
Attacks to a proxy-mediated key agreement protocol based on
symmetric encryption

David Nuñez, Isaac Agudo, and Javier Lopez

Network, Information and Computer Security Laboratory (NICS Lab)
Universidad de Málaga, Spain

{dnunez, isaac, jlm}@lcc.uma.es

Abstract

In this paper, we describe several attacks to the protocol by Nguyen et al. presented
at ESORICS 2016, an authenticated key agreement protocol mediated by a proxy entity,
restricted to only symmetric encryption primitives and intended for IoT environments. This
protocol uses long-term weak secrets as intermediate values during encryption and decryption
procedures, which implies that these can be used to encrypt and decrypt messages without
knowing the corresponding secret keys. In our work, we show how access to weak secrets
can break forward security and lead to key compromise impersonation attacks. Moreover, we
demonstrate that this problem cannot be solved even if the affected user revokes his previous
secret key and updates it to a new one. In addition, we explain how the choice of a keyed
hash as part of the protocol makes it potentially vulnerable to length-extension attacks,
depending on the choice of hash function. We illustrate this latter problem experimentally.
Finally, we show how a combination of these exploits can be used to set up elaborate attack
scenarios.

1 Introduction

Nguyen, Oualha, and Laurent presented at ESORICS 2016 an authenticated key agreement
protocol based on an ad-hoc variant of symmetric proxy re-encryption [22], called AKAPR. This
protocol is intended for highly-constrained IoT devices, and therefore, deliberately excludes the
use of asymmetric primitives such as Diffie-Hellman key exchange due to its reliance on modular
exponentiations. The proposed protocol is implemented on top of block ciphers, MACs, and
simple modular arithmetic.

In this paper we identify some deficiencies in the proposed protocol and describe several
attacks that exploit them. In particular, our attacks exploit the fact that encryption and de-
cryption operations do not use secret keys directly, but intermediate secret values (which we call
“weak secrets”). These secrets are relatively exposed throughout the protocol and can be used
to compromise the security of their corresponding owners (and in certain cases, other users).
We show how compromise of these weak secrets (or directly, of secret keys) makes it possible
to break forward security and lead to key compromise impersonation attacks. An interesting
consequence of how these attacks are done is that these cannot be prevented even if the affected
user renews his secret key, given that the compromised secret can be linked to the weak secret
of other users. In addition, the choice of a keyed hash construction as a means to produce these

1



weak secrets makes this procedure potentially vulnerable to length-extension attacks, depending
on the choice of hash function (e.g., SHA-1, SHA-256); we illustrate this problem with an actual
experiment that exploits the length-extension vulnerability. We also show how a combination
of the latter vulnerability with the previous ones can be used to construct more complex and
sophisticated attacks, such as spear phishing and sybil attacks.

Related work Proxy re-encryption (PRE) is a research topic with increasing popularity, with
new use cases arising in different contexts (e.g, data sharing in the cloud, key management, etc.).
Although the vast majority of PRE schemes are based on public-key cryptography [1, 3, 6],
there have been some proposals based on symmetric cryptography. Syalim et al. [26] propose a
symmetric PRE scheme based on the All-Or-Nothing Transform, although it assumes that both
sender and receiver share a common secret. Cook and Keromytis [9] present a solution based
on a double-encryption approach, but as in the previous case, a priori shared keys are needed.
The key-homomorphic PRF primitive by Boneh et al. [4] can be used to construct symmetric
PRE schemes without the shared key requirement, although as noted by Garrison et al. [15], its
computational cost is comparable or greater than traditional public-key cryptography. Sakazaki
et al. [24] propose a symmetric PRE scheme that is essentially equivalent to the one of this
paper; this is discussed further in Section 2.1.

The protocol we analyze in this paper is an example of authenticated key exchange (AKE),
one of the most recurring topics in the literature when it comes to security protocols. It is
also the basis for most Internet applications that relay on secure channels, as it is embedded
in TLS and IPSEC. We can clearly distinguish two research trends in this area, one based on
public-key cryptography, where Diffie-Hellman [11] is the current “standard”, and the other on
secret key cryptography. With respect to the latter, most proposals rely on a Key Distribution
Center (KDC) that shares a secret key with all users in the system and supports them on
agreeing on a session key. Since 1978, when the Needham-Schroeder symmetric protocol [20]
was proposed, several authors have attempted to propose better symmetric AKE protocols,
usually showing how previous ones can be attacked and fixing their weaknesses. For example,
one of the weaknesses of the original Needham-Schroeder protocol was the inability to prove
the freshness of the session key. Denning and Sacco [10] proposed the use of Timestamps as
a way fix this problem. Later, the Kerberos protocol [21], also built on the idea of using
timestamps, was proposed as the current “standard” AKE solution in the symmetric set-up. In
the last years, new assumptions on the capabilities of the attackers have been defined as well
as new application scenarios, security requirements and constrains that make this problem still
an interesting research topic, particularly in those environment where public-key cryptography
is not viable. Some recent works show that Elliptic Curve Cryptography (ECC) can be run in
most wireless sensor platforms [18], although there are still some highly-constrained of devices,
such as passive RFID, that are not yet capable of using PKC and would then require the use of
symmetric AKE protocols.

Organization The rest of this paper is organized as follows: In Section 2, we describe the
AKAPR protocol in detail, including actors, protocol flow and the underlying symmetric proxy
re-encryption primitive. In Section 3, we present several attacks and weaknesses of the AKAPR
protocol. In Section 4, we discuss some possible alternatives to the protocol. Finally, Section 5
concludes the paper.

2



2 Description of the Authenticated Key Agreement Protocol

In this section we briefly describe the protocol AKAPR (Authenticated Key Agreement medi-
ated by a Proxy Re-Encryptor). The goal of this protocol is to provide an authenticated key
exchange between two entities, using a proxy entity as a mediator. As in the general case of
proxy re-encryption, although the proxy entity assists in the process, it should not learn any
information. A critical restriction that guides the design of this protocol is that it assumes
that the authenticating entities may not be capable of using common public-key cryptography
primitives, such as Diffie-Hellman key exchange and digital signatures, due to the its reliance on
modular exponentiations. Instead, AKAPR is designed solely on top of block ciphers, MACs,
and simple modular arithmetic.

In the remaining of this section we first briefly explain the underlying symmetric proxy re-
encryption primitive. Next, we describe the general setting of the protocol, which includes the
description of actors, network architecture and trust assumptions. Finally, we detail the protocol
flow.

2.1 Symmetric proxy re-encryption primitive

The authors propose a symmetric proxy re-encryption algorithm, which is composed of the
following five functions:

• KeyGen(λ): On input the security parameter λ, the key generation algorithm KeyGen
outputs the secret key sk and identity id. As an example, for user A, these are skA and
idA.

• ReKeyGen(skA, idA, skB, idB): On input the secret keys skA and skB, and identities idA
and idB, the re-encryption key generation algorithm ReKeyGen computes the re-encryption
key between users A and B as rkA→B = h(skA‖idB)−1 ·h(skB‖idA)−1, where h : {0, 1}∗ →
Zp is a hash function.

• Enc(skA, idB,M): On input the secret key skA, the identifier of B, and a message M , the
encryption algorithm Enc samples t from Zp, derives a fresh key K from t using a key
derivation function (KDF), and outputs ciphertext CA = (SymEncK(M), t · h(skA‖idB)),
where SymEnc is a symmetric encryption algorithm.

• ReEnc(rkA→B, CA): On input a re-encryption key rkA→B and a ciphertext CA = (CA,1, CA,2),
the re-encryption algorithm ReEnc outputs ciphertext CB = (CA,1, CA,2 · rkA→B).

• Dec(skB, idA, CB): On input the secret key skB, the identity of the original recipient
A, and a ciphertext CB = (CB,1, CB,2), the decryption algorithm Dec computes t ←
h(skB‖idA) ·CB,2, derives key K from t using the KDF and decrypts the message M from
CB,1 using symmetric decryption algorithm SymDec.

We note that there is a previous proposal by Sakazaki et al. [24], further discussed in [7],
which is essentially equivalent to this symmetric proxy re-encryption scheme. The only difference
is that the original proposal by Sakazaki et al. uses the XOR operator instead of the modular
multiplication. If instantiated correctly, both of them are equivalent, security-wise; however,
Sakazaki et al.’s choice of the XOR operator can be implemented more efficiently than modular
multiplication.

3



Additionally, we also remark that this symmetric proxy re-encryption scheme is not consistent
with the prevalent idea of proxy re-encryption, where the sender does not need to know a
priori the identity of the intended recipient. In this scheme, the sender fixes the recipient
identity during encryption, and therefore, the resulting ciphertext can only be re-encrypted
to this identity. In contrast, in the traditional idea of proxy re-encryption (regardless if it is
public-key or symmetric), ciphertexts can be re-encrypted for any possible recipient, as long the
corresponding re-encryption key exists. Although, for simplicity, we will continue to refer to this
scheme as symmetric proxy re-encryption, we believe that it is actually some kind of multiparty
encryption, where the sender and the proxy jointly create a ciphertext decryptable by an a priori
fixed recipient.

2.2 Protocol setting

There are three main types of actors in the AKAPR protocol, which are the following:

• The Initiator (I) and the Responder (R), which are two entities located in separate sub-
networks and that want to establish an authenticated session between them. It is assumed
that these entities may lack the capacity to use asymmetric primitives such as Diffie-
Hellman, which requires modular exponentiation, and therefore will only use symmetric
techniques. Note, however, that a regular device can also participate in this protocol.

• The Delegatee1 (D), which mediates in the key agreement protocol between the Initiator
and the Responder, without being able to learn the negotiated session keys.

• The Key Distribution Center (KDC), which initially generates all the secret keys and nec-
essary re-encryption keys, and distributes them (secret keys to entities, and re-encryption
keys to the delegatee).

Figure 1 depicts the network setting assumed by this protocol, as well as its main actors.

2.3 Trust assumptions

The protocol has the following trust assumptions:

• The Delegatee is assumed to be honest-but-curious, which means it behaves correctly with
respect to the protocol, but at the same time, it has an interest in reading the underlying
information. We will latter show that if this assumption is relaxed (e.g., an attacker gains
control of the delegatee, or simply, the delegatee cooperates with him), it makes several
attacks possible.

• The Key Distribution Center is fully trusted. It is clear that, given that the KDC knows
all the keys involved, it can gain full control of the network. The existence of an omniscient
KDC can be seen as a single point of failure, precisely for this reason [19, Remark 13.3].

1Note that, in the proxy re-encryption literature, the term “Delegatee” is usually referred to the recipient of
a re-encrypted ciphertext. Hence, a re-encryption from user A to B can be seen as the delegation of decryption
rights from a “delegator” A to a “delegatee” B. However, for consistency with the analyzed protocol, we will also
refer to it as “delegatee”.

4



Key Distribution Center 
(KDC)

Delegatee (D)

Initiator (I)

Responder (R)

Figure 1: Network architecture (adapted from [22])

2.4 AKAPR Protocol Flow

We begin this subsection by defining some of the notation used in the protocol. Recall that
one of the principal requirements is to use only symmetric encryption primitives. In particular,
the protocol requires an authenticated encryption scheme, denoted by AEnc, and a message
authentication code MAC. The protocol assumes that each principal X has a shared key with
the delegatee D, namely KXD. This key is used to provide authenticity and integrity of com-
munications between the principal and the delegatee. In addition, it also assumes that both
initiator and responder maintain two counters for the communication between them, in order
to protect against replay attacks. These counters are labeled CTIR and CTRI , respectively.
Additionally, nonces NI and NR are used to ensure freshness of messages; a session identifier
SID also contributes towards this goal. Table 1 summarizes the notation used in this paper.

The AKAPR protocol is composed of 4 messages. In the the first two messages, the delegatee
acts as intermediary between the initiator and responder, while the third and fourth messages
are directly between them. Figure 2 shows the flow of messages of the protocol. Next, we
describe these messages in detail.

Message 1 (I → D). The first message of the protocol, M1, is created by an initiator I
and sent to the responder R, via the delegatee D. The initiator performs the following steps:

1. CTIR ← CTIR + 1

2. SID ← H(idI‖idR‖w), for a random w

3. NI
R←− Zp, t

R←− Zp

4. AK ← KDF(idI , idR, t)

5. AE1 ← AEncAK(SID‖idI‖idR‖NI‖CTIR)

6. C1 ← t · h(skI‖idR)

7. M̄1 ← SID‖idI‖idR‖AE1‖C1

5



Table 1: Notation

I Initiator
R Responder
D Delegatee

KDC Key Distribution Center
CTIR, CTRI Counters

SID Session identifier
NI , NR Nonces
H Hash function

KDF Key derivation function
AEnc,ADec Authenticated encryp-

tion/decryption primitives
MAC Message authentication code

KID,KRD Pre-shared keys with the delegatee
Zp Multiplicative group of integers

modulo p (i.e., {1, ..., p− 1})

Initiator I Responder RDelegatee D

M1
M2

M3

M4

Figure 2: Protocol flow

6



8. M1 ← M̄1‖MACKID
(M̄1)

Message 2 (D → R). Once the delegatee D receives a message from an initiatior I, he
performs the following procedure in order to verify the validity of the message and to generate
the message for responder R, namely M2.

1. Verify that SID is not repeated and that MAC in M1 with key KID; if failed, abort the
protocol.

2. C2 ← rkI→R · C1

3. M̄2 ← SID‖idI‖idR‖AE1‖C2

4. M2 ← M̄2‖MACKRD
(M̄2)

Note that after the re-encryption performed by the delegatee, the value of C2 is t·h(skR‖idI)−1.
Message 3 (R→ I). When the responder R receives the previous message from the delega-

tee D, he also verifies its validity, proceeds to decrypt it and extract the necessary information,
as described below. Finally, he produces a new message M3 that is sent directly to the initiator
I, without intermediaries. Note that at the end of this process, the responder already knows
the agreed session key KS .

1. Verify MAC in M2 with key KRD; if failed, abort the protocol.

2. t← h(skR‖idI) · C2

3. AK ← KDF(idI , idR, t)

4. SID‖idI‖idR‖NI‖CTIR ← ADecAK(AE1)

5. Check that CTIR ≥ CTRI ; if failed, abort the protocol.

6. CTRI ← CTIR + 1

7. NR
R←− Zp

8. KS ← KDF(CTRI , idI , idR, NI , NR)

9. M3 ← AEncAK(SID‖idR‖idI‖NI‖t‖NR‖CTRI)

Message 4 (I → R). When the initiator I receives the response from the responder R,
he follows the procedure below to verify its validity and extract the necessary information. He
produces a final message M4 that is sent directly to the responder R, who verifies its validity
using the previously generated session key KS .

1. SID‖idR‖idI‖NI‖t‖NR‖CTRI ← ADecAK(M3)

2. Check that SID,NI and t correspond to the original ones sent in M1, and that CTRI =
CTIR + 1; if failed, abort the protocol.

3. KS ← KDF(CTRI , idI , idR, NI , NR)

4. M4 ← SID‖MACKS
(SID‖idI‖idR‖NI‖NR)

As a final remark, we note that the authors do not describe any procedure for the initial key
distribution.

7



3 Attacks to the AKAPR Protocol

In this section we describe several attacks and weaknesses of the AKAPR protocol. Most of
them stem from the use of weak secrets as intermediate values for encryption and decryption,
as well as the possibility of obtaining a weak secret associated to another user by means of the
delegatee or analysis of past protocol traffic. This is particularly problematic in the event of
compromise of long-term secret keys, to the point that even key revocation and update does not
allow the affected user to recover the guarantees of secrecy and authentication with respect to
other users. In addition, we also show how the choice of an insecure keyed-hash construction
can lead to length-extension attacks, which combined with our previous attacks, can be used to
mount complex attack scenarios.

3.1 Breaking Forward Secrecy

A first and simple attack to this protocol is to recover previous session keys from past traffic,
once the long-term secret of a user is leaked. The security goal we are breaking in this case is
forward secrecy, formally defined as follows:

Definition 1 (Forward secrecy [5]) A protocol provides forward secrecy if compromise of the
long-term keys of a set of principals does not compromise the session keys established in previous
protocol runs involving those principals

Definition 2 (Partial forward secrecy [5]) A protocol provides partial forward secrecy if
compromise of the long-term keys of one or more specific principals does not compromise the
session keys established in previous protocol runs involving those principals

For this type of attack, we assume that an attacker has collected the messages of the protocol
for one or several runs, and that, at a latter stage, he is able to get access to the secret key of
the responder. The goal is to recover previous session keys. In the case of the AKAPR, the
attacker proceeds as follows:

1. The attacker stores the protocol messages for one or several rounds. For simplicity, let us
assume he stores the traffic for only the run he wants to extract its session key.

2. At some point, the attacker compromises the responder R and obtains his long-term secret
key skR.

3. From message M2 of the stored protocol run, he parses t · h(skR‖idI)−1 and extracts t,
since he can compute h(skR‖idI). The value t is used to compute the encryption key
AK ← KDF(idI , idR, t)

4. From message M3, the attacker can decrypt the values NR, NI and CTIR using the key
AK computed in the previous step.

5. The attacker computes the session key KS used during the stores run as described in the
protocol:

KS = KDF(CTRI , idI , idR, NI , NR)

8



Therefore, it can be seen this protocol does not fulfill forward secrecy and partial forward
secrecy. We note that if the attacker compromises the initiator I instead, then the attack is the
same except for step 3, where he uses skI to extract t from t · h(skI‖idR), contained in message
M1.

Countermeasure The messages M1 and M2 are transmitted over an authenticated channel
using MACs, with pre-shared MAC keys KID and KRD, respectively. A possible countermeasure
to the previous attack is to assume additional encryption keys for securing the confidentiality
of the channel, given that the assumption of pre-shared keys already exists. However, if at-
tackers were able to compromise the secret key of one user, it is reasonable to assume that the
corresponding MAC key is potentially leaked too.

3.2 Key Compromise Impersonation Attacks

The previous subsection was devoted to attacking forward secrecy, a common concern of protocol
designers. There are, however, other kinds of attacks that are not that well known, but can
be potentially more hazardous. Key compromise impersonation (KCI) attacks occur when an
adversary gains access to the secret key of a principal, and uses it to establish a session with
him impersonating a different user. The attacker may use this session to actively gain new
knowledge about the victim or causing him harm (e.g., by sending him malware), as the victim
believes he is communicating with a legitimate user [8]. Therefore, KCI attacks can be more
dangerous than breaking forward secrecy, which is limited to passive eavesdropping of past and
future traffic. The following is a more formal definition of KCI, adapted from [25].

Definition 3 (Key compromise impersonation) A key agreement protocol is vulnerable to
key compromise impersonation (KCI) if compromise of the long-term key of a specific user allows
the adversary to establish a session key with that user by masquerading as a different user.

In this subsection we describe three types of KCI attacks, although it may be possible that
other variations exist. For the first two KCI attacks, we assume that the attacker compromises
the secret key of one user and tries to impersonate an initiator I (which may be any user in the
system chosen by the attacker); therefore, the victim acts as the responder R. Since the attacker
needs to direct the attack via the delegatee, he needs at least one of the pre-shared MAC keys:
either the key KRD between the delegatee D and the responder R, or the key KID between the
delegatee and the impersonated user I. The two first KCI attacks differ on which MAC key is
compromised. Finally, we also identify a third KCI attack that occurs in the opposite situation,
when the attacker tries to impersonate a responder. Although in this case the attacker has to
wait for a key agreement request from the victim (which can be forced by an out-of-band action),
this attack is much easier to achieve, since it does not require any MAC key.

KCI Attack 1 If the attacker knows skR and KRD then the strategy to impersonate an
initiator I is to produce a message M2 (i.e., the second message of the AKAPR protocol, which
is between the delegatee and the responder), since this message does not depend on any secret
from user I; the only requirement is to chose a counter value high enough. The responder R will
accept this message as coming from user I via the delegatee, as depicted by Figure 4, since its
authenticity can be checked with KRD. The attacker now only has to continue the protocol to

9



Initiator I 
(Attacker) Responder RDelegatee D

(Attacker)

M2

M3

M4

Figure 3: Flow of the KCI Attack 1

establish a session key between him and R, although R thinks the session is between him and
I. This attack works even in the attacker does not know skR, but only h(skR‖idI). The initial
assumption of the attacker knowing KRD is reasonable given he has access to skR.

KCI Attack 2 If the attacker knows skR and KID then the attacker needs to know also
h(skI‖idR) in order to impersonate an initiator I. There are different ways to achieve this:

• A first option is to use past protocol traffic between R and I in order to extract this
value, following a strategy similar to the forward secrecy attack: Knowing skR enables the
attacker to compute the t value from the messages of a protocol run, which in turn, can
be used to extracth(skI‖idR) from message M1.

• A second option is to trick the delegatee into delivering this value by means of the re-
encryption function, basically using it as a re-encryption oracle2. In order to do this, the
attacker initiates a key agreement protocol between R and I, where C1 is the component of
message M1 with value t · h(skR‖idI). Next, he captures the response M2 of the delegatee
and parses the re-encrypted component C2. Finally, he computes h(skI‖idR) = t · (C2)

−1.

• A third option is to assume that the attacker colludes with the delegatee (or even that the
attacker is the delegatee). In this case, h(skI‖idR) can be computed from the re-encryption
keys since rkI→R = h(skI‖idR)−1 · h(skR‖idI)−1. With this option, the assumption of
knowing the key KID is natural.

Once the attacker knows h(skI‖idR), he initiates a normal key agreement protocol with R via
the delegatee, as shown in Figure 4, using KID for computing the MAC for the first message.
Note that the attacker can participate successfully in this key agreement since he does not need
to know the secret skI , but the weak secret h(skI‖idR). As a final comment on this attack,
note that it works even if the attacker initially does not know skR, but only the weak secret
h(skR‖idI).

2Note that in the traditional proxy re-encryption literature (i.e., in the public-key setting), the re-encryption
oracle is considered as a delicate point. See for example the work of Nuñez et al. [23] , where several generic
attacks using the re-encryption oracle are discussed.

10



Initiator I 
(Attacker) Responder RDelegatee D

M1
M2

M3

M4

Figure 4: Flow of the KCI Attack 2

KCI Attack 3 Previous KCI attacks supposed that the leaked secret was of a user who later
acted as the responder. Suppose now that the secret key of an initiator I is leaked. Figure 5
shows the protocol flow of this attack, where the attacker acts as the responder R. An attacker
that knows the secret key skI of the initiator can impersonate any user R if he is able to obtain
h(skR‖idI). As in the KCI attack 2, there are several ways to do this:

• Previous traffic between I and R. Knowing skI enables the attacker to compute the t value
from the messages of a protocol run, which in turn, can be used to compute h(skR‖idI)
from message M2.

• Using the delegatee as a re-encryption oracle. This requires knowledge of KID.

• Assuming that the attacker controls the delegatee, colludes with it, or the corresponding
re-encryption key is leaked somehow.

Once the attacker knows h(skR‖idI), he can respond to normal key agreement requests from
I. As in previous KCI attacks, the attacker succeeds without actually knowing the secret skR,
but the weak secret h(skR‖idI); similarly, this attack works even if the attacker only knows the
weak secret h(skI‖idR) at the beginning.

As a final remark, KCI attacks 1 and 2 required the additional knowledge of one of the
pre-shared MAC keys, since in both of them the attacker impersonated an initiator, whose
messages are required to be validated, and therefore, is performing a proactive impersonation.
On the contrary, in this KCI attack the attacker impersonates a responder, which implies that
the impersonation is reactive in this case (i.e., it requires that the initiator I starts the key
agreement). This can be achieved either by waiting for a key agreement request to occur or by
forcing it using some out-of-band mechanism (e.g., hard-resetting the initiator’s device, social
engineering, etc.).

3.3 Limited Scope of Key Revocation and Update

An interesting, yet not immediate, takeaway of the previous attacks is that they exploit the
following undesired properties of the protocol: (1) weak secrets can replace long-term secret
keys, and (2) associated weak secrets (e.g., h(skI‖idR) and h(skR‖idI)) can be linked with each

11



Initiator I Delegatee D

M1
M2

M3

M4

Responder R 
(Attacker)

Figure 5: Flow of the KCI Attack 3

other through valid protocol messages. These issues are problematic when long-term secret keys
are compromised, as illustrated by the attacks we identified.

A natural action that the affected principal performs once he becomes aware of the compro-
mise of his secret key, is to initiate some kind of key revocation/update procedure. In principle,
one can believe that key revocation is an effective countermeasure against a long-term key com-
promise event. However, we show next that this is not the case: once the long-term key of a
user is compromised, and even after key revocation and update is realized, the protocol still
remains vulnerable with respect to forward secrecy and key compromise impersonation, for all
users whom the affected user communicated before. This is a consequence of the two undesired
properties described above.

Breaking forward secrecy As an illustration, suppose that the responder R updates his se-
cret key to sk′R after his previous long-term secret skR is exposed, revokes previous re-encryption
keys and asks for their update. In order for the protocol to be correct, the new re-encryption keys
should be of the form rk′I→R = h(skI‖idR)−1 · h(sk′R‖idI)−1, for all possible initiators I. Note
that the term h(skI‖idR) does not change with respect to the previous re-encryption key, and
therefore, the initiator I still uses this same weak secret when participating in a key agreement
with the responder R. The consequence of this is that an attacker that was able to break forward
secrecy before can extract h(skI‖idR) from previous rounds of the protocol, since h(skI‖idR)
has not changed. Using this weak secret, the attacker can compute the corresponding t value
from the first message of the protocol (i.e., M1) of any future round, and break forward secrecy
again.

Key Compromise Impersonation Suppose now that it is an initiator I who updates his
secret key to sk′I . Analogously to the previous case, it is still possible for an attacker to recover
h(skR‖idI) from previous traffic between I and any other user R. However, in this case, the
attacker does not limit himself to passively eavesdrop protocol messages as above (i.e., breaking
forward secrecy), but can actively impersonate the responder R, given that he knows the value
h(skR‖idI) necessary to decrypt message M2. Notice how updating the secret key of I does not
have any effect on the weak secret that protects the second message of the protocol.

12



Countermeasures The only possible countermeasures against this problem are either to issue
a new identity for the affected user or to revoke also the users that established communications
with him previously. Both options does not seem adequate nor practical.

3.4 Length-extension attacks

We now describe a completely different attack strategy, based on a potentially dangerous design
choice in the AKAPR protocol. The symmetric proxy re-encryption primitive that underlies
the key agreement protocol (see Section 2.1), uses a keyed hash function to derive the weak
secrets. Specifically, these values are of the form h(skA‖idB), where the identity of the recipient
is used as the message of a keyed hash, with h : {0, 1}∗ → Zp as the hash function3. The
authors state that the hash function is required to behave as a random oracle, which can be a
rather strong assumption. However, it is known that real instantiations of hash functions do
not necessarily behave as random oracles. In fact, widely used hash functions such as SHA-1
and SHA-256 (as well as others based on the Merkle-Damg̊ard construction) suffer from length-
extension vulnerabilities [27] that make possible to create new weak secrets without knowing
skA, under the assumption that identifiers can have variable length.

First, let us recall the idea of length-extension attacks. In this type of attacks, knowledge
of the hash value h(m1) and the length of m1 can be used to compute h(m1‖pad‖m2), for any
message m2 chosen by the attacker and some required internal padding pad. It is known that
hash functions based on the Merkle-Damg̊ard construction (e.g, MD5, SHA-1, SHA-256) are
vulnerable to this type of attacks. This problem has been shown to permeate to real systems,
such as the Flickr’s API signature forgery vulnerability [14].

In the AKAPR protocol, if we assume that identifiers can have different lengths (i.e., id ∈
{0, 1}∗), then it may be possible that, for some identity idB, there exists an identity idBX where
idB is a prefix. For example, let us assume that idB = “Bob” and that the attacker knows
h(skA‖idB), but that skA remains secret. Then, by the length-extension vulnerability he can
produce h(skA‖idBE), where idBE = “Bob Esponja”4. For the sake of illustration, let us ignore
the internal padding pad for the moment.

As discussed in Section 3.2, an attacker that knows h(skA‖idBE) can impersonate A in a key
agreement with BE without knowing skA, regardless if he acts as an initiator or a responder.
The length-extension attack is particularly worrisome when the attacker has access to previous
traffic, or the delegatee is compromised or deceived by the attacker; in this case, the delegatee
can be used in combination with the attack strategies presented in previous sections in order
to compromise the security of non-involved users. For example, let us suppose that an attacker
gains access to the private key of user B. Figure 6 shows a combination of some of the attacks
described in this paper that eventually compromise the security of key agreements between
users A and BE. An attacker that knows skB can trivially generate weak secrets h(skA‖idB)
associated to any other user A; knowing this, he can compute the opposite weak secrets us-
ing strategies discussed in previous attacks (e.g., using the delegatee as an encryption oracle,
compromising the delegatee, analyzing previous traffic between A and B). The resulting weak

3Note that when we assume that h is implemented with a traditional hash function, it is also necessary an
additional encoding from its output domain to Zp, as required in Section 2.1; usual encodings of this type (e.g,
taking modulo p) are easily invertible, so we will omit this for simplicity.

4“Bob Esponja” is the Spanish name for “SpongeBob SquarePants” [28]. Not associated with the sponge-based
hash function SHA3 [2], which, interestingly, is not susceptible to length-extension attacks.

13



secrets can be used as input to length-extension attacks, undermining this way the security of
other users. The output of the length-extension attacks are also weak secrets, which in turn,
can be used again to obtain more weak secrets. Therefore, it can be seen how the initial leakage
of B’s secret can potentially affect key agreements between other users, since once the attacker
obtains h(skA‖idBE) and h(skBE‖idA), he can potentially control all their past and future key
agreements. Note that, although BE is some user whose identity has idB as prefix (i.e., the
choice of BE is not completely free), A is an arbitrary user, which is a serious threat to the
application of this protocol in a real setting.

skB

h(skB‖idA)

h(skA‖idB)

h(skA‖idBE)

h(skBE‖idA)

Trivial

Using the delegatee, analysis of previous traffic, ...

Length-extension attack

Using the delegatee, analysis of previous traffic, ...

Figure 6: Abstract flow of a length-extension attack

We next describe some possible attack scenarios that apply this strategy in combination
with others of the previously identified attacks. In particular, we illustrate two scenarios: the
first is reminiscent of sybil attacks in distributed networks [13], where a malicious entity gains
control of multiple identities in order to increase its control over a system or network; the second
is similar to a spear phishing attack [16], where the attacker targets specific victims aided by
relevant, yet fake, contextual information that gains the trust of the victim.

Sybil-like attack scenario The goal of the attacker in this scenario is to gain as much
weak secrets as possible, each of them associated to a different identity, and to start multiple
key agreements with a victim A, who will believe is communicating with different entities. In
particular, the idea is to obtain weak secrets between A and fresh “pseudonyms” (all of them
with the same prefix in order to exploit the length-extension vulnerability, as described before).

We initially assume either that the attacker is a legitimate user (e.g., user B), or that he
gained access to the secret key skB of some user B; this does not matter from the point of
view of the attack. Now, he can set up a sybil attack against any user A of his choosing as
follows, also represented in Figure 7. First, knowledge of skB allows to compute h(skB‖idA)
trivially; next, using the techniques described for previous attack strategies, the attack obtains
the opposite weak secret h(skA‖idB). Now he proceeds to launch the length-extension attack

14



against this hash value, by appending random i values to the end of idB, obtaining as a result
hashes of the form h(skA‖idB‖pad‖i). Therefore, fresh pseudonyms will be identities of the
form idBi = idB‖pad‖i. Note that in this case the internal padding pad that is necessary for the
length-extension attack is not necessarily a problem (e.g., if identities have a numerical format);
the only important requirement from the point of view of the sybil attack is that identities idBi

are different from each other.
Finally, using once again the techniques for obtaining the opposite weak secret, the attacker

eventually obtains a set of weak secrets of the form h(skBi‖idA), for different i values, which
enable him to mount a sybil-like attack against entity A. The attacker can now start multiple
key agreements with the victim A, making him believe that there are several independent entities
Bi, which in fact are controlled uniquely by the attacker.

skB

h(skB‖idA)

h(skA‖idB)

h(skA‖idB1) h(skA‖idBn)
...

h(skB1‖idA) h(skBn‖idA)

...

Figure 7: Abstract flow of a sybil attack

Spear phishing scenario Suppose that an attacker gains access to skB, where idB is a
common but dangerous prefix (e.g., “Bank”). Once again, following the previously discussed
strategies, the attacker can obtain the weak secrets between a victim A and user B, namely
h(skA‖idB), and later use this hash value to derive new weak secrets involving a tailored bait
whose name starts with “Bank” (e.g., “Bank of America”). Recall that the attacker does not
need to know the secret of “Bank of America”, but uses instead our attack strategies to obtain
a weak secret that compromises the security with respect to the victim A. This type of attack
also works if, instead of compromising user B, we suppose B does not initially exist and the
attacker is capable of registering it with the KDC as a new user.

There is, however, a small problem with the internal padding pad in this case. Following
our example, the length-extension attack would allow the attacker to compute the weak secret
h(skA‖“Bank”‖pad‖“of America”). Therefore, the forged identity is actually “Bank”‖pad‖“of America”,
which can be problematic if the padding allows the victim to detect the attack. We will, how-
ever, illustrate with a real example how this problem can be overcome, and experimentally
demonstrate the viability of the attack.

Suppose that the protocol uses SHA-256 as hash function and that secret keys are of 256
bits. In our experimental attack, the secret key is the hexadecimal value 3F (which corre-
sponds to the character ‘?’) repeated 32 times; note that the specific value of this key is

15



Table 2: Spear phishing based on a length-extension attack

Original weak secret h(skA‖“Bank”)

Hash input (string) “????????????????????????????????Bank”

Hash input (hex)
3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F

3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F 3F

42 61 6E 6B

Hash output (hex)
D2 7A D9 E5 FD FC 84 3E 8F 73 74 05 72 04 1D 80

72 48 F2 58 09 06 04 BF 5A 38 AA B7 B5 74 C8 CB

“Extended” weak secret h(skA‖“Bank”‖pad‖“of America”)

“Bank”‖pad‖“of America” (hex)
42 61 6E 6B 80 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 20

6F 66 20 41 6D 65 72 69 63 61

“Bank”‖pad‖“of America” (’latin1’) “Bank of America”

Hash output (hex)
4F FA C6 1B A9 9F F2 AD 28 93 92 21 BD 7D 12 CF

F4 01 BA C5 5F 41 C3 FB 64 41 F7 45 EE 17 5C A8

irrelevant for the attack and that it always remains unknown to the attacker. Table 2 shows
the concatenation of the secret key and the identity “Bank”, represented both as text and as
hexadecimal strings, as well as the output of the hash function for this input. We suppose now
that the attacker knows this output value (i.e., the weak secret h(skA‖“Bank”)); knowing this,
the attacker can use the length-extension vulnerability of SHA-256 to compute the weak secret
h(skA‖“Bank”‖pad‖“of America”).

The concrete result for the length-extension attack applied to the previous values is also
presented in Table 2. Note that the first four bytes of the extended identity correspond to
the string “Bank” (42 61 6E 6B). Next, there is the internal padding pad (80 00 ... 00 01

20), followed by the characters that correspond to the extension string “of America” (6F 66

... 63 61). It should be noted that the intermediate padding may be rendered differently
depending on the implementation of the user agent (e.g., browsers, mobile apps, standalone
GUI, etc.), and some options may be exploitable. For example, when the extended identity
“Bank”‖pad‖“of America” is rendered with the ISO 8859-1 encoding (also called ‘latin1’), the
intermediate padding may be ignored, depending on the implementation, since it is composed of

16



NUL characters (00) and invalid codes (80). This is the case of Python 2.7.10 implementation,
which we used for reproducing the length-extension attack, and that displays “Bank of America”
as the extended identity when ‘latin1’ encoding is selected. This can be used to deceive users into
believing they are interacting with the real Bank of America, since the only difference between
the legitimate identity and the displayed extended identity are non-printable characters (i.e.,
the user cannot visually distinguish one string from another). This also can be reproduced with
UTF-8 encoding if errors are ignored when printing UTF-8 encoded strings (in Python this is
achieved by specifying the option ‘ignore’).

We note that this example, although somewhat artificial, only makes relatively common
assumptions, such as the use of SHA256, secret keys of 256 bits, ‘latin1’ encoding of strings,
variable-size identities, etc.

Countermeasures As a simple and effective countermeasure to the length-extension attack,
the protocol can require the use of a hash function resistant to length-extension attacks (e.g.,
SHA3), or even better, use an HMAC or a key derivation function (e.g., HKDF [17]). HMACs
and KDFs are specifically designed to take a secret as input, and to be secure against length-
extension attacks.

4 Discussion

The previous attacks demonstrated that the main weaknesses of the AKAPR protocol is that
the weak secrets are, in fact, long-term secrets, just as the secret keys, and that the weak secrets
between two users can be linked to each other. These problems make it possible for an attacker
to perpetually threaten the security goals of the protocol once he gains control of a weak secret.
In this section we informally discuss some possible amendments to this protocol.

First, we note that if we assume that the initiator I is also capable of reading Message 2
(from the delegatee D to the responder R), then this means he can extract the weak secret
h(skR‖idI). This is a plausible assumption in several settings compatible with this protocol
(e.g., wireless environments), and it is also consistent with the philosophy of the Dolev-Yao
model [12], by which one can consider the network to be open and all its messages public and
subject to scrutiny by other entities. Therefore, it can be seen that this is functionally equivalent
to the initiator I knowing this weak secret. Given that this weak secret is implicitly known by
the responder (since he can generate it), then it acts as a sort of shared key between them.
Therefore, a possible variation of the protocol is to simply distribute this weak secret to the
initiator when he wants to commence a key agreement with responder R. This can be realized
by transforming the delegatee D into a mere key server that distributes these weak secrets to
initiators. Therefore, instead of the delegatee re-encrypting Message 1 into Message 2, which
requires it to know a re-encryption key linking two weak secrets, he stores the “shared weak
secrets”.

Note that this variation is still compatible with achieving the goal of secrecy with re-
spect to the delegatee, simply by encrypting these weak secrets with the secret key of the
corresponding initiator. Therefore, re-encryption keys stored by the delegatee D are replaced
by encryptions of weak secrets. Specifically, each rkI→R is substituted by an encrypted key
ekI→R = EncskI (h(skR‖idI)). Note that this implies that ekI→R 6= ekR→I , and therefore, this
doubles the number of keys managed by the delegatee D; nevertheless, this number is still of

17



quadratic order (since it is necessary to store a key between each pair of users of the system),
dominated by the number of users. This new type of keys eliminates the link between weak
secrets, reducing this way the applicability of some of the attacks we propose (although not
completely). An interesting insight about this variation is that it is extremely similar to the
traditional Needham-Schroeder symmetric key agreement protocol [20], with the main difference
that in this case the key server (i.e., the delegatee) does not know the session keys because these
are encrypted by a separate key server (i.e., the KDC).

However, it is important to note that this variant still suffers from the long-term nature of
weak secrets. An improvement to this respect could be to include a timestamp in the weak secret
generation, in a similar way than Kerberos [21] improves over Needham-Schroeder protocol.
Thus, weak secrets would be of the form h(skA‖idB‖Ti), where Ti represents a time period.
Although this could mitigate the attacks to a certain extent (since compromised weak secrets
would only be useful for a given time period), it also implies that the re-encryption keys should
be recomputed by the KDC and distributed to the delegatee on each time period. This can
represent a great inconvenience in some settings.

5 Conclusions

Proxy re-encryption (PRE) is a hot research topic nowadays, with new use cases arising in
different contexts. Most PRE schemes are based on public-key cryptography, mostly because
public key cryptography has become omnipresent in most environments. PRE schemes using
symmetric cryptography would make an excellent contribution for IoT scenarios where devices
are highly constrained, but it is true that properly capturing the essence of PRE and providing
secure solutions in the same sense as in the public-key world is challenging.

In this paper we show how difficult is to properly define and implement PRE in the symmetric
world by exploring the weaknesses of a particular scheme proposed at ESORICS 2016. This
protocol tries to adapt previous proposals for symmetric key PRE to the IoT scenario, focusing
not only on providing a lighter solution (not involving public-key cryptography) but also trying
to avoid redundant messages that are needed in well-know and deeply-studied authentication
and key exchange protocols (e.g., Needham-Schroeder).

Unfortunately the paper fails to accomplish its goals, mainly because of the use of two weak
secrets for every pair of communicating parties that are immutable and depend only on the
secret keys of the initiator and the identity of the responder (and vice versa). The way the
protocol is designed implies that compromising the secrets of one party helps the compromising
the weak secret of the other party. Moreover, revocation of compromised keys turns out to be
impractical, which makes the protocol unusable in it present form.

References

[1] G. Ateniese, K. Fu, M. Green, and S. Hohenberger. Improved proxy re-encryption schemes
with applications to secure distributed storage. ACM Transactions on Information and
System Security, 9(1):1–30, 2006.

[2] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. The Keccak SHA-3 submission.
Submission to NIST (Round 3), 6(7):16, 2011.

18



[3] M. Blaze, G. Bleumer, and M. Strauss. Divertible protocols and atomic proxy cryptography.
Advances in Cryptology—EUROCRYPT’98, pages 127–144, 1998.

[4] D. Boneh, K. Lewi, H. Montgomery, and A. Raghunathan. Key homomorphic prfs and their
applications. In Advances in Cryptology–CRYPTO 2013, pages 410–428. Springer, 2013.

[5] C. Boyd and A. Mathuria. Protocols for authentication and key establishment. Springer
Science & Business Media, 2013.

[6] R. Canetti and S. Hohenberger. Chosen-ciphertext secure proxy re-encryption. In Pro-
ceedings of the 14th ACM conference on Computer and communications security, pages
185–194. ACM, 2007.

[7] CELLOS Consortium. Evaluation report: Symmetric key re-encryption scheme with proxy
(SK-REP). Technical report, CELLOS consortium, 2014.

[8] K. Chalkias, F. Baldimtsi, D. Hristu-Varsakelis, and G. Stephanides. Two types of key-
compromise impersonation attacks against one-pass key establishment protocols. In In-
ternational Conference on E-Business and Telecommunications, pages 227–238. Springer,
2007.

[9] D. L. Cook and A. D. Keromytis. Conversion functions for symmetric key ciphers. Journal
of Information Assurance and Security, 1(2):119–128, 2006.

[10] D. E. Denning and G. M. Sacco. Timestamps in key distribution protocols. Commun.
ACM, 24(8):533–536, Aug. 1981.

[11] W. Diffie and M. E. Hellman. New directions in cryptography. Information Theory, IEEE
Transactions on, 22(6):644–654, 1976.

[12] D. Dolev and A. Yao. On the security of public key protocols. IEEE Transactions on
information theory, 29(2):198–208, 1983.

[13] J. R. Douceur. The sybil attack. In International Workshop on Peer-to-Peer Systems, pages
251–260. Springer, 2002.

[14] T. Duong and J. Rizzo. Flickr’s api signature forgery vulnerability, 2009.

[15] W. C. Garrison, A. Shull, S. Myers, and A. J. Lee. On the practicality of cryptographically
enforcing dynamic access control policies in the cloud. In 2016 IEEE Symposium on Security
and Privacy (SP), pages 819–838, May 2016.

[16] J. Hong. The state of phishing attacks. Communications of the ACM, 55(1):74–81, 2012.

[17] D. H. Krawczyk and P. Eronen. HMAC-based Extract-and-Expand Key Derivation Func-
tion (HKDF). RFC 5869, Oct. 2015.

[18] Z. Liu, X. Huang, Z. Hu, M. K. Khan, h. seo, and L. Zhou. On emerging family of elliptic
curves to secure internet of things: Ecc comes of age. IEEE Transactions on Dependable
and Secure Computing, PP(99):1–1, 2016.

19



[19] A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone. Handbook of applied cryptography.
CRC press, 1996.

[20] R. M. Needham and M. D. Schroeder. Using encryption for authentication in large networks
of computers. Communications of the ACM, 21(12):993–999, 1978.

[21] B. C. Neuman and T. Ts’o. Kerberos: An authentication service for computer networks.
IEEE Communications magazine, 32(9):33–38, 1994.

[22] K. T. Nguyen, N. Oualha, and M. Laurent. Authenticated key agreement mediated by
a proxy re-encryptor for the internet of things. In European Symposium on Research in
Computer Security, pages 339–358. Springer, 2016.

[23] D. Nuñez, I. Agudo, and J. Lopez. A parametric family of attack models for proxy re-
encryption. In Proceedings of the 28th IEEE Computer Security Foundations Symposium,
CSF’15, pages 290–301. IEEE Computer Society, 2015.

[24] H. Sakazaki, K. Anzai, and J. Hosoya. Study of re-encryption scheme based on symmetric-
key cryptography. In 31st Symposium on Cryptography and Information Security (SCIS
2014), 2014.

[25] M. A. Strangio. On the resilience of key agreement protocols to key compromise imperson-
ation. In European Public Key Infrastructure Workshop, pages 233–247. Springer, 2006.

[26] A. Syalim, T. Nishide, and K. Sakurai. Realizing proxy re-encryption in the symmetric
world. In International Conference on Informatics Engineering and Information Science,
pages 259–274. Springer, 2011.

[27] G. Tsudik. Message authentication with one-way hash functions. ACM SIGCOMM Com-
puter Communication Review, 22(5):29–38, 1992.

[28] Wikipedia. SpongeBob SquarePants — Wikipedia, the free encyclopedia. https://en.

wikipedia.org/wiki/SpongeBob_SquarePants, 2016. [Online; accessed 18-October-2016].

20

https://en.wikipedia.org/wiki/SpongeBob_SquarePants
https://en.wikipedia.org/wiki/SpongeBob_SquarePants

	Introduction
	Description of the Authenticated Key Agreement Protocol
	Symmetric proxy re-encryption primitive
	Protocol setting
	Trust assumptions
	AKAPR Protocol Flow

	Attacks to the AKAPR Protocol
	Breaking Forward Secrecy
	Key Compromise Impersonation Attacks
	Limited Scope of Key Revocation and Update
	Length-extension attacks

	Discussion
	Conclusions

