verification Algorithm*/
Algorithm OCB − IC.VN

K (A,C||T ):
Partition C into C1‖ · · · ‖Cl,
|Ci| = n, 1 ≤ i ≤ l
for i = 1 to l

Si ← (ẼN,i,2
K )−1(Ci)

Σ ← S1 ⊕ S2 ⊕ · · · ⊕ Sl

T ′ = ẼN,l,3
K (ẼN,l,3

K (Σ)⊕Auth(A))
if T ′ = T , return >,
else return ⊥

Fig. 3. OCB-IC[Ẽ] with a tweakable blockcipher Ẽ : K×T ×{0, 1}n → {0, 1}n, where
T = {0, 1}n × I × J is a tweak space, I is a set of tuples of lager integers, and J is
a set of tuples of small integers, e.g., I = {0, 1, 2, · · · , 2n − 1},J = {0, 1, 2, · · · , 10}.
The encryption algorithm EK includes the encryption of the plaintext blocks, the au-
thentications of associated data and the plaintext. The authentications of associated
data and the plaintext are achieved by PMAC1 algorithm. If there is no associated
data, then we set Auth = 0. The decryption algorithm DK is straightforward similar
to the encryption algorithm except no authentication of the tag at the end of the de-
cryption process. The verification algorithm VK outputs > if the new tag generated by
the associated data-ciphertext pair is equal to the original tag, ⊥ otherwise.



Let Γ = {(N i, Ai, P i, Ci, T i)}qi=1 ∪ {(N∗j , A∗j , P ∗j , C∗j , T ∗j)}
qd
j=1 be the

transcript (input-output pairs of OCB-IC) obtained by the encryption queries
and decryption queries. Γ can be seen as a random variable, then the INT-
advantage of A is

Advint−rupOCB−IC[π̃](A) = Pr[AEK ,DK ,VK ⇒ 1]− Pr[AEK ,DK ,⊥ ⇒ 1]

= Pr[AEK ,DK ,VK forges]

≤ maxγ∈ΓPrA[(N ′, A′, C ′, T ′) is valid|Γ = γ].

For associated data A, we handle it by PMAC1 algorithm. Let A be the
event that a collision of Auth occurs for two different associated data. Let T be
the event that a collision of the tag occurs for two different plaintexts in the
encryption oracle. Denote an event E as a union of events A and T, and E =
A∨T. Let F be the event that the verification oracle V (·) returns > other than
⊥. Then PrA[(N ′, A′, C ′, T ′) is valid|Γ = γ] = Pr[AOCB−IC[π̃] sets F|Γ = γ]
(Pr[F] for short). By the total probability formula, we can obtain

Pr[F] = Pr[F|¬E]Pr[¬E] + Pr[F|E]Pr[E]

≤ Pr[F|¬E] + Pr[E]

≤ Pr[F|¬E] + Pr[A] + Pr[T]

Claim (1). Pr[A] ≤ q2/2n, and Pr[T] ≤ q2/2n+1.

Proof. The authentications of associated data and the plaintext are achieved by
PMAC1 algorithm. The probability of the event A is just equal to a collision
probability of a random function PMAC1[π̃] plus the probability of PMAC1[π̃]
hitting 0, which is at most q(q− 1)/2n+1 + q/2n ≤ q2/2n. The probability of the
event T is just equal to a collision probability of a random function PMAC1[π̃],
which is at most q(q − 1)/2n+1 ≤ q2/2n+1.

Claim (2). Pr[F|¬E] ≤ qvq/2n.

Proof. To derive the probability that AOCB−IC[π̃] sets F under the condition
¬E: Pr[F|¬E], we analyze some cases as follows.

Case 1: T ′ is new. In this case, A already knows all the tags after the
encryption oracle and with this knowledge it is trying to guess the image of
another point. The probability of guessing this correctly is at most 1/(2n − q),
which is its success probability of A.

Case 2: T ′ is old. As all nonces can be repeated in all queries, we divide the
set of nonce N used in the encryption oracle into two sets N1 and N2. The set
N1 only contains an element N0. i.e. N = N1

⋃
N2, N1 = {N0}, N2 = N\N1.

Similarity, we divide the set of block-length L used in the encryption oracle into
two sets L1 and L2. The set L1 only contains an element l0. i.e. L = L1

⋃
L2,

L1 = {l0}, L2 = L\L1. We divide the set of associated data H used in the
encryption oracle into two sets H1 and H2. The set H1 only contains an element
A0. i.e. H = H1

⋃
H2, H1 = {A0}, H2 = H\H1. We do a further case analysis

as follows.



Case 2-1: If N ′ /∈ N , the finalization tweak (N ′, l′, 3) is new. The adversary
tries to forge using a new nonce. The image of a single point under a random
permutation is uniform, so the generated tag is an independent and uniform
random value. Thus, the probability that the adversary can guess the correct
value is 1/2n.

Case 2-2: If N ′ ∈ N1, l′ /∈ L, the finalization tweak (N ′, l′, 3) is new. The
adversary tries to forge using a new block-size. The image of a single point under
a random permutation is uniform, so the generated tag is an independent and
uniform random value. Thus, the probability that the adversary can guess the
correct value is 1/2n.

Case 2-3: If N ′ ∈ N1, l′ ∈ L1, the finalization tweak (N ′, l′, 3) in this case
is the same with the forgery attempt.

1. If A′ /∈ H, then it means that it yields a fresh random value by PMAC1(A′).
The last tag generated from this value is a fresh random value. Therefore,
the probability that the adversary can guess the correct value is 1/2n.

2. If A′ ∈ H1, the authentication of associated data A′ is the same with A0 from
many nonce-associated data-ciphertext-tag pairs in the encryption oracle,
where only the ciphertexts are distinct. The rest is similar to the PMAC1
processing of the ciphertext blocks. The probability of successful forgery
is equal to a collision probability of a random function PMAC1 plus the
probability of PMAC1 hitting T i, where i = 1, 2, · · · , q, which is at most
0 + q/2n ≤ q/2n.

Summarizing all cases, we have

Pr[F|¬E] ≤ max{1/(2n − q), 1/2n, q/2n} ≤ q/2n

for a single forgery query, where q ≥ 2.
If the adversary A makes qv forgery queries, then it is easy to obtain the

probability Pr[F|¬E] ≤ qv · q/2n.
By Claims (1) and (2), the INT-advantage of A, after q ≥ 2 encryption

queries, qd decryption queries, and qv forgery queries, is

Advint−rupOCB−IC[π̃](A) ≤ 1.5q2/2n + qvq/2
n.

Theorem 2 (INT-RUP of OCB-IC with a Tweakable Blockcipher). Let

Ẽ : K × T × {0, 1}n → {0, 1}n be a tweakable blockcipher. Fix n ≥ 1, T =
{0, 1}n × I ×J is a tweak space, I is a set of tuples of lager integers, and J is
a set of tuples of small integers, let A be a nonce-misusing adversary. Then we
have

Advint−rup
OCB−IC[Ẽ]

(t, σ) ≤ Advm̃prp
Ẽ

(t′, 2σ) + 1.5q2/2n + qvq/2
n,

where t′ = t+ cnσ for some absolute constant c.

The INT-RUP of OCB-IC is proven up to the birthday bound in the nonce-
misuse setting if the underlying tweakable blockcipher is a secure MTPRP. OCB-
IC just settles the problems of integrity in the RUP and nonce-misuse settings,



while the problems of privacy in the RUP and nonce-misuse settings still exist.
OCB-IC is neither PA1 security nor PA2 security. OCB-IC can be seen as a
special instantiation of the generic B1 scheme of [28] in which one applies a PRF
to the message as well as encrypting it with a secure nonce-based encryption
scheme. It is a secure “rate- 12” parallelizable authenticated encryption scheme.
We utilize a blockcipher-based TBC to instantiate OCB-IC in Supporting Ma-
terial B.

4.2 OCB with Intermediate Parity-Checksum: OCB-IPC

If we use a parity-checksum to replace the above checksum, we can obtain a new
scheme OCB-IPC. Compared with OCB-IC, OCB-IPC has a tighter bound. The
overview of OCB-IPC[Ẽ] is depicted in Fig. 4. OCB-IPC[Ẽ] is made up of three
algorithms — an encryption algorithm EK , a decryption algorithm DK , and a
verification algorithm VK . The detailed description of OCB-IPC[Ẽ] is shown in
Fig. 5.

We obtain the following theorems for the information-theoretic security of
OCB-IPC[Ẽ]. If the underlying tweakable blockcipher Ẽ is a secure MTPRP,

OCB-IPC[Ẽ] is INT-RUP in the nonce-misuse setting.

Theorem 3 (INT-RUP of OCB-IPC with an Ideal TBC). For OCB-

IPC with a tweakable blockcipher ẼK , we replace tweakable blockciphers with

tweakable random permutations π̃
$← Perm(T , n) to obtain OCB-IPC[π̃], where

T = {0, 1}n×I×J is a tweak space, I is a set of tuples of lager integers, and J
is a set of tuples of small integers. Let A be a nonce-misusing adversary. Then
we have

Advint−rupOCB−IPC[π̃](A) ≤ q2

2n
+

(q − 1)2

2n+1
+

qvq

2n+1
.

Proof. We assume that A is a nonce-misusing adversary with access to an en-
cryption oracle E(·), a decryption oracle D(·), and a verification oracle V(·).
The adversary A makes encryption queries (N i, Ai, P i) and receives (Ci, T i) =
E(N i, Ai, P i), 1 ≤ i ≤ q. The adversary A has access to the decryption oracle
D(·) and obtains the unverified plaintext P ∗j = D(N∗j , A∗j , C∗j , T ∗j), 1 ≤ j ≤
qd. Note that (N∗j , A∗j , C∗j , T ∗j) 6= (N i, Ai, Ci, T i), 1 ≤ i ≤ q, 1 ≤ j ≤ qd.

Finally,A forges a challenge ciphertext (N ′, A′, C ′, T ′) 6= (N i, Ai, Ci, T i), 1 ≤
i ≤ q to the verification oracle V(·), where C ′ = C ′1C

′
2 · · ·C ′l′ , Ci = Ci1C

i
2 · · ·Cili .

Let Γ = {(N i, Ai, P i, Ci, T i)}qi=1 ∪ {(N∗j , A∗j , P ∗j , C∗j , T ∗j)}
qd
j=1 be the

transcript (input-output pairs of OCB-IPC) obtained by the encryption queries
and decryption queries. Γ can be seen as a random variable, then the INT-
advantage of A is

Advint−rupOCB−IPC[π̃](A) = Pr[AEK ,DK ,VK ⇒ 1]− Pr[AEK ,DK ,⊥ ⇒ 1]

= Pr[AEK ,DK ,VK forges]

≤ maxγ∈ΓPrA[(N ′, A′, C ′, T ′) is valid|Γ = γ].
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Fig. 4. OCB-IPC[Ẽ] with a tweakable blockcipher Ẽ : K×T ×{0, 1}n → {0, 1}n, where
T = {0, 1}n × I × J is a tweak space, I is a set of tuples of lager integers, and J is a
set of tuples of small integers, e.g., I = {0, 1, 2, · · · , 2n − 1}, and J = {0, 1, · · · , 10}.
Top row: the authentication of associated data A: Auth = PMAC1(A). If the length
of associated data |A| is not a positive multiple of n bits, padding 10∗ to A so as to
|A10∗| is a positive multiple of n bits. The authentication of associated data is achieved
by PMAC1 algorithm. If there is no associated data, then we set Auth = 0. Bottom
row: the encryption and authentication of the plaintext P . The encryption procedure
of the plaintext of OCB-IPC is the same with OCB-IC. The odd and even parts of
intermediate states are used to produce separately Checksum1 and Checksum2, which
is encrypted to generate the final message authentication code.



/*AD Processing*/
Algorithm Auth(A) //PMAC1N

K(A)
Partition A into A1‖ · · · ‖Aa

|Ai| = n, 1 ≤ i ≤ a− 1, 0 < |Al| ≤ n
for i = 1 to a− 1

Si ← ẼN,i,4
K (Ai)

if |Aa| = n
Σ ← S1 ⊕ S2 ⊕ · · · ⊕ Sa−1 ⊕Aa

Auth = ẼN,a,5
K (Σ)

else
Σ ← S1 ⊕ S2 ⊕ · · · ⊕ Sa−1 ⊕Aa10∗

Auth = ẼN,a,6
K (Σ)

return Auth

/*Encryption Algorithm*/
Algorithm OCB − IPC.ENK (A,P ):
Partition P into P1‖ · · · ‖Pl,
|Pi| = n, 1 ≤ i ≤ l
for i = 1 to l

Si ← ẼN,i,1
K (Pi)

Ci ← ẼN,i,2
K (Si)

C ← C1C2 · · ·Cl

Σ1 ← S2 ⊕ S4 ⊕ · · ·
Σ2 ← S1 ⊕ S3 ⊕ · · ·
Σ = ẼN,l,3

K (Σ1)⊕Σ2

T = ẼN,l,3
K (Σ)

return C||T

/*Decryption Algorithm*/
Algorithm OCB − IPC.DN

K(A,C||T ):
Partition C into C1‖ · · · ‖Cl,
|Ci| = n, 1 ≤ i ≤ l
for i = 1 to l

Si ← (ẼN,i,2
K )−1(Ci)

Pi ← (ẼN,i,1
K )−1(Si)

P ← P1P2 · · ·Pl

return P

/*Verification Algorithm*/
Algorithm OCB − IPC.VN

K (A,C||T ):
Partition C into C1‖ · · · ‖Cl,
|Ci| = n, 1 ≤ i ≤ l
for i = 1 to l

Si ← (ẼN,i,2
K )−1(Ci)

Σ1 ← S2 ⊕ S4 ⊕ · · ·
Σ2 ← S1 ⊕ S3 ⊕ · · ·
Σ = ẼN,l,3

K (Σ1)⊕Σ2

T ′ = ẼN,l,3
K (Σ)

if T ′ = T , return >
else return ⊥

Fig. 5. OCB-IPC[Ẽ] with a tweakable blockcipher Ẽ : K × T × {0, 1}n → {0, 1}n,
where T = {0, 1}n × I × J is a tweak space, I is a set of tuples of lager integers,
and J is a set of tuples of small integers, e.g., I = {0, 1, 2, · · · , 2n − 1}, and J =
{0, 1, · · · , 10}. The encryption algorithm EK includes the encryption of the plaintext
blocks, the authentications of associated data and the plaintext. If there is no associated
data, then we set Auth = 0. The decryption algorithm DK is straightforward similar
to the encryption algorithm except no authentication of the tag at the end of the
decryption process. The verification algorithm VK outputs > if the new tag generated
by the associated data-ciphertext pair is equal to the original tag, ⊥ otherwise.



Let F be the event that the verification oracle V (·) returns > other than ⊥.
Then PrA[(N ′, A′, C ′, T ′) is valid|Γ = γ] = Pr[AOCB−IPC[π̃] sets F|Γ = γ]
(Pr[F] for short). Next, we need to bound the probability Pr[F]. We define two
events A,T, which are similar with OCB-IC. Let E = A ∨T.

First, the probability Pr[A] is at most q2/2n as shown in Claim (1). Then,
we need to evaluate the probability Pr[T].

If l is an even, then ∑
i

S2i = PMAC1(P2P4 · · ·Pl),

and ∑
i

S2i−1 = PMAC1(P1P3 · · ·Pl−1).

If l is an odd, then ∑
i

S2i = PMAC1(P2P4 · · ·Pl−1),

and ∑
i

S2i−1 = PMAC1(P1P3 · · ·Pl).

Denote an event T1 as a collision of
∑
i S2i occurs for two different even plaintext

blocks in the encryption oracle, an event T2 as a collision of
∑
i S2i−1 occurs

for two different odd plaintext blocks in the encryption oracle. Because
∑
i S2i

is only related with the even parts of plaintexts and
∑
i S2i−1 is only related

with the odd parts of plaintexts, T1 and T2 are two independent events, and
Pr[T1] = Pr[T2] = 1/2n. The event T happens iff events T1 and T2 occur or
don’t occur at the same time.

By the formula of total probability, we can obtain

Pr[T] = Pr[T ∧T1 ∧T2] + Pr[T ∧T1 ∨T2]

= Pr[T|T1 ∧T2]Pr[T1 ∧T2] + Pr[T|T1 ∨T2]Pr[T1 ∨T2]

= Pr[T|T1 ∧T2]Pr[T1 ∧T2] + Pr[T|T1 ∧T2]Pr[T1 ∧T2]

≤
∑

1≤j<i≤q

1/2n × 1/2n × 1 + (1− 1/2n)2 × 1/2n

≤ q(q − 1)/2n+1 − q(q − 1)/22n+1 + q(q − 1)/23n+1

≤ q(q − 1)/2n+1 − q(q − 1)/22n+2

≤ (q − 1)2/2n+1.

By the conditional probability formula, we can obtain

Pr[F] ≤ Pr[F|¬E]+Pr[E],



where Pr[E] ≤ q2/2n + (q − 1)2/2n+1 is easily bounded in terms of OCB-IC. It
follows that, we need to evaluate Pr[F|¬E′]. We analyze some cases as follows.

Case 1: T ′ is new. In this case, A already knows the value of T i, where
1 ≤ i ≤ q, and with this knowledge it is trying to guess the image of another
point. The probability of guessing this correctly is at most 1/(2n − q), which is
its success probability of A.

Case 2: T ′ is old. As all nonces can be repeated in the whole queries, we
divide the set of nonce N used in the encryption oracle into two sets N1 and N2.
The set N1 only contains an element N0. i.e. N = N1

⋃
N2, N1 = {N0}, N2 =

N\N1. Similarity, we divide the set of block-length L used in the encryption
oracle into two sets L1 and L2. The set L1 only contains an element l0. i.e.
L = L1

⋃
L2, L1 = {l0}, L2 = L\L1. We divide the set of associated data H

used in the encryption oracle into two sets H1 and H2. The set H1 only contains
an element A0. i.e. H = H1

⋃
H2, H1 = {A0}, H2 = H\H1. We do a further

case analysis as follows.
Case 2-1: If N ′ /∈ N , the finalization tweak (N ′, l′, 3) is new. The adversary

tries to forge using a new nonce. The image of a single point under a random
permutation is uniform, so the generated tag is an independent and uniform
random value. Thus, the probability that the adversary can guess the correct
value is 1/2n.

Case 2-2: If N ′ ∈ N1, l′ /∈ L, the finalization tweak (N ′, l′, 3) is new. The
adversary tries to forge using a new block-size. The image of a single point under
a random permutation is uniform, so the generated tag is an independent and
uniform random value. Thus, the probability that the adversary can guess the
correct value is 1/2n.

Case 2-3: If N ′ ∈ N1, l′ ∈ L1, the finalization tweak (N ′, l′, 3) in this case
is the same with the forgery attempt.

1. If A′ /∈ H, then it means that it yields a fresh random value by PMAC1(A′).
The last tag generated from this value is a fresh random value. Therefore,
the probability that the adversary can guess the correct value is 1/2n.

2. If A′ ∈ H1, the authentication of associated data A′ is the same with A0 from
many nonce-associated data-ciphertext-tag pairs in the encryption oracle.
The rest is similar to the PMAC1 processing of the ciphertext blocks. In this
case, we need to analyze the parity of l′. If l′ is an even, then∑

i

S2i = PMAC1(C ′2 · · ·C ′l′),

and ∑
i

S2i−1 = PMAC1(C ′1 · · ·C ′l′−1).

If l′ is an odd, then ∑
i

S2i = PMAC1(C ′2 · · ·C ′l′−1),



and ∑
i

S2i−1 = PMAC1(C ′1 · · ·C ′l′).

Take even l′ as example. Next we need to compute the probability that
(N ′, A′, C ′, T ′) is valid in this case. Let T be the event that a collision of
the tag T occurs for the forgery and encryption oracles. Let T1 be the event
that a collision of

∑
i S2i occurs for the forgery and encryption oracles, T2 be

the event that a collision of
∑
i S2i−1 occurs for the forgery and encryption

oracles. T1 and T2 are independent events, and Pr[T1] = Pr[T2] = 1/2n.
By the formula of total probability, we can obtain

Pr[F|¬E′] = Pr[T]

= Pr[T ∧T1 ∧T2] + Pr[T ∧ (T1 ∨T2)]

= Pr[T|T1 ∧T2]Pr[T1 ∧T2] + Pr[T|T1 ∨T2]Pr[T1 ∨T2]

≤ q/2n − q/22n+1

≤ q/2n+1.

For odd l′, we also have Pr[F|¬E′] ≤ q/2n+1.

Summarizing all above cases, we have

Pr[F|¬E′] ≤ max{1/(2n − q), 1/2n, q/2n+1} ≤ q/2n+1

for a single forgery query, where q ≥ 4.
If the adversaryAmakes qv forgery queries, it is easy to obtain the probability

Pr[F|¬E′] ≤ qvq/2n+1.
The INT-advantage of A, after q ≥ 4 encryption queries, qd decryption

queries, and qv forgery queries, is

Advint−rupOCB−IPC[π̃](A) ≤ q2

2n
+

(q − 1)2

2n+1
+

qvq

2n+1
.

Theorem 4 (INT-RUP of OCB-IPC with a Tweakable Blockcipher).

Let Ẽ : K × T × {0, 1}n → {0, 1}n be a tweakable blockcipher, where T =
{0, 1}n×I×J is a tweak space, I is a set of tuples of lager integers, and J is a
set of tuples of small integers. Fix n ≥ 1, let A be a nonce-misusing adversary.
Then we have

Advint−rup
OCB−IPC[Ẽ]

(t, σ) ≤ Advm̃prp
Ẽ

(t′, 2σ) +
1.5q2

2n
+

qvq

2n+1
,

where t′ = t + cnσ for some absolute constant c, and l is the maximum block-
length.

Compared with OCB-IC, OCB-IPC has a tighter bound. The INT-RUP of
OCB-IPC is proven up to the birthday bound in the nonce-misuse setting if the
underlying tweakable blockcipher is a secure MTPRP. We utilize a blockcipher-
based TBC to instantiate OCB-IPC in Supporting Material C.



4.3 The Processing for Arbitrary Length Messages

When the length of the message is not a positive multiple of the blocksize n,
our schemes require to be extended. We extend our schemes to handle with
the arbitrary length message M . We can utilize a CTR-like encryption for the
last incomplete block, which retain the mainly structure of OCB [33, 31, 21].
The concrete description is showed in Figs. 6. For simplicity, here we utilize a
padding function pad such that the length of the message is a positive multiple
of the blocksize n. Given an arbitrary length message M ∈ {0, 1}∗, it needs
to be padded to the plaintext P = pad(M) = M10n−1−(|M | mod n) before the
encryption algorithm. Meanwhile, after the decryption algorithm, we use a cor-
responding un-padding function unpad, which removes the 10∗ in P , to obtain
the original message M = unpad(P ).

5 Discussion and Future Work

There are four approaches to realize a tweakable blockcipher. The first approach
is direct design method, such as TWEAKEY [19] framework. The second ap-
proach is based on block ciphers, such as OCB2 [31], OCB3 [21], AEZ [18],
COPA [3], ELmD [13], OTR [26], and POET [1]. The third approach is based
on permutations, such as TEM [11], OPP [17], MRO [17]. The fourth approach
is based on keyed-functions (hash functions), such as OMD [10], p-OMD [30].
We present blockcipher-based instances with the birthday bound in Supporting
Materials B and C. They are INT-RUP against up to around 2n/2 queries, where
n is the blocksize. There exists many TBC constructions with beyond the birth-
day bound (BBB), such as [11, 22, 27]. For example, CLRW2 [22] presented by
Landecker, Shrimpton, and Terashima is a BBB secure construction. It is secure
up to around 22n/3 queries, where n is the blocksize. It remains an open problem
to design a TBC-based, BBB-secure AE scheme in the nonce-misuse and RUP
settings.

For OCB-IC and OCB-IPC, the number of the underlying primitive invo-
cations is about twice than that of OCB [33, 31, 21]. If we use full-round AES
to instantiate the underlying tweakable blockcipher, their efficiency are about
half of it. In other words, OCB-IC and OCB-IPC compromise the efficiency of
the software and hardware implementations to achieve INT-RUP security. How-
ever they make two invocations to the underlying TBC per the plaintext block,
which greatly reduces their efficiency. In this paper, we employ an approach —
prove-then-prune — to improve the speed. As our schemes are proven security,
we utilize a scaled-down primitive instead of the original primitive (e.g., using
round-reduced AES instead of full-round AES for block cipher invocations) to
instantiate our schemes. This approach firstly presented by Hoang [18] works
like this:

“To achieve some complex cryptographic goal, design a scheme in the provable
security tradition, choosing an underlying primitive and demonstrably achieving
the goal when its instantiated by an object achieving some standard assumption.
Then, to improve speed, selectively instantiate some of the applications of the
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Fig. 6. The Constructions of OCB-I(P)C for Arbitrary Length Messages. We can utilize
a CTR-like encryption for the last incomplete block, which makes that OCB-IC and
OCB-IPC retain the mainly structure of OCB [33, 31, 21]. Top row: The construction
of OCB-IC for arbitrary length messages. Auth is the authentication of associated data.
If Auth is simply Xored with the encrypted Checksum to obtain the tag, we can get
the difference of Auth which can be easily used to obtain forging attack. Therefore the
tag is generated by applying one more encryption for Checksum and Auth. Bottom
row: The construction of OCB-IPC for arbitrary length messages.



primitive using a scaled-down (e.g., reduced-round) construction. Use heuristic
or cryptanalytic reasons to support the expectation that, despite scaling down, the
scheme remains secure. The thesis underlying prove-then-prune approach is that
it can be instrumental for devising highly efficient schemes for complex aims. If
the instantiation is done judiciously, then the scaled-down scheme retains some
assurance benefit. Still, it is important to emphasize the limitations of prove-then-
prune. Naming an approach is not license to abuse it. The method is dangerous
in the same sort of way that designing a confusion/diffusion primitive is: one
has no guarantees for the object that will actually be used. Additionally, the set
of people with provable-security competence is nearly disjoint from those with
cryptanalytic competence.”

Specifically, OCB-IC and OCB-IPC are designed in terms of a tweakable
blockcipher. If this tweakable blockcipher can be instantiated by using AES and
the XEX* construction, we can obtain an provable security instance, which is
presented in Supporting Material B. The cost is larger than the cost of AES-
CTR. To speed things up, we instantiate the underlying tweakable blockcipher
invocations with a round-reduced AES construction, such as AES6. Heuristics
reasons to suggest that security nonetheless remains. The goal of our design is
to make an instance with a scaled-down primitive secure. The method of prove-
then-prune is useful for designing highly efficient schemes with complex aims.
In some way, prove-then-prune implies in prior work: schemes like ALRED [12]
typify a trend that reduced-round AES instead of full-round AES. We leave it as
another interesting open problem to deeper analyses for OCB-IC and OCB-IPC
with the scaled-down primitive.

6 Conclusion

OCB [33, 31, 21] is insecure in the nonce-misuse and RUP settings. This paper
mainly considers the INT-RUP security of OCB [33, 31, 21] in the nonce-misuse
setting. We focus on the weakness of the checksum processing in OCB [33, 31, 21].
We first set up a concrete INT-RUP security model, which allows an adversary
to make any queries. The tag of OCB [33, 31, 21] is generated by encrypting
plaintext checksum, which is vulnerable against integrity security in the RUP
setting. We describe a new notion PCC, which is a generalization of plaintext
checksum, and prove that all authenticated encryption schemes with PCC are
insecure in the INT-RUP security model. PCC is the XOR-sum of the plaintext
or ciphertext blocks, which leads to easily forge the same checksum by changing
some plaintext or ciphertext blocks for an adversary.

To fix the weakness of PCC, we provide a new approach I(P)C to generate the
checksum. In the I(P)C approach, the internal states in the encryption algorithm
are hidden from adversaries, and intermediate checksum obtained by the XOR-
sum of internal states is again encrypted once or many times before being output,
which guarantees no information leakage, except the collision before the last
block encryptions for authentication. Based on the I(P)C approach, we propose
two modified schemes called OCB-IC and OCB-IPC to settle the INT-RUP



security of OCB [33, 31, 21] in the nonce-misuse setting. OCB-IC and OCB-
IPC are TBC-based authenticated encryption schemes. They retain the mainly
structure of OCB [33, 31, 21] and inherit its advantages. We prove that OCB-
IC and OCB-IPC are INT-RUP in the nonce-misuse setting if the underlying
tweakable blockcipher is a secure MTPRP. Their INT-RUP is proven up to the
birthday bound and OCB-IPC has a tighter bound. In this paper, we do not
settle the problem of privacy in the RUP setting. OCB-IC and OCB-IPC are
neither PA1 security nor PA2 security. We leave it as an open problem to settle
the privacy of OCB-IC and OCB-IPC in an efficient way.
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Supporting Material

A: INT-RUP Analysis of AE Modes with PCC

For all authenticated encryption schemes, if their checksum is generated by the
XOR-sum of the plaintext blocks, they are insecure in the RUP setting. Such as,
IAPM [20], IACBC [20], OCB1[33], OCB2 [31], OCB3 [21], TAE [23, 24], COPA
[3], OPP [17], and so on.

We describe a new notion PCC, which is a generalization of plaintext check-
sum, and prove that all authenticated encryption schemes with PCC are not
secure in the INT-RUP security model. PCC is the XOR-sum of the plaintext
or ciphertext blocks, including the XOR-sum of the whole plaintext or cipher-
text blocks, the XOR-sum of the whole plaintext and ciphertext blocks, and the
XOR-sum of the parts of plaintext and ciphertext blocks. INT-RUP is a stronger
security notation than INT-CTXT, which gives the adversary the ability to make
decryption queries and observe the unverified plaintexts. The adversary can forge
the same checksum by changing some plaintext or ciphertext blocks. Therefore
the tag generated by plaintext or ciphertext checksum is vulnerable against in-
tegrity security in the RUP setting. The strategy of the attack is come from [4].
We present an improved version in Theorem 5.

LetΠ = (EK ,DK ,VK) be an authenticated encryption mode. Let (fN,Ai , hN,Ai ,
gN,A) be independent random functions, where 1 ≤ i ≤ l, then

(N,A,C1C2 · · ·Cl, T )← EK(N,A, P1P2 · · ·Pl)
P = P1P2 · · ·Pl ← DK(N,A,C1C2 · · ·Cl, T ),

>/⊥ ← VK(N,A,C1C2 · · ·Cl, T ),

where

C1C2 · · ·Ci ← fN,Ai (P1P2 · · ·Pi), 1 ≤ i ≤ l,

P1P2 · · ·Pi ← hN,Ai (C1C2 · · ·Ci), 1 ≤ i ≤ l,

T ← gN,A(
l∑
i=1

(Piz
1
i ⊕ Ciz2i )), z1i , z

2
i ∈ {0, 1}.

Remark 1. There are three cases for PCC as follows.
1) If z1i = 0, z2i = 1 for all 1 ≤ i ≤ l, then the tag is generated from the

XOR-sum of the whole ciphertext blocks;
2) if z1i = 1, z2i = 0 for all 1 ≤ i ≤ l, then the tag is generated from the

XOR-sum of the whole plaintext blocks;
3) if z1i = 1 for i ∈ I and z2j = 1 for j ∈ J , where the sets I and J are a

subset of a set {1, · · · , l}, and I ∪ J 6= ∅, then the tag is generated from the
XOR-sum of the plaintext and ciphertext blocks. For example, I and J may be
a partial of a set {1, · · · , l}, such as odd/even partial. If I or J is an empty set,
this case is reduced to case 1) or case 2).



Theorem 5. For the above scheme Π = (EK ,DK ,VK), for all ld ≥ n there
exists an adversary A such that

Advint−rupΠ (A) ≥ 1− 2n−ld,

where A makes one encryption query, 2 ≤ p ≤ 2d decryption queries and one
forgery attempt, each consisting of l blocks of n bits. Then, the adversary solves
a system of linear equations in GF (2) with n equations and ld unknowns.

Proof. In the INT-RUP security model, we assume that the adversary A firstly
makes one encryption query and receives (C, T ) = EK(N,A, P ), where P =
P1P2 · · ·Pl. Then A makes at most p decryption queries with the same nonce-
associated data pair and obtains the corresponding unverified plaintexts P j =
DK(N,A,Cj , T j) where 0 ≤ j ≤ p − 1, Cj = Cj1C

j
2 · · ·C

j
l . Finally, A forges

a new ciphertext C ′ = Cx1
1 Cx2

2 · · ·C
xl

l such that the new tag is equal to T ,
where x1, x2, · · · , xl ∈ GF (p). If the forgery succeeds, the adversary needs to
find x1, x2, · · · , xl ∈ GF (p) such that

checksum =

l∑
i=1

(Piz
1
i ⊕ Ciz2i ) =

l∑
i=1

(P xi
i z1i ⊕ C

xi
i z

2
i ), (1)

where z1i , z
2
i ∈ {0, 1} for all i.

Eq. (1) can be converted into a system of linear equations in GF (p) with n
equations and l unknowns, one for every bit j:

checksum[j] =

l∑
i=1

(P xi
i [j]z1i ⊕ C

xi
i [j]z2i ), 0 ≤ j ≤ n− 1, (2)

where X[j] selects j-th bit of X, with j = 0 corresponding to the least significant
bit, and z1i , z

2
i ∈ {0, 1} for all i.

The system of linear equations in GF (p) with n equations and l unknowns
is equivalent to a system of linear equations in GF (2) with n equations and ld
unknowns, where d = dlog2 pe. The operation of this process is as follows.

Let [xi]d = xi1xi2 · · ·xid be the d-bit binary representation of xi, [p − 1]d =
p1p2 · · · pd be the d-bit binary representation of p − 1, then Cxi

i = C0
i (xi1 ⊕

1)(xi2 ⊕ 1) · · · (xid ⊕ 1) ⊕ C1
i (xi1 ⊕ 1)(xi2 ⊕ 1) · · ·xid ⊕ · · · ⊕ Cp−1i (xi1 ⊕ p1 ⊕

1)(xi2 ⊕ p2 ⊕ 1) · · · (xid ⊕ pd ⊕ 1), where xi1xi2 · · ·xid = [s]d corresponds to
selecting Csi , 0 ≤ s ≤ p− 1.

It follows that, Eq. (2) can be converted into the following equation:

checksum[j] =

l∑
i=1

{[P 0
i [j](xi1 ⊕ 1)(xi2 ⊕ 1) · · · (xid ⊕ 1)⊕ · · ·

⊕ P p−1i [j](xi1 ⊕ p1 ⊕ 1)(xi2 ⊕ p2 ⊕ 1) · · · (xid ⊕ pd ⊕ 1)]z1i⊕
[C0
i [j](xi1 ⊕ 1)(xi2 ⊕ 1) · · · (xid ⊕ 1)⊕ · · ·
⊕ Cp−1i [j](xi1 ⊕ p1 ⊕ 1)(xi2 ⊕ p2 ⊕ 1) · · · (xid ⊕ pd ⊕ 1)]z2i },



where 0 ≤ j ≤ n− 1, p1p2 · · · pd = [p− 1]d, z
1
i , z

2
i ∈ {0, 1} for all i.

The adversary needs to find x11, x12, · · · , xld ∈ GF (2) such that the above
n equations are established. For a system of linear equations in GF (2) with
n equations and ld ≥ n unknowns, we can find a solution by using Gaussian
elimination and the probability that this system of equations has a solution is
1 − 2n−ld. That is to say, the adversary can forge an output (N,A,C ′, T ) with
C ′ 6= C.

B: INT-RUP on Blockcipher-based OCB-IC

To realize OCB-IC with a tweakable blockcipher Ẽ : K×T × {0, 1}n → {0, 1}n,
where T = {0, 1}n×I ×J is a tweak space, I is a set of tuples of lager integers,
and J is a set of tuples of small integers, we use a conventional block cipher
E : K × {0, 1}n → {0, 1}n to instantiate OCB-IC[Ẽ] by the XEX* construction

Ẽ = XEX∗[E, 2I3J ]. Overloading the notation, we rewrite this scheme as OCB-
IC[E].

The overview of OCB-IC[E] is depicted in Fig. 7. OCB-IC[E] is made up of
three algorithms, an encryption algorithm EK , a decryption algorithm DK , and
a verification algorithm VK . The detailed description of OCB-IC[E] is shown
in Fig. 8. If the underlying block cipher E is a secure strong pseudorandom
permutation (SPRP), OCB-IC[E] is proven INT-RUP up to the birthday bound
in the nonce-misuse setting.

Theorem 6 (INT-RUP of OCB-IC with a Block Cipher). Fix a block

cipher E : K × {0, 1}n → {0, 1}n and a tweakable blockcipher Ẽ : K × T ×
{0, 1}n → {0, 1}n, where T = {0, 1}n × I × J is a tweak space, I is a set
of tuples of lager integers, and J is a set of tuples of small integers. Assume
2i3j 6= 1 for all (i, j) ∈ I ×J . Let Ẽ = XEX∗[E, 2I3J ], A be a nonce-misusing
adversary, then we have

Advint−rupOCB−IC[E](A) ≤ AdvsprpE (B) + 39.5σ2/2n + qvq/2
n,

where a new adversary B has an additional running time equal to the time needed
to process the queries from A.

Proof Sketch: OCB-IC[E] uses the XEX* construction. Therefore, by Lemma
1, and Theorems 1 and 2, we can easily obtain the bound of INT-RUP on OCB-
IC[E].

C: INT-RUP on Blockcipher-based OCB-IPC

Similarity with OCB-IC, we use a conventional block cipher E : K × {0, 1}n →
{0, 1}n to instantiate OCB-IPC[Ẽ] by Ẽ = XEX∗[E, 2I3J ], where I is a set of
tuples of lager integers, J is a set of tuples of small integers. Overloading the
notation, we rewrite this scheme as OCB-IPC[E].
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Fig. 7. OCB-IC[E] with a block cipher E : K × {0, 1}n → {0, 1}n. This coincides

with OCB-IC[Ẽ], where Ẽ = XEX∗[E, 2I3J ], I is a set of tuples of lager integers,
and J is a set of tuples of small integers, e.g., I = {0, 1, 2, · · · , 2n − 1}, and J =
{0, 1, · · · , 10}. Top row: the authentication of associated data A: Auth = PMAC1(A).
If the length of associated data |A| is not a positive multiple of n bits, padding 10∗

to A so as to |A10∗| is a positive multiple of n bits. The authentication of associated
data is achieved by PMAC1 algorithm (XE construction). If there is no associated
data, then we set Auth = 0. Bottom row: the encryption and authentication of
the plaintext P (XEX construction). The plaintext is encrypted twice to produce the
ciphertext and the XOR-sum of intermediate states is used to generate the tag. We
require that the length of the plaintext P is a positive multiple of n bits in OCB-IC[E].
Given an arbitrary-length message M ∈ {0, 1}∗, it needs to be padded to the plaintext
P = pad(M) = M10n−1−(|M| mod n) before the encryption algorithm in OCB-IC[E].
Meanwhile, we obtain the message after the decryption algorithm by the unpadding
function unpad(P ) = M .



/*AD Processing*/
Algorithm Auth(A) //PMACN

K (A)
Partition A into A1‖ · · · ‖Aa

|Ai| = n, 1 ≤ i ≤ a− 1, 0 < |Al| ≤ n
for i = 1 to a− 1
L = EK(N)

Si ← EK(Ai ⊕ 2i−132L)
if |Aa| = n

Σ ← S1 ⊕ S2 ⊕ · · · ⊕ Sa−1 ⊕Aa

Auth = EK(Σ ⊕ 2a−133L)
else

Σ ← S1 ⊕ S2 ⊕ · · · ⊕ Sa−1 ⊕Aa10∗

Auth = EK(Σ ⊕ 2a−134L)
return Auth

/*Encryption Algorithm*/
Algorithm OCB − IC.ENK (A,P ):

Partition P into P1‖ · · · ‖Pl,
|Pi| = n, 1 ≤ i ≤ l
L = EK(N)
for i = 1 to l

Si ← EK(Pi ⊕ 2iL)
Ci ← EK(Si)⊕ 2iL

C ← C1C2 · · ·Cl

Σ ← S1 ⊕ S2 ⊕ · · · ⊕ Sl

TA = EK(Σ ⊕ 2l · 3L)⊕Auth(A)
T = EK(TA)⊕ 2l · 3L
return C||T

/*Decryption Algorithm*/
Algorithm OCB − IC.DN

K(A,C||T ):

Partition C into C1‖ · · · ‖Cl,
|Ci| = n, 1 ≤ i ≤ l
L = EK(N)
for i = 1 to l

Si ← E−1
K (Ci ⊕ 2iL)

Pi ← E−1
K (Si)⊕ 2iL

P ← P1P2 · · ·Pl

return P

/*Verification Algorithm*/
Algorithm OCB − IC.VN

K (A,C||T ):

Partition C into C1‖ · · · ‖Cl,
|Ci| = n, 1 ≤ i ≤ l
L = EK(N)
for i = 1 to l

Si ← E−1
K (Ci ⊕ 2iL)

Σ ← S1 ⊕ S2 ⊕ · · · ⊕ Sl

TA = EK(Σ ⊕ 2l · 3L)⊕Auth(A)
T ′ = EK(TA)⊕ 2l · 3L
if T ′ = T , return >
else return ⊥

Fig. 8. OCB-IC[E] with a block cipher E : K× {0, 1}n → {0, 1}n. This coincides with

OCB-IC[Ẽ], where Ẽ = XEX∗[E, 2I3J ], I is a set of tuples of lager integers, and J is
a set of tuples of small integers, e.g., I = {0, 1, 2, · · · , 2n − 1}, and J = {0, 1, · · · , 10}.
The encryption algorithm EK includes the encryption of the plaintext blocks, the au-
thentications of associated data and the plaintext. The decryption algorithm DK is
straightforward similar to the encryption algorithm except no authentication of the
tag at the end of the decryption process. The verification algorithm VK outputs >
if the new tag generated by the nonce-associated data-ciphertext pair is equal to the
original tag, ⊥ otherwise.



The overview of OCB-IPC[E] is depicted in Fig. 9. OCB-IPC[E] is made up of
three algorithms, an encryption algorithm EK , a decryption algorithm DK , and
a verification algorithm VK . The detailed description of OCB-IPC[E] is shown
in Fig. 10. If the underlying block cipher E is a secure strong pseudorandom
permutation (SPRP), OCB-IPC[E] is INT-RUP in the nonce-misuse setting.

Theorem 7 (INT-RUP of OCB-IPC with a Block Cipher). Fix a block

cipher E : K × {0, 1}n → {0, 1}n and a tweakable blockcipher Ẽ : K × T ×
{0, 1}n → {0, 1}n, where T = {0, 1}n × I × J is a tweak space, I is a set
of tuples of lager integers, and J is a set of tuples of small integers. Assume
2i3j 6= 1 for all (i, j) ∈ I × J . Let Ẽ = XEX∗[E, 2I3J ], and A be a nonce-
misusing adversary. Then we have

Advint−rupOCB−IPC[E](A) ≤ AdvsprpE (B) +
39.5σ2

2n
+

qvq

2n+1
,

where a new adversary B has an additional running time equal to the time needed
to process the queries from A.

Proof Sketch: OCB-IPC[E] uses the XEX* construction. Therefore, by Lemma
1, and Theorems 3 and 4, we can easily obtain the bound of INT-RUP on OCB-
IPC[E].
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Fig. 9. OCB-IPC[E] with a block cipher E : K × {0, 1}n → {0, 1}n. This coincides

with OCB-IPC[Ẽ], where Ẽ = XEX∗[E, 2I3J ], I is a set of tuples of lager integers,
and J is a set of tuples of small integers, e.g., I = {0, 1, 2, · · · , 2n − 1}, and J =
{0, 1, · · · , 10}. Top row: the authentication of associated data A: Auth = PMAC1(A)
(XE construction). If the length of associated data |A| is not a positive multiple of n
bits, padding 10∗ to A so as to |A10∗| is a positive multiple of n bits. The authentication
of associated data is achieved by PMAC1 algorithm. If there is no associated data, then
we set Auth = 0. Bottom row: the encryption and authentication of the plaintext
P (XEX construction). The encryption procedure of the plaintext is the same with
OCB-IC. The length of the plaintext P is a positive multiple of n bits. The odd and
even parts of intermediate states are used to produce separately a checksum, which is
encrypted to generate the final message authentication code. We require that the length
of the plaintext P is a positive multiple of n bits in OCB-IPC[E]. Given an arbitrary-
length message M ∈ {0, 1}∗, it needs to be padded to the plaintext P = pad(M) =
M10n−1−(|M| mod n) before the encryption algorithm in OCB-IPC[E]. Meanwhile, we
obtain the message after the decryption algorithm by the corresponding unpadding
function unpad(P ) = M .



/*AD Processing*/
Algorithm Auth(A) //PMAC1N

K(A)
Partition A into A1‖ · · · ‖Aa

|Ai| = n, 1 ≤ i ≤ a− 1, 0 < |Al| ≤ n
for i = 1 to a− 1
L = EK(N)

Si ← EK(Ai ⊕ 2i−132L)
if |Aa| = n

Σ ← S1 ⊕ S2 ⊕ · · · ⊕ Sa−1 ⊕Aa

Auth = EK(Σ ⊕ 2a−133L)
else

Σ ← S1 ⊕ S2 ⊕ · · · ⊕ Sa−1 ⊕Aa10∗

Auth = EK(Σ ⊕ 2a−134L)
return Auth

/*Encryption Algorithm*/
Algorithm OCB − IPC.ENK (A,P ):
Partition P into P1‖ · · · ‖Pl,
|Pi| = n, 1 ≤ i ≤ l
L = EK(N)
for i = 1 to l

Si ← EK(Pi ⊕ 2iL)
Ci ← EK(Si)⊕ 2iL

C ← C1C2 · · ·Cl

Σ1 ← S2 ⊕ S4 ⊕ · · ·
Σ2 ← S1 ⊕ S3 ⊕ · · ·
Σ = EK(Σ1 ⊕ 2l · 3L)⊕Σ2

T = EK(Σ ⊕Auth)⊕ 2l · 3L
return C||T

/*Decryption Algorithm*/
Algorithm OCB − IPC.DN

K(A,C||T ):
Partition C into C1‖ · · · ‖Cl,
|Ci| = n, 1 ≤ i ≤ l
L = EK(N)
for i = 1 to l

Si ← E−1
K (Ci ⊕ 2iL)

Pi ← E−1
K (Si)⊕ 2iL

P ← P1P2 · · ·Pl

return P

/*Verification Algorithm*/
Algorithm OCB − IPC.VN

K (A,C||T ):
Partition C into C1‖ · · · ‖Cl,
|Ci| = n, 1 ≤ i ≤ l
L = EK(N)
for i = 1 to l

Si ← E−1
K (Ci ⊕ 2iL)

Σ1 ← S2 ⊕ S4 ⊕ · · ·
Σ2 ← S1 ⊕ S3 ⊕ · · ·
Σ = EK(Σ1 ⊕ 2l · 3L)⊕Σ2

T ′ = EK(Σ ⊕Auth)⊕ 2l · 3L
if T ′ = T , return >
else return ⊥

Fig. 10. OCB-IPC[E] with a block cipher E : K × {0, 1}n → {0, 1}n. This coincides

with OCB-IPC[Ẽ], where Ẽ = XEX∗[E, 2I3J ], I is a set of tuples of lager integers,
and J is a set of tuples of small integers, e.g., I = {0, 1, 2, · · · , 2n − 1}, and J =
{0, 1, · · · , 10}. The encryption algorithm EK includes the encryption of the plaintext
blocks, the authentications of associated data and the plaintext. The authentication of
the plaintext is achieved by two PMAC1 algorithms. The authentication of associated
data is a PMAC1 algorithm too. The decryption algorithm DK is straightforward
similar to the encryption algorithm except no authentication of the tag at the end of the
decryption process. The verification algorithm VK outputs > if the new tag generated
by the associated data-ciphertext pair is equal to the original tag, ⊥ otherwise.


