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Abstract

Asharov, Canetti, and Hazay (Eurocrypt 2011) studied how game-theoretic concepts can be used to
capture the cryptographic properties of correctness, privacy, and fairness in two-party protocols for fail-
stop adversaries. In this work, we further study the characterization of the cryptographic properties of
specific two-party protocols, oblivious transfer (OT) and commitment, in terms of game theory. Specif-
ically, for each protocol, OT and commitment, we define a two-party game between rational sender and
receiver together with their utility functions. Then, we prove that a given protocol satisfies cryptographic
properties if and only if the strategy of following the protocol is in a Nash equilibrium. Compared to
the previous work of Asharov et al., our characterization has several advantages: The game is played
by multiple rational parties; All the cryptographic properties of OT/commitment are characterized by a
single game; Security for malicious adversaries is considered; Utility functions are specified in general
forms based on the preferences of the parties; A solution concept employed is a plain Nash equilibrium.

1 Introduction

In cryptography, two-party protocols are designed for two parties to compute some function while conceal-
ing the input from each other. To guarantee the secrecy of the inputs, we consider the case where one of
the parties is an adversary who is interested in attacking the other, e.g., digging out the other’s secret. In
general, the adversary acts only for attacking the other, and does not care about protecting his own secret.
Also, cryptography only considers the situations where at least one party is honest, i.e., always follows the
protocol description.

Game theory mathematically analyzes decision making of multiple parties. In particular, non-
cooperative game theory deals with the situations where the parties act independently. The parties are said
to be rational, and they only care about their own preferences to achieve their best satisfactions. If a party
has two or more preferences, he considers the trade-offs among them and aims to obtain the most reasonable
result.

As described, both non-cooperative game theory and cryptography study the situations where parties act.
However, they capture such situations from different perspectives. By assessing the situations realistically,
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even adversaries may be reluctant to reveal their secrets. Also, if a party is sure that there is no danger, he
may deviate from the protocol description to obtain more information than following it. That is, all parties
may not be completely honest. In a game-theoretic framework, it seems to be possible to characterize
two-party protocols in such a realistic perspective.

There is a line of work using game-theoretic concepts to study cryptographic protocols. For a survey
on the joint work of cryptography and game theory, we refer to [18, 4]. Halpern and Teague [14] intro-
duced such approach of study on secret sharing. They study it in the presence of rational parties, seeking
for secure protocols in a game-theoretic framework. Their work has been followed in many subsequent
works, and the field is called rational secret sharing (see [5] and the references therein for the subsequent
works). Besides secret sharing, there are several studies using game-theoretic frameworks for cryptographic
protocols, e.g., two-party computation [2, 12], leader election [10, 1], Byzantine agreement [13], public-key
encryption [21], and protocol design [6, 7].

Asharov, Canetti, and Hazay [2] studied how game-theoretic concepts can be used to capture the three
requirements of the two-party protocols in cryptography, correctness, privacy, and fairness. They character-
ize these requirements individually by using a game-theoretic concept, a computational Nash equilibrium.
They focus on two-party protocols in the fail-stop model, in which adversaries are allowed to choose whether
to abort or continue at each round, but cannot conduct other actions such as sending illegal messages. Using
game-theoretic concepts, they characterize the requirements of two-party protocols in the following way: A
protocol satisfies a “certain” requirement if and only if the strategy of honestly following the description of
the protocol is in a computational Nash equilibrium in a “certain” game defined with “certain” utility func-
tions. For privacy and correctness, they showed the equivalence between the corresponding cryptographic
and the game-theoretic definitions. For fairness, they showed that their game-theoretic definition is strictly
weaker than existing cryptographic ones, and proposed a new cryptographic definition that is equivalent to
the game-theoretic one. Groce and Katz [12] continued their consideration on fairness, and showed a way to
circumvent impossibility results in the study of [2]. Goto and Shikata [9] studied oblivious transfer protocols
with game-theoretic security1 and universal composability.

1.1 This Work

Based on the work of Asharov et al. [2], we further explore how the cryptographic requirements can be
captured in a game-theoretic framework. In particular, our target protocols are oblivious transfer (OT) and
commitment.

Oblivious transfer. OT is a two-party protocol run between the sender and the receiver. The sender has
two secrets x0 and x1, and the receiver has a choice bit c ∈ {0,1}. After running the protocol, the receiver
obtains xc, while the sender obtains nothing. Because of a technical reason, we restrict our attention to
two-message OT in which the receiver sends the first message to the sender, and the sender replies with the
second message to the receiver who then learns the secret xc.

We usually consider three requirements in OT, the sender’s privacy, the receiver’s privacy, and correct-
ness. By the sender’s/receiver’s privacy, it is guaranteed that the receiver/sender cannot learn anything about
x1−c/c, respectively. Correctness guarantees that when two parties honestly follow the protocol description,
the receiver learns the secret xc Note that, in the indistinguishability-based security definitions, the three

1They employ a game-theoretic characterization of our preliminary results in [16], in which we used fixed-valued utility func-
tions and a computational Nash equilibrium.
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Table 1: Summary of the characterizations of [2] and this work.

Asharov et al. [2] This work
Target protocol Two-party protocol OT Commitment
Adversary model Fail-stop Malicious Malicious
Cryptographic Correctness Correctness Correctness
properties Privacy Sender’s privacy Hiding

Fairness Receiver’s privacy Binding
# of rational parties
in one game 1 2 2

# of properties
captured by one game 1 3 3

Utility function Fixed General General
Solution concept Computational NE NE NE

requirements are defined separately. Thus, for example, we usually do not consider an adversary who tries
to break the other party’s privacy and protect its own privacy simultaneously.

Commitment. Commitment is also a two-party protocol run between the sender and the receiver. The
protocol consists of two phases. In the first phase, called the commit phase, the sender who has a string
x ∈ {0,1}t interacts with the receiver. After that, the receiver obtains a commitment string c, and the sender
obtains a decommitment string d. In the latter phase, called the open phase, the sender persuade the receiver
that the committed string is x through an interaction by using d. Finally, the receiver claims whether she
accepts that x is the committed string.

We usually consider three requirements in commitment, hiding, binding, and correctness. Hiding is the
property that the receiver cannot learn anything about the committed string x before starting the open phase.
Binding is that the sender cannot generate two decommitment strings to open the commitment to two distinct
strings x and x′. Correctness guarantees that when two parties honestly follow the protocol description, the
receiver learns the string that was committed by the sender in the commit phase. As in the case of OT, in
cryptography, each of the three properties is defined individually. Thus, we usually do not consider a party
who tries to break hiding and protect binding simultaneously.

Game-theoretic characterizations. In this work, for each protocol, OT and commitment, we define a
game together with the utility functions of the sender and the receiver. Then, we show that, given a protocol
for OT/commitment, the strategy of honestly following the protocol is in a Nash equilibrium in this game if
and only if the protocol satisfies all the cryptographic properties of OT/commitment in the malicious model.
In other words, we present a novel way to capture the standard cryptographic security in terms of game
theory. The equivalence implies that the standard security that is defined between an honest party and a
malicious party is also reasonable for rational parties.

Our characterization of OT and commitment has the following advantages compared to the work of [2]
(See Table 1 for the summary.):

• The game defined in our work is played between two rational parties, while every game defined in [2]
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is played by a single rational party. For example, the game for the privacy of party 1 in [2] is essentially
played between a rational party and an honest party. Since game-theoretic concepts are of significant
meaning in the presence of multiple rational parties, it is preferable to characterize a single game that
is essentially played between two rational parties.

• We put multiple preferences of the parties into a single game, while each of them is characterized
by different games in [2]. This means that rational parties pay attention to the trade-offs among
the preferences in the game, while such trade-offs are not considered in the standard cryptographic
security. Although we show the equivalence of the game-theoretic characterization of the protocols to
the existing cryptographic security (therefore we call the characterization “game-theoretic security”),
the strength of the game-theoretic security can be altered by considering different utility functions and
solution concepts.

Indeed, our game-theoretic characterization reveals the difference between the parties’ preferences
for correctness in OT and commitment. For OT, the cryptographic security is equivalent to the game-
theoretic one as long as at least one of the parties has a preference for correctness. In contrast, for
commitment, the game-theoretic security becomes weaker if the sender has a preference for correct-
ness. The equivalence holds when only the receiver has a preference for correctness.

• We can capture the setting of malicious adversaries, who can take any action in the protocol. The
malicious model is stronger and more realistic than the fail-stop model that is studied in [2], where
adversaries choose to “continue” or “stop” in each round.

• Utility functions are specified in general forms based on the preferences of the parties. In [2], utility
functions are defined such that they take some fixed values, say 0 and 1, depending on the outcomes
of the game. We only consider the increase and decrease based on whether the preference are satisfied
or not. Thus, fixed-valued utility functions can be seen as a special case of our utility functions.

• We can capture the cryptographic requirements by plain Nash equilibrium, not computational Nash
equilibrium. This can be done by reforming the way of perceiving the preferences. First, we define
the preferences of the parties not over the outcome of a single execution, but over the algorithms used
by the parties. This way of defining preferences seems natural since protocols are usually designed
for the repeated use, and thus the users are not just interested in a good outcome of a single game
but prefer to use a good algorithm (protocol) for multiple games. Second, we exclude from strategies
sub-algorithms such as a distinguisher for guessing the secret. We consider best possible such sub-
algorithms for given strategies. For example, a utility function of a party is defined such that the party
prefers strategy A to B if there exists a distinguisher that predicts a challenge bit better when using A.
Thereby, we can define strategies of the parties in a simplified form. As a result, we can characterize
the cryptographic properties by plain Nash equilibrium.

As described above, our characterization clarifies the difference between OT and commitment regarding
the parties’ preferences for correctness. The difference is not obvious from the cryptographic security defi-
nitions. Thus, the game-theoretic characterization can be used to clarify the functionalities of protocols that
have several cryptographic requirements which are defined individually.

The generality of game-theoretic formalizations is illustrated by our results. We can define a game-
theoretic security that is equivalent to the existential cryptographic one. By considering various solution
concepts and utility functions, we can define various levels of security for cryptographic protocols.
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1.2 Organization

The rest of the paper is organized as follows. We review some concepts and definitions including two-party
protocols, oblivious transfer, commitment, and game theory in Section 2. In Sections 3 and 4, we propose
game-theoretic characterizations of oblivious transfer and commitment, respectively. We conclude the paper
in Section 5.

2 Preliminaries

In this section, we provide some basic notions and notations.
A function µ : N→ R is said to be negligible if for any polynomial p(·), µ(n) < 1/|p(n)| for every

sufficiently large n. We describe a negligible function as negl(·). Throughout the paper, we denote by n the
security parameter, and all the parties are assumed to run in time polynomial in n. Formally, it is assumed
that each party receives 1n as a part of input. We omit it if it is obvious from the context. For a set X ,

we denote by x $←− X the process of choosing an element x ∈ X uniformly at random. The empty string is
denoted by ε .

A two-party protocol consists of interactive algorithms of the parties. Let us consider the case where
two parties interacts using algorithms A1 and A2 on private inputs x1 and x2, respectively. In the interaction
between A1 and A2, the view to the i-th (i∈ {1,2}) party is denoted by viewAi(xi)(A3−i(x3−i)), which is equal
to (xi,ri,m1

i ,m
2
i , · · ·), where ri is the internal randomness of Ai, m j

i is the j-th message sent from A3−i to Ai.
The output of the algorithm Ai after the interaction is denoted by outAi(xi)(A3−i(x3−i)).

For two functions a,b : N→ R, we write a ⪯ b if a(n) ≤ b(n)+negl(n) for every sufficiently large n,
and a≺ b if there is a polynomial p(·) such that a(n)≤ b(n)−1/p(n) infinitely often. Also, we write a≈ b
if a⪯ b and a⪰ b, and a 0 b if either a≺ b or a≻ b.

2.1 Cryptographic Notions

We define oblivious transfer and commitment, together with their cryptographic security notions according
to [8, 3, 15].

In this work, we consider two-message oblivious transfer, where both the sender and the receiver send
their own message only once.

Definition 1 (Two-message oblivious transfer). A two-message oblivious transfer protocol OT is a pair of
two probabilistic polynomial-time algorithms, denoted by OT = (S,R). First, R runs on input b ∈ {0,1},
and outputs a message mR and a state st. Second, S runs on input (x0,x1) and mR, and outputs a message
mS. Finally, R runs on input mS and st, and outputs a string y.

By considering two-message oblivious transfer, we can define the indistinguishability-based secu-
rity [15, Section 2.6]

Definition 2 (Security for oblivious transfer). Let OT = (S,R) be a two-message oblivious transfer protocol.
We say OT is cryptographically secure if it satisfies the following three properties:

• Receiver’s privacy: For any probabilistic polynomial-time algorithms S∗ and DS, inputs x0,x1 ∈
{0,1}∗ with |x0|= |x1|, and auxiliary input z ∈ {0,1}∗, it holds that

Pr[DS(viewS∗(x0,x1,z)(R(0))) = 1]≈ Pr[DS(viewS∗(x0,x1,z)(R(1))) = 1].
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• Sender’s privacy: For any deterministic polynomial-time algorithm R∗, probabilistic polynomial-time
algorithm DR, inputs x0,x1,x∈{0,1}∗ with |x0|= |x1|= |x|, c∈{0,1}, and auxiliary input z∈{0,1}∗,
there exists a function choice : {0,1}∗→{0,1} such that

Pr[DR(viewR∗(c,z)(S(X
0)),X0,X1) = 1]≈ Pr[DR(viewR∗(c,z)(S(X

1)),X0,X1) = 1],

where c∗ = choice(R∗,c,z), X0 = (x0,x1), and X1 = (x0,x) if c∗ = 0, X1 = (x,x1) otherwise.

• Correctness: For any strings x0,x1 ∈ {0,1}∗ with |x0|= |x1|, and c ∈ {0,1}, it holds that

Pr[outR(c)(S(x0,x1)) = xc]⪰ 1.

The function choice in the sender’s privacy determines which index the receiver’s algorithm R∗ chooses.
Since we restrict R∗ to be deterministic, it is possible to determine the index that R∗ chooses on input (c,z).
Note that the security against malicious receiver is not weakened by this restriction. Since R∗ receives an
auxiliary input z, R∗ can use the “best” random coins as z.

Definition 3 (Commitment). A commitment protocol Com is a tuple of four probabilistic polynomial-time
algorithms, denoted by Com = ((SC,SO),(RC,RO)). The protocol consists of two phases:

• The commit phase is an interaction between SC and RC, where SC receives x ∈ {0,1}t as an input. The
output of the commit phase consists of the commitment string c and a private output d for the sender,
called the decommitment string. Without loss of generality, we can consider c to be the transcript of
the interaction between SC(x) and RC, and d the view of SC, including the private random coins of SC.

• The open phase is an interaction between SO and RO, where SO and RO receive, as inputs, (x,d) and
c, respectively. We assume that the first message of SO explicitly contains x, which indicates that the
sender is to persuade the receiver that the committed string is x. After the interaction, RO outputs 1 if
the receiver accepts, and 0 otherwise.

Definition 4 (Security for commitment). Let Com = ((SC,SO),(RC,RO)) be a commitment protocol. We say
Com is cryptographically secure if it satisfies the following three properties:

• Hiding: For any probabilistic polynomial-time algorithms R∗C and D, inputs x0,x1 ∈ {0,1}t , and
auxiliary input z ∈ {0,1}∗, it holds that

Pr[D(viewR∗C(z)
(SC(x0)),x0,x1) = 1]≈ Pr[D(viewR∗C(z)

(SC(x1)),x0,x1) = 1]

• Binding: For any probabilistic polynomial-time algorithms S∗C, S∗O, and F, input x ∈ {0,1}t , and
auxiliary input z ∈ {0,1}∗, it holds that

Pr[outRO(c)(S
∗
O(x,d,z)) = outRO(c)(S

∗
O(x
′,d′,z)) = 1]⪯ 0,

where c and d are the commitment and decommitment strings generated by the interaction between
S∗C(x,z) and RC, (x′,d′) is the output of F(viewS∗C(x,z)

(RC)), where x′ ∈ {0,1}t \{x}.

• Correctness: For any x ∈ {0,1}t , it holds that

Pr[outRO(c)(SO(x,d)) = 1]⪰ 1,

where c and d are the commitment and decommitment strings generated by the interaction between
SC(x) and RC.
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2.2 Game-Theoretic Notions

A strategic-form game consists of three elements: a set of parties, a set of possible strategies for the parties,
and utility functions. We define a two-party game as Γ = (N,(AS,AR),(US,UR)), where N = {S,R} is the
set of parties, Ai is a set of strategies for party i ∈ N, and Ui is the utility function for party i ∈ N. The utility
function Ui maps a pair of strategies (σS,σR) ∈ AS×AR to a real number which represents preferences of
party i when the game is played with the pair (σS,σR).

Solution concepts characterize which tuples of strategies are likely to be chosen by the parties. While
there are many solution concepts introduced in the field of game theory, we employ Nash equilibrium, which
is the most commonly used one. When all parties choose a strategy in a Nash equilibrium, no party gains his
utility by changing his strategy unilaterally. Namely, if parties are assumed to choose a Nash equilibrium
strategy, no party has any incentive to change his strategy.

Definition 5 (Nash equilibrium). Let Γ = (N,(AS,AR),(US,UR)) be a two-party game. A tuple of their
strategies (σS,σR) is in a Nash equilibrium in the game Γ if for every strategies σ ′S ∈ AS and σ ′R ∈ AR, it
holds that

US(σ ′S,σR)≤US(σS,σR), and UR(σS,σ ′R)≤UR(σS,σR).

3 Game-Theoretic Security for Oblivious Transfer

In this section, we characterize the security of two-message oblivious transfer in terms of game theory.
We show that our game-theoretic security is equivalent to the cryptographic one. Then, we discuss the
implication of the equivalence.

3.1 Definition

First, we define an experiment for the execution of an oblivious transfer protocol. By specifying natural
preferences of the parties, we define a game-theoretic security for oblivious transfer. A Nash equilibrium is
used as a solution concept in the security definition.

Experiment. For a two-message oblivious transfer protocol, we define an experiment between a sender
and a receiver. The sender has two polynomial-time algorithms (S,DS) as a strategy, and the receiver also
has two polynomial-time algorithms (R,DR).

In the experiment, first, bits b and c are chosen uniformly at random. Then, the sender and the receiver
execute the protocol using S and R. The receiver, on input c, generates the first message mR by using R. After
that, the sender, on input a pair (x′0,x

′
1) and mR, generates the second message mS by using S. We assume

that the receiver wants to obtain x′c that is indicated by the choice bit. The actual input to the sender is set to
be Xb, where X0 = (x0,x1), and X1 = (x0,x) if c = 0, and X1 = (x,x1) otherwise. After the execution, the
sender tries to predict c by using DS, and the receiver tries to predict b by using DR. More specifically, DS

tries to guess whether the receiver’s choice c is 0 or 1, and DR does whether the other input of the sender
(namely, one not chosen by the receiver) is x or x1−c. We note that the receiver will obtain xc regardless of
whether the input to the sender is X0 or X1.

We define the experiment formally. (See also Figure 1.)

Definition 6 (Experiment for oblivious transfer). Let S, R, DS, DR be algorithms, x0,x1,x,zS,zR ∈
{0,1}∗ with |x0| = |x1| = |x|, and b,c ∈ {0,1}. For a function choice : {0,1}∗ → {0,1}, we define
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Figure 1: The experiment for an oblivious transfer protocol.

X0 = (x0,x1), and X1 = (x0,x) if choice(R,c,zR) = 0, and X1 = (x,x1) otherwise. The experiment
ExpOT((S,DS),(R,DR),choice,x0,x1,x,zS,zR) runs as follows:

1. Set guessS = guessR = suc = abort = 0, choose b,c ∈ {0,1} uniformly at random, and let c∗ =
choice(R,c,zR).

2. Execute the oblivious transfer protocol (S,R) on input pair ((Xb,zS),(c,zR)). Set abort = 1 if some
party aborts the protocol.

3. Run DS(viewS(Xb,zS)(R(c,zR))) and DR(viewR(c,zR)(S(X
b,zS)),X0,X1), and obtain c′ and b′ as output,

respectively.

4. Set guessS = 1 if c∗ = c′, and guessR = 1 if b = b′. Set suc = 1 if either outR(c,zR)(S(X
b,zS)) = xc∗

or abort = 1.

The tuple (guessS,guessR,suc) is the outcome of the experiment.

Utility function. We assume that each party has multiple goals. The sender has the following three pref-
erences.

• He prefers to know which of the secrets the receiver chooses to obtain.

• He does not prefer the receiver to learn both of his secrets.

• He prefers the receiver to obtain the secret that she chooses unless the protocol was aborted.

The receiver has the following preferences.

• She does not prefer the sender to know which of the secrets she chooses to obtain.

• She prefers to learn both of the sender’s secrets.
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• She prefers to obtain the secret that she chooses unless the protocol was aborted.

We formalize these preferences as utility functions. Note that we do not define utility functions as
functions over the outcomes of the experiment; rather our utility functions are defined over the “average”
outcomes of the experiment. This way of defining utility function is more natural, since parties in protocols
choose their best strategy based on the average performance of the strategy, not on a single outcome of the
strategy.

Definition 7 (Utility function for oblivious transfer). Let (S,R) be a two-message oblivious transfer proto-
col, and S′ and R′ algorithms.

The utility function UOT
S for the sender is a function such that UOT

S (S′,R) > UOT
S (S,R) if there exist

probabilistic polynomial-time algorithms DS and DR, and x0,x1,x,zS ∈ {0,1}∗ with |x0| = |x1| = |x|, that
satisfy at least one of the following three conditions:

(S1) |Pr[guess′S = 1]− 1
2 | ≻ |Pr[guessS = 1]− 1

2 |, |Pr[guess′R = 1]− 1
2 | ⪯ |Pr[guessR = 1]− 1

2 |, and
Pr[suc′ = 1]⪰ Pr[suc = 1];

(S2) |Pr[guess′S = 1]− 1
2 | ⪰ |Pr[guessS = 1]− 1

2 |, |Pr[guess′R = 1]− 1
2 | ≺ |Pr[guessR = 1]− 1

2 |, and
Pr[suc′ = 1]⪰ Pr[suc = 1];

(S3) |Pr[guess′S = 1]− 1
2 | ⪰ |Pr[guessS = 1]− 1

2 |, |Pr[guess′R = 1]− 1
2 | ⪯ |Pr[guessR = 1]− 1

2 |, and
Pr[suc′ = 1]≻ Pr[suc = 1],

where (guessS,guessR,suc) and (guess′S,guess′R,suc′) are the random variables representing the out-
comes of ExpOT((S,DS),(R,DR),choice0,x0,x1,x,ε ,ε) and ExpOT((S′,DS),(R,DR),choice0,x0,x1,x,zS,ε),
respectively, where choice0 is a function that, on input (R,c), outputs c.

Similarly, the utility function UOT
R for the receiver is a function such that UOT

R (S,R′)>UOT
R (S,R) if there

exist probabilistic polynomial-time algorithms DS and DR, x0,x1,x,zR ∈ {0,1}∗ with |x0|= |x1|= |x|, and a
function choice : {0,1}∗→{0,1} that satisfy at least one of the following three conditions:

(R1) |Pr[guess′S = 1]− 1
2 | ≺ |Pr[guessS = 1]− 1

2 |, |Pr[guess′R = 1]− 1
2 | ⪰ |Pr[guessR = 1]− 1

2 |, and
Pr[suc = 1]⪰ Pr[suc′ = 1];

(R2) |Pr[guess′S = 1]− 1
2 | ⪯ |Pr[guessS = 1]− 1

2 |, |Pr[guess′R = 1]− 1
2 | ≻ |Pr[guessR = 1]− 1

2 |, and
Pr[suc′ = 1]⪰ Pr[suc = 1];

(R3) |Pr[guess′S = 1]− 1
2 | ⪯ |Pr[guessS = 1]− 1

2 |, |Pr[guess′R = 1]− 1
2 | ⪰ |Pr[guessR = 1]− 1

2 |, and
Pr[suc′ = 1]≻ Pr[suc = 1],

where (guessS,guessR,suc) and (guess′S,guess′R,suc′) are the random variables representing the out-
comes of ExpOT((S,DS),(R,DR),choice0,x0,x1,x,ε ,ε) and ExpOT((S,DS),(R′,DR),choice,x0,x1,x,ε ,zR),
respectively.

Note that we evaluate the success of the guess with |Pr[guess = 1]− 1/2| rather than Pr[guess = 1].
This is because we assume that each party evaluates his own strategies as their average performance. After a
single execution of the experiment, a party may prefer guess to be 0 since guess = 1 implies the other party
could successfully guess some value. However, all the values to be guessed are chosen uniformly at random,
the party would prefer Pr[guess = 1] to be close to 1/2. Therefore, we use the gap between Pr[guess = 1]
and 1/2 as representing the success of the guess.
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Game-theoretic security. For a two-message oblivious transfer protocol OT, consider the two-party game
ΓOT = ({S,R},(AS,AR),(US,UR)) of which experiment ExpOT defined in Definition 6 where AS is composed
of all probabilistic polynomial-time algorithms, AR is composed of all deterministic polynomial-time algo-
rithms, and US and UR are the utility functions defined in Definition 7.

We say that a protocol is game-theoretically secure if the strategy of following the protocol is in a Nash
equilibrium.

Definition 8 (Game-theoretic security for oblivious transfer). A two-message oblivious transfer protocol
(S,R) is said to be game-theoretically secure if (S,R) is in a Nash equilibrium in the game ΓOT.

3.2 Equivalence to the Cryptographic Security

We show that, for oblivious transfer protocols, the cryptographic security (Definition 2) and the game-
theoretic security (Definition 8) are equivalent.

Theorem 1. A two-message oblivious transfer protocol OT is cryptographically secure if and only if OT is
game-theoretically secure.

First, we prove that the cryptographic security implies the game-theoretic one.

Lemma 1. If OT is cryptographically secure, then OT is game-theoretically secure.

Proof. Assume that OT = (S,R) is not game-theoretically secure. Namely, (S,R) is not in a Nash equilib-
rium in the game ΓOT. Then, there are two cases: (1) UOT

S (S′,R) > UOT
S (S,R) for some S′ ∈ AS; and (2)

UOT
R (S,R′)>UOT

R (S,R) for some R′ ∈ AR.
In case (1), it follows from the definition of UOT

S that either (S1), (S2), or (S3) holds. Condition (S1)
implies that, by using (S′,DS) as a strategy, the sender can predict the choice bit c with probability greater
than 1/2. More specifically, Pr[DS(viewS′(Xb,zS)(R(c))) = c] ≻ 1/2. This means that OT does not satisfy
the receiver’s privacy. Condition (S2) means that |Pr[guessR = 1]− 1/2| ≻ 0 when both parties follow
the protocol. Namely, |Pr[DR(viewR(c)(S(Xb)),X0,X1) = b]− 1/2| ≻ 0, which implies that R breaks the
sender’s privacy. It follows from condition (S3) that Pr[outR(c)(S(x′0,x

′
1)) = xc] ≺ 1 for some x′0,x

′
1. This

implies that OT does not satisfy correctness.
Next, let assume that (2) holds. Then, by the definition of UOT

R , either (R1), (R2), or (R3)
holds. Condition (R1) means that |Pr[guessS = 1]− 1/2| ≻ 0 when both parties follow the proto-
col. More precisely, Pr[DS(viewS(Xb)(R(c))) = c] ≻ 0, which implies that the sender can break the re-
ceiver’s privacy. It follows from condition (R2) that |Pr[guess′R = 1]− 1/2| ≻ 0, which implies that
Pr[DR(viewR′(c,zR)(S(X

b)),X0,X1) = b] ≻ 0. Thus, R′ breaks the sender’s privacy. Condition (R3) implies
that Pr[outR(c)(S(x′0,x

′
1)) = x′c]≺ 1 for some x′0,x

′
1. Hence, OT does not satisfy correctness.

Thus, we have shown that if OT is not game-theoretically secure, then it is not cryptographically secure.
□

Next, we show that the game-theoretic security implies the cryptographic one. Suppose that a protocol is
not cryptographically secure. Then, it does not satisfy at least one of the cryptographic requirements. If only
one of the properties is broken, it is not difficult to show that the protocol does not satisfy the game-theoretic
security. However, when a protocol does not satisfy more than one properties in cryptographic security, a
deeper consideration is needed. This is because, multiple requirements may cancel out the gain of utility,
and there are possibilities that neither party gain by changing their strategies. We show that there is no such
possibility in our game-theoretic security.
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Lemma 2. If OT is game-theoretically secure, then OT is cryptographically secure.

Proof. Suppose that OT = (S,R) is not cryptographically secure. Let consider the following five cases.

(1) OT does not satisfy correctness.

(2) OT satisfies correctness, but does not satisfy the receiver’s privacy when the sender follows S.

(3) OT satisfies correctness and the receiver’s privacy when the sender follows S, but does not satisfy the
receiver’s privacy when the sender follows strategy S′ , S.

(4) OT satisfies correctness, the receiver’s privacy, but does not satisfy the sender’s privacy when the
receiver follows R and employs choice0 as the choice function.

(5) OT satisfies correctness, the receiver’s privacy, and the sender’s privacy when the receiver follows R,
but does not satisfy the sender’s privacy when the receiver follows strategy R′ , R.

For each case, we show that OT is not game-theoretically secure, namely, (S,R) is not in a Nash equilibrium.
In case (1), there exist x0,x1 ∈ {0,1}∗ with |x0|= |x1| and c ∈ {0,1} such that

Pr[outR(c)(S(x0,x1)) = xc]≺ 1.

Let Drand be an algorithm that outputs a uniformly-random bit, and Sabort an algorithm that sends an abort
message after getting a message from the receiver. Let consider the outcomes (guessS,guessR,suc)
and (guess′S,guess′R,suc′) of the experiments ExpOT((S,Drand),(R,Drand),choice0,x0,x1,x,ε ,ε) and
ExpOT((Sabort,Drand),(R,Drand),choice0,x0,x1,x,ε,ε), respectively, where x = 0|x0|. Then, we have that

• |Pr[guess′S = 1]− 1
2 |= |Pr[guessS = 1]− 1

2 |= 0,

• |Pr[guess′R = 1]− 1
2 |= |Pr[guessR = 1]− 1

2 |= 0,

• Pr[suc′ = 1] = 1≻ Pr[suc = 1].

By condition (S3) of UOT
S , it holds that UOT

S (Sabort,R)>UOT
S (S,R), which implies that (S,R) is not in a Nash

equilibrium.1

Case (2) implies that there exist a probabilistic polynomial-time algorithm DS, and x0,x1 ∈ {0,1}∗ with
|x0|= |x1| such that

Pr[DS(viewS(x0,x1)(R(c))) = c]≻ 1
2
,

where c ∈ {0,1} is chosen uniformly at random. Let Rabort be an algorithm that sends an
abort message before sending the first message. Let consider the outcomes (guessS,guessR,suc)
and (guess′S,guess′R,suc′) of the experiments ExpOT((S,DS),(R,Drand),choice0,x0,x1,x,ε ,ε) and
ExpOT((S,DS),(Rabort,Drand),choice0,x0,x1,x,ε ,ε), respectively, where x = 0|x0|. Then, we have that

• |Pr[guess′S = 1]− 1
2 |= 0≺ |Pr[guessS = 1]− 1

2 |,

• |Pr[guess′R = 1]− 1
2 |= |Pr[guessR = 1]− 1

2 |= 0,

• Pr[suc′ = 1] = 1≈ Pr[suc = 1].

1We can also show that (S,R) is not in a Nash equilibrium based on condition (R3) of UOT
R by using almost the same argument

as above.

11



By condition (R1) of UOT
R , it holds that UOT

R (S,Rabort) > UOT
R (S,R), which implies that (S,R) is not in a

Nash equilibrium.
In case (3), the receiver’s privacy holds for a semi-honest sender, but not for a malicious sender. Specifi-

cally, there exist probabilistic polynomial-time algorithms S′ and DS, and x0,x1,zS ∈ {0,1}∗ with |x0|= |x1|
such that

Pr[DS(viewS′(x0,x1,zS)(R(c))) = c]≻ 1
2
,

where c ∈ {0,1} is chosen uniformly at random. Let S′′ be an algorithm that simulates
S′, and sends an abort message right before sending his message. Consider the experiments
ExpOT((S,DS),(R,Drand),choice0,x0,x1,x,zS,ε) and ExpOT((S′′,DS),(R,Drand),choice0,x0,x1,x,zS,ε),
where x = 0|x0|, and their corresponding outcomes (guessS,guessR,suc) and (guess′S,guess′R,suc′). It
holds that

• |Pr[guess′S = 1]− 1
2 | ≻ |Pr[guessS = 1]− 1

2 | ≈ 0,

• |Pr[guess′R = 1]− 1
2 |= |Pr[guessR = 1]− 1

2 |= 0,

• Pr[suc′ = 1] = 1≈ Pr[suc = 1].

It follows from condition (S1) of UOT
S that UOT

S (S′′,R)>UOT
S (S,R). Hence, (S,R) is not in a Nash equilib-

rium.
Next, we consider case (4). In this case, there exist a probabilistic polynomial-time algorithm DR and

x0,x1,x ∈ {0,1}∗ with |x0|= |x1|= |x| such that

Pr[DR(viewR(c)(S(X
b)),X0,X1) = b]≻ 1

2
,

where X0 = (x0,x1), X1 = (x0,x) if c = 0, and X1 = (x,x1) otherwise, and b,c ∈ {0,1} are chosen
uniformly at random. Let consider the experiments ExpOT((S,Drand),(R,DR),choice0,x0,x1,x,ε,ε)
and ExpOT((Sabort,Drand),(R,DR),choice0,x0,x1,x,ε,ε), and their corresponding outcomes
(guessS,guessR,suc) and (guess′S,guess′R,suc′). Then, it holds that

• |Pr[guess′S = 1]− 1
2 |= |Pr[guessS = 1]− 1

2 |= 0,

• |Pr[guess′R = 1]− 1
2 |= 0≺ |Pr[guessR = 1]− 1

2 |,

• Pr[suc′ = 1] = 1≈ Pr[suc = 1].

By condition (S2) of UOT
S , we have that UOT

S (Sabort,R) > UOT
S (S,R). Therefore, (S,R) is not in a Nash

equilibrium.
Finally, let consider case (5). There exist a deterministic polynomial-time algorithm R′ and probabilistic

polynomial-time algorithm DR, and x0,x1,x,zR ∈ {0,1}∗ with |x0| = |x1| = |x| such that for any function
choice : {0,1}∗→{0,1}, it holds that

Pr[DR(viewR′(zR)(S(X
b)),X0,X1) = b]≻ 1

2
,

where X0 = (x0,x1), X1 = (x0,x) if c∗ = 0, and X1 = (x,x1) otherwise, c∗ = choice(R′,c,zR), and
b,c ∈ {0,1} are chosen uniformly at random. Consider an algorithm R′′ that simulates R′ and
sends an abort message after receiving a message from the sender. Let (guessS,guessR,suc) and
(guess′S,guess′R,suc′) be the outcomes of the experiments ExpOT((S,Drand),(R,DR),choice0,x0,x1,x,ε,ε)
and ExpOT((Sabort,Drand),(R′′,DR),choice,x0,x1,x,ε ,zR), respectively. Then, we have that
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• |Pr[guess′S = 1]− 1
2 |= |Pr[guessS = 1]− 1

2 |= 0,

• |Pr[guess′R = 1]− 1
2 | ≻ 0≈ |Pr[guessR = 1]− 1

2 |,

• Pr[suc′ = 1] = 1≈ Pr[suc = 1].

It follows from condition (R2) of UOT
R that UOT

R (S,R′′) > UOT
R (S,R). Thus, (S,R) is not in a Nash equilib-

rium.
In every case, we have shown that (S,R) is not in a Nash equilibrium. Therefore, the statement follows.

□

3.3 Discussion

Unnecessary conditions in utility functions. In the proof of Lemma 2, we did not use the condition (R3)
of UOT

R . It is not difficult to see that Lemma 1 holds even if condition (R3) is not included in UOT
R . This

implies that the equivalence holds even if condition (R3) is excluded from UOT
R . The proof of Lemma 2

can be completed by using condition (S3) of UOT
S instead of (R3) of UOT

R . Thus, we can also say that the
equivalence holds if condition (S3) is excluded from UOT

S , where (R3) should be included in UOT
R . In other

words, the equivalence holds between the game-theoretic security and cryptographic one as long as at least
one of the parties prefers the receiver to obtain the secret that she chose.

Note, however, that if some party has the opposite preference to, say, condition (S3), the equivalence
does not hold. If the sender prefers the receiver to obtain the secret which was not chosen by the receiver,
then Lemma 1 does not hold while Lemma 2 holds. In this case, a cryptographically-secure protocol does
not achieve a Nash equilibrium because the receiver can obtain the secret she chose, which is not preferred
by the sender. Conversely, if a given protocol satisfies the game-theoretic security for the sender with this
utility, it implies that the protocol achieves a Nash equilibrium for the receiver who has a preference for
correctness. Therefore, it satisfies the cryptographic security.

Abort after completing the protocol. In case (5) of the proof of Lemma 2, we use the fact that the receiver
can abort the protocol even after receiving the second message from the sender. Thus, if such an abort is not
allowed, the equivalence may not hold.

4 Game-Theoretic Security for Commitment

In this section, we provide a game-theoretic characterization of commitment protocols. Our game-theoretic
security is shown to be equivalent to the cryptographic security. We also discuss the implication of our
equivalence result.

4.1 Definition

First, we define an experiment for the execution of a commitment protocol. Then, we consider natural
preferences of the sender and the receiver. By using a Nash equilibrium as a solution concept, we define the
game-theoretic security of commitment.
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Figure 2: The experiment for a commitment protocol.

Experiment. Let Com = ((SC,SO),(RC,RO)) be a commitment protocol. We define an experiment be-
tween a sender and a receiver. Both the sender and the receiver have three algorithms (SC,SO,F) and
(RC,RO,D), respectively. These algorithms interact as follows.

First, the sender and the receiver execute a commit phase by using SC and RC, where SC is given input
xb ∈ {0,1}t , where x0,x1 ∈ {0,1}t are possible inputs, and b ∈ {0,1} is chosen uniformly at random. Let
c and d be the commitment and decommitment strings generated in this phase. Then, a distinguisher D of
the receiver tries to guess the committed string xb based on the view of RC in the commit phase and possible
inputs x0,x1. After that, a decommitment finder F of the sender tries to generate (x′,d′) so that x′(, xb) can
be opened by using d′ as the decommitment string. Then, the open phase is executed twice, where the first
one checks if xb can be opened with the decommitment string d, and the second one does if x′ with d′.

We formally define the experiment for commitment protocols. (See also Figure 2.)

Definition 9 (Experiment for commitment). Let SC, SO, F, RC, RO, and D be algorithms, x0,x1 ∈ {0,1}t ,
and zS,zR ∈ {0,1}∗. The experiment ExpCom((SC,SO,F),(RC,RO,D),x0,x1,zS,zR) is executed as follows.

1. Set guess = amb = suc = abortC = abortO = 0, and choose b ∈ {0,1} uniformly at random.

2. Execute a commit phase by using SC(xb,zS) and RC(zR). Let c and d be the commitment and decom-
mitment strings, respectively, that are generated during the execution. Set abortC = 1 if some party
aborts the protocol.

3. If abortC = 0, run D(viewRC(zR)(SC(xb,zS)),x0,x1) and F(viewSC(xb,zS)(RC(zR))), and obtain as output
b′ and (x′,d′), respectively. Otherwise, choose b′ ∈ {0,1} uniformly at random.

4. If abortC = 0, execute an open phase twice, where the first one is done between SO(xb,d,zS) and
RO(c), and the second one is between SO(x′,d′,zS) and RO(c). Let o and o′ be the outputs of RO in the
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first and second executions, respectively. If some party aborts in the first (and second) interaction(s),
set abortO = 1 and o = 0 (and o′ = 0).

If abortC = 1, set o = o′ = 0.

5. Set amb = 1 if xb , x′ and o = o′ = 1. Set suc = 1 if either o = 1, abortC = 1, or abortO = 1. Set
guess = 1 if b = b′.

The tuple (guess,amb,suc) is the outcome of this experiment.

Utility functions. We assume that each party of commitment has multiple goals. The sender has the
following two preferences:

• He does not prefer the receiver to know the committed string xb before executing the open phase.

• On executing the open phase, he prefers to be able to choose a string to be opened.

The receiver has the following three preferences:

• She prefers to learn the committed string xb before executing the open phase.

• She does not prefer the sender to be able to choose a string to be opened in the open phase.

• She prefers to open the true committed string xb unless the protocol was aborted.

We formalize these preferences as utility functions. As in the case of oblivious transfer protocols, the
utility functions are defined over the average outcomes of the experiments.

Definition 10 (Utility functions for commitment). Let ((SC,SO),(RC,RO)) be a commitment proto-
col, and S′C,S

′
O,R

′
C,R

′
O algorithms. The utility function UCom

S for the sender is a function such that
UCom

S ((S′C,S
′
O),(RC,RO)) > UCom

S ((SC,SO),(RC,RO)) if there exist probabilistic polynomial-time algo-
rithms F and D, x0,x1 ∈ {0,1}t , and zS ∈ {0,1}∗, that satisfy at least one of the following two conditions:

(S1)
∣∣Pr[guess′ = 1]− 1

2

∣∣≺ ∣∣Pr[guess = 1]− 1
2

∣∣ and Pr[amb′ = 1]⪰ Pr[amb = 1];

(S2)
∣∣Pr[guess′ = 1]− 1

2

∣∣⪯ ∣∣Pr[guess = 1]− 1
2

∣∣ and Pr[amb′ = 1]≻ Pr[amb = 1],

where (guess,amb,suc) and (guess′,amb′,suc′) are the random variables representing the outcomes of
ExpCom((SC,SO,F),(RC,RO,D),x0,x1,ε,ε) and ExpCom((S′C,S

′
O,F),(RC,RO,D),x0,x1,zS,ε), respectively.

The utility function UCom
R for the receiver is a function such that UCom

R ((SC,SO),(R′C,R
′
O)) >

UCom
R ((SC,SO),(RC,RO)) if there exist probabilistic polynomial-time algorithms F and D, x0,x1 ∈ {0,1}t ,

and zR ∈ {0,1}∗, that satisfy at least one the following three conditions:

(R1)
∣∣Pr[guess′ = 1]− 1

2

∣∣ ≻ ∣∣Pr[guess = 1]− 1
2

∣∣, Pr[amb′ = 1] ⪯ Pr[amb = 1], and Pr[suc′ = 1] ⪰
Pr[suc = 1];

(R2)
∣∣Pr[guess′ = 1]− 1

2

∣∣ ⪰ ∣∣Pr[guess = 1]− 1
2

∣∣, Pr[amb′ = 1] ≺ Pr[amb = 1], and Pr[suc′ = 1] ⪰
Pr[suc = 1];

(R3)
∣∣Pr[guess′ = 1]− 1

2

∣∣ ⪰ ∣∣Pr[guess = 1]− 1
2

∣∣, Pr[amb′ = 1] ⪯ Pr[amb = 1], and Pr[suc′ = 1] ≻
Pr[suc = 1],

where (guess,amb,suc) and (guess′,amb′,suc′) are the random variables representing the outcomes of
ExpCom((SC,SO,F),(RC,RO,D),x0,x1,ε,ε) and ExpCom((SC,SO,F),(R′C,R

′
O,D),x0,x1,ε ,zR), respectively.
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Game-theoretic security. For a commitment protocol Com, let define the two-party game ΓCom =
({S,R},(AS,AR),(US,UR)) in which the experiment ExpCom defined in Definition 9 is executed, both AS

and AR are composed of pairs of all probabilistic polynomial-time algorithms, and US and UR are the utility
functions defined in Definition 10.

We say that a protocol is game-theoretically secure if the strategy of following the protocol description
is in a Nash equilibrium.

Definition 11 (Game-theoretic security for commitment). A commitment protocol ((SC,SO),(RC,RO)) is
said to be game-theoretically secure if ((SC,SO),(RC,RO)) is in a Nash equilibrium in the game ΓCom.

4.2 Equivalence to the Cryptograhic Security

In this section, we prove the equivalence between the cryptographic security (Definition 4) and the game-
theoretic security (Definition 11) for commitment protocols.

Theorem 2. A commitment protocol Com is cryptographically secure if and only if Com is game-
theoretically secure.

First, we show that the cryptographic security implies the game-theoretic security.

Lemma 3. If Com is cryptographically secure, then Com is game-theoretically secure.

Proof. Let assume that Com = ((SC,SO),(RC,RO)) is not game-theoretically secure, namely,
((SC,SO),(RC,RO)) is not in a Nash equilibrium. Then, there are two cases: (1) UCom

S ((S′C,S
′
O),(RC,RO))>

UCom
S ((SC,SO),(RC,RO)) for some (S′C,S

′
O) ∈ AS; and (2) UCom

R ((SC,SO),(R′C,R
′
O)) >

UCom
S ((SC,SO),(RC,RO)) for some (R′C,R

′
O) ∈ AR.

In case (1), it follows from the definition of UCom
S that either (S1) or (S2) holds. We observe that

condition (S1) implies that |Pr[guess = 1]− 1/2| ≻ 0. Then, it holds that |Pr[D(viewRC(SC(xb)),x0,x1) =
b]− 1/2| ≻ 0, where b ∈ {0,1} is chosen uniformly at random. This means that Com does not satisfy
hiding property. Condition (S2) implies that Pr[amb′= 1]≻ 0, which means that Pr[outRO(c)(S

′
O(xb,d,zS)) =

outRO(c)(S
′
O(x
′,d′,zS)) = 1]≻ 0, where c and d are the commitment and decommitment string generated by

the interaction between S′C(xb,zS) and RC, (x′,d′) is the output of F(viewS′C(xb,zS)(RC)), and b ∈ {0,1} is
chosen uniformly at random. This implies that Com does not satisfy binding property.

Next, we consider case (2). It follows from the definition of UCom
R that either (R1), (R2),

or (R3) holds. Condition (R1) implies that |Pr[guess′ = 1] − 1/2| ≻ 0. This means that
Pr[D(viewR′C(zR)(SC(xb,zS)),x0,x1) = b] ≻ 1/2, where b ∈ {0,1} is chosen uniformly at random. Hence,
Com does not satisfy hiding property. Condition (R2) implies that Pr[amb = 1] ≻ 0. This means that
Pr[outRO(c)(SO(xb,d)) = outRO(c)(SO(x′,d′)) = 1] ≻ 0, where c and d are the commitment and decommit-
ment strings generated by the interaction between SC(xb) and RC, (x′,d′) is the output of F(viewSC(xb)(RC))
with x′ , xb, and b ∈ {0,1} is chosen uniformly at random. This implies that Com does not satisfy bind-
ing property. Finally, let consider condition (R3), which implies Pr[suc = 1] ≺ 1. Then, we have that
Pr[outRO(c)(SO(xb,d)) = 1] ≺ 1, where c and d are the commitment and decommitment strings generated
by SC(xb) and RC, and b ∈ {0,1} is chosen uniformly at random. This means that Com does not satisfy
correctness property.

In every case, we have shown that Com is not cryptographically secure. Therefore, the statement follows.
□

Next, we show that the game-theoretic security implies the cryptographic security.
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Lemma 4. If Com is game-theoretically secure, then Com is cryptographically secure.

Proof. Suppose that Com = ((SC,SO),(RC,RO)) is not cryptographically secure. We consider the following
five cases, and show that Com is not game-theoretically secure in each case.

(1) Com does not satisfy correctness.

(2) Com satisfies correctness, but does not satisfy binding property for (SC,SO).

(3) Com satisfies correctness and binding property for (SC,SO), but does not satisfy binding property for
some (S′C,S

′
O) , (SC,SO).

(4) Com satisfies correctness and binding property, but does not satisfy hiding property for (RC,RO).

(5) Com satisfies correctness, binding property, and hiding property for (RC,RO), but does not satisfy
hiding property for some (R′C,R

′
O) , (RC,RO).

In case (1), for some x ∈ {0,1}t , it holds that

Pr[outRO(c)(SO(x,d)) = 1]≺ 1,

where c and d are the commitment and decommitment strings generated during the interaction be-
tween SC(x) and RC. Let Drand be an algorithm that outputs b ∈ {0,1} uniformly at random, F0
an algorithm that, on input the view including (x,c,d), outputs (x,d), and Rabort

C a strategy of send-
ing an abort message right after starting the commit phase. We denote by (guess,amb,suc) and
(guess′,amb′,suc′) the outcomes of the experiments ExpCom((SC,SO,F0),(RC,RO,Drand),x,x,ε,ε) and
ExpCom((SC,SO,F0),(Rabort

C ,RO,Drand),x,x,ε ,ε), respectively. Note that, when the receiver follows Rabort
C ,

abortC = 1 in the experiment, and thus the tests for F and D will not be checked. Thus, we have that

•
∣∣Pr[guess′ = 1]− 1

2

∣∣= ∣∣Pr[guess = 1]− 1
2

∣∣= 0,

• Pr[amb′ = 1] = 0⪯ Pr[amb = 1],

• Pr[suc′ = 1] = 1≻ Pr[suc = 1].

By condition (R3) of UCom
R , we have that UCom

R ((SC,SO),(Rabort
C ,RO)) > UCom

R ((SC,SO),(RC,RO)), which
implies that the tuple ((SC,SO),(RC,RO)) is not in a Nash equilibrium.

Next, we consider case (2). In this case, there is a probabilistic polynomial-time decommitment finder
F and x ∈ {0,1}t so that

Pr[outRO(c)(SO(x0,d0)) = outRO(c)(SO(x1,d1)) = 1]≻ 0,

where c and d are the commitment and decommitment strings generated by SC(x) and RC, (x′,d′) is the
output of F(viewSC(x)(RC)). Let (guess,amb,suc) and (guess′,amb′,suc′) be the outcomes of the experi-
ments ExpCom((SC,SO,F),(RC,RO,Drand),x,x′,ε,ε) and ExpCom((SC,SO,F),(Rabort

C ,RO,Drand),x,x′,ε,ε),
respectively, where x′ ∈ {0,1}t \{x} is arbitrary. Then, we have that

•
∣∣Pr[guess′ = 1]− 1

2

∣∣= ∣∣Pr[guess = 1]− 1
2

∣∣= 0,

• Pr[amb′ = 1] = 0≺ Pr[amb = 1],

17



• Pr[suc′ = 1] = 1≈ Pr[suc = 1].

Hence, by condition (R2) of UCom
R , it holds that UCom

R ((SC,SO),(Rabort,RO)) > UCom
R ((SC,SO),(RC,RO)).

Therefore, the tuple ((SC,SO),(RC,RO)) is not in a Nash equilibrium.
In case (3), there exist a probabilistic polynomial-time algorithm F , x ∈ {0,1}t , and z ∈ {0,1}∗, it holds

that
Pr[outRO(c)(S

′
O(x,d,z)) = outRO(c)(S

′
O(x
′,d′,z)) = 1]≻ 0,

where c and d are the commitment and decommitment strings generated by S′C(x,z) and
RC, and (x′,d′) is the output of F(viewS′C(x,z)

(RC)) with x′ , x. Let (guess,amb,suc) and
(guess′,amb′,suc′) be the outcomes of the experiments ExpCom((SC,SO,F),(RC,RO,Drand),x,ε,ε) and
ExpCom((S′C,S

′
O,F),(RC,RO,Drand),x,z,ε), respectively. We have that

•
∣∣Pr[guess′ = 1]− 1

2

∣∣= ∣∣Pr[guess = 1]− 1
2

∣∣= 0,

• Pr[amb′ = 1]≻ Pr[amb = 1]≈ 0.

By condition (S2) of UCom
S , it holds that

UCom
S ((S′C,S

′
O),(RC,RO))>UCom

S ((SC,SO),(RC,RO)).

Thus, the tuple ((SC,SO),(RC,RO)) is not in a Nash equilibrium.
We consider case (4), in which the receiver can break hiding property with the honest strategy. Then,

there is a probabilistic polynomial-time algorithm D and x0,x1 ∈ {0,1}t so that∣∣∣∣Pr[D(viewRC(SC(xb),x0,x1)) = b]− 1
2

∣∣∣∣≻ 0,

where b ∈ {0,1} is chosen uniformly at random. Let Sabort
C be the strategy of sending an

abort message right after starting the commit phase. We denote by (guess,amb,suc) and
(guess′,amb′,suc′) the outcomes of the experiments ExpCom((SC,SO,F0),(RC,RO,D),x0,x1,ε ,ε) and
ExpCom((Sabort

C ,SO,F0),(RC,RO,D),x0,x1,ε,ε), respectively. Then, we have that

•
∣∣Pr[guess′ = 1]− 1

2

∣∣= 0≺
∣∣Pr[guess = 1]− 1

2

∣∣,
• Pr[amb′ = 1] = 0≈ Pr[amb = 1].

Hence, by condition (S1) of UCom
S , it holds that UCom

S ((Sabort
C ,SO),(RC,RO)) > UCom

S ((SC,SO),(RC,RO)),
which implies that the tuple ((SC,SO),(RC,RO)) is not in a Nash equilibrium.

In case (5), there exist probabilistic polynomial-time algorithms R′C(, RC) and D, x0,x1 ∈ {0,1}t , and
z ∈ {0,1}∗, such that ∣∣∣∣Pr[D(viewR′C(z)

(SC(xb)),x0,x1) = b]− 1
2

∣∣∣∣≻ 0,

and ∣∣∣∣Pr[D(viewRC(SC(xb)),x0,x1) = b]− 1
2

∣∣∣∣≈ 0,

where b∈ {0,1} is chosen uniformly at random. Let Rabort
O be the strategy of sending an abort message right

after starting the open phase. We denote by (guess,amb,suc) and (guess′,amb′,suc′) the outcomes of
the games ExpCom((SC,SO,F0),(RC,RO,D),x0,x1,ε ,ε) and ExpCom((SC,SO,F0),(R′C,R

abort
O ,D),x0,x1,ε,z),

respectively. Then, it holds that
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•
∣∣Pr[guess′ = 1]− 1

2

∣∣≻ 0≈
∣∣Pr[guess = 1]− 1

2

∣∣,
• Pr[amb′ = 1] = 0≈ Pr[amb = 1],

• Pr[suc′ = 1] = 1≈ Pr[suc = 1].

It follows from condition (R1) of UCom
R that UCom

R ((SC,SO),(R′C,R
abort
O ))>UCom

R ((SC,SO),(RC,RO)), which
implies that the tuple ((SC,SO),(RC,RO)) is not in a Nash equilibrium.

In every case, we have shown that the tuple ((SC,SO),(RC,RO)) is not in a Nash equilibrium. Thus, the
statement follows. □

4.3 Discussion

Sender’s preference for correctness. In our characterization, only the receiver has the preference corre-
sponding to correctness. Let us consider the case in which the sender has the following preference.

• The sender prefers the receiver to open the true committed string xb in the open phase unless the
protocol was aborted.

Then, UCom
S will be changed so that UCom

S ((S′C,S
′
O),(RC,RO)) > UCom

S ((SC,SO),(RC,RO)) holds if there
exist probabilistic polynomial-time algorithms F and D, x0,x1 ∈ {0,1}t , and zS ∈ {0,1}∗, that satisfy at least
one of the following three conditions:

(S1’)
∣∣Pr[guess′ = 1]− 1

2

∣∣ ≺ ∣∣Pr[guess = 1]− 1
2

∣∣, Pr[amb′ = 1] ⪰ Pr[amb = 1], and Pr[suc′ = 1] ⪰
Pr[suc = 1];

(S2’)
∣∣Pr[guess′ = 1]− 1

2

∣∣ ⪯ ∣∣Pr[guess = 1]− 1
2

∣∣, Pr[amb′ = 1] ≻ Pr[amb = 1], and Pr[suc′ = 1] ⪰
Pr[suc = 1];

(S3’)
∣∣Pr[guess′ = 1]− 1

2

∣∣ ⪯ ∣∣Pr[guess = 1]− 1
2

∣∣, Pr[amb′ = 1] ⪰ Pr[amb = 1], and Pr[suc′ = 1] ≻
Pr[suc = 1];

where (guess,amb,suc) and (guess′,amb′,suc′) are the random variables representing the outcomes of
ExpCom((SC,SO,F),(RC,RO,D),x0,x1,ε,ε) and ExpCom((S′C,S

′
O,F),(RC,RO,D),x0,x1,zS,ε), respectively.

Under the above conditions on UCom
S , we cannot prove the equivalence to the cryptographic security.

More precisely, we can show Lemma 3 in a similar way as the above proof. However, we cannot prove
Lemma 4 under the new utility function. Specifically, in case (3) in the proof of Lemma 4, it is assumed that
there exists (S∗C,S

∗
O) that breaks binding property. We need to choose (S′C,S

′
O) so that

•
∣∣Pr[guess′ = 1]− 1

2

∣∣≈ ∣∣Pr[guess = 1]− 1
2

∣∣,
• Pr[amb′ = 1]≻ Pr[amb = 1]≈ 0,

• Pr[suc′ = 1]⪰ Pr[suc = 1].

The first condition can be easily satisfied by using Drand as a part of the receiver’s strategy. To satisfy the
second condition, we need to use (S∗C,S

∗
O). The problem is how to achieve the last condition. Suppose that

the protocol has the property such that whenever the sender breaks binding property, the correctness is not
preserved. It implies that the last condition cannot be satisfied when the second condition holds. Thus, the
lemma does not hold under the new utility function.
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Furthermore, let consider the sender who has the opposite preference regarding correctness. Namely,
the sender does not prefer the receiver to obtain the committed string. In this case, Lemma 3 does not
hold, while Lemma 4 holds. Since a cryptographically-secure protocol satisfies the correctness property, the
rational sender does not prefer to following the protocol, which implies Lemma 3 does not hold. Conversely,
if a given protocol achieve a Nash equilibrium even if the sender has the opposite preference for correctness,
since the receiver has the preference for correctness, the protocol satisfies the cryptographic security.

The above examples illustrate the flexibility and generality of game-theoretic security. The party having
the utility UCom

S defined with conditions (S1’), (S2’), and (S3’) can be considered a party who does not
prefer to breaking binding without preserving correctness. The sender who has the opposite preference to
correctness is a party who prefer to breaking binding and correctness simultaneously. By considering other
utility functions, we could define various levels of security for commitment protocols.

5 Conclusion and Future Work

This paper has studied oblivious transfer and commitment using game-theoretic concepts. Based on the
previous work by Asharov et al. [2], we have extended the game-theoretic characterization of cryptographic
protocols. In our game-theoretic security, the parties can consider the trade-off among the preferences. Our
conceptual contribution includes capturing the computational security by plain Nash equilibria. We have
shown the equivalence between our security and the standard cryptographic one both for oblivious transfer
and commitment. The equivalence implies that our formalization is a novel way to capture the standard
security in terms of game theory. To put it another way, the equivalence claims that the standard security is
reasonable even if we consider rational parties.

Our results illustrate the generality of game-theoretic formalizations. The game-theoretic security can
be easily strengthened and weakened by considering various solution concepts and utility functions. For ex-
ample, we can define a stronger security by employing a subgame perfect equilibrium, which is a preferable
solution concept than a Nash equilibrium in extensive-form games. Several solution concepts are studied
for dealing with computationally bounded strategies [11, 20]. Exploring the possibilities of applying vari-
ous solution concepts in our formalization is an interesting future work. As discussed in Section 4.3, our
game-theoretic security can also become weaker by considering other utility functions. Another future work
includes investigating meaningful weaker security for cryptographic protocols that utilize rational parties’
consideration on trade-offs among multiple goals.

Finally, we note that although oblivious transfer and commitment are fundamental protocols in cryp-
tographic protocols, they are rarely considered the final protocol, and are mostly used as building blocks
of other protocols. Since a game-theoretic consideration of protocol participants is most useful in the final
protocol, it is necessary to investigate the game-theoretic security for more advanced protocols.

Acknowledgments

This work was supported in part by JSPS/MEXT Grant-in-Aid for Scientific Research Numbers 23500010,
23700010, 24240001, 25106509, 15H00851, and 16H01705; JST, CREST, Mathematical Modelling for
Next-Generation Cryptography; and ASPIRE League Research Grant.

20



References

[1] I. Abraham, D. Dolev, and J. Y. Halpern. Distributed protocols for leader election: A game-theoretic
perspective. In Y. Afek, editor, Distributed Computing - 27th International Symposium, DISC 2013,
Jerusalem, Israel, October 14-18, 2013. Proceedings, volume 8205 of Lecture Notes in Computer
Science, pages 61–75. Springer, 2013.

[2] G. Asharov, R. Canetti, and C. Hazay. Towards a game theoretic view of secure computation. In
K. G. Paterson, editor, Advances in Cryptology - EUROCRYPT 2011 - 30th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Tallinn, Estonia, May 15-
19, 2011. Proceedings, volume 6632 of Lecture Notes in Computer Science, pages 426–445. Springer,
2011.

[3] K. Chung, F. Liu, C. Lu, and B. Yang. Efficient string-commitment from weak bit-commitment. In
M. Abe, editor, Advances in Cryptology - ASIACRYPT 2010 - 16th International Conference on the
Theory and Application of Cryptology and Information Security, Singapore, December 5-9, 2010.
Proceedings, volume 6477 of Lecture Notes in Computer Science, pages 268–282. Springer, 2010.

[4] Y. Dodis and T. Rabin. Cryptography and game theory. In N. Nisan, T. Roughgarden, E. Tardos, and
V. V. Vazirani, editors, Algorithmic Game Theory, pages 181–207. Cambridge University Press, New
York, NY, USA, 2007.

[5] G. Fuchsbauer, J. Katz, and D. Naccache. Efficient rational secret sharing in standard communication
networks. In Micciancio [19], pages 419–436.

[6] J. A. Garay, J. Katz, U. Maurer, B. Tackmann, and V. Zikas. Rational protocol design: Cryptography
against incentive-driven adversaries. In 54th Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA, pages 648–657. IEEE Computer Soci-
ety, 2013.

[7] J. A. Garay, J. Katz, B. Tackmann, and V. Zikas. How fair is your protocol?: A utility-based approach
to protocol optimality. In C. Georgiou and P. G. Spirakis, editors, Proceedings of the 2015 ACM
Symposium on Principles of Distributed Computing, PODC 2015, Donostia-San Sebastián, Spain,
July 21 - 23, 2015, pages 281–290. ACM, 2015.

[8] O. Goldreich. The Foundations of Cryptography - Volume 2, Basic Applications. Cambridge University
Press, 2004.

[9] S. Goto and J. Shikata. A compiler of two-party protocols for composable and game-theoretic security,
and its application to oblivious transfer. In J. Groth, editor, Cryptography and Coding - 15th IMA
International Conference, IMACC 2015, Oxford, UK, December 15-17, 2015. Proceedings, volume
9496 of Lecture Notes in Computer Science, pages 133–151. Springer, 2015.

[10] R. Gradwohl. Rationality in the full-information model. In Micciancio [19], pages 401–418.

[11] R. Gradwohl, N. Livne, and A. Rosen. Sequential rationality in cryptographic protocols. ACM Trans.
Economics and Comput., 1(1):2, 2013.

21



[12] A. Groce and J. Katz. Fair computation with rational players. In D. Pointcheval and T. Johansson,
editors, Advances in Cryptology - EUROCRYPT 2012 - 31st Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Cambridge, UK, April 15-19, 2012. Proceed-
ings, volume 7237 of Lecture Notes in Computer Science, pages 81–98. Springer, 2012.

[13] A. Groce, J. Katz, A. Thiruvengadam, and V. Zikas. Byzantine agreement with a rational adversary.
In A. Czumaj, K. Mehlhorn, A. M. Pitts, and R. Wattenhofer, editors, Automata, Languages, and Pro-
gramming - 39th International Colloquium, ICALP 2012, Warwick, UK, July 9-13, 2012, Proceedings,
Part II, volume 7392 of Lecture Notes in Computer Science, pages 561–572. Springer, 2012.

[14] J. Y. Halpern and V. Teague. Rational secret sharing and multiparty computation: extended abstract. In
L. Babai, editor, Proceedings of the 36th Annual ACM Symposium on Theory of Computing, Chicago,
IL, USA, June 13-16, 2004, pages 623–632. ACM, 2004.

[15] C. Hazay and Y. Lindell. Efficient Secure Two-Party Protocols - Techniques and Constructions. Infor-
mation Security and Cryptography. Springer, 2010.

[16] H. Higo, K. Tanaka, A. Yamada, and K. Yasunaga. A game-theoretic perspective on oblivious transfer.
In W. Susilo, Y. Mu, and J. Seberry, editors, Information Security and Privacy - 17th Australasian
Conference, ACISP 2012, Wollongong, NSW, Australia, July 9-11, 2012. Proceedings, volume 7372 of
Lecture Notes in Computer Science, pages 29–42. Springer, 2012.

[17] H. Higo, K. Tanaka, and K. Yasunaga. Game-theoretic security for bit commitment. In K. Sakiyama
and M. Terada, editors, Advances in Information and Computer Security - 8th International Workshop
on Security, IWSEC 2013, Okinawa, Japan, November 18-20, 2013, Proceedings, volume 8231 of
Lecture Notes in Computer Science, pages 303–318. Springer, 2013.

[18] J. Katz. Bridging game theory and cryptography: Recent results and future directions. In R. Canetti,
editor, Theory of Cryptography, Fifth Theory of Cryptography Conference, TCC 2008, New York, USA,
March 19-21, 2008., volume 4948 of Lecture Notes in Computer Science, pages 251–272. Springer,
2008.

[19] D. Micciancio, editor. Theory of Cryptography, 7th Theory of Cryptography Conference, TCC 2010,
Zurich, Switzerland, February 9-11, 2010. Proceedings, volume 5978 of Lecture Notes in Computer
Science. Springer, 2010.

[20] R. Pass and A. Shelat. Renegotiation-safe protocols. In B. Chazelle, editor, Innovations in Computer
Science - ICS 2010, Tsinghua University, Beijing, China, January 7-9, 2011. Proceedings, pages 61–
78. Tsinghua University Press, 2011.

[21] K. Yasunaga. Public-key encryption with lazy parties. IEICE Transactions, 99-A(2):590–600, 2016.

22


	1 Introduction
	1.1 This Work
	1.2 Organization

	2 Preliminaries
	2.1 Cryptographic Notions
	2.2 Game-Theoretic Notions

	3 Game-Theoretic Security for Oblivious Transfer
	3.1 Definition
	3.2 Equivalence to the Cryptographic Security
	3.3 Discussion

	4 Game-Theoretic Security for Commitment
	4.1 Definition
	4.2 Equivalence to the Cryptograhic Security 
	4.3 Discussion

	5 Conclusion and Future Work

