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Abstract—Today, data outsourcing to the clouds is a popular
computing paradigm, and enabling efficient and trustworthy
outsourcing becomes critically important as many emerging
cloud applications are increasingly security-sensitive, such as
healthcare, finance, etc. One of the promising techniques is
authentication data structure (ADS). Most existing ADSs are
not log-structured, yet cloud storage systems that work beneath
the ADSs are log-structured – this structural mismatch leads to
significant performance overhead.

We propose log-structured ADSs for lightweight verification in
cloud outsourcing. Our approach is leveraging recently available
commercial TEE (trusted execution environment, such as Intel
SGX). For security, only two functionalities are placed inside a
TEE, that is, frontend consistency checking and backend mainte-
nance computations, yielding a small TCB (trusted codebase). For
performance efficiency, the ADS layer follows the log-structured
design, resulting in small overhead. We implemented a working
log-structured ADS system on LevelDB, and demonstrated a
small TCB and small performance overhead (6 ∼ 12% in IO-
intensive workloads) through extensive performance studies.

I. INTRODUCTION

Today, outsourcing data storage to the public cloud becomes

a popular computing paradigm, due to cost-effectiveness,

efficiency, availability/accessibility, etc. This is evidenced by

various cloud-storage services on the market [9], [1], [4], [3].

In the presence of potentially malicious clouds (e.g. driven

by profit or compromised by external hackers), the trust to

the cloud providers becomes crucial to the client’s decision-

making on cloud adoption. Ideally, cloud clients want the data

outsourcing to be:

1) trustworthy in that all interactions to the outsourced cloud

storage come with assurance (from some authority) that the

cloud behaves honestly. Any operation properties that might be

exploited must be verified in their correctness, such as query-

result integrity, freshness, etc.

2) practically efficient in that the cloud’s efficiency in

processing a large volume of data is the main incentive for

outsourcing and should not be sacrificed by the extra work to

enforce security.

One of the most promising techniques to achieve these goals

is the authenticated data structure (ADS), a cryptographic pro-

tocol that enables the verifiability essentially by computation

hardness (e.g. hash collision resistance), yet is relatively effi-

cient (in an asymptotic sense). Despite the extensive researches

in this domain (e.g. tree-based ADS [77], [48], [60], [61], [90],

[32], [57], [46], [59], [87], [88], signature-based ADS [52],

[54], [53], [56], [30], [58]), existing ADS techniques fall

short on close systems integration and enabling systems-level

efficiency. This is especially the case when existing ADSs

are update-in-place structures while the underlying storage

systems follow a different philosophy – log-structured design

with append-only updates (e.g. log-structured merge trees or

LSM trees [55] used in various cloud storage systems [29],

[8], [6]). When placing the update-in-place ADS over the log-

structured storage substrates, the structural mismatch causes

severe performance problems, such as slow-down by orders

of magnitude (presented in § VI-B). Briefly, the cause of the

slowdown is that the update-in-place ADS shifts the workload

to be more read intensive (by adding reads to the write path),

making the underlying log-structured storage less effective.

The lack of log-structured ADS is not by accident: The

difficulty comes from supporting verifiable maintenance with

practical performance. Deferred maintenance is observed by

log-structured systems, and typically requires a linear or

superlinear computation with the input of a large amount

of the stored dataset (e.g. merging datasets in the case of

an LSM tree). With a fully untrusted cloud, verifying the

maintenance correctness efficiently and securely requires the

client running a sublinear checking algorithm. And this is

where existing theory-oriented approaches (e.g. proof-based

verifiable computations [21], [62], [69], [28], [83], homo-

morphic digests/signatures [15], [27]) do not (yet) provide

a practically efficient solution (e.g. with constant-sized data

transfer between the cloud and client).1

We resort to systems-oriented solutions and relax the un-

trusted cloud model by considering a small trusted entity at the

cloud side. The presence of a trusted entity in close proximity

to the cloud is necessary, as it makes possible not only

verifiable maintenance on the backend, but also the immediate

verification of strong consistency on the frontend (detailed

in § II-B). The cloud-side trust is make practically possible

by the recent support of trusted execution environment (TEE)

in commercial hardware, such as Intel Safe Guard Extension

(SGX [11]). SGX allows a client to set up a security-isolated

“world”, called enclave, in the otherwise untrusted cloud; the

client only trusts the CPU and trusted codebase (TCB) in the

enclave.

We propose a protocol, called LPAD, for outsourcing

log-structured storage with lightweight verification of data

freshness. We model an LSM tree by multiple ordered lists

supporting two operations, data reads/writes on the frontend

and maintenance on the backend. The ordered lists are digested

by a forest of Merkle trees [51], and data reads/writes are made

verifiable by Merkle proofs. The maintenance is trustworthy

1In theory, the problem of efficient verifiable maintenance can be solved
by a “merge”-homomorphic digest. For standard Merkle tree, such homomor-
phism is impossible [78], and for other digest structures, we believe the merge
homomorphism is a theoretically open problem [78].



due to in-enclave execution. Our system architecture is de-

signed with the goal of minimal user-space TCB and proven

security; we demonstrate (in § VI-A) our system design has a

TCB smaller than alternative state-of-the-art designs [25] by

two orders of magnitude.

We build a working system materializing the LPAD design,

on a real LSM storage system (Google’s LevelDB [7]) and

with Intel SGX CPU. At the systems level, the verifiable

freshness is naturally extended to enable verifiable read-

/write consistency under concurrent execution. To strongly

consistent stores, such as LevelDB, we build a checker to

verify the linearizability [39] in real-time. The consistency

checker has lightweight overhead as its implementation has

few synchronization points and is tailored to LevelDB’s single-

writer-multi-reader concurrency model. We explore the “code-

partitioning” problem – data maintenance code is system-

service intensive (due to the needs of data persistence) while

SGX prohibits system services in its enclave [11]. We tackle

the problem by “partitioning” the maintenance code-path at

a place close to system calls while avoiding excessive world

switches at runtime. This partitioning strategy improves per-

formance efficiency by up to 6 times in our evaluation.

The contributions of this work consist of the following:

1) We identify the structural gap between existing update-

in-place ADS protocols and log-structured storage systems

underneath. This gap results in severe performance slow-down.

2) To bridge the gap, we propose LPAD, a formal protocol

for log-structured ADS. We formally present a construction

of LPAD using Merkle trees and hardware TEE features

(trusted execution environments). We analyze the security

and correctness of protocol construction. To the best of our

knowledge, this is the first time to make Merkle tree scheme

write-optimized by following an LSM design.

3) We build a working system of LPAD based on Intel SGX

and atop LevelDB. We partition the codebase to minimize

world-switches and runtime overhead. We build a lightweight

consistency checker with minimal synchronization points. The

built prototype system demonstrates a smaller user-space

TCB2 (by two orders of magnitude) than state-of-the-art SGX

systems.

4) We conduct extensive performance evaluation and char-

acterize the overhead of LPAD protocol and the consistency

checker: In a disk IO intensive workload, the overhead is

small and practically acceptable (6% ∼ 12% slowdown to

an ideal non-secure system), which is significantly smaller

than that of existing ADS implementation (24X slowdown).

This is the first time to demonstrate the immediate consistency

verification with practical overhead.

II. MOTIVATIONS

In this section, we present further details of the motivations

for this work.

2We stress our software design minimizes the user-space TCB. Note the
use of SGX keeps OS kernel codebase out of TCB, but does not necessarily
mean a small TCB overall; an counterexample is Haven [25] which results
in a large user-space TCB.

A. Why Combine ADS with LSM Trees

Preliminary: Merkle hash tree [51]: is a method of

collectively authenticating a list of objects (that is, a set of

objects with fixed ordering). We denote it by MHT. In an

MHT, each leaf node is the hash of an object (or a key-value

record), and an intermediate tree node is the hash digest of

the concatenation of its direct children’s hash digests. The root

node digests the entire list and can further be signed. We call

the root hash by Merkle hash. The authenticity of an object

and its position in the tree can be verified by the digests of

the siblings of the nodes that lie in the path from the root to

the object’s leaf node, a.k.a. the authentication path or Merkle

proof.

Preliminary: ADSs: An ADS or authenticated data struc-

ture [77], [48], [60], [61], [90], [32], [57], [46], [59], [87],

[88] is a protocol that formally describes interactions between

a trusted verifier and untrusted prover. The goal of an ADS is

to make certain properties (e.g. consistency) of the interaction

verifiable to the verifier. A specific ADS can be characterized

by the type of interactions supported. For instance, a hash-

chain is an ADS that supports reads and writes only on the tail

of the chain. A PAD or persistent authenticated dictionary [18],

[37], using MHT, supports random access, that is, reads and

writes at an arbitrary position of the dataset. Other ADSs

support more complicated queries than point reads. In this

work, we might use ADS to refer to PAD.

Update-in-place ADSs: All existing ADSs (PADs) [73],

[36], [65] perform updates in place. That is, between a prover

and a verifier, an ADS, say a remote MHT, updates itself

by the verifier requesting a Merkle proof from the prover,

modifying the proof and updating the MHT with a new root

hash sent to the prover – In essence, this process updates

the MHT “in-place.” There are variants of ADSs, such as

replicated ADS [46], [48], [51], [90] and cached ADS [33];

they replicate a certain part of the ADS on the verifier for

better update performance. These optimizations do not change

the nature of in-place updates. In addition, the update-in-place

ADSs have been used in building verifiable systems, such as

SUNDR [47] and MBTree [46] where a single MHT is used

to digest the outsourced dataset and is updated in place. It

is noteworthy that the client-synchronization based systems,

including CloudProof [66], CONIKS [50], Caelus [43], etc.,

digest recent (after the last synchronization) updates by a

log of hash-chain favoring write performance. However, the

hash-chain is temporary and can not be used for immediate

verification. Their permanent digest is still a single MHT

updated in place.

The design of read-optimized ADS is fundamentally differ-

ent from various write-optimized storage systems adopted well

in the cloud: While read-optimized design features a single

list updated in place, the write-optimized structure features

append-only updates and multi-list data storage. This structural

mismatch could result in severe performance slowdown when

putting them into a single system (for verifiable storage). Our

performance study demonstrates that the slowdown can be up

to several orders of magnitude.
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Initial performance observation: Our initial performance

study (for motivation purposes) is designed to understand how

much the storage IO is skewed by the presence of ADS? In

write-only workloads, the storage IO would be skewed by the

update-in-place ADS to include 50% reads and 50% writes

(essentially every application-level write is translated into a

read-modify-write sequence). In our study, we drive a write-

only workload and half-read-half-write workload (representing

the read-modify-write workload by existing ADSs) into an

LSM store, LevelDB [7] from Google. Under certain experi-

mental settings, the measured latency difference between the

two workloads can be up to several orders of magnitude,

for instance, 4.564 micro-second per operation for the write-

only workload versus 604.302 for the half-read-half-write

workload. More detailed and extensive studies are presented

in § VI-B.

Update-in-

place
Append-only 

updates

ADS 

layer

Data-

storage 

layer

B-tree LSM-tree

Existing 

PADs
LPAD*

Fig. 1: Comparing ADS update protocols “*”: note we only con-

sider PAD or ADS protocols supporting random reads. Thus, hash-

chain which does not support random reads is excluded, although a

hash-chain is log-structured.

B. Global Consistency Verification w.o. Client Comm.

Consistency in a cloud storage is about whether storage

writes can be serialized and whether reads return the latest

writes on the serialized order. Existing researches on verifying

strong multi-client consistency (strong in the sense of stronger

than fork consistency) all rely on client communication to

synchronize their views and to establish a consistency ground

truth [43], [66], [50]. This paradigm requires all the clients to

be available at scheduled time, which may render it unfeasible

to many application scenarios where clients are asynchronous

in nature and can not be coordinated to be available at the

same time. The following is one example:

Cross-organizational Git repository: Git repository al-

lows multiple developers to concurrently make changes to

a shared project. Known consistency-oriented attacks (e.g.

duplicated-effort attack [82]) on the git repository can be

detected at the time of merging branches, by enforcing fork

consistency [82], [47]. With strong consistency verification,

it can prevent the attack in the first place (at the pull time).

Existing strong-consistency solutions rely on client-view syn-

chronization, which is feasible only to the case of a small

repository with all the developers in one organization [43].

However, in a public repository (e.g. hosted in Github.com)

where developers are organized in an ad-hoc fashion and

from different organizations, it becomes unfeasible to sched-

ule times for view synchronization. This becomes especially

difficult as the repository grows large, which is the target

application for our system.

There are many other use cases such as serving web app to

ad-hoc mobile social users [41]. In general, our proposed sys-

tems achieve two features desirable to these new applications:

1) write-intensive workloads (e.g. social users constantly post

new updates, and developers constantly push new commits),

2) strong consistency verification (e.g. needed to prevent

duplicated effort attack instead of just detecting them).

The remainder of this paper is organized in the following

way: We present a formal model of an LSM tree (§ III), for-

mally describe the LPAD protocol and its construction (§ IV),

and then present the LPAD system in an outsourced storage

scenario (§ V). In each of these design layers, we describe

the system frontend and backend. The paper organization for

describing the LPAD technique is illustrated in Table I.

TABLE I: Paper organization describing the LPAD technique

Design layer Frontend Backend

LSM storage modeling § III

LPAD protocol § IV-A

LPAD construction § IV-B1 § IV-B2

LPAD system § V-A § V-B

III. MODELING LSM TREES

Frontend verifier Backend verifierProver

Prove

Verify

Get

Update

Sign

Put

Maintain

Level C0

Level C2

A 9

Z 3A 2

Key 

Z

Time 

6

Z 1

T 0

Level C1

VerifyM

Merge

SignM

Ack

LSM tree

Fig. 2: LPAD construction with a three-level LSM tree

An LSM tree exposes two interfaces: A frontend interface

for serving online reads/writes, and a backend interface for

serving maintenance. An LSM tree supports key-value data

model where each record consists of a key, a value and a

timestamp; records are accessed by keys. The internal of an

LSM tree is a series of key-ordered lists: All lists have their

records sorted by the keys. To an online write or Put, only

the very first list is updated-in-place, while all the other lists

are immutable to the Put and are asynchronously updated

in batch through a maintenance process, called compaction.

Given multiple ordered lists, a compaction “merges” them into

a single list; this improves future operation efficiency.

To an online read or Get, the LSM tree needs to check

all the lists in the worst case, (although reading individual

lists can be facilitated by binary search or primary index). For

instance, in Figure 2, a Get needs to check on all three lists.

By this arrangement, an LSM tree has three performance

characteristics: 1) optimized write performance because online

writes do not cause random disk IO (the first list updated in-

place resides in memory), 2) de-optimized read performance

as a read checks multiple lists and causes multiple random disk
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IO, 3) maintenance improves the performance of future writes

as a compaction job merges a lower-numbered list (assuming

the LSM tree’s lists are numbered by their arrival order as

will soon be described) into a higher-numbered list, clearing

the way for future compaction.

Formally, an LSM tree is specified by the following invari-

ant:

Invariant 3.1 (Intra-level key-ordering): An LSM tree lays

out its data storage in multiple lists (i.e., so-called levels3),

C0, C1, . . . , Cn. In each list, records are sorted by key.

For instance, Figure 2 illustrates an LSM tree of three levels:

C0, C1 and C2, and at any level, say C2, records are sorted

by key, say from A to T to Z .

A compaction is formulated in the following format:

Invariant 3.2 (Two-level compaction): A compaction takes

as inputs two key-complete lists4 in two consecutive levels,

say Ci, Ci+1, and produces as output a merged list C′

i+1

replacing the higher-numbered input list Ci+1, and an empty

list replacing Ci.

For an LSM tree with Invariant 3.1 and 3.2, we have the

property that records of the same key across different levels

are sorted by timestamp. For instance, in Figure 2, an older

record of key A, with smaller timestamp 2, resides on higher-

numbered level C2, while a more recent record with timestamp

9 resides on a lower-numbered level C0. Formally,

Theorem 3.3 (Inter-level time-ordering): In an LSM tree

under compaction (specified by Invariant 3.2), given any two

records of the same key, the one in the lower-numbered list,

say 〈k, ts〉 in list Ci, must be younger than the one in the

higher-numbered list, say 〈k, ts′〉 in list Cj . That is, given

〈k, ts〉@Ci and 〈k, ts′〉@Cj , i > j ⇒ ts < ts′.5

Proof (Sketch) We present the proof sketch and leave the full

proof in Appendix A. Theorem 3.3 is implied by Invariant 3.2.

The state of the overall system can only be mutated by two

operations: 1) a Put that only mutates the first list, 2) a

compaction that, due to Invariant 3.2, only moves records from

a lower-numbered list to a higher-numbered list. Consider an

initial system state satisfying Theorem 3.3. The two state-

mutating operations do not violate the theorem in the end

state: Operation 1) inserts the latest record to C0 so that

previous older records still reside on levels higher than level

0. Operation 2) moves a key-complete range of records from a

lower-numbered level to a higher-numbered one. Such a range

does not create any non-consecutive range of records in one

of these levels.

Now, we specify record freshness in an LSM tree. A record

is fresh w.r.t. its key if and only if its timestamp is the largest

among all records of the same key. Formally,

Definition 3.4: A record, 〈k, v, tsw〉, is key-fresh w.r.t.

timestamp tsr in a level Ci, if and only if there is no record

〈k, v′, ts′w〉 ∈ Ci ∧ tsr ≤ ts′w < tsw.

3In this paper, we use lists and levels interchangeably.
4A key-complete list in a level cover either all or none of the versions of

a given key.
5Here, it assumes timestamps increase along with time, and a younger

record has a larger timestamp.

Definition 3.5: A record, 〈k, v, tsw〉, is key-fresh w.r.t.

timestamp tsr in an LSM tree C, if and only if there is no

record 〈k, v′, ts′w〉 ∈ C ∪ tsr ≤ ts′w < tsw.

Theorem 3.6: A record at level Ci, say 〈k, v, tsw〉@Ci, is

key-fresh w.r.t. timestamp tsr in an n-level LSM tree C =
C0 ∪ C1 . . . Cn−1, if and only if 〈k, v, tsw〉@Ci is fresh in a

level Cj , ∀j ∈ [0, n).

Proof We prove if 〈k, v, tsw〉@Ci is fresh in a level Cj ,

then it is fresh in C. We prove by contradiction. Assume

if 〈k, v, tsw〉@Ci is fresh ∀Ci, 〈k, v, tsw〉 is not fresh. By

definition, there must exist 〈k, v′, ts′w〉 ∈ C∧tsr ≤ ts′w < tsw.

Because C = C0 ∪ C1 . . . Cn−1, there must exist Cj s.t.

〈k, v′, ts′w〉 ∈ Cj . By definition, 〈k, v, tsw〉 is not fresh in

Cj . Thus contradiction.

It can be similarly proved that if 〈k, v, tsw〉 is fresh in C,

it is fresh in ∀Ci ∈ C.

IV. LPAD PROTOCOL & CONSTRUCTION

A. LPAD Protocol

Based on the LSM tree model, we describe our LPAD

protocol. In the universe of an LPAD, there are three parties:

a prover p, a frontend verifier v, and a backend verifier v’. The

prover is untrusted (playing the role of untrusted LSM-based

storage) while both verifiers are trusted. By convention, all

parties are assumed to be reliable under system failures (or

assuming no failures). Note our setting is slightly different

from the standard ADS setting in that it considers an extra

verifier v’ for modeling the backend procedure of an LSM

tree.

In this setting, an LPAD protocol formally describes the in-

teractions between the prover and both verifiers, including the

frontend interface (between p and v), and backend interface

(between p and v’).

On the frontend for writes, the verifier submits request

vPut (k, v) and receives from the verifier a timestamp tsw
associated with the record written. vPut is a verifiable variant

of regular Put request. As formally described in Figure 3, it

produces an attestation that helps keep the record of this vPut

operation. Timestamp tsw dictates the position of the record in

the global operation history and is useful to specify freshness.

Note in this section, we only consider serial execution of

Put/Get without concurrency, that is, the frontend verifier

does not submit another operation until the current operation

completes its execution.

On the frontend for reads, a verifier submits a read

request, vGet(k, tsr) with properly assigned timestamp tsr
and receives the result 〈v, tsrw〉 from the prover. The cor-

rectness properties she wants to verify are two: 1) result

integrity, which requires that record 〈k, v, tsrw〉 is indeed a

record written by a legitimate vPut before, 2) result freshness,

which requires that record 〈k, v, tsrw〉 is the latest among all

matching records of key k and with timestamp before tsr.

Integrity can be verified easily by attaching each record a

digest (e.g. a hash) and thus this work focuses on the freshness

verification. As will be discussed in systems building (§ V),

freshness verification is crucial to consistency verification (e.g.
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staleness-based consistency [31], [22], linearizability [39]) and

can be naturally extended to verify key-completeness [46] of

range search in a multi-key setting.

On the backend, a maintenance job merges two lists

Ci, Ci+1 into one, C′

i+1. In the verifiable maintenance, the

prover p and verifier v’ interactively run vMerge that takes

as p’s input two ordered lists Ci, Ci+1 and as v’’s input the

digests of the two lists δi, δi+1. At the end, the output state

is that prover and backend verifier have the merged result,

p.C′

i+1 and v’.δ′i+1.

The detailed LPAD protocol is formally presented in Fig-

ure 3.

In the following, we describe a construction of the LPAD

protocol using Merkle trees and TEE.

B. LPAD Construction by Merkle Tree & TEE

An LSM tree, held by the prover, is digested by a forest

of Merkle hash trees (MHTs), each digesting one list in the

LSM tree. Figure 2 illustrates a three-level LSM tree digested

by a forest of three per-level MHTs (in red triangles). Given

an LSM tree of dataset C = {C0, C1 . . . }, the LPAD con-

struction converts it into a digested dataset C̃ = {C̃0, C̃1, . . . }
(where C̃i is a Merkle tree) and a digest consisting of Merkle

hashes at different levels, δ = {δ0, δ1, . . . } (where δi is the

root hash of Merkle tree C̃i). Digested dataset C̃ is stored by

the prover and digest δ is stored and shared by both verifiers.

In the following, we describe the construction of frontend

and backend procedures as formulated in Figure 3.

1) Frontend Construction: On the write path, v.Sign runs

on standard public-key encryption algorithms, and p.Update
verifies the record 〈k, v〉 using signature s and inserts it to C̃.

It uses C0’s Merkle proof on key k to instantiate PU (C0, k).
Then v.Ack verifies the Merkle proof PU (C0, k), and updates

digest δ by the hash of tsw concatenated with 〈k, v〉.

On the read path, the major design issue is about the

construction of freshness proof P [F ]. Here, we present two

types of proofs with the same security, yet with different

performance traits.

Definition 4.1 (All-level proof): Given vGet(k, tsr) →
〈v, tsrw〉, an all-level proof for freshness, P1[F ], consists of

Merkle proofs for key k at all levels in an LSM tree.

Definition 4.2 (Selected-level proof): Given vGet(k, tsr) →
〈v, tsrw〉@Ci (that is, the result resides in level Ci), a selected-

level proof for freshness, P2[F ], consists of Merkle proofs for

key k at levels C0, C1, . . . , Ci in an LSM tree.

For instance, in Figure 2, vGet(Z, 10) → 〈v, 6〉 and the

result resides on level C1. P1[F ] consists of Merkle proofs

on all three levels, while P2[F ] consists of those on levels C0

and C1, excluding C2.

A selected-level proof results in smaller-sized proofs yet

an all-level proof enables parallel processing. In many real

LSM storage systems (e.g. LevelDB), the selected-level proof

matches their natural way of processing a Get request, that is,

it checks levels from C0, C1 . . . in order, until it reaches the

level of a record matching key k.

• v.Init(1λ) → sk, pk: Init, run by v, takes as input security

parameter 1λ, and outputs a secret key sk and a public key pk.
The public key is implicitly used in all the algorithms below.

• v.Setup(C,sk) → δ, C̃: Setup, run by v, takes as input
dataset C and the secret key sk, and outputs a digest δ and

authenticated dataset C̃.
• vPut (k, v) → tsw,AT T (tsw): vPut submitted by verifier v

takes as input a record 〈k, v〉 and produces a timestamp tsw
and attestation AT T (tsw). The attestation enables the logging
of this vPut operation at timestamp tsw.

– v.Signsk(〈k, v〉) → s: Verifier v, using its secret key sk,
Sign the record 〈k, v〉 and produces signature s as output.

– p.Update(s, 〈k, v〉, C̃) → {0, 1}, C̃′, tsw,PU (C0, k):
Prover p takes as input record 〈k, v〉, signature s, and its

authenticated dataset C̃, and produces a binary indicating
if the update is executed successfully, a timestamp tsw
associated with the record, updated authenticated dataset C̃′,
and a proof about the pre-Update state of C0 on key k,
namely PU (C0, k). Note only level C0 is mutable.

– v.Ack(tsw, 〈k, v〉,PU (C0, k), δ) → δ′, tsw: The verifier as-
sociates the received timestamp tsw with 〈k, v〉, and updates
the digest δ based on PU (C0, k).

• vGet(k, tsr) → 〈v, tsrw〉, C[F ](tsr, tsrw): vGet, submitted
by verifier v, takes as input queried key k and read timestamp
tsr, and produces as output result record with value v and
its own timestamp tsrw, as well as a certificate for freshness
C[F ](k, v, tsr, tsrw).

– p.Prove (C̃, 〈k, v, tsrw〉) → P [F ]: p.Prove takes as input

authenticated dataset C̃ and result record 〈k, v, tsrw and
produces as output the freshness proof P [F ].

– v.Verify (δ, 〈k, v, tsrw〉,P [F ](tsr, tsrw)) → {0, 1}:
v.Verify run by verifier v takes as input verifier’s digest δ,
result record 〈k, v, tsrw〉, read timestamp tsr and freshness
proof P [F ] and produces a binary indicating whether the
verification passes.

• vMerge (p.Ci, p.Cj , v’.δi, v’.δj) →

{0, 1}, p.C̃′

i, p.C̃
′

j , v’.δ′i, v’.δ′j (assuming j > i): vMerge
takes as input the prover’s two lists Ci, Cj and backend
verifier’s digests δi, δj , and produces as output a binary
indicating if the vMerge is successfully executed and the
final state p.C′

i, p.C
′

j , v
′.v’.δ′i, v’.δ′j . If the binary is 1, then

p.C′

i = ∅, v’.δ′i = ∅ and p.C′

j is the merged list from the
two input lists, and v’.δ′j is the digest of the merged list. This
internally runs as an interactive process between prover and
backend verifier:

– v’.CheckSel(Ci, Cj) → {0, 1}: CheckSel takes as input
the two lists Ci, Cj and produces a binary indicating if the
selected two lists conform to Invariant 3.2.

– v’.VerkfyM(Cl, δl) → {0, 1}, (l ∈ {i, j}): VerifyM takes as
input one of the two lists Cl (l = i or l = j) and its digest
δl, and produces a binary indicating if the content of the list
matches the digest.

– v’.MergeSignsk(Ci, Cj) → C′

j , δ
′

j , s
′: v’.MergeSign takes

as input the two lists Ci, Cj and produces merged list C′

j ,
its digest δ′j , and a signature s′.

– p.UpdateM(C′

i, C
′

j , s
′) → {0, 1}, C̃′

i, C̃
′

j : p.UpdateM
takes as input two lists C′

j and C′

j , and a signature s′. It
produces as output a binary indicating if the execution is

success, the digested version of the two lists, C̃′

i and C̃′

j .

Fig. 3: LPAD protocol
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Correctness: The correctness of LPAD is about wether

the proof can be used to correctly verify a Get result is fresh,

as defined in Definition 3.5. To proof P1[F ], the correctness

is straightforward, as Merkle proofs at all levels are included

and each Merkle proof in a key-ordered list can prove the

non-membership and freshness of a record at that level (The-

orem 3.6). To proof P2[F ], the correctness is similarly proved

except that the excluded Merkle proofs in Ci+1, . . . , Cn can

be implied by Theorem 3.3 – all levels higher-numbered than

Ci cannot have records fresher/younger than the records in

Ci.

Figure 2 illustrates the intuition: Record 〈Z, 6〉 from level

C1 is the freshest (with the largest timestamp 7) in the entire

dataset, and this can be proved by three facts: F1) The record

is the freshest in its resident level C1, F2) there is no record

of key Z in level C0, and F3) the record is fresher than any

record of Z in the higher levels C2, i,e., 〈Z, 3〉 and 〈Z, 1〉.
Security & Unforgeability: We analyse the security of

frontend construction by considering stale-read attacks from

the untrusted prover. In the attack, prover presents a stale Get

result and tries to forge a freshness proof. The attack succeeds

if the forged freshness proof can pass v.Verify by the verifier.

For instance, in an operation sequence, vPut(k, v1) → tsw =
11, vPut(k, v2) → 12, vGet(k, 14) → 〈v1, 11〉, the vGet
result is stale. The attack aims at forging P [F ](k, v1, 14, 11)
to pass the verification.

The unforgeability of the freshness proof is provided by

the collision-resistance of hashes in the Merkle proofs. The

unforgeability of per-level Merkle proofs can be naturally

extended to that of an overall freshness proof. For instance,

in the previous example in Figure 2, F1 is unforgeable due to

the Merkle proof on C1 and the key ordering in C1 implied

by Invariant 3.1. F2 is unforgeable because of similar reasons

(Merkle proof on C0). F3 is unforgeable by Invariant 3.3.

Generalizing this case gives us a formal proof presented in

the technical report [14].

2) Backend Construction in TCB: We construct the verifi-

able merge with linear (and theoretically optimal) cost.

In the basic construction for vMerge (formulated in Fig-

ure 3), v’.CheckSel(Ci, Cj) checks if j = i + 1 or j =
i − 1 in a way to check the satisfiability of Invariant 3.2.

v’.VerifyM(Cl, δl) reconstructs the Merkle tree of Cl and its

root hash, and compares it with δl to result in the binary

output. p.UpdateM updates the prover’s LSM-tree layout from

C̃i, C̃j to C̃′

i = ∅, C̃′

j , if the update is successful.

Partitioned LSM Tree: In real LSM stores, the data

storage in a level is partitioned into sublists and a compaction

occurs at the fine granularity of the sublists. A sublist is an

arbitrary, consecutive range of records in a list.

In vMerge on sublists, the input selection is parameterized

by a policy that dictates what input sublists are allowed.

In addition to requiring that sublists must reside on two

consecutive levels (Invariant 3.2), another requirement is key-

completeness, described as below:

Invariant 4.3 (Key completeness): Given a compaction with

two sublists, the key-range of the lower-numbered sublist must

be fully covered by the range of the higher-numbered sublist.

In other words, given levels Ci and Ci+1, the lower-numbered

sublist on Ci must not overlap in key ranges any part of Ci+1

that is not in the selected higher-numbered sublist.

For instance, it is illegal to merge sublist {〈Z, 6〉} with

sublist {〈A, 2〉} in Figure 2, but legal to merge {〈Z, 6〉} with

sublist {〈Z, 1〉, 〈Z, 3〉}.

For compaction under Invariant 3.2 and 4.3, the property

of inter-level time ordering (Invariant 3.3) still holds. Because

for a single key, the data migration between levels is still from

lower-numbered to higher-numbered. We formally prove it in

the technical report [14].

Under partitioned LSM tree, the CheckSel is slightly

modified to be CheckSelp(sublist1@Ci, sublist2@Cj), and

the checking logic is based on Invariant 3.2 and Invariant 4.3.

Verifiable-compaction security: There are two possible

attacks by the prover, that is, selecting wrong lists/sublists that

are not supposed to be compacted, and providing list/sublist

contents that are modified from the original records. Both

attacks are mitigated because of the Invariant enforcement

(v’.CheckSel) and the unforgeability of MHT (v’.VerifyM).

V. LPAD SYSTEMS

Frontend 

verifier

Backend 

verifier

Prover 

(Storage)

App/DB 

servers*

Enclave

Consistency 

checker

Put/Get

Cloud 

Storage engine 

(LPAD protocol)
End users

Enclave

Fig. 4: LPAD systems in cloud data-outsourcing: means that

application and database servers can be optionally added to the user-

storage interaction.

This section describes an overall data-outsourcing system

where the LPAD can be deployed.

We consider data-outsourcing to the public cloud. A data

owner, for instance, a small-business company in a rapid

growth (increasing customer base yet with limited computing

budget), wants to outsource its customer data-storage to the

cloud for cost effectiveness. The public cloud provisions ma-

chine instances through an infrastructure-as-a-service model

(IaaS). The owner deploys the key-value store software on

the instance to serve its data user. The deployed system

architecture is illustrated in Figure 4. In particular, the data

user can interact with the cloud store, either directly or through

intermediate layers (e.g. application servers and database

servers). What is exposed by the storage server is a trustworthy

Put/Get interface:

vPutc(key k, value v) → Attestation AT T put (1)

vGetc(k) → 〈v〉,Certificate CRT get (2)

vPutc/vGetc is a variant of vPut/vGet that allows for

concurrent invocation and offers certified consistency (by SGX

authority described below). In this work, we consider the

strong consistency level, Linearizability [39]. To a vPutc call,
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attestation AT T put states that the store has committed the

storage of the record and serialized it at a fixed position

(that will not change later on). To a vGetc call, certificate

CRT get states the result is correct in the sense of integrity and

freshness (on the serialized total-order). Below, we introduce

our trust model based on SGX.
Preliminary: SGX: We assume a cloud server is equipped

with Intel SGX. Intel SGX is a security-oriented extension for

x86-64 ISA on the Intel Skylake CPU, released in 2016. SGX

provides a “security-isolated world” for trustworthy program

execution on an otherwise untrusted hardware platform. At

the hardware level, the SGX secure world includes a tamper-

proof SGX CPU which automatically encrypts memory pages

(in the so-called enclave region) upon cache-line write-back.

Instructions executed outside the SGX secure world that at-

tempt to read/write enclave pages only get to see the ciphertext

and can not succeed. SGX’s software TCB includes only user-

space program and excludes any OS kernel code, by explicitly

prohibiting system services (e.g. system calls) inside enclave.

To use the technology, a client initializes an enclave by

uploading the in-enclave program and uses SGX’s seal and

attestation mechanism [19] to verify the correct setup of the

execution environment (e.g. by a digest of enclave memory

content). During the program execution, the enclave is entered

and exited proactively (by SGX instructions, e.g. EENTER

and EEXIT) or passively (by interruptions or traps). These

world-switch events trigger the context saving/loading in both

hardware and software levels. Comparing prior TEE solu-

tions [12], [13], [2], [10], SGX is unique in supporting multi-

core concurrent execution and dynamic paging for runtime

efficiency.
Trust model: We assume clients are trusted, and there

is mutual trust among them (e.g. owner-and-user, and user-

and-user). A client normally does not need to communicate

with other clients, except for initial key-exchange during the

setup. A client trusts nothing on a cloud machine except for

the initialized enclave; the trusted computing base includes

at the hardware level, the SGX CPU, and at the software

level, the enclave program. The untrusted part on the server

includes hardware, such as the non-secure memory pages

outside enclave and all the peripherals, and software, such as

operating systems and user-space processes running outside

enclave. The untrusted host can mount a replay attack and

answer to a Get operation with properly signed but stale

version. We assume a secure channel is established over the

untrusted Internet between the client and cloud server and is

resilient to standard network attacks (e.g. man-in-the-middle

attacks, etc. [42]).
Scope: This work does not address out-of-scope issues

which are addressed by orthogonal work, including denial-of-

service attacks, proven deletion [34] under Sybil attacks [84],

TEE state-continuity under replay or rollback attacks [74],

enclave side-channel attacks [85], and design flaws of an

enclave program.

A. Frontend Consistency Checking

Preliminary: Linearizability specification: We focus on

the strong consistency level, linearizability. Conceptually, the

Clients

(trusted)

Consistency 

checker

(trusted)

Cloud storage

(untrusted)

Timeline

w1

r2=w1

prePut()

postPut(tsw1) postGet(tsr2w=tsw1)

preGet(tsr2)

Key-value store

Alice

Bob

(a) Consistency checker thru. pre-/post- Put/Get hook: r2 = w1

means read r2 returns the record written by w1.

w1 w2
 

 

tsw1 tsw2 Satisfiable 

101 102  

102 101  

 

w1

w2

 

 

 

tsw1 tsw2 ts r3w Satisfiable 

101 102 101 (r3=w1)  

101 102 102 (r3=w2)  

102 101 101 (r3=w2)  

102 101 102 (r3=w1)  

 

r3=w?

Write 

serialization

Read 

freshness

(b) Consistency specification

Fig. 5: Consistency checker: Write serialization: the total-order

must be consistent with the real-time order of w1 and w2 (in the

right figure), due to Linearizability requirement on real-time. For

instance, write serialization does not allow the timestamp assignment

of 102, 101 to w1, w2 because this would place w1 after w2 which is

different from the real-time order that w1 executes before w2. Read

freshness: the read must return the latest write on the total-order

dictated by tsw1 and tsw2, due to Linearizability requirement on

freshness. r3 = w2 means read r3 returns the record written by w2.

linearizability [39] is about the existence of a serialization

total-order that conforms to two conditions: real-time require-

ment (denoted by L1) and freshness (by L2): L1 requires

that the total-order reflects the real-time partial-order of the

reads/writes execution (“operation A completes before the

beginning of operation B requires that A is placed before

B on the total order”). Freshness L2 requires that any read

returns the latest write on the total-order. L2 is specified in

Definition 3.5.

Figure 5b illustrates the consistency specification in a (in-

complete) list of different cases. In this work, a key assumption

we make is that the untrusted store that claims to have strong

consistency (linearizability) promises to provide a globally

unique timestamp that represents the total-order, i.e., tsw. In

many real consistent-store systems, this assumed timestamp is

already present. Note that this assumption considers that both

violation of strong consistency and failure to present correct

timestamp as malicious behavior that should be detected.

Under this assumption, the consistency verification is reduced

to checking whether conditions L1 and L2 are met on the

total-order represented by the timestamp.

Following the precise specification above, we propose an

7



algorithm to immediately verify the linearizability. The al-

gorithm considers concurrent operations that may complete

out of order, that is, operation completion order is different

from the assigned total-order by tsw. This is illustrated by

dark boxes in Figure 5b. Unlike the previous work based on

periodical scheduling of verification [43], [66], the proposed

algorithm achieves the theoretic lower bound in the delay

between the verification time and completion time. Briefly,

the technique proposed is to consider any completed operation

be in one of two states, serialized and non-serialized,6 and to

verify linearizability only on the serialized operations.

The frontend system architecture is illustrated in Figure 4

where a consistency check is added in front of the frontend

verifier. The consistency checker takes as input the concurrent

execution of reads/writes and outputs a binary satisfiability

decision upon the completion of each read (or write). Fig-

ure 5b illustrates the details of consistency checker which takes

actions to respond to four events: pre-Get, pre-Put, post-Get,

and post-Put. Internally, the checker transits an operation (Put

or Get) among three states: pending (operation started and not

yet completed), completed, and serialized (an operation is seri-

alized when all operations with write timestamp smaller/older

than the operation are completed).

A key design is the interaction between the consistency

checker and frontend verifier. The consistency checker relies

on the frontend verifier to present the freshness verification,

and it does so only when a completed operation transitions to

the serialized state. In our implementation, a synchronization

point is confined within the scope of a single event; no locks

are held across events. Consistency conditions (e.g. serialized

writes and read freshness as illustrated in Figure 5b) are

checked upon post-Put/Get events. The pre-Put/Get events

initiate the bookkeeping of operation states.

The state maintained by consistency checker may need to

ensure state-continuity upon system crash; and we assume

a reliable monotonic counter (e.g. Memoir [63] and Ari-

adne [75]) exists in enclave.

Note our assumption that untrusted store returns a global

timestamp can be realized in strongly consistent stores, such as

LevelDB. A strongly consistent store takes a single writer7 and

persists the written record in a log before completing the write

– The write timestamp tsw is assigned in the logging process

and is used to dictate the position of the written record in the

log.8 The pseudo-code of the frontend consistency verifier is

in the technical report [14].

Frontend security: The untrusted prover interacts with the

frontend verifier through vPut/vGet interface. The prover can

forge a vGet result that is stale or incorrect. The verification

by v would not pass as these results do not match the current

digest held by the verifier.

6An operation occupying the serialized state means all the operations before
this one in the assigned total-order have completed. An operation occupying
the non-serialized state means there are some operations before this operation
in the total-order that are not completed.

7Currently, our implementation is specific to this strongly consistent and
single-writer stores. Extensions for concurrent writers in key-value stores are
addressed in related work, such as cLSM [35].

8We don’t consider the semantics of transactional isolation in this work.

The untrusted store interacting with the end users (or upper-

layer systems) might mount consistency/concurrency attacks,

of which the replay attack (presented earlier in § III) can be

treated as a special case. In the concurrency attack, the store

equivocate on concurrent Put/Get calls. For instance, Figure 5b

illustrates a replay attack on concurrent writes, that is, read

r3 returns the data written by w2 whose execution overlaps

w1. This is a violation of freshness, because the untrusted

store has claimed w1 happens before w2 (tsw1 < tsw2),

even though they are concurrent in real execution. The replay

attack is mitigated because of the LPAD’s freshness and the

consistency checker. Similarly, the untrusted store can mount

realtime-order attack where the claimed write timestamps of

two writes are inconsistent with their real-time order. For in-

stance, in Figure 5b, w1 occurs before w2 in real-time, yet their

assigned timestamps are in the reversed order, tsw1 > tsw2.

The realtime-order attack is mitigated by the bookkeeping of

the consistency checker (i.e. the checker maintains the real-

time ordering in pending and completed operations).

Note global linearizability is stronger than fork consis-

tency [49], [47], thus our security layer mitigates forking

attacks.

B. Backend Maintenance

1 void vCompact(C_i,C_j){//assume i<j

2 if(!CheckSel(C_i,C_j)) abort();

3 do{

4 if(record_i < record_j){

5 output = record_i;

6 rebuilt_digest_Ci.update(output);

7 digest_mergedCj.update(output);

8 eof = inputKV(C_i.next(), record_i);

9 }else{

10 output = record_j;

11 rebuilt_digest_Cj.update(output);

12 digest_mergedCj.update(output);

13 eof = inputKV(C_j.next(), record_j);

14 }

15 if (filterout_policy(output) == FALSE)

16 outputKV(output);

17 } while (!eof);

18 //output pending list

19 if(VerifyM(rebuilt_digest_Ci, delta_i)

20 && VerifyM(rebuilt_digest_Cj, delta_j)){

21 s = Sign(mergedCj);

22 return s;

23 } else abort();

24 }

25 }

Listing 1: One-pass program for verifiable compaction in

Enclave

One naive approach to implementing the LPAD’s verifiable

compaction is to run the related constructs separately, that is,

implementing v’.CheckSel, v’.VerifyM, and v’.MergeSign as

separate iterations over the merging lists.

A more efficient implementation is a one-pass algorithm

that iterates through all the lists without any repeated access.

The algorithm is illustrated in List 1 which embeds all the

related constructs in a single merge-sort-style loop. In each

iteration of the loop, it might trigger two cross-boundary calls

to switch the execution out of enclave: inputKV which reads

one record into the enclave from the untrusted world (memory

or disk), and outputKV which stores the output data to the

untrusted world. By the end of the loop, the enclave endorses
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(by signing) the merged list only when both v’.CheckSel
and v’.VerifyM are satisfied. Figure 6 illustrates the system

workflow of compacting two sublists or files9 in two levels

with an enclave. In particular, we address three systems-level

issues below:

Memory-efficient MHT construction: Recall the in-

put verification works by reconstructing the MHT from

inputKV(), and checking its root hash (upon completion)

against the previous digest. Our system limits the Merkle root

hash construction by consuming logn memory footprint (n is

the number of MHT leaf nodes or the number of records in a

file), because it only needs to maintain a tree “frontier” (i.e.

the path from the current leaf node to the root) bounded by

the tree height [79]. The output stream is digested by similarly

constructing an MHT upon outputKV() calls.

Versioning policies: Applications may have different

policies in managing versions. For instance, an application

may explicitly require the ”update” semantic for its write,

which states the write should overwrite all previous versions

and requires the system to maintain a single, latest version for

the written key. Other applications may prefer treat the update

as an insert, allowing for multi-versioned data. A common

policy is to keep the latest k (e.g. k = 3) versions and delete

any version older than them.

Policies can be implemented as a filter plugin on the one-

pass vCompact program in enclave. For instance, retaining

the latest k versions is implemented by maintaining a sin-

gle per-key counter counting the number of versions of the

current key visited. One thing noteworthy about the one-pass

compaction is that the data records are emitted in the key

order (tie broken by timestamps) so that different versions

of the same key are visited together and a newer version is

always visited before an older version. This order allows the

versioning policies to be implemented as an add-on filter on

the pass.

Handling delete: Similar to original LSM stores (e.g.

LevelDB [7]), we treat a delete request as a special data record,

a.k.a, tombstone write. The semantic of the delete record w.r.t.

key k is to delete all the versions of k preceding (in arrival time

or timestamp) the delete record. We implement this semantic

in vCompact by the deleting policy. The deleting policy is

very similar to the overwriting policy with the only exception

that the delete record itself will be dropped if the compaction

reaches the last/highest-numbered level (that is when it can

assure all possible data records before it are deleted).

Implementation with SGX: By the SGX hardware design,

system services are prohibited inside enclave and have to be

executed outside. The compaction interacts with input/output

data resident on disk. It is thus essential to coordinate the

scheduling of in-enclave merge computation and outside-

enclave disk-accesses.

From programming perspective, the problem boils down

to “partitioning” the code path of interface functions,

inputKV()/outputKV(), to the parts that are run in and

9In a partitioned LSM tree, a sublist is materialized as a file. Hence, we
use file and sublist interchangeably hereafter.
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Fig. 6: In-enclave compaction: three selected files or sublists,

f11, f12, f21, are merged into two or more files in C2, e.g., f ′

21, f
′

22.

It shows the workflow of in-enclave compaction; the white triangles

inside the enclave refer to the frontier built to construct input/output

MHT root hash.

outside enclave. A naive partitioning is directly on the inter-

face function, which results in a world-switch (i.e. the switch

of program execution between the enclave and untrusted host)

upon every individual call to inputKV()/outputKV().

That is, a world switch is triggered to read and write each

key-value record. This design results in significant runtime

overhead in our experiments. A better design is to result in

less frequent world-switches. We partition the code at a level

close to the system-calls so that a world-switch is triggered

only when it becomes necessary. Specifically, we maintain a

buffer in the untrusted world to hold input/output data, and

when the buffer runs out of space, our partitioned code starts

to switch out enclave and performs system calls to read/write

files in the untrusted world.

In our implementation, we maintain the Merkle root hashes

of all the per-level MHTs in enclave to simulate the “signing”.

Because in-enclave signing by digital signatures would unnec-

essarily increase the enclave codebase. Normally, an LSM tree

does not have too many levels (e.g. fewer than 20), making it

feasible for storing Merkle root hashes.

1) Security Analysis: A local attacker is a party who fully

controls the server’s software/hardware stacks except that the

attacker can not physically break into the enclave world: The

SGX CPU is tamper resistant and the enclave memory pages

are encrypted and protected under a computationally bounded

attacker.

By design, an enclave execution allows two possible chan-

nels for boundary-crossing, 1) switching control out of en-

clave (through SGX instruction, EEXIT [11]), and 2) direct

untrusted-memory access from enclave. To a local attacker,

this constitutes the attack surface of an enclave program

execution.10

Through the attack surface, we consider two attacks by 1)

injecting incorrect input data (data exploit), and 2) exploiting

in-enclave program integrity for control-flow hijacking attacks.

The first attack has been analyzed in § IV. To attack 2), we

assume a trustworthy enclave program with program integrity.

10We don’t consider the denial of service attacks mounted by malicious OS
or the side-channel attacks [85] targeting on confidentiality of an enclave.
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In our implementation, we leverage Control-Pointer Integrity

(CPI [44]) in the recent LLVM compiler that ensures (in a

certain degree) the program integrity.

VI. EVALUATION

In this section, we evaluate our design to answer the

following questions:

• What is the TCB size? (§ VI-A)

• What is overall performance benefit of LPAD comparing

existing ADSs (§ VI-B)?

• What is the detailed performance overhead of LPAD on the

frontend (§ VI-D) and backend (§ VI-C)?

A. Implementation & Enclave Size

We implemented our LPAD systems design and built the

system of LPAD, a trustworthy key-value store based on

LevelDB, Intel SGX SDK and Crypto++ SHA code. The

system implementation involves writing programs for the

execution in two worlds.

The program in the untrusted world is taken out of the

LevelDB codebase [7] with several changes: 1. hooking our

enclave program (described below) to the LevelDB operations,

2. implementation for storing and serving MHT digests; we

here reuse several LevelDB persistence utilities and format the

MHT digests in a key-value format for that purpose. We also

implemented the proof construction (p.Prove) for processing

Get in the untrusted world. We modified the LevelDB code-

base to return the write timestamp upon Put. This change is

not significant (e.g. leaving the original codebase as it is) and

does not cause high overhead.

The enclave program consists of four modules, 1) merge,

which performs the compaction computation, 2) MHT oper-

ations, which include MHT construction and Merkle proof

verification, 3) SHA which is taken from Crypto++ library

with the modification to get rid of system calls for the use

in enclave, 4) consistency checker, and 5) misc. functionality

which includes the world-switch glue code generated by Intel

SGX SDK (alpha on Linux), various condition checking,

thread synchronization support, etc. The four modules enable

enclave-entry points for all the constructs from verifiers (v or

v’) in Figure 3. The enclave program is written in C.

We report the size (by lines of code, LoC) of each enclave

module in Table II. The total enclave code line is 1025.

We compare it with the Haven [25] approach which would

put into the enclave the entire codebase of LevelDB, among

other facilities (hence TCB size is estimated to be larger than

LevelDB’s number of codelines, 19567 LoC). By comparison,

our design results in a TCB size reduction by at least 20 times.

Layered implementation While we did modify the code-

base of LevelDB to hook LPAD, it does not have to be

the case. Depending on the API exposed by the storage

system, our implementation might be incremental, that is,

without changing the original storage codebase. For instance,

in HBase, it already exposes hooks for pre-Put/Get/Compact,

post-Put/Get/Compact, as in its CoProcessor API [5].

TABLE II: TCB size

TRUSTKV All in enclave [25]

LoC 1025 > 19567

Module merge SHA MHT checker misc. LevelDB

LoC 118 339 40 134 394 19567
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Fig. 8: Memory intensive workloads

B. Overall Performance

1) LPAD vs ADS: This set of experiment aims at studying

the performance advantage (or disadvantage) of an LPAD

over the existing ADS when running on an LSM storage.

We choose a single MHT over the entire dataset to repre-

sent the update-in-place ADS. Note the single-Merkle tree

approach is used in many verifiable storage systems including

SUNDR [47], and is representative.

The experimental setup is on a laptop with an Intel 8-core

i7-6820HK CPU of 2.70GHz and 8MB cache, 32 GB Ram and

1TB Disk. This is one of the Skylake CPUs with SGX features

on. We generated a base dataset with uniformly distributed

keys; our base dataset includes 200 million records (22GB

without compression) with uniformly distributed keys;the keys

are generated sequentially in order. The overall number of

read/write requests are less than 1% of the entire dataset. For

a key-value record, the key size is 16 bytes and value size is

100 bytes.

We performed the experiment by running LevelDB’s built-

in benchmark with the modification to drive workloads of

different read-write ratios to the target system. We varied

the read percentage from 0% (i.e. write-only workload),

20%, 50%, 80% to 100%. We tested different storage system

settings, such as compaction turned on/off, different record

sizes, use of different hash algorithms (e.g. SHA1 or SHA3).

We run each experiment at least three times, and report the

results in two metrics. As LPAD is designed for single-

threaded case, the experiments are conducted under single-

threaded workloads.

The performance result is presented in Figure 7a. The

performance difference between LPAD and the single MHT

can be up to three orders of magnitude, and it is clear that

LPAD’s curve is very similar to the “Ideal” performance

where the raw LevelDB is tested. In both LPAD and raw

LevelDB, the latency increases as the workload moves from

write-only to more read-intensive, both reflecting the write-

optimized performance nature of LSM storage design. By

contrast, in the single-MHT, the write-only workloads result in

the largest latency. The performance result can be explained
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Fig. 7: Disk IO intensive workloads

by the following: In our setting, most of the read requests

are cold and served from disks, rendering the disk seek the

dominant factor. The LPAD design introduces no extra disk

seeks, while the naive Single-MHT design incurs a lot of extra

disk seeks due to its update-in-place nature.

We perform similar experiments with a much smaller

dataset (with all records fit in memory). In this memory-

intensive workload, as disk IO is stripped away from the

critical path, the overhead of LPAD becomes more significant:

as in Figure 8, the LPAD overhead is up to 50% of the

raw LevelDB when SHA3 is used to construct the Merkle

trees. When SHA1 is used, the overhead reduces significantly,

despite its lower security.

2) Cost of Consistency Checker: This experiment aims at

studying how much performance overhead is caused by our

front-end consistency checker. We add the consistency checker

to the LPAD and call the overall system by TRUSTKV.

We first conduct experiments in a single-thread setting. The

number of queries for each workload is one million. We report

the execution latency in Figure 7b.

Both the LPAD and TRUSTKV system preserves the perfor-

mance of ideal LSM storage, with small performance overhead

(less than 12 percent). Specifically, the performance trend

is a hill-shaped curve; the latency reaches the highest point

for the read-write workload mixed at certain rate. This is

consistent with LSM storage’s performance as it is not as good

serving read-write workloads as serving write-only (or read-

only) workloads.

Multi-Threaded Execution: This experiment studies the

performance of TRUSTKV under multi-threaded workloads.

Note LPAD can only run for single-threaded execution, and

is thus excluded here. We run LevelDB’s built-in workloads

(read-random and read-while-writing) on top of both variants.

The number of queries for each workload is one million,

which are evenly distributed among read threads. We report the

latency and throughput in Figure 7c and Figure 7d. From both

figures, the TRUSTKV reduces raw LevelDB’s throughput

by about 10%. As target throughput increases, the latency

increases (almost linearly) with the throughput.

C. Compaction Performance

1) Micro-benchmark: In our implementation of in-enclave

compaction, there are two options: 1) the level of code-

partitioning that decides the frequency of context switches,

as discussed in § V, and 2) whether the context switch

copies the untrusted buffer to enclave; when the buffer is

not copied, it is the pointer to the buffer that is passed into

the enclave for direct access. We design the experiments to

understand the performance impact of these implementation

options. We consider 5 variants with different combinations

of these options: copy, copy (no MHT), non-copy, non-
copy (no MHT) and naive-partition. The first four variants

perform one context-switch per syscall, while the last one,

naive-partition, incurs the most context switches (one per

read and write). non-copy does not make data copy upon

context switch; and no MHT means MHT was disabled in

experiments. We also consider the baseline (unsecured) ,

which measures the original LevelDB performance without

any security.

In experiments, we change compaction configurations, in-

cluding file size, the number of input files, buffer size, and

record size. We measure the execution time; for each result, we

conducted three runs of experiments and report average result.

We use a buffer size to hold about 1000 records and measure

the execution time under different settings: We use 5 input files

and vary the file size from 4 million records to 12 million, and

report the result in Figure 9a. We fix at 31.5 million records

and evenly distribute them to varying number of files from 3

to 9. We report the result in Figure 9b. From these two figures,

it can be seen: 1. the execution time grows linearly with the

number of records, and is insensitive to number of files, 2. the

memory copies do not cause significant overhead, 3. with a

large buffer, the context switch overhead is negligible (except

for naive-partition), 4. the hash computation (by SHA) incurs

about 45%−115% more execution time, 5. the naive-partition
approach results in the highest execution time, caused mainly

by an excessive amount of context switches.

The impact of the context switches can be seen more clearly

from Figure 9c where we vary the buffer size. With a large

buffer size (e.g. > 2 KB), the overhead of context switches

is small. When the buffer size is smaller than 2 KB, the

performance overhead is significantly increased by context

switches.

In the last experiment, we vary the record size, more

specifically, the size of value in a key-value record. We report
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the experiment result in Figure 9d. The difference in execution

time can be attributed to the disk IO costs: A larger record

costs longer disk-memory transfer time and all the series

converge at a large record size in Figure 9d.

2) LevelDB benchmark: We used the built-in benchmark of

LevelDB to study the impact of longer compactions to other

store operations. The built-in benchmark tests multiple work-

loads in a sequence: “fillseq, fillsync, fillrandom, readrandom,

readrandom, compact, readrandom.” In particular, “fillseq”,

“fillsync”, and “fillrandom” are write-only workloads, and

“readrandom” is a read-only workload; they both may trigger

the execution of compaction. In addition, “compact” is a work-

load where compactions are explicitly triggered. “fillseq” and

“fillsync” would clear the storage so that the next workload

can start from a freshly new store. We consider 3 variants in

this experiment, copy (no MHT), copy and naive-partition.

Other settings are the same to our micro-benchmark. We report

the result in Table III; in addition to the raw latency readings,

we also report the normalized latencies by the baseline ap-

proach. We highlight the largest normalized latencies: They

all belong to the “compact” workload. The slowdowns by

copy(no MHT), copy and naive-partition are respectively

1.3, 3 and 9.3, which are consistent with the micro-benchmark

results, except for that the absolute performance difference is

smaller due to the interference of front-end query operations.

TABLE III: Compaction latencies with online queries (the unit

is micro seconds except for “compact” with seconds, and the number

in the parenthesis is normalized latencies by baseline)

baseline copy(no MHT) copy naive-partition

fillseq 29.2 29(1.00) 30.9(1.06) 28.8(0.99)

fillsync 378951 39854(1.05) 38330(1.01) 38454(1.01)

fillrandom 71.3 85.0(1.19) 127(1.79) 257(3.61)

readrandom 9.55 11.6(1.22) 14.5(1.52) 17.8(1.86)

readrandom 5.02 5.73(1.14) 7.08(1.41) 10.3(2.05)

compact(×10
6) 5.02 6.82(1.36) 15.43(3.07) 47.06(9.37)

readrandom 3.599 3.553(0.99) 3.611(1) 3.647(1.01)

D. Frontend Performance

In this section, we characterize the performance of front-

end query verification. One factor affecting performance is

the size of the proof. We consider the use of selected-level

proof (in Definition 4.2) as default in LPAD, and compare

the performance using it with that using the all-level proof (in

Definition 4.1). We also evaluate the performance of front-end

query processing without running any digest computations. It

allows studying the performance impact of world-switches to

online query performance. We use the unsecured LevelDB as

the same baseline. We re-run the LevelDB built-in benchmark

under the same configuration, and report the result in Table IV.

The trends are similar: All-Level always has the highest

normalized latency in all workloads, and the last workload

(“readrandom”) has the largest normalized latency in all tested

approaches. Compare approaches No MHT and LPAD: In

No MHT whose overhead is only introduced by SGX has a

less than 3X slowdown, while LPAD has a slowdown up to

15X. We suspect the use of MHT/SHA is the main culprit of

performance slowdown.

The result also shows the effectiveness of using the inter-

level time ordering in saving read overhead. Without the time

ordering, the slowdown of All-Level is up to 51.44; it is more

than 3 times larger than that of LPAD.

TABLE IV: Latencies of online queries (the unit is micro seconds

except for “compact” with seconds, and the number in the parenthesis

is normalized latencies by baseline)

baseline LPAD All-Level No MHT
fillseq 29.2 63.9(2.19) 64.1(2.20) 30.3(1.04)

fillsync 37895 34792(0.92) 38149(1.01) 35493(0.94)

fillrandom 71.3 130(1.83) 134(1.88) 129(1.82)

readrandom 9.55 88.2(9.24) 266(27.8) 22.7(2.38)

readrandom 5.02 77.1(15.3) 260.6(51.8) 11.9(2.37)

compact(×10
6) 5.02 12.20(2.43) 12.51(2.49) 12.21(2.43)

We conclude our performance study of LPAD: Comparing

update-in-place ADS, LPAD improves the performance by

up to two orders of magnitude. LPAD becomes less disk-IO

intensive. Among various LPAD configuration options, the

use of MHT/SHA stands out to be the most significant in

performance impact. The SGX/Enclave hardware, if properly

used, can be lightweight with less than 3X slowdown for

online query processing, and less than 1.4X slowdown for

compaction jobs. MHT/SHA causes relatively high runtime

overhead, but it comes with the benefit of higher security

levels. In practice, clients who are more concerned about

performance should use more efficient but less secure hash

primitives (e.g. SHA-256). We leave it to the future work to

study the performance optimization problem.

VII. RELATED WORK

A. Systems & Databases on TEE

Existing TEE solutions include Intel SGX,

TXT [12]/TPM [13], ARM TrustZone [2], IBM SCPU [10],

etc. Prior to SGX, there are TEE-based software systems

for database systems [24], [23], [20], key-management [76],

etc. Intel SGX adds architectural supports for more generic

execution in the secure world; these new features include

dynamical memory allocation, paging, and multi-core

execution. There are recently software systems built

on SGX, for big-data analytics [67], supporting legacy

applications [25], network management [70], distributed

multi-party computations [38]. A formal verification

technique is proposed to strengthen the security of enclave

programs [72].

In particular, Haven [25] supports generic legacy applica-

tions using SGX. The support is done by loading the entire

application software stack into enclave, and redirecting system

calls to the untrusted world. This design, while enabling

software compatibility, increases the in-enclave codebase to

a size (hundreds of thousands or millions of codelines) that it

can not be formally verified in an efficient way.

VC3 [67] supports MapReduce style big-data analytics on

SGX. It partitions the Hadoop software stack and places

only the user-defined mapper/reducer functions inside enclave,

thus resulting in a small and trusted codebase. However,

this approach to partitioning is specific to the MapReduce

framework and is not readily applicable to partitioning a key-

value store system. Furthermore, VC3’s in-enclave verification
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Fig. 9: LPAD execution time
works mainly for stateless batched computation, while our

work complements the VC3’s approach in supporting stateful

computations with storage.

CorrectDB [23] is a trusted database system that enables

correctness-verifiable SQL processing on IBM SCPU [10]. It

partitions an SQL query plan to the two worlds; the query

executed in the non-secure world is protected by using MHT,

and the query executed inside the secure world involves multi-

dimensional data where the MHT can not handle efficiently.

Our TRUSTKV shares the similar goal with CorrectDB in

placing code to the secure world only when it is necessary.

However, the target applications and systems are different, and

the techniques are orthogonal.

B. Storage Consistency Verification

Our system uses the notion of strong consistency to specify

the correctness of storage queries. Given the limited space, we

cannot completely survey the extensive body of consistency

research; instead, we focus on cloud storage consistency and

verification.

In the context of cloud storage, query linearizability [39]

requires the total order among reads and writes on a single

object (or a single key in a key-value store). Transactional

serializability [26] requires the same but for reads and writes

on different objects. Relaxed consistency levels [80], [64],

[81] and eventual consistency [31], have been proposed for

large-scale distributed storage in the cloud. In the eventual

consistency, the read can return an arbitrarily stale write

result as long as it “eventually” returns fresh data. In the

presence of multiple clients, a forking attack is the one that the

cloud can present different results to different clients, hence

“forking” client views. Fork consistency [49] specifies that

a client’s view can only be forked once. Without client-to-

client communications, the fork consistency is the strongest

consistency level achievable in theory.

There is a body of research work on secure verification

of storage consistency under various specifications [66], [73],

[36], [43]. CloudProof [66] verifies the strong consistency in

both write-write linearizability and read-after-write freshness.

Caelus [43] verifies the weaker consistency models, such as

time-bounded eventual consistency. To verify the consistency

specification, the commonly adopted mechanism is by logging

the operation history by the hash chain and periodically audit-

ing it. While it is effective in amortizing the verification cost, it

does not detect consistency violation in real-time. In addition,

it also assumes a trusted, third-party auditor collecting the

operation history from both the clients and the cloud. This

requires the client availability for auditing which might not

be realistic, particularly for ad-hoc mobile users. By contrast,

our work enables real-time consistency verification, does not

assume a client to be online other than the query time, and

can securely verify query consistency with efficiency.

Alternatively, read-after-write freshness can be verified by

MHTs [36], [73], [79] (with a trusted timestamp oracle). In

these approaches, the owner stores the root hash digesting

the remote MHT in the cloud [36], [73]. Upon data writes,

the owner needs to update the MHT by reading back relevant

authenticated information from the cloud before producing the

new root hash. Our work avoids the inefficiency of reading

digest upon writes, and inspired by the log-structured system

we apply the idea of append-only writes to the updating-MHT

problem.

Prior work based on trusted hardware [86], [45] addresses

the freshness verification problem. They tackle reliability

under faulty hardware and their approaches are complementary

to our work.

Venus [71] supports verifiable causal and eventual (strong)

consistency on untrusted storage. Venus assumes honest

clients, and for the purpose of setting up the ground truth of

consistency verification, a subset of clients that are always on-

line. The put/get operations are concurrent and non-blocking,

with online causal consistency; an asynchronous callback is

needed to verify the (eventually) strong consistency through

client-to-client communication.

C. Log-Structured Merge Storage Systems

Given the recently renewed interest in LSM storage systems,

there is a body of researches on improving and applying

the LSM structures. To improve read performance on log-

structured stores, bLSM [68] systematically model the LSM

tree performance, and organizes data into row-based storage

for serving row-based queries with less disk access. The com-

paction process is decomposed at finer granularity and is run

with costs carefully amortized to each write. Prior work [40]

partitions the LSM tree storage by keys to accommodate

the skewed key access popularity. The level sizes follow an

exponentially growing sequence, in a way to minimize write

amplification. In distributed key-value stores, compaction jobs

among multiple nodes are scheduled and coordinated for

better performance [16]. The LSM tree structure is applied
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beyond disk-based storage: With a clear separation between

mutable and immutable structures, an LSM tree minimizes

storage overhead of dynamic data. This advantage enables

the memory-efficient design of LSM tree based main-memory

databases [89]. The LSM tree has also been applied to spatial

databases in the AsterixDB project [17]. cLSM [35] is an LSM

store supporting concurrent executions of put, get, snapshot-

scan and conditional-updates. Running with concurrent merge,

it supports non-blocking get and minimizes the blocking on

put using readers-write block. It is implemented as an add-

on to an LSM store by hooking among the three typical

components of the store (i.e. in-memory, on-disk and merge

components).

VIII. CONCLUSION

We build a trustworthy key-value store with pragmatic

performance, for the data outsourcing to the public cloud. We

specify the correctness of an LSM-tree based storage system

by strong consistency on the frontend and the compaction

specification on the backend for data maintenance. Against

the local attacks in the cloud, these properties are made

securely verifiable by the combined use of Merkle hash tree

and Intel SGX. The Merkle hash tree is used for verifiable

freshness and strong-consistency of query serving. Intel SGX,

the first commodity hardware for trusted execution, is used for

the verifiable data-maintenance jobs with close proximity to

data. The use of trusted execution environment for verifiable

maintenance is necessary, and we made our trusted codebase

small and likely to be minimal. We analyze the security of

our design and implement it on LevelDB with SHA1/3 for

Merkle hash tree. We evaluate the performance overhead and

demonstrate near-practical efficiency.
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APPENDIX A

PROOF OF THEOREM

We present the proof for Theorem 3.3.

Proof Consider the initial system state satisfying Theo-

rem 3.3, that is, ∀〈k, ts〉@Ci
11 and 〈k, ts′〉@Cj with i < j,

then ts > ts′. The system state can only be mutated by one

of the two operations: 1) a Put that mutates list C0; and 2) a

compaction that moves records from a lower-numberd list to

a higher-numbered one. Since the theorem is about records of

a single key, all the records we consider is of the same key k.

Operation 1) does not violate the invariant in Theorem 3.3,

because of the following: After the Put, assume the new record

inserted is 〈k, v, ts′′〉@C0. Given it is the newest record with

largest timestamp ts′′, for any record picked from non-zero

level, say 〈k, v, ts′′′〉@Ci>0, it will hold: i > 0 and ts′′ > ts′′′.

Theorem 3.3 holds after Operation 1).

11We use 〈k, ts〉@Ci to denote record 〈k, ts〉 resides in level Ci.

Operation 2) does not violate the invariant in Theorem 3.3.

As by Invariant 3.2, a compaction moves records in a con-

secutive time range from a lower-numbered level to a higher-

numbered one. W.l.o.g., consider the records (of key k) being

moved are 〈k, v0, ts〉, 〈k, v1, ts〉, . . . , 〈k, vl, ts〉, . . . . They are

moved from level Ci to level Ci+1. Now ∀〈k, v, ts〉@Cj from

the overall dataset but the moved records, and ∀〈k, v, ts′〉@Ci

in the prestate. Consider two cases: A) j = i. In this case,

the record 〈k, v, ts〉 will stay after in Ci after the compaction

only when its timestamp falls outside the consecutive range

of those moved records, that is, ts smaller than the timestamp

of any moving records, hence ts < ts′. B) j 6= i. In this case,

if j = i + 1, then it is irrelevant to Theorem 3.3 after the

compaction. If j < i or j > i + 1, then the moving has no

effect on their level ordering before/after compaction, that is,

if j < i before compaction, then j < i+ 1 after compaction.

If j > i + 1 > i before compaction, then j > i + 1 after

compaction. Therefore, the theorem always holds.

APPENDIX B

CONSISTENCY CHECKING

1 class store_wrapper{

2 Store store;

3 Att Put(key,val){

4 prePut(key,val);

5 att(tsw)=store.dPut(key,val);

6 return postPut(key,val,att(tsw));

7 }

8 Crt Get(key){

9 preGet(<key>);

10 <key,val>,pf(tsrw,tsr*)=store.dGet(key);

11 return postGet(<key>,pf(tsrw,tsr*));

12 }

13

14 mutex State pending_wr, completed_wr,history_w;

15

16 void prePut(<key,val>){

17 pending_wr.add(<key,val,start_rt=now()>);

18 }

19 boolean postPut(<key,val>,att(tsw)){

20 <key,val,start_rt>=pending_wr.remove(key,tsr);

21 completed_wr.addW(<key,val,start_rt,end_rt=now(),tsw>);

22 ac1 = completed_wr.tryTruncate();

23 if(ac1 != NULL){

24 assertC(acl);

25 if(assertOrdered(acl,history_w))

26 history_w.merge(acl);

27 }

28 }

29 void preGet(key){

30 pending_wr.add(<key,start_rt=now()>);

31 }

32 boolean postGet(r<key,val,tsrw,tsr,pf(tsrw,tsr*)>){

33 r<key,start_rt>=pending_wr.remove();

34 if(r.tsr <= history_w.latest());

35 assertL2(r<key,val,tsr,tsrw,pf(tsrw,tsr*)>,history_w)

;

36 else

37 completed_wr.addR(<key,val,start_rt,end_rt=now(),tsr,

tsrw>);

38 }

39 }

Listing 2: Interfaces of verified and verifiable Put/Get

Our linearizability checking algorithm works by adaptively

finding the operations that can form a consecutive segment

with serialized operations, checking the consistency conditions

on this segment, and then merging the segment into the se-

rialized operations. The correctness of our algorithm depends

on the following intuition: Given two consecutive operation
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sets, if L1 holds on both of them, then L holds on the merged

segment from them. Formally,

Definition B.1: Real-time partial-order ≺ is a relation in a

set of operations l. An operation, say o, has two attributes:

invocation time inv(o) and response time resp(o) > inv(o).
Given two operations o1, o2 ∈ l, o1 ≺ o2 when resp(o1) <

inv(o2).
Definition B.2 (Linearizability): Given a set of operations,

l, and real-time partial order ≺, if there exist a total order <

among the operations such that:

1. Real-time L1: the real-time partial order is consistent

with total-order, that is, ∀o1, o2 ∈ l, if o1 ≺ o2, then o1 < o2.

We denote it by L1(l,≺) = TRUE

2. Freshness (or legality as in [39]) L2: any read operation

returns the latest write in the total order.

Definition B.3 (Ordered operation sets): Assuming all oper-

ations are defined on a total-order <. Two operation sets, say

l1 and l2, are ordered when all the operations of l1 are larger

than those of l2, or when all the operations of l1 are smaller

than those of l2.

Operation set, say l1, is smaller than operation set l2,

denoted by l1 <′ l2, if and only if the smallest operation in

l2 (based on the total order < of l2) is larger than the largest

operation in l1.

Theorem B.4: Given two ordered operation sets, if L1 holds

separately on them, then L holds on the merged set from

them. That is, if L1(l1) = TURE&&L1(l2) = TURE, then

L1(l1 ∪ l2) = TURE.

∀o1, o2 ∈ l1 ∪ l2, if o1 ≺ o2, then o1 < o2.

Proof We consider the non-trivial case that ∀o1 ∈ l1, and

∀o2 ∈ l2. Without loss of generality, assume o1 ≺ o2.

Then resp(o1) < inv(o2) < resp(o2). If l1 < l2, it requires

resp(o1) > resp(o2) which contradicts o1 ≺ o2. Thus, l1 <′

l2.

Because l1 <′ l2, o1 ∈ l1, and o2 ∈ l2, we have o1 < o2.

That is, ∀o1 ≺ o2, we have o1, o2. Thus the theorem holds.

1 void assertC(ac1,history_w){

2 //L1

3 o0<key,val,ts> = history_w.latest();

4 o1<key,val,ts> = ac1.oldest();

5 do {

6 assertL1pairwise(o0<key,val,ts>,o1<key,val,ts>);

7 o0=o1; o1=o1.next(ac1);

8 } while (o1 != NULL)

9 //L2

10 for (read r in ac1)

11 assertL2(r<key,val,tsr,tsrw,pf(tsrw,tsr*)>,history_w);

12 }

13 void assertL2(r<key,val,tsr,tsrw,pf(tsrw,tsr*)>,history_w){

14 assert(r.tsr <= history_w.latest());

15 assert(verify(pf(tsrw,tsr*))==true);

16 assert(tsr*==tsr);

17 }

Listing 3: Linearizability checking
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