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Abstract. In side channel attack (SCA) studies, it is widely believed
that unprotected implementations leak information about the interme-
diate states of the internal cryptographic process. However, directly re-
covering the intermediate states is not common practice in today’s S-
CA study. Instead, most SCAs exploit the leakages in a “guess-and-
determine” way, where they take a partial key guess, compute the cor-
responding intermediate states, then try to identify which one fits the
observed leakages better. In this paper, we ask whether it is possible
to take the other way around—directly learning the intermediate states
from the side channel leakages. Under certain circumstances, we find that
the intermediate states can be efficiently recovered with the well-studied
Independent Component Analysis (ICA). Specifically, we propose several
methods to convert the side channel leakages into effective ICA observa-
tions. For more robust recovery, we also present a specialized ICA algo-
rithm which exploits the specific features of circuit signals. Experiments
confirm the validity of our analysis in various circumstances, where most
intermediate states can be correctly recovered with only a few hundred
traces. To our knowledge, this is the first attempt to directly recover the
intermediate states in a completely non-profiled setting. Our approach
brings new possibilities to the current SCA study, including building an
alternative SCA distinguisher, directly attacking the middle encryption
rounds and reverse engineering with fewer restrictions. Considering its
potential in more advanced applications, we believe our ICA-based SCA
deserves more research attention in the future study.

Keywords: Side Channel Analysis, Signal Recovery, Independent
Component Analysis

1 Introduction

Nowadays, Side Channel Attacks (SCA) pose a major threat for various cryp-
tographic devices [1,2,3,4,5]. With some data-dependent leakage measurements
(such as power supply currents or electromagnetic emissions), an SCA attacker
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can efficiently retrieve the secret key, even if the underlying cipher is crypto-
graphically strong.

In a typical SCA context (illustrated in Figure 1), the attacker Eve encrypts
T plaintexts and measures the corresponding leakages L. In SCA, it is wide-
ly believed that L depends on some key-related intermediate states, denoted
as xk = {xk(1), ..., xk(T )}. With certain key guess ki, Eve computes the inter-
mediate state sequence xki

= {xki
(1), ..., xki

(T )} according to the encryption
algorithm. Throughout this paper, we denote this sequence as a signal. Since
the leakages L only depend on the correct signal xk, Eve combines all possible
xki with L and learns the most likely key guess.
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Fig. 1. A typical SCA procedure

In Figure 1, Eve has a list of all possible intermediate state sequences (signals)
and tries to find the correct one with the corresponding leakages. In SCA studies,
such procedure is called a side channel distinguisher. The term distinguisher
demonstrates its inherent limitation: such process only distinguishes the correct
signal from the wrong ones, yet never directly retrieve any secret. A natural
question to ask, is whether Eve can take one step further and directly learn the
correct signal from the leakages, without an enumerative signal list.

It is not surprising that little SCA study answers this question. As the mas-
ter key is the only secret in modern block ciphers, the “key-distingshers” above
already present enough threat for unprotected chips. Nonetheless, recovering the
intermediate states without a key guess may still be helpful in certain circum-
stances. For instance, in a typical SCA procedure, the computation cost strictly
depends on the correlated key size. If the target intermediate state involves a
large proportion of the secret key (> 32 bits), enumerating all xki becomes in-
feasible. Other examples include Side Channel Analysis for Reverse Engineering
(SCARE), where the secret components baffle the computation of xki . Since
the signal list cannot be efficiently computed, SCA in these cases needs a more
general secret recovery technique.
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Related work. Despite a few ad hoc SPA-like attacks, in general, most previous
non-profiled SCAs cannot directly recover the intermediate states. Collision at-
tack may be the closest match in this direction. In a collision attack, the attacker
collects a few collisions and solves the intermediate states from the collision e-
quations [6]. As a prevalent tool in SCARE [7,8,9], collision attack exploits the
similarity between the leakages from sequential computations of the same Sbox.
If the measurements from two Sbox computations match, we can reasonably
predict they share the same input (a.k.a a collision). Although marked as a
non-profiled attack, collision attacks share exactly the same routine as Template
Attacks (TA) [10]. The only difference lies in the profiling stage, where collision
attacks use other sequentially-implemented Sbox computations as the profiling
trace set [6]. Since the leakages of the exact same Sbox computation are not
always available, such “online-profiling” stage imposes restrictions on the imple-
mentations as well as the target ciphers. Indeed, none of the previous collision-
based SCAREs gave realistic experiments to validate their results [7,8,9].

Our Contribution. In this paper, we present the first attempt to recover the se-
cret intermediate states directly from the observed leakages. Our analysis shows
that, under certain circumstances, recovering the intermediate states can be re-
garded as a noisy Blind Source Separation (BSS) problem1 [12]. Following the
study of BSS, we introduce the well-studied Independent Component Analysis
(ICA) [13] to SCA. In signal processing, ICA is a widely used tool for recovering
unknown sources in a blind context. Considering ICA takes at least n observa-
tions to recover n sources, we propose several methods to construct multi-channel
observations from the side channel leakages. Moreover, since typical ICA algo-
rithms are sensitive to noise, we present a more robust ICA algorithm based on
Belouchrani and Cardoso’s work on discrete ICA [14]. By exploiting the specific
features of circuit signals, our specialized ICA gives efficient recoveries in the
SCA context. The overall analysis works well in our realistic experiments, re-
covering over 80% of the intermediate states correctly, with only a few hundred
traces. Furthermore, our ICA-based SCA brings several new possibilities to the
current non-profiled SCA studies. In our experiments, our ICA-based SCA helps
to improve the key-recovery result in a limited trace set, extend SCA to the
middle encryption rounds as well as loosen the restrictions of current SCAREs.
As a potentially powerful tool, we believe our ICA-based SCA deserves more
research attention in the future.

Paper Organization. In the next section, we present a brief introduction of Inde-
pendent Component Analysis, discussing its assumptions as well as limitation-
s. Section 3 shows how to convert the intermediate state recovery to an ICA
problem. Specifically, we propose several methods to construct multi-channel
observations from the side channel leakages and build a specialized ICA algo-
rithm for circuit signals. Section 4 demonstrates several advanced applications

1 Although our work uses the concept of Blind Source Separation, it has little con-
nection with Merino Del Pozo and Standaert’s work [11]. Their paper focuses on
reducing noise in the preprocessing stage, rather than recovering any secret.
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of our ICA-based SCA. With realistic measurements of an unprotected software
implementation of DES, we confirm the validity of our approach. Further dis-
cussions about our ICA-based SCA and its promising prospects in the future are
presented in Section 5.

2 Independent Component Analysis

2.1 Definition

Independent Component Analysis (ICA) [13] belongs to a border class of prob-
lems called Blind Source Separation (BSS) [12], which requires to separate a set
of mixed signals, without the aid of information about the source signals or the
mixing process. A common example is the cocktail party problem, which suggests
a partygoer can focus on a single conversation in a noisy room.

Suppose we have n simultaneous conversations (sources) S = {s1, s2, ..., sn}
going on in the party room. Microphones are placed in different positions, record-
ing m mixtures (observations) of the original sources Y = {y1, y2, ..., ym}2. As-
suming the observation yj is a linear mixture of all sources, we have

yj = aj,1s1 + aj,2s2 + ...+ aj,nsn

where aj,i stands for the real-valued coefficient. The overall mixing procedure
can be written as

Y = AS

where A is called the mixing matrix. In signal processing, such statistical model
is called Independent Component Analysis [13]. With additional multivariate
Gaussian noise N, the noisy ICA model is defined as

Y = AS+N

2.2 Assumptions and Ambiguities

Since both S and A are not given, in general, the BSS problem is highly underde-
termined. In order to find useful solutions, BSS usually requires some additional
assumptions. Specifically, ICA relies on the following assumptions [13]:

– Independence: The source signals are independent of each other.
– Non-Gaussianity: The values in each source signal have non-Gaussian dis-
tributions.

In addition, typical ICA algorithms also assume the number of observations is
no less than the number of sources (m ≥ n) [13]. Like most noisy statistical
models, noise significantly affects the effectiveness of ICA.

From the ICA model, it is not hard to see the following ambiguities hold [13]:

2 Although ICA studies usually use X to denote the observations, considering X is
already occupied by the intermediate state, here we use Y instead.
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– ICA cannot determine the amplitude3 of the sources. As both S
and A are unknown, any scalar multiplier in si can always be cancelled by
dividing the corresponding column of A with the same scalar.

– ICA cannot determine the order of the sources. As both S and A are
unknown, we can freely choose a permutation matrix P. In the ICA model,
Y = AP−1PS, where A′ = AP−1 and S′ = PS is also a valid solution.

In addition, in ICA, the input signal usually enters a whitening transforma-
tion before any further analysis. Theoretically speaking, a whitening transforma-
tion is a decorrelation transformation that transforms a set of random variables
into a set of new random variables with zero means and identity covariance.
As a result, ICA only returns the estimates of the “whitened sources”. In other
words, the means of the original sources cannot be determined through ICA.
For typical ICA applications like separating independent speeches, none of these
ambiguities presents an obstacle in practice.

2.3 Principles and Algorithms

Generally speaking, ICA aims to find the independent components by maxi-
mizing the statistical independence of the estimated components. According to
the Central Limit Theorem, the distribution of the sum of independent random
variables with finite variance tends towards a Gaussian distribution. For ICA,
this means compared with the sources S, each observation yj tends closer to a
Gaussian distribution. ICA searches for a linear transformation W, which makes
the distribution of S′ = WY as non-Gaussian as possible. Many ICA algorithm-
s return such S′ as an estimate of the original sources S. This leads to the
most prevalent strategy—maximization of non-Gaussianity. With kurtosis and
negentropy, many successful ICA algorithms were built upon this measurement,
including FastICA [15] and JADE [16]. The other approach minimizes the mu-
tual information between each source, using measurements like Kullback-Leibler
Divergence or maximum entropy. Well known algorithms like Infomax [17] and
Kernel ICA [18] follow this approach. Although there exist many ICA algorithms,
as Hyvärinen [13] and Bell’s explanation [19], they are indeed not “that” differen-
t. For efficiency, we simply choose FastICA as our primary ICA technique in this
paper. Due to the space limit, here we omit further technical details. Interested
readers can learn more from Hyvärinen’s tutorial [13]. As our work only focuses
on applying ICA in SCA, technical details do not affect the comprehension of
the following discussions.

3 ICA-based Signal Recovery

This section focuses on how to apply ICA in the side channel context. With
certain leakage model, we first demonstrate that recovering secret signals in

3 Amplitude is defined as the maximum absolute value of the difference from the
reference value. If the reference value is 0, amplitude is the maximum absolute value
of the signal.
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SCA can be converted to an ICA problem. However, directly applying ICA
brings several technical issues. We propose several solutions in this section, then
discuss their pros and cons. Moreover, to better fit the SCA context, we further
present a specialized ICA algorithm to exploit the features of circuit signals. In
order to make our approach more intuitive, we also present a toy example in the
following discussion.

3.1 ICA versus SCA: Similarities and Differences

Throughout this paper, we assume the leakage follows the weighted Hamming
Weight model. For an n-bit intermediate stateX, the corresponding data-dependent
leakage can be written as

L(x) = α0 + α1x1 + α2x2 + ...+ αnxn, αi ∈ R (1)

where xi represents the i-th bit of x. With T times measurements, the sequence of
the intermediate states x = {x(1),x(2), ...,x(T )} forms a T -length signal. Appar-
ently, x can also be regarded as a group of binary signals, where x = {x1, ...,xn}T
and xi = {xi(1), ...,xi(T )}. As the observed leakages y capture the instantaneous
mixtures of x, SCA in this setting shares many similarities with ICA (Figure 2).
Indeed, the basic assumptions of ICA—non-gaussianity and independence—are

... L

ICA

...

SCA context

Intermediate 

State
Leakage Model

Observed 

Leakage

ICA context

Independent

Sources (S)

Mixing

Matrix (A)

Observed 

Mixtures

Demixing

Matrix

X

N

Y Ŵ
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Fig. 2. A comparison between ICA and SCA

naturally satisfied: since all xi are 1-bit 0-1 signals, the distribution of xi is far
from Gaussian. Considering the sources come from a cryptographic intermediate
state, the cryptographic operation ensures each bit is statistically independent.
The major difference is ICA requires at least n observations, whereas the SCA
context provides only one leakage model. Although not explicitly stated, the
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additional noise may be another problem: since SCA exploits the unintended
information leakage, the Signal-to-Noise-Ratio (SNR) in SCA is usually much
lower than typical ICA contexts. For easy comparison, we list the similarities
and differences between ICA and SCA in Table 1.

Table 1. Similarities and differences between ICA and SCA

ICA SCA

Sources s = {s1, s2, ..., sn} x = {x1,x2, ...,xn}
Distribution non-Gaussian Bernoulli

Independence independent independent

Observation Y = AS+N l = αx+N

Number of observations m 1

Level of Noise low high

Toy example. Assume our intermediate state x has only 2 bits (n=2). The
leakages follow the standard Hamming Weight model, where both α1 and α2 in
Equation (1) equals to 1 and α0 = 0. If the attacker takes 4 leakage measurements
(T=4) with {x(1) = 0,x(2) = 1,x(3) = 2,x(4) = 3}, the resultant leakage
measurements l = {0, 1, 1, 2} can be regarded as an observation in ICA. x1 =
{0, 0, 1, 1} and x2 = {0, 1, 0, 1} are two blind sources in ICA and the mixing
procedure is l = x1 + x2.

3.2 Applying ICA in SCA: Obstacles and Solutions

As demonstrated in Table 1, the number of observations and the level of noise
are two major obstacles for applying ICA in the SCA context. In the following,
we further discuss these two obstacles and propose several possible solutions.

Constructing multi-channel observations The first difficulty we have to
overcome is to construct multi-channel observations from the side channel leak-
ages. In the following, our discussion focuses on the best solution we found for
power leakage. We also list a branch of other solutions in the end of this section,
which may have better performance in other circumstances.

Our primary solution is based on a simple observation: if a binary source s
is XORed with a constant k, the resultant source s′ is

s′ =

{
s k = 0

1− s k = 1

In ICA, since the whitening transformation removes all constant terms in s′,
XORing k = 1 has the same effect as flipping the sign of the whitened source
s. According to our discussion in Section 2.2, we can move the flipping sign to
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the corresponding coefficients in the mixing matrix A. In SCA, suppose we can
measure the leakages of X = S ⊕ k. With m different ki, the overall model can
be regarded as

x′ = s

A′ =


α1 · · · αn

α1

...

· · ·
...

αn

...
α1 · · · αn

 ◦


2k1,1 − 1 · · · 2k1,n − 1
2k2,1 − 1
...

· · ·
...

2k2,n − 1
...

2km,1 − 1 · · · 2km,n − 1


where ki,j represents the j-th bit of ki. If all constants k are randomly picked,

the probability that A′ is singular is at most
(

1√
2
+ o(1)

)n

[20]. For n = 8, the

exact probability is 0.52 [21]. This probability suggests that, with random ki,
the attacker may have to construct m > n observations to ensure that ICA gets
n linearly independent channels.

Toy example. In the previous example, assume the attacker can control a con-
stant k that XORed to the intermediate state x. The attacker measures one
observation l1 when k = 0. Then, the attacker repeats his measurements with
exactly the same plaintext inputs, using k = 1. In this case, the measured leak-
age signal becomes l2 = 1 − x1 + x2. Considering the whitening stage, we can
omit the constant term α0 and write the model as

l =

(
l1
l2

)
=

(
1 1

−1 1

)(
x1

x2

)
Apparently, l forms a valid input for ICA (m = n = 2).

Considering XOR is a common operation in symmetric cryptography, finding
such constant in practice should be easy. Since ICA does not need the actual
value of k, in many block ciphers, the round key serves as a good candidate.
The benefit of this approach, is the constructed observations are guaranteed
to be different enough. Many other proposals we considered do not survive the
whitening stage: their observations contain too much correlated information that
only a few components remain significant after the whitening stage.

Other solutions. Apart from our XOR-constant method, the rest solutions can
be categorized as follow:

– Utilizing the multiple sample points: Perhaps the cheapest way to
construct multi-channel observations is taking full advantage of the leakage
traces. The core idea of this strategy, is to construct multi-channel observa-
tions from the multiple sample points on the trace. Leakage traces usually
contain many sample points corresponding to the same cryptographic oper-
ation. As the side channel leakage is an instantaneous quantity, such samples
capture the changes of leakage over time.



9

• Directly using the multiple sample points as independent obser-
vations. A trivial approach would be directly using these sample points
as multi-channel observations. In general, samples from the same crypto-
graphic operation are usually strongly correlated and fail the whitening
stage. However, our experiments in Section 4 confirm this approach is
effective with certain implementation: if the implementation perform-
s DES’s permutation P bit-by-bit, the power consumption of each bit
is naturally separated in time. In this case, the attacker can directly
use the leakage samples of different intermediate state bits as different
observations.

• Using dimension reduction techniques to create independent
observations. Alternatively, the attacker can also use dimension re-
duction techniques, like Principal Component Analysis (PCA) [22] or
Linear Discriminant Analysis (LDA) [23], to construct several useful
channels. In our experiments, their output components can safely pass
the whitening stage. However, they often fail to provide multiple effec-
tive observations, whether by constructing observations with large noise
(PCA) or providing only one effective observation (LDA).

– Signal decomposition. This strategy suggests we can decompose a single
channel signal into a set of additional components, and use those components
as independent observations. A typical example is Singular Spectrum Anal-
ysis, which was introduced to SCA by Del Pozo and Standaert in 2015 [11].
Other notable methods include wavelet transform [24] and Empirical Model
Decomposition [25]. Nonetheless, In our experiments, none of these decom-
position techniques gives good result.

Finally, considering the specific measurement settings, constructing multi-channel
observations might be easier for non-power leakages, such as electromagnetic e-
manations [4], acoustic emanations [5], etc.

Noise tolerance Like all noisy statistic models, noise significantly affects the
performance of ICA. To our knowledge, most noisy ICA studies focus on the cas-
es where the Signal-to-Noise Ratio (SNR) is relatively high. In the SCA context,
the side channel measurements often contain much larger noise. For this reason,
designing a more robust ICA is essential for ICA’s application in SCA. Com-
pared with the standard ICA context, ICA-based SCA does have some unusual
a priori knowledge: all sources follow the Bernoulli distribution with p = 0.5.
Taking the a priori distribution into consideration, ICA with the Maximum Like-
lihood Principle becomes a more robust choice. The problem of this approach is
most ICA algorithms employ optimization techniques with continuous sources,
while the Bernoulli distribution is discrete. Fortunately, Belouchrani and Car-
doso had proposed an ICA algorithm specialized for discrete sources in 1994
[14]. Their approach estimates the unknown sources and the mixing matrix as
well as the additional noise, then maximizes the likelihood via the Expectation-
Maximization (EM) algorithm. With moderate adjustments, their EM-ICA can
be a more robust candidate for circuit signal recovery.
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3.3 Specialized ICA algorithm

Taking the a priori distribution into consideration, we present a specialized I-
CA based on Belouchrani and Cardoso’s EM-ICA [14]. In order to formally
describe our ICA algorithm, we assume the sources X consist of T intermedi-
ate states {x(1), ...,x(T )}. Each bit of X forms an independent source, denoted
as xi = {xi(1), ...,xi(T )}. Similarly, the observation Y can also be written as
Y = {y1, ...,ym}⊤, where yi = {yi(1), ...,yi(T )}. We further assume the addi-
tional noise N follows the multivariate Gaussian distribution, with mean 0 and
covariance RN. The detailed algorithm is presented in Algorithm 1.

Algorithm 1 Specialized ICA for SCA

Step 1: Collect m observations Y = {y1, ...,ym}⊤
Step 2: Get n independent components (IC1, IC2, ..., ICn) from FastICA
Step 3: Find the closest binary signals x̃ = {x̃1, x̃2, ..., x̃n} for IC
Step 4: Start EM-ICA with x̃, estimate the initial parameter θ(0)

while ∆L > threshold do
E-Step: Compute the expectation of the log-likelihood L

(
θ(j)

)
with

current θ(j)

M-Step: Compute the θ(j+1) that maximize the expected log-
likelihood function L

end while
Step 5: Find the x̂ that maximize the expected log-likelihood function L
return binary signals x̂

Step 1: The first step collects multi-channel observations for ICA. Specifically,
the attacker measures the leakage traces l of the intermediate states x. Suppose
each trace contains q sample points, l can be written as a T × q matrix. The
attacker manually chooses a point of interest, or a component after PCA/LDA.
The selected component (or column) forms an observation for ICA. Then, con-
sidering the features of the specific implementation, the attacker can construct
multi-channel observations, through our XOR-constant method or other meth-
ods in Section 3.2.

Step 2: After Step 1, we have set up an ideal context for ICA. In this paper,
we choose FastICA as our primary ICA algorithm. FastICA is an efficient and
popular algorithm invented by Aapo Hyvärinen [13]. It is worth mentioning that
FastICA is not stable: if the noise level is relatively high, we often repeat this
process several times, in order to find the best outputs for further analysis.

Step 3: Considering FastICA did not use the a priori distribution of x, the
resultant independent components IC are not binary signals. Thus, we need to
transform the real-valued signals IC back to binary signals x̃. Assuming the
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sources are balanced (0 and 1 appear with the same probability), the trivial
approach is:

x̃i(t) =

{
0 ICi(t) < median(ICi(t))

1 ICi(t) > median(ICi(t))

Step 4: Given x̃ is a valid source estimate, the EM algorithm starts with x̃ and
searches for the best fitted sources. Specifically, the EM algorithm first estimates
the mixing matrix and the noise distribution as [14]:

Ryy = T−1
T∑

t=1

y(t)y(t)⊤

Ryx̃ = T−1
T∑

t=1

y(t)x̃(t)⊤

Rxx̃ = T−1
T∑

t=1

x̃(t)x̃(t)⊤

θ(0) =
(
Â, R̂N

)
=

(
Ryx̃R

−1
x̃x̃

, Ryy −Ryx̃R
−1
x̃x̃

R⊤
yx̃

)
where Ryx̃ is the correlation matrix of y and x̃. Given the current estimate of the
parameters θ(j), the E-step computes the conditional distribution of the sources
x̃ through the Bayes theorem

p (x̃|y; θ) = p (y|x̃; θ) p (x̃)
p (y; θ)

Assume the intermediate state x(t) is uniformly distributed and independent of
other x(t′),

p (x̃|y; θ) =
T∏

t=1

p (x̃(t)|y(t); θ) =
T∏

t=1

 p (y(t)|x̃(t); θ)
2n−1∑
x̃(t)=0

p (y(t)|x̃(t); θ)


Since the noise follows the multivariate Gaussian distribution, p (y(t)|x̃(t); θ) can
be estimated as

p (y(t)|x̃(t); θ) = mvnpdf
(
y(t)− Âx̃(t),0, R̂N

)
where mvnpdf stands for the probability density function of the multivariate
Gaussian distribution. Then, the log-likelihood function L(θ) is defined as

L (θ) = log (p (y; θ)) =
T∑

t=1

log (p (y(t); θ))
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The M-step, on the other hand, finds the parameter θ(j+1) that maximizes
the expected log-likelihood function L(θ) in the E-step. Specifically, the new
parameter can be estimated as

R(j)
yx̃

= T−1
T∑

t=1

2n−1∑
x̃(t)=0

y(t)x̃(t)
⊤
p
(
x̃(t)|y(t); θ(j)

)

R(j)
x̃x̃

= T−1
T∑

t=1

2n−1∑
x̃(t)=0

x̃(t)x̃(t)
⊤
p
(
x̃(t)|y(t); θ(j)

)
A(j+1) = R(j)

yx̃

(
R(j)

x̃x̃

)−1

R
(j+1)
N = Ryy −A(j+1)R(j)

x̃y

The attacker runs the E-step and M-step iteratively, until the algorithm con-
verges to a local maximum (∆L < threshold).

Step 5: The EM algorithm ends with some parameters θ̂ and the corresponding
conditional distribution of the sources x̃. To extract the most likely sources, we
simply apply the Maximum Likelihood Principle

x̂ = argmax
x̃

(p (x̃|y; θ))

Toy example. In our example, the attacker gets two observations l1 and l2 from
different k. In Step 1, the attacker uses Y = l as ICA’s input. In the noiseless
case, x̂ contains two sources. One of the sources corresponds to x1 while the other
corresponds to x2: the attacker cannot decide the correspondence. Meanwhile,
the resultant signal x̂i could be equal to the original source (xi) or the inverse of
the original source (1−xi). Thus, the ICA result can be written as x̂ = B(x)⊕c,
where B is a bit permutation and c is a constant.

4 Applications in SCA

As our specialized ICA does not require any information from the plaintexts,
it sheds light on several more advanced applications in SCA. In the following,
we start our discussion by proposing an ICA-based SCA distinguisher, which
gives comparable performance in the traditional first/last round SCA context.
Furthermore, our approach also brings several more advanced attacks, including
directly attacking the middle rounds and reverse engineering with fewer restric-
tions. Throughout this section, our experiments use leakages acquired from an
unprotected software implementation of DES (Riscure Training Card 6). The
power consumptions were measured with a LeCroy WaveRunner 610Zi oscillo-
scope at a sampling rate of 20 MSa/s. The entire trace set contains 20 000 traces,
with 80 000 sample points covering the first 3 rounds. An appealing property
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of this card, is that it performs DES’s permutation P bit-by-bit. As the influ-
ence of each signal bit is separated in time, the leakage trace naturally provides
multi-channel observations. Most experiments in this section take advantage of
this property. However, in Section 4.4, we present ICA analysis against the leak-
ages of the Sboxes’ input, where such property does not hold. Although the
analysis becomes trickier, we can still perform a successful recovery with our
XOR-constant method.

4.1 New SCA distinguisher

Although key recovery is not our primary goal, surprisingly, in our experiments,
our specialized ICA can serve as a competitor for common key recovery attack-
s (DPA [2], CPA [26], LRA [27] etc.). Specifically, let us focus on one of the Sboxes
(S5) in the first round. Figure 3(a) presents the performance of traditional uni-
variate CPA with 10 to 200 traces. Since the leakages from unprotected software
implementation can be easily exploited, in Figure 3(a), the correct key (red line)
stands out after 60 traces, although the distinguishing margin is quite small 4.
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Fig. 3. Attacking S5 in the first round: CPA v.s. ICA

On the other hand, in this particular implementation, we can also use our
specialized ICA with several leakage points on the trace. In our experiments,
we picked 5 points of interest (m = 5) from the leakages that correspond to
S5’s output (n = 4). Similar to CPA, the attacker computes the guessed Sbox

output sequences Xk̂ from the guessed key k̂ and the known plaintext sequences
{P1, P2, ..., PT }:

Xk̂=
{
DESS5

(k̂, P1),DESS5(k̂, P2),...,DESS5(k̂, PT )
}

4 The maximal correlation coefficient of incorrect keys stays close to the correct one.
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where DESS5 represents the corresponding DES encryption in the first round.
Denote the output signal of our ICA-based SCA as Xr. Following our discussion
in Section 2.2, we can only recover the correct signal up to its ICA equivalent.
Namely, if Xr is the signal that ICA returned, applying any bit permutation
B or flipping any sign also gives a correct ICA result. Thus, we choose the
distance between the guessed key signal Xk̂ and its closest equivalent of Xr as
our distinguish value. In the following, ||v||1 stands for the L1 norm (Manhattan
norm) of v, whereas Xk̂,i stands for the i-th bit of Xk̂.

DICA(k̂) = D
(
Xk̂,Xr

)
= min

B

{
n∑

i=1

dist
(
Xk̂,i,Xr,B(i)

)}
dist

(
Xk̂,i,Xr,B(i)

)
= min

{∥∥∥Xk̂,i −Xr,B(i)

∥∥∥
1
,
∥∥∥Xk̂,i −Xr,B(i)

∥∥∥
1

}
Figure 3(b) presents the performance of our ICA-based SCA with 10 to 200

traces. The correct key stands out after only 30 traces, which shows a slight
advantage over CPA (60 traces). Besides, our ICA-based SCA provides a larger
distinguishing margin: the distance with correct key stays stable after 50 traces,
while the distances with incorrect keys increase linearly with the number of
traces. In other words, our ICA-based SCA gives more reliable key recovery,
especially for smaller trace sets.

4.2 Extending SCA to the Middle Rounds

Considering ICA does not take a guess-and-determine procedure, in theory, our
ICA-based SCA can be applied to the leakages of any encryption operation,
without the information about the plaintext or ciphertext. This feature becomes
crucial when the target implementation uses power countermeasures to protect
the first/last few rounds. In traditional SCAs, the attacker has to increase the
guessed key space, in order to compute the middle round’s intermediate states.
This is hardly an issue for our ICA-based SCA: the middle round’s intermediate
states can be recovered without a pre-determined “signal list” (Figure 1).

Figure 4 demonstrates the results of recovering the 8 Sboxes’ outputs (n = 4)
in the second round. Since the implementation computes the 8 Sboxes sequen-
tially, the attacker can locate each Sbox separately on the trace. Following our
discussion above, we can evaluate our recovery with the distance between the I-
CA returned signal (Xr) and its closest ICA equivalent of the correct signal (Xc).
Since D (Xr,Xc) increases with the number of traces, we further define the suc-
cess rate of an ICA recovery as:

Succ(Xr) =
D (Xr,Xc)

nT

From the definition of D (Xr,Xc), it is not hard to see that the success rate is
at least 0.5. If the success rate equals to 0.5, the ICA-returned signal is no better
than a random guess. On the other hand, if the success rate is significantly higher
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Fig. 4. Recovering the 8 Sboxes’ outputs in the second round

than 0.5, ICA does learn some information about the underlying secret signals.
The success rates of all 8 attempts in Figure 4 are over 0.8, which suggests
our ICA-based attack learns most signal bits correctly. Unlike other SCAs, the
success rate of our ICA-based SCA does not increase with larger trace set. This is
because we are attacking the second round: in the first round, despite the secret
key, we know for sure which leakages come from the same intermediate states.
As the leakages with the same intermediate state can be aggregated together,
this property helps us reduce the random noises and improve the performance
of SCA, especially for larger trace sets. However, in the second round, we knows
literally nothing about the intermediate states. We do not know whether two
traces have the same intermediate state or not. Thus, each leakage point has to
be analyzed independently, where the leakages of {x(1), x(2), ..., x(T − 1)} have
no direct influence on the recovery of x(T ). In our experiments, when the trace
set is extremely small (≤ 64), adding more traces gives more stable recovery.
Further increasing the number of traces has little improvement on the success
rate: ICA reveals more intermediate states, with the cost of longer running time.
Nonetheless, as our goal here is merely key recovery, 80% accuracy is more than
enough for further cryptanalysis. With the Sbox outputs of the second round
recovered, the attacker can choose any round-reduced cryptanalysis to further
exploit the secret key. Noted this attack is not specific to the second round: it can
be applied to any round in the encryption process, as long as the implementation
is unprotected.

4.3 Reverse Engineering on Sbox

Despite the applications in key recovery, reverse engineering seems to be a more
natural application for our ICA-based SCA. In order to infer the underlying
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cryptographic operations, SCARE usually requires to recover the secret inter-
mediate states first. Indeed, the experiments in Section 4.1 already confirm our
ICA-based SCA can recover some information about the intermediate states. In
the following, we further investigate our ICA-based SCA’s application in reverse
engineering. Specifically, let us first consider how to recover secret Sboxes.

Assume the target chip implements a customized DES with secret Sboxes.
In the first round, the attacker can compute the output of the Expansion E.
Similar to most SCAREs, the secret key is treated as a part of the secret Sbox
(S′(x) = S(x⊕k)), which means the output of E can be regarded as the input of
S′. Since the Sboxes are secret, the attacker cannot take a key guess and analyze
the leakages with traditional SCAs. Our ICA-based SCA works for this case,
as long as the attacker can pick several independent leakage points. Figure 5(a)
demonstrates the recovery of all 8 Sboxes’ outputs (n = 4) in the first round
with 5 (m = 5) manually picked leakage points. The analysis procedure is exactly
the same as Section 4.1, except for the key distinguish step in the end. In all 8
attempts, our approach works very well with only 100 traces, recovering more
than 80% of the intermediate states correctly. Since the attacker knows the Sbox
inputs, adding more traces gives better recovery. In Figure 5(a), all 8 attempts
report over 95% success rate after the number of traces reaches 400. Meanwhile,
ICA with manually picked leakages always gives a few faulty recovery, even if
the trace set is large (Figure 5(a)).
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Fig. 5. Reverse engineering the first round’s 8 Sboxes with ICA

The major drawback of picking leakages manually is the attacker may not
know how to pick valid leakages in a non-profiled setting. There are a few rules
of thumb, such as choosing timely disjunct leakage points with a high SNR
(through NICV [28] or other point-of-interest choosing techniques). However,
there are no solid theoretical explanations for such rules. For SCARE, since we
have the Sboxes’ input, LDA seems to be a much better choice. In our exper-
iments, as the implementation performs the permutation bit-by-bit, the first 5
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components form a valid input for ICA. The benefit of LDA is twofold: on the
one hand, the attacker does not have to choose leakage points himself. All he
has to do is to estimate an approximate range on the trace corresponding to the
target computation. On the other hand, in Figure 5(b), our attack with LDA
shows better recovery with larger trace sets. In fact, all 8 attempts achieve 100%
accurate recovery with 600 traces. Noted in our traces set, the target operation
lasts for 300-400 sample points. It is well known that LDA are not suitable for
the cases where the number of traces is smaller than the range of interest [23].
This explains the fact that LDA gives poor results when the trace set is smaller
than 400. Since the attacker has both the Sbox input and output now, writ-
ing the input and output in sequence gives the equivalent Sbox (up to ICA’s
ambiguity).

4.4 Reverse Engineering on Feistel Round Function

So far, all our experiments rely on the specific implementation of DES: as the
implementation naturally provides multi-channel observations, the attacker can
directly build ICA’s input from the measured traces. For other ciphers or other
implementations, this nice property does not always hold. Following our dis-
cussion in Section 3.2, if the implementation provides only one valid leakage
function, the attacker has to construct multi-channel observations himself. In
the following, our experiment demonstrates how the attacker can build his ob-
servations with our XOR-constant method and recover the output of the first
round function.

Assume the attacker is reverse engineering a customized version of DES,
where both the Sboxes and the linear permutation are altered. For convenience,
we assume the attacker already knows the initial permutation IP and the ex-
pansion permutation E. Let Fk1 denote the first round function of DES and
(L0, R0) denote the initial input state (after IP ). The second round’s right state
can be written as:

R1 = L0 ⊕ Fk1(R0)

Thus, the first Sbox’s input in the second round can be written as

X = E0(L0 ⊕ Fk1(R0)) = E0(L0)⊕ E0(Fk1(R0))

where E0 stands for taking the 6 least significant bits after the expansion E.
Clearly, we can use the corresponding bits in L0 as our XORed constant and
recover the intermediate states E0(Fk1(R0)) (n = 6). Specifically, in our exper-
iments, we choose E0(L0) = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20} (m = 6). For
each value of E0(L0), we set the other bits in L0 to random numbers and let
R0 take 64 fix values {R0(1), ..., R0(64)} (T = 64). Considering the following
recovery, the attacker can choose 64 random values, or set {R0(1), ..., R0(64)}
to anything he likes. Thus, we have 6 groups of 64 traces, where the intermedi-
ate state (S0’s input) sequences are the same, except for E0(L0). The attacker
can then pick one leakage point on the trace, and build 6 64-length leakage
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observations. As our discussion in Section 3.2, these observations can be re-
garded as the results of 6 different leakage functions with the same sources
{E0 ◦ Fk1(R0(1)), ..., E0 ◦ Fk1(R0(64))}. Considering the noise, the attacker can
also repeat the above measurements several times: all settings stay the same,
except for the random bits in L0. Since the input of S0 stays the same while the
inputs of other Sboxes vary each time, averaging different measurements together
can further improve the Signal-to-Noise Ratio. Specifically, in our experiments,
we repeat the above measurements 10 times and get 6 trace sets, with 640 traces
in each set.

Figure 6(a) presents the recovery with one manually picked leakage point. Our
analysis works well with 6 sets, recovering over 90% of the intermediate state bits
correctly without any repetition. If the attacker repeats the measurement one
more time and increases the trace set size to 128, our ICA-based SCA successfully
recovers {E0 ◦Fk1(R0(1)), ..., E0 ◦Fk1(R0(64))}, up to ICA’s ambiguity. On the
other hand, if the attacker cannot build 6 trace sets, our analysis still works
with inadequate observations. With 4 or 5 observations, our ICA-based SCA
still learns about 80% of the intermediate state bits correctly.
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Fig. 6. Reverse engineering the first round’s outputs of DES

It is worth mentioning though, finding a valid leakage point for ICA might
be difficult. For this reason, we also present our ICA-based SCA with LDA in
Figure 6(b). Unlike the previous section, LDA in this section simply takes the
first component as our new observation. The benefit of LDA is the attacker
does not have to explicitly pick one leakage point: instead, he may pick an
approximate range and let LDA automatically find the most useful component.
Figure 6(b) shows our recovery with 50 leakage points in LDA. Similar to the
previous sections, LDA only gives valid results after the number of traces is much
larger the input range (≫ 50). Another benefit of LDA shines when there are
only 5 observations available: compared with Figure 6(a), the LDA approach
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gives better recovery. Noted since the attacker does not have the actual S0’s
input, here we simply assume {E0 ◦ Fk1(R0(1)), ..., E0 ◦ Fk1(R0(64))} are 64
different values and use {1, ..., 64} as LDA’s labels. As the first round’s outputs
are already recovered, the attacker can further perform other attacks to recover
the inner structure of Fk1. It is worth mentioning that this attack is not specific
to DES. Indeed, it works for any cipher with Feistel scheme, regardless of the
inner structure or the specific implementation.

Remarks Due to the ambiguities of ICA, our recovery cannot learn the actual
intermediate states, only its ICA equivalent. This is not an issue in SCARE:
as most cryptographic components in SCARE are secret, most SCAREs only
learn an equivalent form of the original cipher [9]. The difference between the
recovered components and the original are usually cancelled by the following
recovery. Take our recovery above for instance, if the original intermediate state
is X, our ICA-based SCA returns X̂ = B(X)⊕ c, where B is a bit permutation
and c is a constant. The following Sbox computation can be written as:

S(X) = S ◦B−1(B(X)⊕ c⊕ c) = S ◦B−1
(
X̂ ⊕ c

)
= S′(X̂)

Since the attacker knows nothing about S, X̂ and S′ might as well be an valid
form of the original cipher.

5 Discussions and Perspectives

This section presents a detailed discussion about our ICA-based SCA, demon-
strating its competitive advantages against other techniques as well as more
potential applications in the future.

5.1 Comparison with Collision Attacks

As a state recovery technique, collision attacks [6,9,8] is the closest competitor
for our ICA-based SCA. Indeed, these two attacks share many features in their
attack model. Both attacks require an approximate range of interest, in order
to build effective templates or ICA inputs. In theory, both attacks apply to any
implementation; although in practice, most experimental verifications come from
sequential software implementations [9]. Nonetheless, most of the applications
in Section 4 cannot use collision attacks. The major difficulty comes from the
“online profilling” step, where the attacker has to find another computation of
the exact same Sbox for profiling. Furthermore, the attacker must know the S-
boxes’ input in this profiling set, at least up to its permutation equivalent. This
assumption limits the profiling set to the first round, as the Sboxes’ inputs of the
second round are not accessible. If the implementation protects the first round,
collision attacks cannot build effective templates for further analysis. Even if the
first round is unprotected, ciphers like DES still give collision attacks a hard
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time: as the round function uses 8 different Sboxes, collision attacks have to per-
form template matching with leakages from different rounds. Despite the fact
that the leakages from different rounds might be different, the second round’s
(or other middle rounds’) leakage cannot use averaging or LDA, which makes the
measurements much noisier. Besides, collision attacks learn only 1 intermediate
state in each template matching procedure, whereas our ICA-based SCA recov-
ers T intermediate states with T traces. However, our ICA-based SCA does have
one major drawback: it only handles linear leakages. If the leakages contain sig-
nificant non-linear components, collision attacks may be the only choice, thanks
to the “online profilling” step. For clarity, we list the similarities and differences
between collision attacks and our ICA-based SCA in Table 2.

Table 2. Similarities and differences: collision attack v.s. ICA-based SCA

Collision Attack ICA-based SCA

Target Intermediate states Intermediate states

Point of interest Approximate Approximate

Implementation Sequential & Software Sequential & Software

Profiling “Online profilling” None

Attacked round First/Last Any

Assumption on leakage None Linear

5.2 Potential Applications

In theory, ICA is a quite powerful tool, suitable for various applications in SCA.
As the first step in this direction, there are a lot of potential applications that
our paper does not cover. In the following discussion, we list a few interesting
applications of our ICA-based SCA. Noted these applications may require more
advanced ICA techniques than our proposal in Section 3.

– Separating parallel signals: In traditional SCA, if the leakage contains
two parallel components, we often choose one as our target and leave the
other as the switching noise [29]. Since parallel signals can be regarded as
independent components, in certain circumstances, ICA might be able to
separate those signals. In traditional SCAs, such separation can significantly
reduce the switching noise and improve the performance of side channel
attacks.

– Noise reduction: In electroencephalography and image processing, ICA is
a popular tool for removing artifacts and noises. In side channel analysis, we
can expect the similar applications of ICA. The experiments in Section 4.1
already confirm ICA’s potential in this direction. However, using ICA as a
preprocessing tool still requires more research effort.
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5.3 Future Improvements

In this section, we present some interesting extensions in this direction, which
may further expand the applications of our ICA-based SCA.

– Single channel ICA: Generally speaking, applying ICA in SCA will be
much easier, if ICA works with a single observation. So far, there are several
techniques in this direction [30,24,25], although they do not work well with
side channel leakages. It is worth mentioning that the EM algorithm still
works when m < n, although its performance is far from satisfying.

– Non-linear ICA: One major limitation of our approach is typical ICA
requires the mixing process (A) to be linear. In other words, in SCA, the
leakage model is limited to the weighted HW model. Although the weighted
HW model suits many software implementations quite well [27], it might be
interesting to ask whether ICA can be extended to non-linear leakages. There
exist some ICA algorithms dealing with non-linear mixtures. Nonetheless,
applying non-linear ICA to SCA still requires more research effort.

– Parallel hardware implementations: In Section 4, our experiments main-
ly focus on unprotected software implementations. As hardware implemen-
tations are getting more and more popular, whether our ICA-based SCA
works for hardware implementations is an interesting question. Theoretical-
ly, the common leakage model in hardware implementations—the Hamming
Distance (HD) model—is still a linear model. Suppose the attacker knows
the last state in the target register, the HD model alone should not hinder
our ICA-based SCA. However, the assumption of knowing the last state is
not always reasonable, especially for the SCARE applications. Another issue
with hardware implementations is they usually involves parallel operations,
which significantly reduces the Signal-to-Noise Ratio. We believe ICA might
be effective in some hardware implementations, although there is still much
to be done in this direction.

6 Conclusion

Despite their threat to various embedded devices, typical side channel attacks
are actually more like a “guess-and-determine” procedure. Instead of directly
learning any secrets from the leakage, SCA takes guesses about the secret key
and verifies them with the side channel leakages. In this paper, we propose an
algorithm that directly learns the secret intermediate states (“signals”) from the
observed leakages. Specifically, we show that under certain circumstances, the
signal recovery problem can be regarded as a Blind Source Separation problem,
and solved by the well-studied Independent Component Analysis. In order to
find valid inputs for ICA, we propose several methods to construct multi-channel
observations from the side channel leakages. In addition, to further exploit the
specific features of circuit signals, we introduce a customized EM-ICA algorithm.
Experiments show our analysis works well in certain ICA models, recovering most
of the secret signal correctly with only a few hundred traces. Furthermore, our
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ICA-based SCA brings new possibilities to the current non-profiled SCA study,
including attacking the middle round’s encryption and reverse engineering with
fewer restrictions. Considering ICA is a more aggressive tool than most previous
SCA techniques, we believe our ICA-based SCA is a promising tool for the future
SCA study.
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A Reversing the second round’s input state in AES

Since all our experiments in Section 4 uses DES as our target, we present another
example with AES in this section. Assuming our target is a customized version
of AES, where both the Sboxes and the diffusion layers are altered. Similar to
Section 4.4, here we aim to recover the input state of the second round. In
SPN ciphers, since all plaintext bits enter the round function, we cannot use
plaintext bits as the XOR-contant. However, as ICA does not need the actual
value of the XOR-constant, the secret round key serves as a good candidate. In
order to ensure the signals are not affected, the attacker changes the plaintext
according to the secret key choice. For instance, if the attacker measures the
leakages of plaintext sequence {P1, P2, ..., PT } with secret key k1, in the next
measurement session, the attacker uses plaintexts {P1⊕∆k,P2⊕∆k, ..., PT⊕∆k}
where ∆k = k1 ⊕ k2. Thus, the first round encryption in two measurement
sessions is exactly the same, except for the last round key. Although we do
not know its value (the key schedule is also secret), this round key serves as
the XOR-constant. In our experiment, we have measured 10 trace sets using
different master keys (n = 10), with 256 different plaintexts in each set (T =
256). Each measurement is repeated 10 times, so that one trace set contains
exactly 2560 traces. In this section, our experiments use power leakages acquired
from an unprotected software implementation of AES (ATMega-163). The power
consumptions were measured with a Picoscope 3206D oscilloscope at a sampling
rate of 20 MSa/s.

Figure 7(a) demonstrates the recovery with one manually picked leakage
point. Our analysis works well with 8 or 10 sets, recovering over 80% of the
intermediate state bits correctly without any repetition. Further increasing the
trace set size slightly improves the performance. On the other hand, if the at-
tacker can only build 4 or 6 trace sets, our analysis still learns about 75% of the
intermediate state bits correctly. Similar to Section 4.4, the LDA approach gives
better recovery when trace size is significantly larger than the range of interest
(300). Note that LDA performs extremely well with 6 observations: Figure 1
shows that the successful rate increases from 80% to 95%.

It is worth mentioning that in this experiment, our measurement uses an
unusual assumption, where the attacker can alter the plaintext according to the
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Fig. 7. Reverse engineering the first round’s outputs of AES

key difference. In theory, this is quite close to the “related-key assumption” ,
where the attacker does not know the secret key, but knows the key difference.
We are not sure how practical is this assumption in realistic attack. However,
this is not an issue for SCARE: since our goal is to determine the secret cipher,
it is reasonable to assume the attacker can set the master key. In key-recovery
applications like Section 4.2, this assumption may still be problematic. Besides,
this attack also relies on the fact that the first round key in AES is the master
key. Assuming the key schedule is not given to the attacker, he cannot predict
the value (or the difference) of any round key, unless the round key is the master
key. Considering designers usually prefer light-weight key schedules, using the
master key as the first round key (or whiten key) is not rare in today’s block
ciphers. Nonetheless, our attack in this section does not work with SPN ciphers
with complex key schedules.


