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Abstract. Numerous electronic cash schemes have been proposed over
the years ranging from Ecash, Mondex to Millicent. However none of
these schemes have been adopted by the financial institutions as an al-
ternative to traditional paper based currency. The Ecash scheme was
the closest to a system that mimicked fiat currency with the property
that it provided anonymity for users when buying coins from the Bank
and spending them at a merchant premises (from the Bank’s perspec-
tive). However Ecash lacked one crucial element present in current fiat
based systems i.e., the ability to continuously spend or transfer coins
within the system. In this paper we propose an extension to the Ecash
scheme which allows for the anonymous transfer of coins between users
without the involvement of a trusted third party. We make use of a pow-
erful technique which allows for distributed decision making within the
network - namely the Bitcoin blockchain protocol. Combined with the
proof-of-work technique and the classical discrete logarithm problem we
are able to continuously reuse coins within our system, and also prevent
double-spending of coins without revealing the identities of the users.

Keywords: Anonymous Ecash, Transferable Coins, Delegated Signa-
tures, Blockchain, Proof-of-Work

1 Introduction

In today’s increasingly digital world we are surrounded by electronic payment
systems in everyday life. People regularly use debit and credit cards to make
payments at point-of-sale (PoS) terminals, and on the Internet with e-commerce
retailers. More and more people are also starting to make use of electronic funds
transfer (EFT) mechanisms, as Banks try to reduce their costs, and eliminate the
use of cheques. Near field communications (NFC) systems combined with mobile
technology promises to bring more convenient and quicker ways for users to pay
and conduct peer-to-peer (P2P) funds transfer. However, for all the technological
advances over the past three decades cash is still king. According to a recent
report by the San Francisco Federal Reserve Bank two-thirds of all transactions
below $10, and nearly half of all transactions below $25 are in cash [1].

There are a myriad of reasons for this - including the ease of use of cash
transactions, lower transaction fees for merchants, lack of access to credit for
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individuals etc. However, one of the main reasons still for the prevalence of
cash in everyday life is the fact that cash transactions are anonymous. In the
majority of cases when a person spends cash with a merchant at a PoS, there is no
requirement to share any personal information with them. Also, the merchants
and Banks cannot identify the payee through the use of the serial number on
the Bank notes even if they collude. On the other hand, with the proliferation of
payment cards, consumers are willingly handing over huge amounts of personal
details to retailers, who in turn sell this information onto marketing agencies.
The downside of the cash only approach is that it is not possible to pay for goods
and services at e-commerce retailers - a segment of the market that is growing
rapidly and popular with young technology savvy consumers.

It is therefore quite obvious that what is required is an electronic version
of cash that is fully anonymous. Just such a scheme (Ecash) was proposed by
David Chaum [2] more than thirty years ago. However it failed to take off as
a real alternative to physical cash. The first possible reason for its failure was
that Ecash lacked an important property that most users associate with fiat
currency i.e. transferability of coins. Within the Ecash scheme it was possible to
anonymously withdraw coins from a Bank, and at a later date spend them at a
merchant premises. In order for the coins to be accepted by the merchant they
had to be deposited with the Bank for verification in the Ecash scheme. However,
once deposited the merchant was not able to reuse the coins i.e. transfer them
to another user as change or reuse them to buy more goods from a wholesaler.

Over the years, a number of other electronic cash schemes have been pro-
posed to address the transferability issue [3]. These schemes usually embed an
obfuscated version of the identity of the current owner into the coin history. As
long as all the users abide by the rules of the system their identities remain
anonymous. However if a user tries to double spend a coin then their identity
(and possibly the identity of other users) will be revealed to the Bank [4]. We
believe that the inability to prevent double-spending of coins in these schemes is
the second possible reason which excluded them from being widely adopted for
financial transactions.

A recent paper on anonymous transferable electronic cash makes use of a
construct called malleable signatures [5], where given a signature, one can derive
another signature for an allowed transformation - thereby delegating the signing
authority to a third party. This scheme allows for anonymous transfer of e-cash
without the involvement of any trusted third parties. However this scheme only
proposes a double-spending detection protocol and does not prevent the double-
spending of coins.

In this paper, we introduce a fully anonymous and transferable electronic cash
scheme. Our proposed system uses the blind signature protocol [6] to anonymize
the identities of all users in the system, and allows for anonymous transfer of
coins. In addition, we make use of the Bitcoin inspired blockchain [7] and Hash-
cash inspired proof-of-work [8] algorithms to collectively verify the authenticity
of transactions, and prevent double-spending in the network. Our contribution
to the state-of-the-art is a novel delegated signature scheme in conjunction with
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the discrete logarithm problem (DLP) [9] and distributed verification, to allow
for the secure anonymous transfer coins from one user to another without the
need to contact a trusted third party (TTP). In the rest of this paper, we pro-
vide an overview of some of the technologies that we use as building blocks for
our protocol, followed by detailed description of our system, and a brief security
analysis.

2 Related Work

In the following sections we provide the reader with an overview of some of the
existing techniques that we are going to use within our proposed system, such
as the blind signature protocol, and proof-of-work concepts. We assume that the
reader is familiar with the discrete logarithm problem. A detailed description of
discrete logs can be found in [10].

2.1 Blind Signature Protocol

The first electronic cash protocol which was truly anonymous was proposed
by David Chaum [6][11]. The scheme is essentially an on-line software solution
whereby a buyer can spend Ecash coins with any merchant participating in the
system. By examining the coins (alone) neither the issuer or the merchant are
able to determine the identity of the customer. The protocol is designed such that
the issuer is not able to detect the serial numbers of coins that it issued to users
of the system (at the time of issue), even if it colludes with other participants
in the system.

The scheme uses the blind signature protocol which allows a user (Alice)
to mint a coin and hide the serial number of the coin using a blinding factor.
Alice forwards the unsigned blinded coin to the Ecash Bank. As long as the coin
satisfies certain criteria, the Bank signs the coin with its private coin signing key,
without knowledge of the serial number. This feature allows for truly anonymous
cash. On receiving the signed coin back from the Bank, Alice removes the blinding
factor, and uses the coin to pay for goods at a merchant (Bob) participating
in the system. The blinding factor is a random number used to obfuscate the
serial number of the electronic coin from the Bank. On receipt of the coin, Bob
immediately forwards it to the Ecash Bank for verification. The Bank maintains
an ever-growing database of the serial numbers of all coins that have been spent
in the system and is thus able to detect double-spending.

Mathematically the blind signature scheme is comprised of the following:
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– A set M which is the encrypted and non-encrypted message data
and two functions PK,SK : M → M which are an asymmetric
encryption/decryption pair:

• SK(PK(m)) = m and PK(SK(m)) = m for all m in M;
• PK(m) is relatively easy to compute for all m in M;
• PK’s effect on an m inM is extremely difficult to undo (invert)

without knowing SK, i.e. if we are given an e in M which is
the image of some m in M under PK (e = PK(m)) and where
this m is unknown then it is extremely difficult to compute m
without knowing SK.

– There is a binary ‘product’ · : M ×M → M on M the set of
encrypted and decrypted message data which forms a group 〈M, ·〉
with unit 1 (identity element) over M.

– The decryption function SK :M→M distributes over the binary
product · onM i.e. SK : 〈M, ·〉 → 〈M, ·〉 is a group homomorphism.

Let m be the coin’s serial number, (PK,SK) be the Bank’s asymmetric
encryption/decryption key pair, r is a random element chosen from the group
M. The sender encrypts r using the Bank’s public key forming the blinding factor
(PK(r)), and computes the product of the serial number with this blinding factor
to form the blinded coin serial number:

m′ = m · PK(r)

The Bank in turn signs the blinded serial number with its private key:

s′ = SK(m′)

Returns the coin to the user who removes blinding factor:

s = s′ · r−1

The user now has a coin signed with the Bank’s private key:

s = SK(m′) · r−1
= SK(m · PK(r)) · r−1
= (SK(m) · SK(PK(r))) · r−1
= (SK(m) · r) · r−1
= SK(m) · (r · r−1)
= SK(m) · 1
= SK(m)

2.2 Bitcoin and Blockchains

Bitcoin is a decentralized, pseudo-anonymous electronic cash scheme [7]. The
Bitcoin protocol is decentralized in the sense that the participants collectively
verify all of the transactions in the network. The security of Bitcoin is based
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around the assumptions that a majority of the nodes in the network are hon-
est, and that the proof-of-work (PoW) algorithm employed will deter any sybil
attacks [12], as the amount of computational resources required will be greater
than 50% of the network resources.

However, it is important to note that all Bitcoin transactions are stored in
a public ledger known as the blockchain, which can be parsed by others in an
attempt to ascertain the identity of participants in the system. The blockchain
is a timestamped public ledger of all transactions that have ever been conducted
on the Bitcoin network. The first block in the chain is known as the genesis
block, followed by blocks that have been created by miners.

Miners in the Bitcoin network are nodes that keep a complete and up to
date version of the blockchain, and compete to try to be the first to add the
next valid block into the blockchain, so that they can earn some bitcoins and
or transaction fees. Valid transactions are irreversibly locked into the blockchain
using the proof-of-work algorithm by the miners who work for a reward for
solving the next PoW problem (see section 2.3 below).

Fig. 1. Blockchain Structure

Each new block contains one or more new transactions that have been re-
ceived by the miner within a specified time interval (e.g. every ten minutes).
These are repeatedly hashed in pairs to form a Merkel tree [13]. The root of
the Merkel tree along with the hash of the previous block is stored in the block
header thereby chaining all the blocks together (see figure 1). This ensures that
a transaction cannot be modified without modifying the block that records it
and all following blocks. This property of the blockchain makes double spending
of bitcoins very difficult.

2.3 Proof-of-Work

The problem with the above collective verification approach is that Alice can
still cheat Bob by introducing a large number of nodes into the network that are
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controlled by her [12]. These nodes could then all reply back to Bob saying that
the coin given to him by Alice was legitimate and trick Bob into accepting the
transaction. To prevent this from happening the Bitcoin protocol employs the
Hashcash PoW algorithm [8].

The Hashcash system was proposed by Adam Black in 1997 as a means to
prevent spammers from sending large amounts of unsolicited emails to users on
the Internet. A cryptographic hash function (e.g. SHA-256) takes an arbitrary
length input and produces a fixed length output. Hash functions are designed
to be collision resistant i.e., it is computationally hard to find two inputs x and
y which are different and which produce the same output H(x) = H(y). For
SHA-256 this requires on average 2128 or 4 × 1038 attempts to find a collision,
which is a near impossible task given current computational capabilities [14].

Hashcash simplifies this requirement considerably by only looking for partial
collisions. A k-bit partial collision is where only the first k most significant bits
match. In practice the hash output is preceded by k zero bits. For example, say
one is required to find a partial collision for a string s. Let s = “hello, world!”
such that the hash output begins with four zeros (‘0000’) [15]. We vary the
length of the string s by concatenating an integer value x as a string to the end
called a nonce and incrementing it each time until we find the desired result.
Concatenating the nonce x = 0 does not produce a match:

H(hello, world!0) => 1312af178c253f84028d480 ...

We keep on incrementing the value of x until we reach the number x = 4250
which gives us the desired result, with four zeros at the start of the hash output:

H(hello, world!4250) => 0000c3af42fc31103f1f ...

This task can be made more or less difficult by varying the number of zeros
required to obtain the partial collision. As per the above example, a relatively
simple proof-of-work problem that requires four zeroes at the start of the hash
output is quick to solve. A more difficult proof-of-work problem might require a
longer run e.g., ten consecutive zeros which would take a longer time to solve.

A miner (Trudy) in the Bitcoin network is someone that wants to earn some
bitcoins and or transaction fees. Trudy verifies each transaction that is broadcast
on the network, within a particular time period, by consulting her version of the
blockchain looking for previous incompatible transactions, and then adds them
into a block of pending transactions that have not yet been endorsed by the
network peers. In order to convince her peers in the network that these pending
transactions are valid, she attempts to solve the PoW problem, which requires a
substantial amount of computational effort on her part. Since all previous blocks
are chained together, this ensures that untrustworthy peers have to work harder
than honest peers if they want to modify previous blocks, and include them in
the blockchain.

The Bitcoin PoW problem requires the hash of a blocks header to be lower
than or equal to a number known as the target. The target is a 256-bit number
that all Bitcoin clients share. The SHA-256 hash of a transaction block’s header
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must be lower than or equal to the current target for the block to be accepted
by the network. The lower the target value the more difficult it is to generate a
block. Trudy broadcasts the results of her computation (i.e. her version of the
transaction block and her calculated nonce) to the network. The other network
participants can easily verify it and include the block into the blockchain. The
system is designed such that any forks in the chain can automatically be resolved,
and that all network participants eventually agree on a single version of the
blockchain.

3 System Overview

Our payment protocol extends the Ecash system by allowing coins to be trans-
ferred from one use to another without revealing the identity of any of the
participants in the system by examining the coin alone. We combine the blind
signature protocol, blockchain and proof-of-work techniques, with the classical
discrete logarithm problem to allow for the anonymous transfer of coins from
one user to another in the system.

By anonymous transfer of coins we mean that the Bank cannot link the serial
number of coins with the identities of the users that bought or transacted with
the coins. Once a coin is added to the global blockchain the serial number of
the coin can be seen by anyone who examines the blockchain - however there
is no information within the coin parameters to identify the current owner of
the coin. Similarly when the coin is transferred between users in the system
the two parties involved in the transaction will share some information between
them (such as a shipping or email address) - however no personal identifiers are
added into the coin’s transaction history that may reveal the identity of the two
participants when it is included into the blockchain. As long as the two parties
involved in the transaction keep their transaction details secret, the Bank or any
other entity is not be able to identify them.

A coin in our system consist of a 4-tuple such that:

Coin = 〈SN, val,H(m1), SKval(m1) || ... || SKn−1(mn)〉

where SN is the serial number of the coin, val is the value of the coin, H(m1)
is the hash of the first transaction (m1), and (SKval(m1) || ... || SKn−1(mn))
is a number of signed transaction entries concatenated together, each of which
represents the transfer of a coin from one participant to another in the system.
The first transaction is always signed by the Bank which mints coins in the sys-
tem. Each subsequent coin transaction entry reveals a secret quantity associated
with the previous transaction (proving ownership of the coin to the intended
recipient), and also ties in a new coin secret and public coin transfer key of the
new owner. The first three components of the coin’s tuple (SN, val,H(m1)) are
used to uniquely index the coin within the global blockchain.
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3.1 Coin Transaction Entry (mi)

A coin transaction entry (mi) is composed of the following parameters:

mi = SN || DLPi || xi−1 || PKi || H(mi−1)

– A serial number (SN) for the coin which remains constant.
– A discrete logarithm problem αxi

i ≡ βi(mod pi) which we denote (DLPi =
(pi, αi, βi)) where:
• A large prime pi which allows the formation of the multiplicative group Z∗pi

.
• The large prime pi must be chosen in such a way that the multiplica-

tive group Z∗pi
contains a large subgroup G of prime cardinality (as the

cardinality of Z∗pi
is pi − 1 which is not prime). Doing this prevents

Pholig-Hellman attack on the DLP [16] [17].
• Elements αi and xi from the subgroup G with prime cardinality where
αi is chosen to be a primitive element of the subgroup (which will exist
because G has been chosen to have prime cardinality).

• The xi is the secret quantity which must only be revealed when trans-
ferring the coin to another user.

– The xi−1 is the secret associated with the previous DLP.
– The public key component (PKi) of a RSA coin transfer key pair (PKi, SKi).
• This is an ephemeral key pair which is generated by the current coin

owner on a per transaction basis. This allows the owner of a coin to
create a delegated signature when transferring the coin without the need
to contact a central authority.

• The public key (PKi) is embedded into the coin transaction entry mi

and is locked into the transaction by the blind signing of the previous
coin’s owner or the Bank when the coin is minted. During subsequent
coin transfers each owner creates their own delegated signature on the
transaction parameters.

– The hash of the previous transaction data H(mi−1).

A user forms the coin transaction data (mi) by concatenation of the serial
number (SN), the public discrete logarithm parameters (pi, αi, βi) which we
collectively refer to as DLPi in our protocol, their public ephemeral coin transfer
key (PKi) for this transaction, plus xi−1 (the previous secret) and H(mi−1) (the
hash of the previous transaction data).

mi = SN || DLPi || xi−1 || PKi || H(mi−1)

In general, each coin consists of a number of signed transactions (SKi−1(mi)),
where mn is the last transaction entry associated with the current owner of
the coin (see figure 2). The value xi−1 is the DLP secret of the previous coin
transaction (mi−1) and is only revealed when proving ownership of the coin.
In the case of m1 the value of x0 is null as this is the first transaction in the
list. In addition, we chain all of the coin transactions together by including the
hash of the previous transaction H(mi−1) in the next transaction (mi). Again
for transaction m1 the value of H(m0) is null as it is the first transaction in the
list.
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Fig. 2. Structure of a Coin

3.2 Minting a Coin

Figure 3 shows the steps of how Alice gets the Bank to blindly sign the first
coin transaction (m1) with its private signature key for a particular coin value
(SKval).

Firstly, Alice constructs the coin’s first transaction data m1 and then blinds
this value forming m′1 and sends this value to the Bank along with her account
number and the value of the coin she requires.

Secondly, the Bank has a number of signature keys for different denomi-
national values ($1, $5, $10, ...), and uses the private signature key (SKval)
corresponding to the val parameter supplied by Alice during their first message
exchange. The Bank deducts the corresponding amount of fiat money from Al-
ice’s account, checks that the blinded message m′1 adheres to certain parameters
(such as the message length), and signs the coin’s blinded first transaction m′1
with its private signature key corresponding to val (SKval). The Bank then
sends the blindly signed coin’s first transaction data (s′) in the second message
exchange to Alice.

Thirdly, Alice removes her blinding factor r from s′ to reveal the coin’s first
transaction data signed with the Bank’s private signature key (SKval) for value
(val). Alice now has the coin’s first transaction data signed by the Bank without
having revealed the contents of the transaction data to the Bank. Only she knows
the DLP secret (x1) which must be revealed by her in order to prove ownership
of the coin. In addition, she alone knows the private ephemeral coin transfer
key (SK1) which is used to transfer ownership of the coin to another user or
recipient in the network.

Finally, she broadcasts the newly minted coin on the P2P network to be
included in the next transaction block of the global blockchain. Note, that there
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Fig. 3. Anonymous Minting of Coins by the Bank

are no identifying parameters in the coin transaction history that can link the
coin to Alice’s identity.

Note that all communications between the Bank and Alice are conducted over
a secure channel (e.g. SSL), and the Bank has no record of the coin transactions
that it just signed for Alice. Also, note that it is Alice’s responsibility to ensure
that she forms the correct coin transactions as badly formed coins will not be
accepted by the other nodes in the system and will not get included into the
blockchain.

3.3 Anonymous Coin Transfer

Coins in this scheme are self-contained and consist of a list of signed transactions
(SKval(m1) || ... || SKn−1(mn)), one for each time the coin is transferred from
one user to another. A recipient is able to verify each transaction in the list
in turn without having to contact a central authority or TTP. This is achieved
by the recipient by first downloading the coin from the global blockchain using
the coin’s public parameters (SN, val,H(m1)) as an index into the blockchain.
The recipient then traverses the coin transaction list staring at SKval(m1) and
ending at SKn−1(mn), ensuring that each transaction is valid.
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The first transaction (m1) is always signed by the Bank whose public key
(PKval) for value (val) is known to all participants. A user that asked the Bank
to mint the coin embedded their public coin transfer key (PK1) into m1. During
subsequent coin transfers the public key (PKi+1) of the recipient of the coin is
locked into the next transaction (mi+1) by the owner when they create a blind
signature using their coin transfer private key (SKi). We then make use of a
global ledger and the PoW algorithm to lock in valid coins into the blockchain
and to prevent the double-spending.

In order for Alice to transfer a coin to another user or spend coins at a
merchant premises she needs to fulfill two requirements. The first is that she
must be able to prove ownership of the coin that she trying to spend by revealing
the DLP secret (xn) for the last transaction (mn) for the coin. Once the recipient
(Bob) has verified the DLP αxn

n ≡ βn (mod pn), he generates a new transaction
(mn+1) to be signed with Alice’s private coin transfer key (SKn). He does this
by applying Alice’s public coin transfer key (PKn) to a random number (r) to
form a blinding factor (PKn(r)). Note Alice’s public coin transfer key (PKn)
can be found in the last transaction mn in the coin history. Bob blinds his new
coin transaction mn+1 with the blinding factor to produce m′n+1 and sends this
to Alice to sign. Alice checks that m′n+1 has the correct structure and applies her
private coin transfer key (SKn), and returns the blindly signed coin transaction.
Bob removes r to reveal the new coin transaction signed with the private coin
transfer key of Alice (SKn(mn+1)). Finally, Bob updates the coin history and
broadcasts the new version of the coin to the P2P network to be included in
the next transaction block of the global blockchain. Only when Bob sees the
new version of the coin appearing in the global blockchain plus an additional
six further transaction blocks does he complete the transaction. This process
typically takes about one hour to complete.

Figure 4 shows in detail the coin transfer protocol between Alice and Bob. In
the first message exchange Alice sends the coin’s serial number (SN), its value
(val), the hash of the first transaction H(m1), and the DLP secret (xn) for
the last transaction (mn). Bob downloads the coin from the global blockchain
using the SN , val and H(m1) parameters associated with the coin as an index
into the blockchain. He verifies that xn is the solution to the discrete logarithm
problem (DLPn) of the last transaction (mn). As Alice did previously, Bob
generates a new coin transaction which consists of a new set of DLP parameters
(αn+1, βn+1, pn+1) and secret xn+1 such that α

xn+1

n+1 ≡ βn+1 (mod pn+1), and a
new ephemeral coin transfer key pair (PKn+1, SKn+1) which are only know to
him such that the next transaction (mn+1) is a follows:

mn+1 = SN || DLPn+1 || xn || PKn+1 || H(mn)

The new transaction (mn+1) consists of a concatenation of the serial number,
Bob’s DLP public parameters (DLPn+1), his public coin transfer key (PKn+1),
the DLP secret (xn) for the previous transaction (mn), and a hash of the previous
transactionH(mn), thereby linking the two transactions together. He then blinds
the transaction (mn+1) by multiplying a blinding factor PKn(r) where r is a
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Fig. 4. Coin Transfer Protocol

random number PKn is Alice’s public coin transfer key which can be obtained
from the previous transaction (mn) in the coin’s transaction history. Alice blindly
signs the new transaction (m′n+1) with her private coin transfer key (SKn) and
returns the blinded new transaction to Bob. Bob removes the blinding factor
to reveal the new signed coin transaction (SKn(mn+1)) and updates the coin
history with this new signed transaction, and broadcasts the updated coin to
the P2P network.

Once the coin is locked into the global blockchain Bob knows that the trans-
action on the coin has been accepted by the network as being valid and he can
now spend the coin, as only he knows the two secret quantities (xn+1, SKn+1)
that allow him to prove ownership of the coin, and to transfer the coin legiti-
mately to another user. As long as Alice and Bob do not reveal the transaction
details to any third parties their identities will remain anonymous within the
system.

3.4 Transaction Verification and Locking

In our system whenever a merchant or user is presented with the serial number
of a coin or coins, they first consult the global blockchain and download a copy of
the coin(s). We make use of the Bitcoin blockchain protocol and Hashcash proof-
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of-work algorithm to collectively verify a coin’s authenticity and prevent double-
spending of coins within the network. Each node in the system independently
verifies the authenticity of the coin’s transaction history before forwarding it to
its peers. Coins that do not conform to the correct structure are silently dropped
from the network and do not get included into the blockchain. As in the Bitcoin
protocol we have miners in the payment network that periodically solve the PoW
problem for a given transaction block which consist of all transactions that have
been verified and broadcast to the network in the last x minutes. The miners
are rewarded by the Bank for solving the PoW and locking transactions into the
global blockchain.

3.5 Size of Coins

We recall from section 3, that a coin in our system has the structure whereby
the first three parameters of the coin remain constant, while the transaction list
grows with each coin transfer:

〈SN, val,H(m1), SKval(m1) || ... || SKn−1(mn)〉

where: mn = (SN || DLPn || xn−1 || PKn || H(mn−1))

– 512 bit serial number (SN) - 64 bytes
• Size of val is negligible

– Hash of the first transaction H(m1) - 32 bytes

– DLP public params (pn, αn, βn) of 1024 bits each - 384 bytes
• xn−1 is 32 bytes

– 3072 bit secret coin transfer key (SKn) - 384 bytes
• Public coin transfer key (PKn) is negligible in length

– H(mn−1) - 32 bytes

If we make use of the above parameter lengths then each coin transaction
(mn) requires ∼512 bytes. Using RSA encryption with optimal asymmetric en-
cryption padding (OAEP) [18] gives us a length of ∼768 bytes (SKn−1(mn) -
for the two ciphertext blocks that are generated). Adding in the fixed part of
the coin parameters (96 bytes) gives us a final coin length of ∼865 bytes for a
coin with a single transaction. After 1000 transactions the size of the coin would
still be less than 1MB. If a coin’s storage requirements exceed certain limits then
it can be easily removed from the system by the Bank and a new coin can be
issued in its place.

In practice, the client wallet only needs to securely store the following 4-tuple
value 〈SN, val,H(m1), xn, SKn〉 for the last transaction (mn) for each coin that
the user owns. Therefore in order to store the coin secret parameters the client
wallet requires ∼ 512 bytes for each coin.
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3.6 Removing Coins from Circulation

As indicated in the previous section it may be necessary to remove coins from
the payment network if their size exceeds a pre-defined system limit or if Alice
decided to cash-in her coin. The size of a coin will grow with each transaction,
and in the case of frequently transacted coins the system defined size limit may
be exceeded. In such circumstances, a special procedure can be initiated whereby
the client wallet would automatically transfer the coin to the Bank which would
in turn credit the user for the value of the coin. The Bank would then broadcast
the coin with the last coin transaction where the DLP parameters and the coin
transfer key values would be null. This final coin transaction will be an indication
to all users that the coin has now been taken out of circulation from the payment
network. This approach implies that the user that cashes-in a coin reveals their
updated account balance to their Bank.

4 Security Considerations

In the following sections we discuss some of the security issues associated with
our scheme:

4.1 Transferability

Only the owner of the coin knows the DLP secret (xn) for the last coin trans-
action (mn) which is required to be exposed to the intended recipient in order
for the coin to accepted by that user. We make use of the owner’s coin transfer
key to blindly sign the new coin transaction (which is generated by the intended
recipient of a coin). This allows for the new transaction (mn+1) which consists
of the previous DLP secret (xn), the new DLPn+1 parameters, and the new
coin transfer key (PKn+1) to be embedded into the coin history. We also lock
in the hash of the previous transaction H(mn) into the new transaction (mn+1)
thereby creating a chain of transactions. These measures together prevent the
transaction list to be modified without knowledge of the correct signature key,
and there is no requirement to contact the Bank or any TTP during the transfer
of coins in the system. This satisfies our transferability requirement without any
central authority involvement.

4.2 Anonymity

There are no identifying parameters within a coin’s transaction history. An owner
of a coin who wishes to transfer it to someone else must reveal the DLP secret
for the last transaction in the coin transaction history to the intended recipient,
and must blindly sign the new coin parameters with their secret coin transfer
key. When an owner of the coin signs the new transaction in order to transfer the
coin to a recipient they make use of a per-transaction coin transfer ephemeral
key. This ephemeral key should never be used again for another transaction by
the user. This prevents anyone from analyzing the blockchain and linking the
transactions to a particular user, which therefore guarantees anonymity.



15

4.3 Double-Spending

The blockchain is a timestamped public ledger of all valid coins that have ever
been transacted on the payment network. Coins containing non-valid transac-
tions are automatically dropped by fully functioning and trusted nodes in the
system, and not allowed to propagate further through the network. The first
block in the chain is known as the genesis block, followed by blocks that have
been generated by miners. Each new block contains one or more new coins that
have been received by a miner on the P2P network in the last m minutes. These
are repeatedly hashed in pairs to form a Merkel tree. The root of the Merkel tree
along with the hash of the previous block is stored in the block header thereby
chaining all the blocks together. Each of the miners then tries to solve a hard
problem called the proof-of-work, and whoever solves it first is rewarded by the
Bank for their efforts. This ensures that a transaction cannot be modified with-
out modifying the block that records it and all following blocks. This property
of the blockchain makes double-spending of coins very difficult.

4.4 Security Questions

In the section below we pose a number of security questions and try to provide
a reasonable defence for each scenario:

Can the Bank trick Alice into revealing coin serial numbers?

– A scenario can occur where the Bank can act as a malicious entity and only
mint one coin at a time, and wait until the coin has been locked into the
global blockchain in order to match user identities to serial numbers of coins.
We can prevent this by designing the client software to wait for a least X new
blocks to be added to the blockchain, and a minimum of Y valid transactions
to have been broadcast on the P2P network before the client broadcasts its
newly minted coin into the network. We believe that this measure introduces
enough randomness into the system to prevent the Bank from carrying out
such an attack.

Can Alice fraudulently procure coins from the Bank?

– In our system, we have multi-denominational coins ($1, $5, $10, ...). The
Bank has a separate signature key (SKval) for each denomination. The Bank
will only sign a blinded coin with the corresponding signature key if Alice
has a sufficient amount of fiat currency in her account which the Bank can
successfully deduct. It is Alices responsibility to ensure that she has formed
the correct coin parameters as the coin will not be accepted by other users
in the system otherwise.

Can Alice spend a coin multiple times?

– We make use of the network participants to verify a new transaction on
a coin when it is being transferred from one user to another, and use the
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PoW algorithm to lock in the new coin parameters into a global ledger.
The recipient of a coin first consults the blockchain and downloads the last
transacted copy of the coin. This prevents someone like Alice from spending
a coin multiple times.

Can Bob insert a malformed transaction into the coin history?

– Bob can send a malformed transaction to be signed by Alice. However, for
the coin to be included in the blockchain all other participants will want to
verify the chain of transactions (m1, ...,mn). Failure to do so will result in the
coin being rejected and silently being dropped from the P2P network. The
serial number (SN) in each transaction should be same as the one initially
signed by the Bank, and each subsequent transaction (mi+1) must be signed
with the private coin transfer key corresponding to the public key (PKi)
locked into the previous transaction (mi). Also the DLP secret (xi) for the
previous transaction has to be revealed in the new transaction.

Can Trudy try to spend a coin that she does not own?

– In order to spend a coin a user must be able to reveal the DLP secret, and also
sign the new transaction with the private key corresponding to the public
key locked into the last transaction (mi−1) on the coin. Although, all the
coin transactions are stored in a global publicly accessible blockchain, each
user must securely store some secret parameters, namely the DLP secret and
the secret coin transfer key associated with coins that they currently own.
If these parameters were to be revealed accidentally or stolen maliciously,
then those coins could be anonymously spent by others in the system. It is
imperative that each user undertakes measures to securely store the secret
parameters on a secure device with additional file or disk encryption to
prevent unauthorized access.

5 Conclusion

In this paper, we have presented a fully anonymous version of the Ecash scheme
with unlimited transferability of coins. We are able to achieve this by embedding
a coin transfer public key into each transaction entry for the coin such that the
recipient can use the owner’s coin transfer public key to request the owner to
blindly sign the new coin transaction parameters. In effect, we have been able
to create a delegated signature scheme to allow for the transfer of coins within
the system without the need to contact a trusted third party.

In addition, unlike other schemes which allow for post-fact detection of the
double-spending of coins and reveal the identity of participants in the system,
our scheme prevents double-spending of coins within the system. We do this by
making use of the distributed decision making techniques used in the Bitcoin
system. Specifically we make use of the Bitcoin blockchain and Hashcash proof-
of-work algorithms to lock-in all valid transactions into a global ledger.
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Finally, we never reveal the identity of users in the system. We use the classic
hard discrete logarithm problem to prove ownership of the coin during a payment
transaction or coin transfer. In addition we make use of a novel per-transaction
ephemeral coin transfer key which allows us to anonymously transfer coins in
the network.
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