
Side-Channel Plaintext-Recovery Attacks
on Leakage-Resilient Encryption

Thomas Unterluggauer, Mario Werner, and Stefan Mangard
Graz University of Technology

Email: {firstname.lastname}@iaik.tugraz.at

Abstract—Differential power analysis (DPA) is a powerful
tool to extract the key of a cryptographic implementation from
observing its power consumption during the en-/decryption of
many different inputs. Therefore, cryptographic schemes based
on frequent re-keying such as leakage-resilient encryption aim to
inherently prevent DPA on the secret key by limiting the amount
of data being processed under one key. However, the original
asset of encryption, namely the plaintext, is disregarded.

This paper builds on this observation and shows that the
re-keying countermeasure does not only protect the secret
key, but also induces another DPA vulnerability that allows
for plaintext recovery. Namely, the frequent re-keying in
leakage-resilient streaming modes causes constant plaintexts
to be attackable through first-order DPA. Similarly, constant
plaintexts can be revealed from re-keyed block ciphers using
templates in a second-order DPA. Such plaintext recovery
is particularly critical whenever long-term key material is
encrypted and thus leaked. Besides leakage-resilient encryption,
the presented attacks are also relevant for a wide range of
other applications in practice that implicitly use re-keying,
such as multi-party communication and memory encryption
with random initialization for the key. Practical evaluations on
both an FPGA and a microcontroller support the feasibility
of the attacks and thus suggest the use of cryptographic
implementations protected by mechanisms like masking in
scenarios that require data encryption with multiple keys.

Index Terms—differential power analysis, side-channel attack,
leakage-resilient encryption, re-keying

I. INTRODUCTION

Side-channel attacks are a serious threat to cryptographic
implementations. Such attacks allow to learn a secret value,
e.g., a key, processed inside a cryptographic device from
observing physical properties like the power consumption
or the electromagnetic emanation (EM). One particularly
strong variant of side-channel attacks is differential power
analysis (DPA). DPA attacks effectively accumulate information
about the secret value from multiple observations done during
the processing of different inputs. While DPA attacks on
embedded microcontrollers are often capable of recovering
the secret value from less than 100 observations using distinct
inputs [8], DPA has recently been shown to be a serious threat
to state-of-the-art desktop systems too [16]. Therefore, there
is a strong need for countermeasures.

Today, there basically exist two approaches to counteract
side-channel attacks. The first approach is to secure the crypto-
graphic implementation using mechanisms like masking [15].
Hereby, the data is randomized to make the side-channel

information independent from the actual processed value. The
second approach is to design cryptographic protocols such that
they do not allow for certain classes of side-channel attacks
at all. Examples for this approach are frequent re-keying [9],
[10] and leakage-resilient cryptography [13], [14], [18], [19],
which aim to inherently prevent DPA on the secret key.

The idea of fresh re-keying and leakage-resilient encryption
is to limit the number of distinct inputs processed under one key.
Therefore, a fresh key is chosen for every new encryption. This
results in every key being used only once, rendering DPA on the
secret key infeasible. Still, these schemes are required to resist
side-channel attacks that succeed with a single observation,
i.e., simple power analysis (SPA). Therefore, many of the
leakage-resilient schemes are additionally proven to leak a
bounded amount of information on the secret key material
through side channels [13], [14], [18].

The approach followed by re-keying and leakage-resilient
encryption has the advantage of successfully preventing side-
channel attacks on the secret key without the need for dedicated
DPA countermeasures in the cryptographic implementations.
Yet, these schemes do not make any statements with respect
to other confidential data. In particular, the actual goal of
an encryption scheme is to ensure plaintext confidentiality.
The fact that leakage-resilient encryption provides bounded
leakage on key material does not imply bounded leakage of
the plaintexts. Yet, the effect of re-keying and leakage-resilient
encryption on the plaintext’s side-channel security has not been
investigated before.

A. Contribution

In this paper, we show that frequent re-keying as it occurs
within leakage-resilient encryption is vulnerable to plaintext
recovery using side-channel attacks. More concretely, we show
that encrypting a constant plaintext multiple times with different
keys facilitates DPA to recover the constant plaintext. Leakage-
resilient stream ciphers such as in [13], [14], [18] thus leak
a constant plaintext through a plain, first-order DPA and,
moreover, a second-order, template-based DPA can be utilized
to learn a constant plaintext that is the input of a block cipher
that is protected by re-keying as in [9], [10], [19]. We verified
both presented attacks on an FPGA and a microcontroller to
emphasize their practicality.

However, we stress that our attacks are not limited to side-
channel countermeasures such as leakage-resilient encryption,
but are also relevant for any other scenario where the same data



k0 E

CA

c0

k1

E
p0

y0

…

CB

E

CA

c1

k2

E
p1

y1

g

n

CB

K

Fig. 1. Leakage-resilient stream cipher.

is encrypted using different keys. In particular, we show that the
presented attacks are applicable to several scenarios in practice.
For example, the encryption of random access memory (RAM)
such as in Intel SGX [4] is often initialized using a random key,
resulting in the same data being encrypted using a different
key on every startup. Another prominent example are messages
that are sent to multiple users that each use a different key.

We emphasize that our plaintext recovery attacks are a both
realistic and serious threat. In particular, whenever long-term
keys are encrypted, for example, when they are loaded into
an encrypted memory, plaintext recovery implies the leakage
of sensitive key material. As a consequence, we suggest the
use of cryptographic implementations with dedicated DPA
countermeasures in all these settings that encrypt the same data
multiple times using different keys.

This paper is organized as follows. Section II gives back-
ground information on side-channel attacks and countermea-
sures. Section III presents side-channel plaintext-recovery
attacks and its applications. Section IV elaborates on the attacks’
practical verification and Section V concludes this work.

II. BACKGROUND

In this section, we provide background information on side-
channel attacks, the re-keying countermeasure, and leakage-
resilient encryption.

A. Side-Channel Attacks

The execution of a cryptographic implementation leaks
information on the processed data via various side-channels,
such as power and EM. This information leakage is exploited
by attackers in so-called side-channel attacks in order to learn
secret information such as the key. Independent of the concrete
source of side-channel leakage, there are two basic types of side-
channel attacks: simple power analysis (SPA) and differential
power analysis (DPA). While SPA tries to recover the secret
key of a cryptographic implementation from observing the
power consumption (or any equivalent side channel) during
en-/decryption of one single input, DPA uses observations
during the en-/decryption of many different inputs. Hereby,
DPA is particularly effective as there is more side-channel
leakage available, the more data is processed under one single
key. One important property of DPA attacks is their order.

k0 E

CA

c0

k1

E
p0

…E

CA

k2g

n

K

c0

E
p0

Fig. 2. Leakage-resilient block cipher encryption.

The order d of a DPA [6], [11] is defined as the number of
d different internal values in the executed algorithm that are
used in the attack.

Both SPA and DPA attacks can further make use of profiling.
Profiling a side-channel, e.g., the power consumption, means
to classify the side-channel leakage of a specific device
with respect to a certain value processed inside the device.
The resulting templates [3] can then be used to attack an
implementation by matching the templates with the observed
side-channel trace in order to learn about the value processed
inside the device.

B. Re-Keying and Leakage-Resilient Encryption

The probability for key recovery via DPA to be successful
rises with the number of side-channel observations for different
inputs. Therefore, one approach to counteract DPA is frequent
re-keying [7], [10]. Hereby, the goal is to design a cryptographic
scheme such that for a certain key k, the number of different
inputs to the underlying cryptographic primitive is upper-
bounded by some small number q (q-limiting [18]). As soon
as the limit of q different inputs is reached, another key k′ is
selected. This limits the data complexity per key k. Thus, for
a certain key k, the cryptographic implementation can only
generate the side-channel leakage for q different inputs, which
effectively limits the feasibility of DPA to recover k. As a
result, the implementation of the cryptographic primitive is
only required to resist SPA attacks.

One prominent example for this re-keying approach is
leakage-resilient encryption, such as depicted in Fig. 1-2.
Hereby, the re-keying operation itself is implemented using a
leak-free initialization step to derive a session key k0 from a
pre-shared master secret K and a nonce n, i.e., via a both DPA-
and SPA-secure re-keying function g : (K,n) 7→ k0. Therefore,
a fresh nonce n has to be chosen for every encryption. The
session key k0 is then used in a leakage-resilient mode of
operation that guarantees bounded data complexity per key
when performing the actual en-/decryption. Therefore, leakage-
resilient encryption modes utilize a key update step ki 7→ ki+1

to provide a different key for the encryption of each plaintext
block pi. For example, the modes in Fig. 1-2 compute the next
block’s key ki+1 by encrypting a constant value CA using an



encryption primitive E, e.g., a block cipher, with the current
block’s key ki.

As shown in Fig. 1-2, current leakage-resilient encryption
modes employ two basic variants to perform the encryption
of the single plaintext blocks pi. The majority of modes uses
a stream cipher approach [13], [14], [18] similar to Fig. 1.
These modes use the current block’s key ki and a constant
CB to compute a value yi = Eki(CB) that is used to pad the
plaintext pi as ci = pi ⊕ yi. On the other hand, there are also
proposals for a block-cipher based approach [19] such as in
Fig. 2, which directly use the current block’s key ki to encrypt
pi as ci = Eki

(pi). Both variants clearly limit each key’s data
complexity during encryption by two to make DPA on the
keys ki infeasible. Yet, both variants must be implemented
such that they resist SPA-like attacks. Therefore, such schemes
must have bounded leakage of the key material, i.e., it must be
hard to usefully combine the leakages of the single ki in order
to learn the key stream. Streaming modes such as in Fig. 1
thus often come with a proof for bounded leakage of the key
material given bounded leakage of the primitive E. Contrary
to that, schemes such as in Fig. 2 currently lack this feature.

III. SIDE-CHANNEL PLAINTEXT-RECOVERY ATTACK

Fresh re-keying effectively prevents DPA on the key and
often even allows to prove bounded leakage of the key material
as in leakage-resilient encryption. However, even though
encryption schemes have the goal to protect confidential data,
leakage-resilient encryption currently lacks the consideration
of plaintext confidentiality for side-channel adversaries.

In this section, we show that frequent re-keying is vulnerable
to plaintext recovery using DPA. In particular, encrypting con-
stant data using different keys allows to attack leakage-resilient
stream ciphers using a first-order DPA and re-keyed block
cipher encryption using a second-order template attack. While
this setting is inherent with the re-keying countermeasure, we
also show its practical relevance in several other applications.

A. Stream Cipher Mode

Frequent re-keying allows to perform a first-order DPA to
recover a constant plaintext that is encrypted using a leakage-
resilient stream cipher such as in Fig. 1. For illustration, we
consider the encryption of a single, constant plaintext block pi.

The choice of a fresh nonce n upon every encryption results
in different key streams and thus in the plaintext pi being
encrypted using different pads yi, y′i, y

′′
i . As a result, an attacker

will, for the same plaintext pi, observe different ciphertexts
ci, c

′
i, c

′′
i and the respective power consumptions of the imple-

mentation. This observation facilitates DPA on the constant
plaintext. Namely, the varying pad yi allows to distinguish
correct from wrong guesses of the plaintext pi. In the DPA,
the attacker can therefore model the power consumption of
the stream cipher implementation as HW (yi) = HW (ci⊕ pi)
for all observed ciphertexts ci, c

′
i, c

′′
i and for all guesses of

pi, where HW denotes the Hamming weight. Applying an
appropriate statistical distinguisher, e.g., correlation, to the

p0

k0

S …

Fig. 3. UPTA-like plaintext recovery attack on one plaintext byte in the first
AES round. Two templates, one on the whitening key k0 and one on the S-box
output S(p0 ⊕ k0), have to be trained.

power model and the observed power consumption then reveals
the correct plaintext pi.

Note that this DPA targets the linear XOR operation. We
also stress that this kind of DPA is not limited to leakage-
resilient stream ciphers as in Fig. 1, but applicable to stream
ciphers in general. Namely, for cryptographic security, the pad
of a stream cipher (and thus its initial value) must not repeat
over different plaintexts. Therefore, producing different key
streams, i.e., re-keying, is mandatory for any stream cipher
implementation. The discussed attack scenario will thus appear
every time when a plaintext is encrypted with a stream cipher
more than once.

B. Block Cipher Mode

The leakage-resilient block cipher encryption mode in Fig. 2
is not subject to the previously discussed first-order DPA
attack. This is due to the fact that a full block cipher, i.e., the
bottom ciphers in Fig. 2, separates the known ciphertext from
the constant plaintext, and therefore, without knowledge of
the random key, we cannot verify any plaintext hypothesis.
However, a second-order template attack targeting the first
round of the data-encryption block cipher can be mounted on
the construction instead.

The idea of the attack against the block cipher used for
data encryption is similar to the idea behind an unkown
plaintext template attack (UPTA) [5]. Such an UPTA recovers
the secret key of a block cipher without having access to both
the plain- and the ciphertext. Hereby, two templates are used
to recover the required information instead. Combining the
leakage information from multiple block cipher invocations
in a DPA-like manner then permits to recover the secret key.
Re-keying effectively prevents key recovery via such UPTA
attacks since the key for the block cipher is constantly changed.
However, an UPTA-like plaintext-recovery attack can still be
mounted on the block cipher given that the plaintext is constant.
In this case, the role of the key and the plaintext are simply
swapped.

In more detail, an UPTA-like plaintext recovery attack on the
initial round of a block cipher consists of two phases. In phase
one, two templates are trained using labeled training traces.
The first template provides combined information about both
the key and the plaintext. It is therefore typically trained on the
intermediate value after the first nonlinear function. The second
template provides information about the secret key. None of the
two templates is expected to determine the respective values



unambiguously. However, the combination of the information
provided by both templates should be descriptive.

Attacking, for example, the first round of the AES block
cipher with such an UPTA-like plaintext recovery attack results
in the setup shown in Fig. 3. The first template has to be trained
on the S-box output S(p0⊕k0) and provides information about
the plaintext and the whitening key. The second template is
trained on the whitening key k0 itself and is supposed to learn
information about the actual key value.

In phase two, the templates are matched with all target
traces. For every trace, matching the first template provides
attackers with a matrix of probabilities for all possible key
and plaintext hypotheses. However, these matrices can not be
combined across different target traces. Therefore, the second
template is used to weight the key hypotheses within the
afore mentioned matrices. As a result, the attacker is able to
reduce the matrices with plaintext/key probabilities to vectors
of plaintext probabilities. These vectors can then be easily
combined across all target traces.

C. Implications and Applicability

The principle of the presented attacks on leakage-resilient
encryption seems quite natural when taking into consideration
that more information about certain data is leaked the more
often it is processed in different ways. Namely, the vulnerability
exploited in these schemes arises from mixing a varying
component, the key, with a fixed component, the plaintext,
in the process of re-keying. While such attacks that exploit the
multiple encryption of fixed data using different keys seems
implausible at first glance, there are indeed several practical
use cases where such settings occur. Quite noteworthy, these
settings are not limited to re-keying as a DPA countermeasure.

1) Communication: One example in practice are commu-
nication protocols. In SSL, for example, each session agrees
on a new session key. As a result, sending the same data via
multiple SSL sessions leads to the encryption of this data
using different session keys and therefore enables side-channel
plaintext-recovery attacks. One practical situation where this
happens is an (embedded) web sever that receives multiple
download requests for a certain file that is thus leaked using
the presented attacks. Yet, for the cipher modes nowadays
employed in such communication protocols it seems easier to
use DPA to directly recover the key. However, using re-keying
or leakage-resilient schemes as a countermeasure still allows
to recover constant plaintexts.

Note that key wrapping does not solve the problem of plain-
text recovery attacks in multi-party communication settings.
Even though key wrapping guarantees that the plaintext itself
is encrypted only once, the used data encryption key still
needs to be encrypted for all communicating parties with their
respective long-term keys. Therefore, side-channel plaintext-
recovery attacks on the key wrapping procedure, where the
data encryption key is the plaintext input, are still possible.

Another example in the area of communication is the
handling of transmission errors. Many embedded devices do
not have a full network stack covering error cases and therefore

require the manual re-transmission of data when an error occurs.
Due to constrained resources, the ciphertexts will not be held in
memory, but the data will be encrypted again. Using re-keying
as a DPA countermeasure for such devices will thus allow for
recovering the plaintext information as shown before.

2) Memory Encryption: Re-keying nowadays also occurs in
the setting of memory encryption. For example, in implementa-
tions of transparent RAM encryption, like recently introduced
by Intel with SGX [4], it is common to choose a new random
RAM encryption key on every system reboot. Therefore, every
time (confidential) data is loaded into memory after startup, it
is re-encrypted using a different key. This facilitates the attacks
presented in this paper to learn the plaintext data. This can be
particularly critical if there are long-term keys being loaded
into the RAM.

Similar to the communication example, the application of
re-keying and leakage-resilient encryption does not close this
vulnerability. Namely, memory is typically encrypted using
a block-wise granularity. Therefore, updating small amounts
of data, e.g., a single byte, will cause a read-modify-write
operation on the respective block to take place. In order for
re-keying to work properly, the whole block must then be
re-encrypted using a freshly chosen key, triggering the re-
encryption of the unchanged data in the block. As a result,
the presented attacks will not just work across several system
boots, but also within a single session of the system.

We stress that a similar effect also occurs for RAM
encryption using the counter mode such as in [4]. Hereby,
the nonce input to the block cipher is composed of the block
address and the respective block’s counter. Therefore, whenever
some data block is copied or written back to the memory, either
the address or the respective block’s counter changes, leading
to a different pad, and thus re-encryption of the same data,
again allowing for side-channel plaintext-recovery attacks.

D. Remarks and Countermeasures

Re-keying successfully prevents key recovery through DPA
attacks without the need for DPA countemeasures in crypto-
graphic implementations. Even more, leakage-resilient encryp-
tion nicely allows to give proofs of security in the presence
of side-channel adversaries. However, the presented attacks
also make clear that the re-keying approach may facilitate new
attack scenarios that have been left unconsidered so far. This
work gives an example of such scenario that designers and
implementers need to be aware of.

The best countermeasure to the presented attack would be
to avoid the re-encryption of constant data at all. However,
multiple encryption of the same data using different keys
frequently appears in practice. Therefore, contradicting the
original intention of re-keying, adding countermeasures to
the cryptographic implementation is one possible solution for
these use cases. While these countermeasures cannot prevent
the attack scenario completely, mechanisms like masking [15]
can at least increase the attack order to render the attack
complexity [2] for plaintext recovery too high.



10,000 20,000 30,000 40,000
0

0.05

0.1

0.15

Number of Traces

C
or

re
la

tio
n

Fig. 4. Single plaintext byte result of a 1st-order DPA on the stream cipher.
The correct plaintext byte is highlighted in bold.

IV. PRACTICAL EVALUATION

In this section, we practically verify the described attacks
and present our results on both an FPGA and a microcontroller.

A. Stream Cipher Mode

We implemented the stream cipher depicted in Fig. 1 on the
Sakura-G [17] side-channel evaluation board featuring a Xilinx
Spartan 6 LX75 FPGA. The implementation uses a single
AES-128 core as the encryption primitive E that computes
one AES round per cycle and that is shared between the key
update procedure and the pad computation. Therefore, the
implementation natively processes plaintext blocks pi of 128-
bit size. Once the pad is computed and the input data block
is ready, the pad is applied fully in parallel to the input. The
implementation communicates with the host PC via the USB
interface that emulates a virtual COM device. To ease the attack
setup, the implementation also provides a dedicated signal to
trigger the power measurements.

The implementation was operated at 24 MHz. For the power
measurements, we sampled the signal at measurement point
J3 using a LeCroy WP725Zi oscilloscope at 250 MS. The
measurement point J3 gives an amplified signal of the voltage
drop over a shunt resistor on the VCC line. We then performed
the attack as described in Section III-A by using plaintext byte
hypotheses and correlation as the statistical distinguisher. The
attack could successfully identify all plaintext bytes in less
than 10,000 traces. For example, Fig. 4 shows the results for a
single plaintext byte that could be recovered using 3,000 traces
already. However, to improve the results both measurement
setup and trace processing are possible starting points.

B. Block Cipher Mode

The practical evaluation of the UPTA-like plaintext-
recovery attack on the block cipher mode was performed

0 500 1,000 1,500 2,000 2,500 3,000
0

1

2

3
·10−4

Sample

V
ar

ia
nc

e

S-box
Key

Fig. 5. Points of interest detection for the S-box and the key template. The
main key leakage is located at sample 470. The S-box output leaks the most
at sample 1782.

using a ChipWhisperer-Lite [12] side-channel evaluation
board, sampling at 29.5 MHz. As target board, an Atmel
XMEGA128D4-U microcontroller, clocked at 7.4 MHz, was
used. As in the original UPTA paper, the Hamming weight
leakage model is well suited for this processor. On the software
side, a byte-oriented C implementation of AES-128 from the
AVR-Crypto-Lib [1] was chosen.

The actual attack was performed following a divide-and-
conquer approach, where every plaintext byte is attacked in
isolation. However, only a single template trace set as well as
a single target trace set was used to attack all bytes.

In the first phase of the attack, byte-wise templates to classify
the Hamming weights of both the key and the S-box output
were trained using 30,000 power traces recorded during random
encryptions with known plaintext and key. For each template,
the points of interest were chosen by selecting the samples
of a trace with the highest variance between the means of
all Hamming weight classes of the respective template. The
variance for the key and the S-box template is visualized for a
single state byte in Fig. 5. The points of interest that contribute
the most information to the desired templates can be clearly
seen in the 3,000-sample long traces. In total, 50 points of
interest were selected for each template.

In the second phase, every byte’s key and S-box template was
matched with every target trace. This results in probabilities for
the modeled Hamming weights at the template positions. For
each trace, the probabilities of a single byte’s S-box template
were then used to compute the probabilities for all potential
plaintext and key values for the respective byte. Afterwards, the
key dependency was removed by weighting the probabilities
based on the result of the key template matching. As a result,
probabilities for the different plaintext values remain which
can be combined for all traces.



0 1,000 2,000 3,000 4,000 5,000
0

0.2

0.4

0.6

0.8

1

Number of Traces

Pr
ob

ab
ili

ty

Fig. 6. Plaintext probabilities of an UPTA-like attack on one plaintext byte.
The correct plaintext value is highlighted in bold black.

An exemplary development of these plaintext value probabil-
ities is visualized for one byte of the plaintext in Fig. 6. In this
figure, roughly 2,000 target traces are sufficient to uniquely
determine the correct plaintext value. Across all plaintext bytes,
most of the plaintext values could be determined with less than
5,000 traces.

Note that the presented attack is only supposed to prove
that UPTA-like plaintext-recovery attacks are indeed possible
and practical. However, the required number of traces should
not be taken as reference for the expected attack complexity.
Optimizing the attack would easily be possible using a more
sophisticated measurement setup or by exploiting the leakage
from additional samples within the traces.

V. CONCLUSION

In this paper, we investigated the side-channel security of
frequent re-keying and leakage-resilient encryption. While
such schemes have several advantages such as inherently
preventing DPA on secret key material and giving provable
leakage bounds without the need for a protected cryptographic
implementation, we showed that schemes based on frequent re-
keying do not sufficiently protect confidential plaintexts from
DPA. In particular, whenever confidential data, e.g., a long-term
key, is (re-)encrypted multiple times using different keys, the
cryptographic device generates additional leakage on this data
that an attacker can exploit. As a result, constant plaintexts
encrypted using leakage-resilient stream ciphers are recovered
using a standard, first-order DPA, and a template-based, second-
order DPA can reveal plaintexts that are encrypted multiple
times with a block cipher using different keys.

The consideration of plaintext confidentiality in the presence
of side-channel adversaries thus reveals a weakness of current
re-keying based schemes that designers and implementers need
to be aware of. This issue is emphasized by several sensible

applications where care has to be taken as these inherently
perform re-encryption of constant plaintexts, e.g., multi-party
communication and RAM encryption. We therefore conclude
that, as opposed to the original idea of fresh re-keying and
leakage-resilient encryption, cryptographic implementations
with DPA countermeasures such as masking [15] are needed
to avoid the leakage of plaintexts in all of these use cases
inherently encrypting data using multiple keys.

Acknowledgments.
The research leading to

these results has received
funding from the European
Research Council (ERC) un-
der the European Union’s
Horizon 2020 research and innovation programme (grant
agreement No 681402). Further, this work has been supported
by the Austrian Research Promotion Agency (FFG) under the
grant numbers 845579 (MEMSEC) and 845589 (SCALAS).

REFERENCES

[1] AVR-Crypto-Lib, “AVR-Crypto-Lib,” 2016. [Online]. Available: https:
//trac.cryptolib.org/avr-crypto-lib

[2] S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi, “Towards sound ap-
proaches to counteract power-analysis attacks,” in Advances in Cryptology
- CRYPTO 1999, 1999, pp. 398–412.

[3] S. Chari, J. R. Rao, and P. Rohatgi, “Template attacks,” in Cryptographic
Hardware and Embedded Systems - CHES 2002, 2002, pp. 13–28.

[4] S. Gueron, “A memory encryption engine suitable for general purpose
processors,” IACR Cryptology ePrint Archive, vol. 2016, p. 204, 2016.

[5] N. Hanley, M. Tunstall, and W. P. Marnane, “Unknown plaintext template
attacks,” in WISA 2009, 2009, pp. 148–162.

[6] P. C. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in
Advances in Cryptology - CRYPTO 1999, 1999, pp. 388–397.

[7] P. Kocher, “Leak-resistant cryptographic indexed key update,” Mar. 25
2003, uS Patent 6,539,092. [Online]. Available: https://www.google.com/
patents/US6539092

[8] S. Mangard, E. Oswald, and T. Popp, Power analysis attacks – Revealing
the secrets of smart cards. Springer, 2007.

[9] M. Medwed, C. Petit, F. Regazzoni, M. Renauld, and F.-X. Standaert,
“Fresh re-keying II: securing multiple parties against side-channel and
fault attacks,” in CARDIS 2011, 2011, pp. 115–132.

[10] M. Medwed, F.-X. Standaert, J. Großschädl, and F. Regazzoni, “Fresh
re-keying: Security against side-channel and fault attacks for low-cost
devices,” in AFRICACRYPT 2010, 2010, pp. 279–296.

[11] T. S. Messerges, “Using second-order power analysis to attack DPA
resistant software,” in CHES 2000, 2000, pp. 238–251.

[12] NewAE Technology Inc., “ChipWhisperer,” 2016. [Online]. Available:
https://newae.com/tools/chipwhisperer/

[13] O. Pereira, F.-X. Standaert, and S. Vivek, “Leakage-resilient authentica-
tion and encryption from symmetric cryptographic primitives,” in CCS
2015, 2015, pp. 96–108.

[14] K. Pietrzak, “A leakage-resilient mode of operation,” in EUROCRYPT
2009, 2009, pp. 462–482.

[15] E. Prouff and M. Rivain, “Masking against side-channel attacks: A formal
security proof,” in EUROCRYPT 2013, 2013, pp. 142–159.

[16] P. R. Sami Saab and C. Hampel, “Side-channel protections for crypto-
graphic instruction set extensions,” Cryptology ePrint Archive, Report
2016/700, 2016, http://eprint.iacr.org/2016/700.

[17] Satoh Lab./UEC, “Sakura G,” 2014. [Online]. Available: http:
//satoh.cs.uec.ac.jp/SAKURA/hardware/SAKURA-G.html

[18] F.-X. Standaert, O. Pereira, Y. Yu, J.-J. Quisquater, M. Yung, and
E. Oswald, “Leakage resilient cryptography in practice,” in Towards
Hardware-Intrinsic Security – Foundations and Practice, 2010, pp. 99–
134.

[19] M. M. I. Taha and P. Schaumont, “Key updating for leakage resiliency
with application to AES modes of operation,” IEEE Trans. Information
Forensics and Security, vol. 10, no. 3, pp. 519–528, 2015.

https://trac.cryptolib.org/avr-crypto-lib
https://trac.cryptolib.org/avr-crypto-lib
https://www.google.com/patents/US6539092
https://www.google.com/patents/US6539092
https://newae.com/tools/chipwhisperer/
http://eprint.iacr.org/2016/700
http://satoh.cs.uec.ac.jp/SAKURA/hardware/SAKURA-G.html
http://satoh.cs.uec.ac.jp/SAKURA/hardware/SAKURA-G.html

	Introduction
	Contribution

	Background
	Side-Channel Attacks
	Re-Keying and Leakage-Resilient Encryption

	Side-Channel Plaintext-Recovery Attack
	Stream Cipher Mode
	Block Cipher Mode
	Implications and Applicability
	Communication
	Memory Encryption

	Remarks and Countermeasures

	Practical Evaluation
	Stream Cipher Mode
	Block Cipher Mode

	Conclusion
	References

