
Digital Signatures from
Symmetric-Key Primitives

David Derler1,‡, Claudio Orlandi2,‖, Sebastian Ramacher1,‡, Christian
Rechberger1,3,‡,§, and Daniel Slamanig1,‡

1 IAIK, Graz University of Technology, Austria
2 Aarhus University, Denmark

3 DTU Compute, DTU, Denmark
{firstname.lastname}@iaik.tugraz.at, orlandi@cs.au.dk

Abstract. We propose practically efficient signature schemes which fea-
ture several attractive properties: (a) they only rely on the security of
symmetric-key primitives (block ciphers, hash functions), and are there-
fore a viable candidate for post-quantum security, (b) they have extremely
small signing keys, essentially the smallest possible, and, (c) they are
highly parameterizable.

For this result we take advantage of advances in two very distinct
areas of cryptography. The first is the area of primitives in symmetric
cryptography, where recent developments led to designs which exhibit
an especially low number of multiplications. The second is the area of
zero-knowledge proof systems, where significant progress for efficiently
proving statements over general circuits was recently made.

We follow two different directions, one of them yielding the first prac-
tical instantiation of a design paradigm due to Bellare and Goldwasser,
which allows us to obtain tightly secure signatures. For both our schemes
we explore the whole design spectrum to obtain optimal parameter choices
for different settings, thereby also taking reduction tightness into ac-
count. Within limits, in all cases our schemes allow to trade-off compu-
tational effort with signature sizes. We also demonstrate that our schemes
are parallelizable to the extent that they can practically take advantage
of several cores on a CPU.

Keywords: post-quantum cryptography � signatures � block cipher �
Fiat-Shamir � Bellare-Goldwasser � implementation

1 Introduction

More than two decades ago Shor published his polynomial-time quantum algo-
rithm for factoring and computing discrete logarithms [Sho94]. Since then, we
know that a sufficiently powerful quantum computer is able to break nearly all

‡ Supported by EU H2020 project Prismacloud, grant agreement n◦644962.
‖ Supported by COST Action IC1306.
§ Supported by EU H2020 project PQCRYPTO, grant agreement n◦645622.

public key cryptography used in practice today and essentially destroys confiden-
tiality and integrity of all our digital communication. Clearly, this necessitates
the invention of cryptographic schemes that remain secure in the advent of such
an up to now hypothetical quantum computer—especially when considering the
steady progress in constructing real-world quantum computers within the last
two decades.

Today experts conjecture the advent of sufficiently powerful quantum com-
puters within the next few decades. Although the statements seem rather specu-
lative and far from certain, it is important to start the transition to post-quantum
cryptography early enough to eventually not end up in a rush. Therefore, NIST
recently announced a post-quantum crypto project4 seeking for public key en-
cryption, key exchange and digital signatures basing their security on problems
being assumed to be secure in a post-quantum era. A call for submissions to this
competition is scheduled for late 2017.

In this paper we are concerned with constructing signature schemes. The
building blocks of our schemes are interactive honest-verifier zero-knowledge
proof systems (Σ-protocols) and symmetric key primitives, which are conjec-
tured to be secure also in a post-quantum world. We believe that a diversity in
the used assumptions within the zoo of (post-quantum) signature schemes is im-
portant and increases the chance to obtain secure schemes despite cryptanalytic
progress. As our focus is on provably secure schemes (i.e., ones that come with
a reductionist security proof), we only compare our results to other provably
secure candidates. Furthermore, we stress that although our approach is also of
interest to the classical setting, we focus on a comparison with post-quantum
signature candidates.

Post-Quantum Signatures. One-time signatures for a post-quantum world
can be built when instantiating the approach due to Lamport [Lam79] us-
ing hash functions (aka hash-based signatures). As Grover’s quantum algo-
rithm to invert any black-box function [Gro96] gives a quadratic speed-up,
this requires to double the bitsize of the hash function’s domain, but requires
no additional assumptions to provably achieve post-quantum security. Com-
bined with Merkle-trees, this approach yields stateful signatures for any poly-
nomial number of messages [Mer89] and combined with several other tricks
and optimizations (cf. [Gol86]) this yields practical stateless hash-based signa-
tures secure in the standard model [BHH+15]. Code-based signature schemes
can be obtained from identification schemes based on the syndrome decod-
ing (SD) problem [Ste93, Vér96, MGS11] by applying a variant of the well
known Fiat-Shamir (FSΣ) transform [FS86]. Lattice-based signature schemes
secure under the short integer solution (SIS) problem on lattices following the
Full-Domain-Hash paradigm [BR93] have been introduced in [GPV08].5 More
efficient approaches [Lyu09, Lyu12, BG14, ABB+15] rely on the FSΣ trans-
form instead of FDH. The entirely practical (and indeed highly efficient) scheme

4 http://csrc.nist.gov/groups/ST/post-quantum-crypto/index.html
5 Lattice-based signatures have actually been proposed far earlier [GGH97], but this

approach turned out to be insecure.

2

http://csrc.nist.gov/groups/ST/post-quantum-crypto/index.html

BLISS [DDLL13] also relies on the FSΣ transform, but buys efficiency at the cost
of more pragmatic security assumptions, i.e., a ring version of the SIS problem.
For signatures based on problems related to multivariate systems of quadratic
equations only recently provably secure variants relying on the FSΣ transform
have been proposed in [HRSS16].

When it comes to trust, among all these existing approaches, arguably, hash-
based signatures are preferable. All practical signatures supporting arbitrary
message lengths need to rely on collision-resistant hash functions anyway, but
in addition to that need to rely on some structured assumption. In the post-
quantum setting these assumption are related to lattices, codes or multivariate
systems of quadratic equations (MQ). Our approach, like state-of-the-art hash-
based signatures, also only requires symmetric primitives like hash functions and
pseudorandom functions (PRFs) and we also require no additional structured
assumptions.

On the Tightness of Security Proofs. When investigating (post-quantum
secure) signature schemes, it is important and increasingly popular to assess
the security of a scheme in a concrete [BR96] instead of an asymptotic setting.
Thereby, the goal is to tightly relate the security of the signature scheme to
that of the underlying problem. Tightness is important because it allows the
implemented scheme to use small parameters (i.e., being as efficient as possible)
while retaining provable security. The common way to assess the security of a
cryptographic primitive is to perform a reductionist security proof. Thereby, one
constructs a reduction algorithm R showing that any hypothetical algorithm A
(the adversary) achieving a well defined adversarial goal (given by the security
notion) yields a solver for a presumably hard problem, thus contradicting the
hardness of this problem. Concrete security analysis now relates the runtime t of
the hypothetical adversary A as well as its success probability ε to the runtime
t′ and success probability ε′ of the reduction R. A reductionist security proof is
called tight, if t′ ≈ t and ε′ ≈ ε and non-tight if t′ � t or ε′ � ε. Obviously,
the desirable goal is to come up with a tight proof, as such a proof says that
breaking the security of the primitive (within the respective model) is at least
as hard as breaking the problem. A non-tight reduction, however, gives only
much weaker guarantees and the primitive needs to be instantiated with larger
security parameters to account for the non-tightness of the proof. This, in turn,
often yields a noticeable performance penalty. Tightness has been studied for
standard model signatures [HJ12, BHH+15, BKKP15, BL16], various schemes
in the ROM [BR96, GJ03, KW03] and generic compilers from identification to
signature schemes (where FS is one of them) [AFLT12, ABP13, BPS16, KMP16].

When looking at existing post-quantum candidates, the state-of-the-art hash-
based signature scheme SPHINCS [BHH+15] comes with a tight-reduction. All
other practical code-based, lattice-based and MQ-based schemes discussed above
use the FSΣ transform and require a rewinding extractor (essentially the appli-
cation of the forking lemma [PS96]) and thus come with a non-tight reduction
loosing at least a factor O(QnH) (cf. [CK16]), where QH is the number of queries
to the random oracle (RO) H and n the number of rewinds, in the overall secu-

3

rity. We illustrate the issue with non-tight security using the recent MQ-based
post-quantum candidate from Asiacrypt’16 [HRSS16]. Their security reduc-
tion requires three rewinds of the adversary, yielding a multiplicative reduction
loss of ≈ Q3

H . Considering an 128-bit security level and assuming QH = 260 (a
very reasonable assumption already made 20 years ago in [BR96]), no provable
security margin remains. In fact, one would have to increase the security level
by 180 bits to 308 bit to obtain a scheme being provably secure at the 128-bit
level.

Contribution. For post-quantum signature schemes it is most desirable to have
security proofs in the quantum-accessible random oracle model (QROM; cf.
[BDF+11]), or even in the standard model. However, these strong models of-
ten impact the practicality of the schemes, which is why all existing practical
candidates except for hash-based signatures come with a security proof in the
random oracle model (ROM; cf. Section 7 for a more detailed discussion).

– We contribute a novel class of a post-quantum signature schemes to the
existing zoo of post-quantum signatures. As with hash-based signatures, our
approach only requires symmetric key primitives like hash functions and
PRFs and does not require additional structured hardness assumptions as
all the remaining candidates do. Our proofs of security are in the ROM.

– We present two concrete approaches to construct signature schemes from
Σ-protocols for statements expressed as arithmetic circuits. In particular,
we present a first construction via the FSΣ transform and a second novel
approach, which constitutes the first practically efficient instantiation of a
design paradigm for signatures due to Bellare and Goldwasser [BG89] pro-
posed more than 25 years ago. Together with our contribution, latter opens
up a new direction for the design of practical signature schemes. While the
approach relying on FSΣ yields non-tight security reductions, we show how
to obtain a tight security reduction for the second approach by carefully
crafting the security proof of the scheme. This allows us to tightly relate
the security of the signature scheme to the security parameter of the used
symmetric primitive.

– We review existing symmetric primitives with respect to their suitability to
be used in our application and conclude that the LowMC family of block ci-
phers [ARS+15, ARS+16] is well suited. We explore the entire design space
of the block cipher family LowMC and show that we can obtain various
trade-offs between signature sizes and computation times. Thereby, our ap-
proach turns out to be very flexible as besides the aforementioned trade-offs
we are also able to adjust the security parameter of our construction in a
very fine-grained way.

– We provide an implementation of both schemes for 128 bit security in the
pre- as well as post-quantum setting, demonstrating the practical relevance
of our approach. Moreover, we rigorously compare our schemes with other
practical provably secure post-quantum schemes.

4

1.1 Outline

Our goal in this paper is to design signature schemes that solely rely on the
security of symmetric key primitives. In doing so we construct non-interactive
zero-knowledge (NIZK) proof based signatures building upon the approach—
termed ZKBoo—taken by Giacomelli et al. in [GMO16]. Their approach yields
practically efficient Σ-protocols for statements expressible via arithmetic cir-
cuits, and their results show that proving pre-images of hash functions from the
SHA-family results in reasonable performance. Subsequently, we briefly sketch
the ideas behind the two directions we pursue to obtain secure signatures, i.e.,
signatures that are provably existentially unforgeable under adaptively chosen
message attacks (EUF-CMA).

Fish. Our first scheme builds upon the well-known FSΣ transform to turn Σ-
protocols into EUF-CMA-secure signature schemes. Loosely speaking, the public
key is the evaluation of a one-way function (OWF) on a random key. The sig-
nature is the transcript of the FSΣ-transformed non-interactive version of the
ZKBoo protocol demonstrating knowledge of the respective key. Unfortunately,
security proofs for such schemes require rewinding/application of the forking
lemma and are thus non-tight (they loose at least a multiplicative factor QH ,
being the number of RO queries, in the success probability). Consequently, one
cannot tightly relate the security of the scheme to the security parameter of the
underlying OWF and when it comes to a concrete choice of parameters one has
to compensate the loss by choosing larger parameters.

Begol. The second scheme builds upon a paradigm to construct signatures that
has been proposed more than 25 years ago as a theoretical approach by Bellare
and Goldwasser [BG89] and to the best of our knowledge has never been used
in a practical setting so far. Loosely speaking, the public key is an encryption of
a PRF key and the signature is an evaluation of a PRF on the message under
the key together with a NIZK proof confirming that the key used for the PRF is
the one in the ciphertext in the public key. Although the resulting signatures are
larger than the ones from the first approach, we can tightly relate the security
of the scheme to the security of the underlying PRF and encryption scheme,
respectively. When adjusting the parameters to compensate the non-tightness of
the first approach, we then obtain two comparable approaches regarding com-
putational efficiency.

Big Picture. Figure 1 sketches the involved building blocks in our constructions.
In a nutshell, in our first approach, we use the FSΣ transform to directly turn the
ZKBoo protocol for the languages of pre-images of a OWF into the EUF-CMA
secure signature scheme Fish. In contrast, when following the Bellare-Goldwasser
paradigm, we turn the ZKBoo protocol into a NIZK proof system (henceforth
dubbed NIZKBoo) using an other variant of the Fiat-Shamir transform (FSNIZK).
Together with a symmetric encryption scheme Ω and a PRF we then obtain the
EUF-CMA secure signature scheme Begol.

Technical Perspective. It is well known that (without assuming any specific
properties of the underlying Σ-protocol), the FSΣ yields a non-tight reduction.

5

ZKBoo

NIZKBoo Begol
+ Ω, PRFFSNIZK

FishFSΣ + OWF
non-tight

tight

Fig. 1. Overview of our constructions.

We revisit this approach in Section 3. Since we currently do not see how to bypass
this loss (i.e., avoid rewinding), our main focus from a technical perspective lies
on a tight security reduction for Begol. Our result in this context is summarized
by the following theorem.

Theorem 1. Let NIZKBoo denote the ZKBoo protocol [GMO16] turned into
a NIZK proof system via FSNIZK relative to RO H : A × X → {0, 1, 2}γ , where
the commitments are instantiated via a RO H ′ : {0, 1}α × {0, 1}β × {0, 1}ν →
{0, 1}ρ so that {0, 1}ν is sampled uniformly at random for every commitment.
Furthermore, let QS be the number of signing queries, and let QH and QH′ be
the number of queries to the ROs. If the Bellare-Goldwasser paradigm [BG89]
is instantiated with a (te, εe)-IND-EAV secure symmetric encryption scheme, a
(tp, εp)-secure PRF, and NIZKBoo, then Begol is (t, ε)-EUF-CMA secure in the
ROM, where

ε(κ) ≤

Lemma 4

εe(κ) + εp(κ) +
Q2
H′

2ρ
+ (2/3)

γ

Lemma 5

+
γ

2ν
+
QS ·QH

23·ρ

Lemma 6

, and t ≈ max{te, tp}
Lemma 4

.

Throughout the next sections, we will prove the theorem above by proving
Lemma 4-6. In Section 4 we first recall the Bellare-Goldwasser [BG89] approach
and then prove Lemma 4, which resembles the results of Bellare and Gold-
wasser but details the required security guarantees of the underlying primitives
and makes the bounds explicit. In Section 4.1 we present the instantiation of
NIZKBoo and prove Lemma 5 and Lemma 6. In Lemma 5 we prove soundness of
NIZKBoo without requiring to rewind the adversary. This yields a tighter bound
than when using s-special soundness of the underlying ZKBoo protocol as a
starting point. Finally, in Lemma 6, we prove zero-knowledge of NIZKBoo. Our
proof for this lemma is similar to the general result for Σ-protocols in [FKMV12],
but we require an additional technicality to account for the fact that the outputs
of the simulator in ZKBoo are only statistically close to an original transcript
(as opposed to the identical distribution in [FKMV12]). In addition we also
provide explicit bounds.

Implementation Perspective. From an implementation point of view our
findings are twofold. Firstly, we review existing symmetric primitives with re-
spect to their suitability to be employed in our application. We conclude that the
LowMC family of block ciphers [ARS+15, ARS+16] provides favorable proper-
ties in this context (cf. Section 5). Secondly, we present a highly optimized imple-

6

mentation which uses SIMD instruction sets of modern CPU architectures and
also exploits parallelization using standard APIs for parallel programming. Fur-
thermore, we explore the whole design space of LowMC to find the most suitable
parametrizations. Our results confirm that instantiations of both proposed sig-
nature schemes are entirely practical. A detailed overview of our implementation
results is provided in Section 6.

1.2 Related Work

In this section we give a brief overview of other candidate schemes and defer a
detailed comparison of parameters as well as performance figures to Section 6.
We start with the only existing instantiation that only relies on standard as-
sumptions, i.e., comes with a security proof in the standard model (SM) and
does not require the ROM idealization. The remaining existing schemes rely on
structured assumptions related to codes, lattices and multivariate systems of
quadratic equations that are assumed to be quantum-immune and have a secu-
rity proof in the ROM. By the end of the section, we review the state of the art
in zero-knowledge proofs for non-algebraic statements.

Hash-Based Signatures (SM). Hash-based signatures are attractive in the
sense that they can be proven secure in the standard model (i.e., without requir-
ing ROs) under well-known properties of hash functions such as second preimage
resistance. Unfortunately, efficient schemes like XMSS [BDH11] are stateful, a
property which seems to be problematic for practical applications. Proper state
management is not yet well understood [MKF+16] and seems to be a prop-
erty that is desirable to omit. Stateless schemes like the most recent proposal
SPHINCS [BHH+15] are thus more desirable, but are more inefficient in terms of
lower speed and increased signature size. SPHINCS has a security reduction that
tightly relates its EUF-CMA security to the security of the used building blocks,
i.e., hash functions, PRGs and PRFs. On a 128 bit post-quantum security level
(SPHINCS-256), one obtains a signature size of about 41 kB, and a public as
well as a private key size of about 1 kB each.

Code-Based Signatures (ROM). In the code-based setting the most well-
known and provably secure approach is to convert identification schemes due
to Stern [Ste93] and Véron [Vér96] to signatures using FSΣ. Consequently, the
reductions require rewinding and are not tight. For the 128 bit security level
(not accounting for the loss induced by the reduction) one obtains signature
sizes of around ≈ 20 kB (in the best case) and public key size of ≈ 80 bytes.6

We note that there are also other code-based signatures [CFS01] based on the
Niederreither [Nie86] dual of the McEliece cryptosystem [McE78], which do not
come with a security reduction and also do not seem practical even for very low
security levels [LS12].

6 The given estimations are taken from a recent talk of Nicolas Sendrier (available at
https://pqcrypto.eu.org/mini.html), as, unfortunately, there are no free imple-
mentations available.

7

https://pqcrypto.eu.org/mini.html

Lattice-Based Signatures (ROM). In context of lattice based signatures
there are two major directions. The first are schemes that rely on the hardness
of worst-to-average-case problems in standard lattices [GPV08, Lyu12, BG14,
DBG+14, ABB+15]. Although they are desirable from a security point of view,
they suffers from huge public keys, i.e., sizes in the orders of a few to some 10
MBs. The GPV scheme [GPV08] comes with a tight security reduction. Also
TESLA7 [ABB+15] (based upon [BG14, Lyu12]), using the proof strategy of
Katz and Wang8 [KW03], has a tight reduction to the learning with error (LWE)
problem on lattices. TESLA improves all aspects in the performance of GPV,
but still has keys in the order of 1 MB. More efficient lattice-based schemes are
based on ring analogues of classical lattice problems [DDLL13, BB13, GLP12]
whose security is related to hardness assumptions in ideal lattices. These con-
structions allow to drop key sizes to the order of a few kBs. Most notable is
BLISS [DDLL13, Duc14], which achieves very good performance nearly com-
parable to RSA. However, it has a non-tight security reduction as it uses the
classical FSΣ transform. It must also be noted, that ideal lattices have not been
investigated nearly as deeply as standard lattices and thus there is less confidence
in the related hardness conjectures (cf. [Pei16]).

MQ-Based Signatures (ROM). Recently, Hülsing et al. in [HRSS16] pro-
posed a post-quantum signature scheme (MQDSS) whose security is based on the
problem of solving a multivariate system of quadratic equations. Their scheme is
obtained by building upon the 5-pass (or 3-pass) identification scheme in [SSH11]
and applying the FSΣ transform. Their security proof requires a rewinding ex-
tractor and thus yields a non-tight security reduction in the ROM. For 128 bit
post-quantum security (which does not account for the reduction loss) signature
sizes are about 40 kB, public key sizes are 72 bytes and secret key sizes are 64
bytes. We note that there are other MQ-based approaches like Unbalanced Oil-
and-Vinegar (UOV) variants [PCG01] or FHEv− variants (cf. [PCY+15]), having
somewhat larger keys (order of kBs) but much shorter signatures. However, they
have no provable security guarantees, the parameter choice seems very aggres-
sive, there are no parameters for conservative (post-quantum) security levels,
and no implementations are available.

Zero-Knowledge for Arithmetic Circuits. Zero-knowledge proofs [GMR85]
are a very powerful tool and exist for any language in NP [GMW86]. Never-
theless, practically efficient proofs, were until recently only known for restricted
languages and in particular for proving algebraic statements in certain algebraic

7 The authors of TESLA also show how to adapt their security reduction to the
QROM, but do not implement their benchmarks accordingly and say: “We believe
that the need for a chameleon hash function is merely an artifact of the proof and we
would be surprised if our decision to use SHA-256 could be exploited in an attack.”

8 This strategy allows to obtain tight reductions when relying on decisional assump-
tions on the public key: if the instance is valid then we have a real key and in case of
a fake key an adversary can only guess a valid signature with negligible probability.
This idea has later been generalized by Abdalla et al. [AFLT12] via the notion of
lossy identification schemes.

8

structures, e.g., discrete logarithms [Sch91, CDS94] or equations over bilinear
groups [GS08]. Expressing any NP language as a combination of algebraic cir-
cuits could be done for example by expressing the relation as a circuit, i.e.,
express each gate as an algebraic relation between input and output wires. How-
ever, for circuits interesting for practical applications (such as hash functions
or block ciphers), this gets prohibitive. Even SNARKS, where proof size can be
made small (and constant) and verification is highly efficient, have very costly
proofs (cf. [GGPR13, BCG+13, CFH+15] and the references therein). Using
SNARKS is reasonable in scenarios where provers are extremely powerful (such
as verifiable computing [GGPR13]) or the runtime of the prover is not criti-
cal (such as Zerocash [BCG+14]). Unfortunately, signatures require small proof
computation times (efficient signing procedures), and this direction is not suit-
able.

Quite recently, dedicated zero-knowledge proof systems for statements ex-
pressed as Boolean circuits by Jawurek et al. [JKO13] and statements expressed
as RAM programs by Hu et al. [HMR15] have been proposed. As we exclusively
focus on circuits below lets take a look at Jawurek et al. [JKO13]. They pro-
posed to use garbled circuits to obtain zero-knowledge proofs, which allow to
efficiently prove statements like knowledge of a pre-image under a hash func-
tion like SHA-256. Unfortunately, this approach is inherently interactive and
thus not suitable for the design of practical signature schemes. The very recent
ZKBoo protocol due to Giacomelli et al. [GMO16], for the first time, allows
to construct Σ-protocols with performance being of interest for many practical
applications. We use their approach as a starting point for our work.

2 Building Blocks

Before we start, we recall the required building blocks. Henceforth, we denote
algorithms by sans-serif letters, e.g., A,B. If not stated otherwise, all algorithms
are required to run in polynomial time and return a special symbol⊥ on error. By
y ← A(x), we denote that y is assigned the output of the potentially probabilistic
algorithm A on input x and fresh random coins. Similarly, y←R S means that y
is sampled uniformly at random from a set S. We use 〈A,B〉 to denote a pair
of interactive algorithms and use 〈A,B〉 = 1 to denote an interaction where
both algorithms accept. We let [n] := {1, . . . , n} and use ‖i∈[n]xi as a shorthand
notation for x1‖ . . . ‖xn. We write Pr[Ω : E] to denote the probability of an
event E over the probability space Ω. We use C to denote challengers of security
experiments, and Cκ to make the security parameter explicit. A function ε(·) :
N→ R≥0 is called negligible, iff it vanishes faster than every inverse polynomial,
i.e., ∀ k : ∃ nk : ∀ n > nk : ε(n) < n−k. Finally, we use poly(·) to denote a
polynomial function.

We postpone the presentation of standard primitives such as OWFs f : D →
R, PRFs F : S × D → R, symmetric encryption schemes Ω = (Gen,Enc,Dec),
and signature schemes Σ = (Gen,Sign,Verify) to Appendix A.

9

Σ-Protocols. Let L ⊆ X be an NP-language with associated witness relation
R so that L = {x | ∃w : R(x,w) = 1}. A Σ-protocol for language L is defined
as follows.

Definition 1. A Σ-protocol for language L is an interactive three-move pro-
tocol between a PPT prover P = (Commit,Prove) and a PPT verifier V =
(Challenge,Verify), where P makes the first move and transcripts are of the form
(a, e, z) ∈ A× E× Z. Additionally they satisfy the following properties

Completeness. A Σ-protocol for language L is complete, if for all security
parameters κ, and for all (x,w) ∈ R, it holds that

Pr[〈P(1κ, x, w),V(1κ, x)〉 = 1] = 1.

s-Special Soundness. A Σ-protocol for language L is s-special sound, if for
all security parameters κ there exists a PPT extractor E so that for all x,
and for all sets of accepting transcripts {(a, ei, zi)}i∈[s] with respect to x,
generated by any algorithm with polynomial runtime in κ, it holds that

Pr

[
w ← E(1κ, x, {(a, ei, zi)}i∈[s]) :

(x,w) ∈ R ∧
∀i, j ∈ [s], i 6= j : ei 6= ej

]
≥ 1− ε(κ).

Special Honest-Verifier Zero-Knowledge. A Σ-protocol is special honest-
verifier zero-knowledge, if for all security parameters κ there exists a PPT
simulator S so that for every x ∈ L and every challenge e from the chal-
lenge space, it holds that a transcript (a, e, z), where (a, z) ← S(1κ, x, e) is
computationally indistinguishable from a transcript resulting from an honest
execution of the protocol.

The s-special soundness property gives an immediate bound for the soundness
of the protocol: if no witness exists then (ignoring a negligible error) the prover
can successfully answer at most to s−1/t challenges, where t = |E| is the size of
the challenge space. In case this value is too large, it is possible to reduce the
soundness error using well known properties of Σ-protocols which we restate
here for completeness.

Lemma 1. The properties of Σ-protocols are invariant under parallel repetition.
In particular, the ` fold parallel repetition of a Σ-protocol for relation R with
challenge length t yields a new Σ-protocol with challenge length `t.

Lemma 2. If there exists a Σ-protocol for R with challenge length t, then there
exists a Σ-protocol for R with challenge length t′ for any t′.

Below, we recall another well known fact about the AND composition of Σ-
protocols.

Lemma 3. Let L1 and L2 be two languages with associated witness relations R1

and R2, respectively. Further, let Σ1 and Σ2 be two Σ-protocols with identical
challenge space so that Σ1 is for L1 and Σ2 is for L2. Then a Σ-protocol for
the conjunction of L1 and L2, i.e., L1 ∧ L2 := {(x1, x2) | ∃ w1, w2 : (x1, w1) ∈
L1 ∧ (x2, w2) ∈ L2} is obtained by running Σ1 and Σ2 in parallel using a single
common challenge e.

10

Finally, we note that an equality (EQ) composition of Σ-protocols resulting in
a language L = {(x1, x2) | ∃ w : (x1, w) ∈ R1 ∧ (x2, w) ∈ R2} can be achieved
as a special case of an AND composition, where besides an identical challenge e
also the same random tape is used for the prover in both instances.

The Fiat-Shamir Transform. The Fiat-Shamir (FSNIZK) transform [FS86]
is a frequently used tool to convert Σ-protocols 〈P,V〉 to their non-interactive
counterparts. Essentially, the transform removes the interaction between P and V
by using a RO H : A×X→ E to obtain the challenge e.9 That is, one uses a PPT
algorithm Challenge′(1κ, a, x) which obtains e ← H(a, x) and returns e. Then,
the prover can locally obtain the challenge e after computing the initial message
a. Starting a verifier V′ = (Challenge′,Verify) on the same initial message a will
then yield the same challenge e. More formally, we obtain the non–interactive
PPT algorithms (PH ,VH) indexed by the used RO:

PH(1κ, x, w) : Start P on (1κ, x, w), obtain the first message a, answer with
e← H(a, x), and finally obtain z. Returns π ← (a, z).

VH(1κ, x, π) : Parse π as (a, z). Start V′ on (1κ, x), send a as first message to
the verifier. When V′ outputs e, reply with z and output 1 if V accepts and
0 otherwise.

Non-Interactive ZK Proof Systems. Now, we recall a standard definition
of non-interactive zero-knowledge proof systems. Therefore, let L be an NP-
language with witness relation R, i.e., so that L = {x | ∃ w : R(x,w) = 1}.

Definition 2 (Non-Interactive Zero-Knowledge Proof System). A non-
interactive proof system Π is a tuple of algorithms (Setup, Proof, Verify), which
are defined as follows:

Setup(1κ) : This algorithm takes a security parameter κ as input, and outputs a
common reference string crs.

Proof(crs, x, w) : This algorithm takes a common reference string crs, a state-
ment x, and a witness w as input, and outputs a proof π.

Verify(crs, x, π) : This algorithm takes a common reference string crs, a state-
ment x, and a proof π as input, and outputs a bit b ∈ {0, 1}.

We require Π to be complete, adaptively zero-knowledge and sound. In Ap-
pendix A.1 we recall formal definition of those properties.

Converting Σ-protocols to Non-Interactive Proof Systems. One can ob-
tain a non-interactive proof system satisfying the properties above by applying
the FSNIZK transform to any Σ-protocol where the min-entropy α of the com-
mitment a sent in the first phase is so that 2−α is negligible in the security
parameter κ and the challenge space E is exponentially large in the security pa-
rameter. Formally, Setup(1κ) fixes a RO H : A× X→ E, sets crs← (1κ, H) and

9 This is a stronger variant of FS (cf. [FKMV12, BPW12]). The original weaker variant
of the FS transform does not include the statement x in the challenge computation.

11

returns crs. The algorithms Prove and Verify are defined as follows:

Prove(crs, x, w) := PH(1κ, x, w), Verify(crs, x, π) := VH(1κ, x, π).

Combining [FKMV12, Thm. 1, Thm. 2, Prop. 1] (among others) shows that
a so-obtained proof system is complete, sound, and adaptively zero-knowledge
if the underlying Σ-protocol is (2-)special sound and the commitments sent
in the first move are unconditionally binding. Since ZKBoo only provides 3-
special soundness and the commitments in a are not perfectly binding, we later
prove that those properties also hold for ZKBoo. Thereby, we also obtain tight,
concrete bounds.

3 Fish: Signatures from Plain Fiat-Shamir

The FSΣ transform can elegantly be used to convert (canonical) identifica-
tion schemes into adaptively (EUF-CMA) secure signature schemes. The basic
idea is similar to FSNIZK, but the challenge generation is defined via the RO
H : A × M → E. More precisely, one uses the provers first message a and
the message m ∈ M to be signed to obtain the challenge, i.e., compute the
challenge as e ← H(a,m). There are numerous works on the security of signa-
tures schemes obtained from three move identification schemes [OO98, PS96,
AABN02, KMP16, BPS16]. All these approaches to prove security of such con-
structions do yield non-tight reductions. Essentially, all these techniques rely on
rewinding/forking and lose (depending on the number of rewinds) at least a mul-
tiplicative factor of QH—the number of queries to the RO—in the overall success
probability. We note that all above results are for three round schemes and there
are also generalizations to schemes of 2k+ 1 rounds for k > 1 [ADV+12], which
also yield non-tight reductions.

The only class of schemes for which the FSΣ conversion yields tight security
by means of a black-box transformation are so called lossy identification schemes
[AFLT12]. These are identification schemes, which beside normal keys have lossy
keys being computationally indistinguishable from real ones and given a lossy
key, for an adversary it is statistically impossible to provide a valid response to
a random challenge after making a commitment. Such identification schemes are
known for various settings (cf. [KW03, AFLT12, ABP13]). While this approach
applies when working with lattices [AFLT12] in the post-quantum setting, un-
fortunately, it does not help us with our approach to obtain tight security.

Now, consider a language LR with associated witness relation R of pre-images
of a OWF f : D → R:

(y, s) ∈ R ⇐⇒ y = f(s).

When using ZKBoo to prove knowledge of such a pre-image, we know [GMO16]
that this Σ-protocol provides 3-special soundness. We apply the FSΣ transform
to this Σ-protocol to obtain an EUF-CMA secure signature scheme.

In the so obtained signature scheme the public verification key pk contains
the image y (and a description of f) and the secret signing key sk contains a

12

sufficiently large random element s from R. The corresponding signature scheme,
dubbed Fish, is illustrated in Scheme 1.

Gen(1κ) : Choose s←R D, compute y ← f(s), set pk ← y and sk ← (pk, s) and return
(sk, pk).

Sign(sk,m) : Parse sk as (pk, s), compute π = (a, z) ← PH(1κ, y, s,m) and return
σ ← π, where internally the challenge is computed as e← H(a,m).

Verify(pk,m, σ) : Parse pk as y, and σ as π = (a, z). Return 1 if the following holds,
and 0 otherwise:

VH(1κ, y, s,m) = 1,

where internally the challenge is computed as e← H(a,m).

Scheme 1: Fish: building upon Fiat-Shamir.

If we view ZKBoo as a canonical identification scheme that is secure against
passive adversaries one just needs to keep in mind that most definitions are tai-
lored to (2-)special soundness, and the 3-special soundness of ZKBoo requires an
additional rewind. In particular, an adapted version of the proof of [Kat10, The-
orem 8.2] which considers this additional rewind attests the security of Scheme 1.
Secondly, using the results of [FKMV12] together with [CL06] (again consider-
ing the additional rewind), also immediately yields EUF-CMA secure signatures,
but additionally requires to include the proven statement x upon computing the
challenge. Let us stick with the first approach, then we obtain the following:

Corollary 1. Scheme 1 instantiated with ZKBoo and a secure OWF yields an
EUF-CMA secure signature scheme.

Note that the corollary above holds in the asymptotic sense, i.e., the reductions
loses a multiplicative factor of ≈ Q2

H , with QH being the number of queries to
the RO. Thus one has to accordingly adjust the security parameter if concrete
security is required.

4 Begol: Instantiating the Bellare-Goldwasser Paradigm

Bellare and Goldwasser in [BG89] introduced an approach to construct adap-
tively (EUF-CMA) secure signatures from a NIZK proof system Π = (Setup,Proof,
Verify) and any OWF f . In particular, the OWF-based primitives they require
are a symmetric encryption scheme and a PRF.

Henceforth, let Ω be a symmetric encryption scheme Ω = (Gen,Enc,Dec)
and F be a family of PRFs F : S ×M → {0, 1}n. The private signing key of
the scheme is the pair sk := (s, k) where s←R S is a PRF key and k← Ω.Gen(1κ)
is a random key for the encryption scheme Ω. The public verification key pk :=
(crs, c) of the scheme consists of the CRS crs← Π.Setup(1κ) of the NIZK proof
system and a ciphertext c ← Enc(k, s;ω) being an encryption of the PRF key s

13

under randomness ω. Let LR := {x | ∃ w : R(x,w) = 1} with witness relation R
be defined as:

((c, y,m), (s, k, ω)) ∈ R ⇐⇒ c = Ω.Enc(k, s;ω) ∧ y = Fs(m).

A signature for a message m ∈ M in the Bellare-Goldwasser approach is the
pair σ := (y, π). Thereby, y ← Fs(m) is the evaluation of the PRF using key
s, and π ← Π.Proof(crs, (c, y,m), (s, k;ω)) is a NIZK proof, proving the correct
evaluation of the PRF on the message m with respect to unknown PRF key s
encrypted in c, where c is part of the public key pk. In Scheme 2 we formally
state the construction, which we term Begol.

Gen(1κ) : Run crs← Π.Setup(1κ), k← Ω.Gen(1κ), choose s←R S, compute c← Ω.Enc(
k, s), set pk← (crs, c) and sk← (pk, s, k) and return (sk, pk).

Sign(sk,m) : Parse sk as ((crs, c), s, k), compute y ← Fs(m), π ← Π.Proof(crs, τ, (c, y,
m), (s, k)), and return σ ← (y, π).

Verify(pk,m, σ) : Parse pk as (crs, c), and σ as (y, π). Return 1 if the following holds,
and 0 otherwise:

Π.Verify(crs, (c, y,m), π) = 1.

Scheme 2: Begol: building upon Bellare-Goldwasser.

While BG do not the make the properties of the used primitives explicit, we
are interested in obtaining particularly efficient instantiations and thus identify
the minimum requirements for the underlying primitives. In doing so, we make
the important observation that we only require IND-EAV security for the used
symmetric encryption scheme. Now, in contrast to the well known IND-CPA
security, which would require a randomized symmetric encryption scheme, the
IND-EAV requirement can be satisfied by a deterministic symmetric encryption
scheme. Thus, for our implementations we can use:

((c, y,m), (s, k)) ∈ R ⇐⇒ c = Ω.Enc(k, s) ∧ y = Fs(m). (1)

Note that in contrast to randomized encryption, this reduces the size of the wit-
ness (no randomness ω is required) and the proof complexity. For our signature
scheme this means that we can obtain shorter signatures and signing keys, as
well as better computational efficiency.

Tight Security. As already mentioned, we are interested to tightly relate the
security of our instantiation to the security of the underlying symmetric prim-
itives. The subsequent lemma it tailored to our setting and makes the require-
ments for the underlying primitives explicit by making use of state-of-the-art
security notions. Furthermore, we provide explicit bounds.

Lemma 4. If Ω is (te, εe)-IND-EAV secure, F is a (tp, εp)-secure PRF family,
Π is εs-sound, and εz-adaptively zero-knowledge, then the BG signature scheme
is (t, ε)-EUF-CMA secure, where

ε(κ) ≤ 1/2κ + εe(κ) + εp(κ) + εs(κ) + εz(κ), and t ≈ max{te, tp}.

14

We prove the theorem above in Appendix B. Subsequently, we show how to
instantiate the required non-interactive zero-knowledge proof-system NIZKBoo
from ZKBoo and prove the required bounds for soundness and adaptive zero-
knowledge which then completes the proof of Theorem 1.

4.1 Using ZKBoo as Non-Interactive ZK Proof System

In this section, we describe how to turn ZKBoo into a non-interactive zero-
knowledge (NIZK) proof system so that it can be used to efficiently instantiate
Begol. While ZKBoo is generally applicable to the class of functions which
can be decomposed into three branches, so that the values computed in two
branches reveal no information about the input to the respective function, we
will henceforth focus on Boolean circuits being a subclass of these functions
(cf. Section 5 for more details on this choice). Such a decomposition is called
(2, 3)-function decomposition and works as follows.

Linear (2,3)-Function Decomposition for Boolean Circuits [GMO16].
Let φ : W → X be a function which can be expressed by a Boolean circuit
with a total number N of gates. The (2, 3)-function decomposition is defined by
the following building blocks. First, one requires three random tapes (k1, k2, k3).
Second, the Share function computes a linear secret sharing (s1, s2, s3) of the
input value w ∈ W with respect to random tapes (k1, k2, k3). Third, the family

F =
⋃N
c=1{φ

(c)
1 , φ

(c)
2 , φ

(c)
3 } is defined as follows. Let wi[c], i ∈ [3] denote the

output of gate c, let (w1[0], w2[0], w3[0]) = (s1, s2, s3), and let (x1, x2, x3) =
(w1[N], w2[N], w3[N]). Then, depending on the type of the gate, the functions

φ
(c)
i , i ∈ [3] are defined as follows, where the wires are coming from the gate

numbers a and b with a, b < c (only from a for unary gates):

Unary XOR α gate: wi[c] = φ
(c)
i (wi[a]) =

{
wi[a] ⊕ α if i = 1, and
wi[a] else.

Unary AND α gate: wi[c] = φ
(c)
i (wi[a]) = α ∧ wi[a].

Binary XOR gate: wi[c] = φ
(c)
i (wi[a], wi[b]) = wi[a] ⊕ wi[b].

Binary AND gate:
wi[c] = φ

(c)
i (wi[a, b], wi+1[a, b], ki, ki+1)

= wi[a] ∧ wi[b] ⊕ wi+1[a] ∧ wi[b]
⊕ wi[a] ∧ wi+1[b] ⊕ Fki(c) ⊕ Fki+1

(c),
where Fki and Fki+1

, respectively, denote PRFs, being
sampled from an appropriate family using ki and ki+1.

NIZK from ZKBoo Σ-Protocol (NIZKBoo). The NIZKBoo protocol is pre-

sented in Scheme 3, where we slightly abuse the notation introduced above and

assume that the selection of the input wires is hard-coded into the functions φ
(c)
i .

Therefore, all functions φ
(c)
i take input (wi[0, . . . , c− 1], wi+1[0, . . . , c− 1], ki,

ki+1), i.e., the values of all wires up to gate number c − 1, as well as the
random tapes ki and ki+1. Since ZKBoo builds up on commitments in the

15

ROM, we index the algorithms PH ,VH with an additional RO H ′ : {0, 1}α ×
{0, 1}β × {0, 1}ν → {0, 1}ρ. Furthermore, for our illustrations we assume that
H : A× X→ {0, 1, 2}γ with γ = 1, and stress that we can adjust the soundness
error arbitrarily by parallel composition, i.e., increasing γ (cf. Lemma 1 and
Lemma 2).

Modeling the BG Language. The witness relation in Equation (1) can be seen
as the composition of witness relations using an AND and an EQ composition.
Technically, we represent the entire statement as a single circuit which represents
the combination of an encryption circuit Ω.Enc and an PRF circuit where the
inputs corresponding to the PRF seed s are re-used. In Section 5 we will discuss
how we instantiate both building blocks from a block cipher (LowMC).

PH,H′(1
κ, x, w) : Sample random tapes (k1, k2, k3)←R ({0, 1}α, {0, 1}α, {0, 1}α), run

(s1, s2, s3) = (w1[0], w2[0], w3[0]) ← Share(w; k1, k2, k3). Obtain (w1, w2, w3) =
((w1[i], w2[i], w3[i]))1<i≤N , where

(wj [i]← φ
(i)
j (wj [0, . . . , i− 1], wj+1[0, . . . , i− 1], kj , kj+1)j∈[3],1<i≤N ,

and let (x1, x2, x3) = (w1[N], w2[N], w3[N]). For i ∈ [3], compute ci ← H ′(ki,
wi, ri), where ri←R {0, 1}ν . Then, set a ← (x1, x2, x3, c1, c2, c3), compute e ←
H(a, x), set z← (ke, ke+1, we, we+1, re, re+1) and return π ← (a, z).

VH,H′(1
κ, x, π) : Parse π as (a, z), compute e ← H(a, x), and check whether x =

x1 ⊕ x2 ⊕ x3, if xi = wi[N] for i ∈ {e, e + 1} and if the following holds for
all 1 < i ≤ N :

we[i] = φ(i)
e (we[0, . . . , i− 1], we+1[0, . . . , i− 1], ke, ke+1) ∧
ce = H ′(ke, we, re) ∧ ce+1 = H ′(ke+1, we+1, re+1).

If all checks hold, return 1 and 0 otherwise.

Scheme 3: NIZKBoo for Lφ with decomposition Decφ = (Share,F) and γ = 1.

Given the completeness of the underlying ZKBoo protocol, the subsequent
corollary follows from inspection.

Corollary 2. Scheme 3 is complete.

Now, we directly prove the remaining required security properties of NIZKBoo
when used to instantiate the Bellare-Goldwasser paradigm. An important ob-
servation is that we are dealing with an NP-language where soundness actually
gives sufficient guarantees for the security of the overall signature scheme and
we do not need to be able to extract a witness. This allows us to bypass the
requirement for rewinding the adversary, and to obtain a tight security bound.

Lemma 5. Let κ be the security parameter and QH′ be the number of queries
to H ′. Then the probability ε(κ) for all PPT adversaries A to break soundness
of γ parallel executions of Scheme 3 is bounded by ε(κ) ≤ Q2

H′/2ρ + (2/3)
γ

.

16

Proof. We prove the theorem above using a sequence of games.

Game 0: The original soundness game. The environment maintains the lists H

and H′, which are initially empty. The ROs are honestly simulated:

H(a, x) : If H[(a, x)] = ⊥, set H[(a, x)]←R {0, 1}γ . Return H[(a, x)].
H ′(||j∈[ρ](kj , wj)) : If H′[||j∈[ρ](kj , wj)] = ⊥, set H′[(kj , wj)j∈[ρ]]←R {0, 1}ρ.

Return H′[||j∈[ρ](kj , wj)].
Game 1: As Game 0, but we abort as soon as there ∃ x, y : H′[x] = H′[y] 6=
⊥ ∧ x 6= y. We term this abort event E.

Transition Game 0 → Game 1: Game 0 and Game 1 proceed identically, unless
event E occurs. Thus, we have that for appropriately chosen ρ both games
are statistically close, i.e., |Pr[S0]− Pr[S1]| ≤ Pr[E] ≤ Q2

H′/2ρ

In Game 1, it is impossible to find two different openings for a single RO com-
mitment. Now, we observe that if x /∈ L and the adversary does not correctly
guess the challenge, at least one challenge yields two inconsistent views. Since
the challenge is uniformly random and independent of the adversary’s view, this
yields Pr[S1] ≤ (2/3)γ and completes the proof. ut

Lemma 6. Let κ be the security parameter, QH be the number of queries to H,
QS be the overall queries to the simulator, and let the commitments in Scheme 3
be instantiated via a RO H ′ : {0, 1}α×{0, 1}β×{0, 1}ν → {0, 1}ρ so that {0, 1}ν
is sampled uniformly at random for every commitment. Then the probability
ε(κ) for all PPT adversaries A to break adaptive zero-knowledge of γ parallel
executions of Scheme 3 is bounded by ε(κ) ≤ γ/2ν + (QS ·QH)/23·ρ.

The subsequent proof is similar to the general results for Σ-protocols from
[FKMV12], yet we have to account for the additional challenge that the simula-
tor only outputs transcripts which are statistically close to original transcripts
(which is in contrast to the identically distributed transcripts in [FKMV12]).
Furthermore, we also provide concrete bounds.

Proof. We bound the probability of any PPT adversary A to win the zero-
knowledge game by showing that the simulation of the proof oracle is statistically
close to the real proof oracle.

Game 0: The zero-knowledge game where the proofs are honestly computed,
and the ROs are simulated exactly as in the proof of Lemma 5.

Game 1: As Game 0, but whenever the adversary requests a proof for some
tuple (x,w) we choose e←R {0, 1, 2}γ before computing a and z. If H[(a, x)] 6=
⊥ we abort. Otherwise, we set H[(a, x)]← e.

Transition - Game 0 → Game 1: Game 0 and Game 1 proceed identically un-
less E happens. The message a includes 3 RO commitments with respect to
H ′, i.e., a lower bound for the min-entropy is 3 · ρ. We have that |Pr[S0]−
Pr[S1]| ≤ (QS ·QH)/23·ρ.

Game 2: As Game 1, but we compute ((ci1, ci2, ci3))i∈[γ] in a so that the com-
mitments which will never be opened according to e contain random values.

17

Transition - Game 1 → Game 2: The statistical difference between Game 1 and
Game 2 can be upper bounded by |Pr[S1]−Pr[S2]| ≤ γ ·1/2ν (for compactness
we collapsed the γ game changes into a single game).

Game 3: As Game 2, but we use the HVZK simulator to obtain (a, e, z).
Transition - Game 2 → Game 3: This change is conceptual, i.e., Pr[S2] = Pr[S3].

In Game 0, we sample from the first distribution of the zero-knowledge game,
whereas we sample from the second one in Game 3; the distinguishing bounds
shown above conclude the proof. ut

5 Selecting an Underlying Symmetric Primitive

Our schemes require one or more symmetric primitives suitable to instantiate an
OWF, a PRF, as well as a symmetric cipher. In this section we first investigate
how choosing a primitive with certain properties impacts an overall instantiation
of our schemes. From this, we derive concrete requirements, and, finally, present
our chosen primitive.

Signature Size. The size of the signature is mostly influenced by two factors.
Firstly by the number γ of parallel repetitions and, secondly, by the size β of
the views generated during the ZKBoo protocol. The latter is fully determined
by the choice of the OWF f for Fish, and the PRF F and symmetric encryp-
tion scheme Ω for Begol. We denote by af , aF and aΩ the number of binary
multiplication gates contained in the circuit representation of f , F and Ω, and
by λf , λF and λΩ the respective sizes of rings in which the multiplications take
place. Furthermore we denote by (Df , DF , DΩ) and (If , IF , IΩ) the size of the
domain and the images of the functions. More explicitly, the signature sizes are
as follows. For instantiations of the Fish scheme we obtain signatures taking up

If

image of f

+ 2 · γ
challenge

+ γ ·
(

3 · ρ
commitments

+ 2 · (
views

Df + λf · af + If +

randomness

ν + α)

openings

)
bits of storage. When using Begol, twice as many views and commitments need
to be stored as well as another 3 ·γ images. Hence we get signatures of bitlength

IF
image of F

+ 2 · γ
challenge

+ γ ·
(

6 · ρ
commitments

+

2 · (
views for F

DF + λF · aF + IF +

views for Ω

DΩ + λΩ · aΩ + IΩ +

randomness

2 · (ν + α))

openings

)
.

Runtime for Signing and Verification. In the context of multi-party com-
putation (MPC) it is often argued that the runtime is mainly determined by the
number of AND gates. Intuitively, the runtime should thus be directly propor-
tional to the signature size. While this is definitely true in an asymptotic sense,
the runtime of a concrete instantiation is also influenced by the number of XOR
gates (especially for larger numbers of XOR gates). This is also confirmed by
our implementation results in Section 6.

18

5.1 Survey of Suitable Primitives

The size of the signature depends on constants that are close to the security
expectation (say, 128 or 256; cf. Section 6 for our concrete choices). The only
exceptions are the number of binary multiplication gates, and the size of the
rings, which all depend on the choice of the primitive. Hence we survey existing
designs that can serve as a OWF, PRF, or IND-EAV secure symmetric cipher,
respectively. We focus on the following categories.

– Standardized and widely used primitives such as AES, or SHA-256 or SHA-
512 or SHA-3.

– Low complexity, “lightweight” ciphers for use in constrained environments.
– Custom block and stream ciphers designed for evaluation by a fully/somewhat

homomorphic encryption scheme, a SNARK, or in an MPC protocol.

Standardized General-Purpose Primitives. The smallest known Boolean
circuit of AES-128 needs 5440 AND gates, AES-192 needs 6528 AND gates,
and AES-256 needs 7616 AND gates [BMP13]. An AES circuit in F24 might
be more efficient in our setting, as in this case the number of multiplications
is lower than 1000 [CGP+12]. This results in an impact on the signature size
that is equivalent to 4000 AND gates. Even though collision resistance is often
not required, hash functions like SHA-256 are a popular choice for proof-of-
concept implementations. The number of AND gates of a single call to the SHA-
256 compression function is about 25000 and a single call to the permutation
underlying SHA-3 is 38400.

Lightweight Ciphers. Most early designs in this domain focused on small area
when implemented as a circuit in hardware where the size of an XOR gate is by a
small factor larger than the size of an AND or NAND gate. Notable designs with
a low number of AND gates at the 128-bit security level are the block ciphers
Noekeon [DPVAR00] (2048) and Fantomas [GLSV14] (2112). Furthermore, one
should mention Prince [BCG+12] (1920), or the stream cipher Trivium [DP08]
(1536 AND gates to compute 128 output bits) with 80-bit security.

Custom Ciphers with a Low Number of Multiplications. Motivated by
various applications in SHE/FHE schemes, MPC protocols and SNARKs, re-
cently a trend to design symmetric encryption primitives with a low number of
multiplications or a low multiplicative depth started to evolve. As we shall see,
this is a trend we can take advantage of.

We start with the block cipher family called LowMC [ARS+15]. In the most
recent version of the proposal [ARS+16], the number of AND gates can be below
500 for 80-bit security, below 800 for 128-bit security, and below 1400 for 256-bit
security. The stream cipher Kreyvium [CCF+16] needs similarly to Trivium 1536
AND gates to compute 128 output bits, but offers a higher security level of 128
bit. Even though FLIP [MJSC16] was designed to have especially low depth, it
needs hundreds of AND gates per bit and is hence not competitive in our setting.

Last but not least there are the block ciphers and hash functions around
MiMC [AGR+16] which need less than 2 ·s multiplications for s-bit security in a

19

field of size close to 2s. Note that MiMC is the only design in this category which
aims at minimizing multiplications in a field larger than F2. However, since the
size of the signature depends on both the number of multiplications and the size
of the field, this leads to a factor 2s2 which, for all arguably secure instantiations
of MiMC, is already larger than the number of AND gates in the AES circuit.

LowMC has two important advantages over other designs: It has the lowest
number of AND gates for every security level: The closest competitor Kreyvium
needs about twice as many AND gates and only exists for the 128-bit security
level. The fact that it allows for an easy parameterization of the security level is
another advantage. We hence use LowMC for our concrete proposal and discuss
it in more detail in the following.

5.2 LowMC

LowMC is a flexible block cipher family based on a substitution-permutation
network where the block size n, the key size k, the number of 3-bit Sboxes
m in the substitution layer and the allowed data complexity d of attacks can
independently be chosen. To reduce the multiplicative complexity, the number
of Sboxes applied in parallel can be reduced, leaving part of the substitution
layer as the identity mapping. The number of rounds r needed to achieve the
goals is then determined as a function of all these parameters. For the sake of
completeness we include a brief description of LowMC in Appendix C.

To minimize the number of AND gates for a given k and d, we want to
minimize r · m. A natural strategy would be to set m to 1, and then look for
an n that minimizes r. Examples of such an approach are already given in the
document describing version 2 of the design [ARS+16]. In our setting, this ap-
proach may not lead to the best results in practice, as it ignores the impact of
the large amount of XOR operations it requires. What we hence do to find the
most suitable parameterization is to explore a larger range of values from m also.

Whenever we want to use LowMC to instantiate one of the required symmet-
ric primitives with s-bit security, we set k = d = s. For post-quantum security we
double those parameters to take generic quantum-speedups into account. This
takes into account current knowledge of quantum-cryptanalysis for models that
are very generous to the attacker [KLLN16, KLLN15].

An exception to this conservative choice can be found in our optimization
discussion in Section 6.5 where we describe why a less conservative choice for
the parameter d is possible.

6 Implementation and Design Space Exploration

We provide a library implementing both the Fish and the Begol signature scheme.
The library provides an API exposing an interface to generate LowMC instances
for a given parameter set, as well as an easy to use interface for key generation,
signature generation/verification in both schemes. To be able to explore various
directions in the LowMC parameter space, we also implemented a benchmarking

20

framework. The library is implemented in C using the OpenSSL10 and m4ri11

libraries and is available online at https://github.com/IAIK/fish-begol.

6.1 Implementation of Building Blocks

The building blocks in the protocol are instantiated similar as in the implemen-
tation of ZKBoo [GMO16]:

PRNG. Random tapes are generated pseudorandomly using AES in counter
mode, where the AES keys are generated using OpenSSL’s secure random num-
ber generator. In the linear decomposition of the AND gates we use a random
function that picks the bits from the bit stream generated using AES. Since the
number of AND gates is known a-priori, we can pre-compute all random bits at
the beginning of the protocol.

Commitments. The RO H ′ used to commit to the views is implemented using
SHA-256, i.e. Com(k,w) := SHA-256(k,w, r) where r←R {0, 1}ν .

Challenge Generation. For both approaches we instantiate RO H : {0, 1}∗ →
{0, 1, 2}γ using SHA-256 and rejection sampling: we split the output bits of
SHA-256 in pairs of two bits and reject all pairs with both bits set.

LowMC-Based Primitives. It is straight forward to use LowMC as PRF
and IND-EAV secure encryption scheme. The OWF is instantiated by fixing a
plaintext and using the input to the OWF as key for LowMC.

6.2 Circuit for LowMC

For the linear (2,3)-decomposition we view LowMC as circuit over F2. From
the description of LowMC it is clear, that the circuit consists only of AND and
XOR gates. Hence we have λf = λF = λΩ = 1. When optimizing the circuit so
that modified AND gates as described in [GMO16] are used, the number of bits
we have to store for each view is further reduced to af = aF = aΩ = 3 · r ·m,
where r is the number of rounds and m is the number of Sboxes in LowMC.

Our implementation builds upon the m4ri library [ABH10] and to better fit
the memory layout used by m4ri, all operations are performed using transposed
matrices and column vectors. For improved performance of the Sbox layer, we
use a bit-sliced version of the Sbox, i.e., instead of looping over m bit triples and
applying the Sbox separately, we evaluate the full Sbox layer using a sequence
of AND, XOR and shift instructions independent of m.

Since the affine layer of LowMC only consists of AND and XOR operations,
it benefits from using block sizes such that all computations of this layer can
be performed using SIMD instruction sets that provide bitwise AND and XOR
instruction for 128 bit respectively 256 bit operands like AVX2 and SSE2 or
NEON. Similarly the bit-sliced version of the Sbox layer can be improved by
using SIMD AND and XOR instructions. Only inter-lane bit-shifts, which are

10 https://openssl.org
11 https://bitbucket.org/malb/m4ri

21

https://github.com/IAIK/fish-begol
https://openssl.org
https://bitbucket.org/malb/m4ri

necessary for the bit-sliced Sbox, do not fit the model of SIMD instruction sets.
Thus shifts require up to five instructions and only benefit slightly. Since our
implementation uses (arrays of) native words to store the bit vectors, the im-
plementation benefits from a choice of parameters such that 3 · m is close to
the word size. This choice allows us to maximize the number of parallel Sbox
evaluations in the bitsliced implementation. Note that also the storage overhead
of individual views benefits from 3 ·m close to byte boundaries as we always use
bytes instead of individual bits.

While we optimized the AND and XOR gates in the LowMC circuit to use
SIMD instructions where possible, we have kept the implementation very generic
for arbitrary choices of the LowMC parameters. Hence we are able to explore
the parameter space in multiple directions while still profiting from the speed
up of vectorized operations.

6.3 Experimental Setup and Results

Our experiments were performed on an Intel Core i7-4790 CPU at 3.60 GHz with
4 cores12 and 16 GB RAM running Ubuntu 16.04. We omit any benchmarks of
Gen, since the key generation only needs to request k respectively 2 · k bits from
the random number generator and to compute one LowMC encryption and has
a runtime of some microseconds. Henceforth, we target the 128 bit pre- as well
as post-quantum setting and we globally set our repetition count to γ := 219.
Based on this, we globally fix the output size of the RO to ρ := 256, and the
size of the randomness in the RO commitment to ν := 136 (then all terms in
the bound involving these factors are negligible in the security parameter).

Selection of the Most Suitable LowMC Instances. We now explore the
design space of LowMC to select the most suitable instances among the 128 bit
pre- as well as post-quantum instances. Our results are presented in Figure 2
(note that the plot axes are in logarithmic scale). Choosing a concrete LowMC
instance results in a trade-off between computational efficiency and signature
size, parametrized by the number of rounds and by the number of Sboxes.

We select the instances yielding the best balance between signature size and
computational efficiency. In particular, using the notation [blocksize]-[keysize]-
[#sboxes]-[#rounds], we choose the 128-128-12-26 instance from the 128 bit pre-
quantum instances and the 256-256-20-31 instance from the 128 post-quantum
instances. To underpin our argumentation regarding the choice of LowMC, we
also include the runtime and proof size of the SHA-256 implementation (with
one call to the compression function) from the authors of ZKBoo in [GMO16].
Informally speaking, this can be seen as a rough estimation of a lower bound for
an instantiation of our scheme Fish with SHA-256 instead of LowMC.

An immediate conclusion we can draw from these results is that both signa-
ture schemes can be instantiated such that they are entirely practical.

Taking the Reduction Tightness into Account. We now investigate how in
a concrete rather than asymptotic setting the number of queries the adversary

12 HyperThreading was disabled for the experiments to reduce noise in the benchmarks.

22

100 150 200 300 400 500 600 800 1000 1500 2000
Size [kB]

10

20

30

40

100

200

Ti
m
e
[m

s]
128-128-2-128

128-128-2-128

128-128-32-19

128-128-32-19

128-128-12-26

128-128-12-26

SHA256 proof

SHA256 verify

Runtime vs. Signature Size, [n]-[k]-[m]-[r], n=128

Sign (Fish)
Verify (Fish)
Sign (Begol)
Verify (Begol)

(a) Asymptotic 128 bit pre-quantum security.

150 200 300 400 500 600 800 1000 1500 2000
Size [kB]

25

50

75

100

200

300

400
500

Ti
m
e
[m

s]

256-256-2-232

256-256-2-232

256-256-80-22

256-256-80-22

256-256-20-31

256-256-20-31

SHA256 proof

SHA256 verify

Runtime vs. Signature Size, [n]-[k]-[m]-[r], n=256

Sign (Fish)
Verify (Fish)
Sign (Begol)
Verify (Begol)

(b) Asymptotic 128 bit post-quantum security.

Fig. 2. Measurements for instance selection (average over 100 runs).

is assumed to make to the RO impacts the signature size and the computational
efficiency. Figure 3 illustrates this impact on the performance of our schemes
for concrete 128 bit pre- and post-quantum security. We thereby, successively
increase the number of RO queries from 260 to 2100. To make the plots easier
to read, we omit to increase ρ with increasing number of RO queries. With this
omission, the difference in the signature size of Begol is less than one kB and
even lower for Fish. The runtime for both schemes is not noticeably affected.

The interesting conclusion we draw from our results is that increasing the
number of queries to the RO eventually leads to a point where our scheme Begol

23

becomes more efficient than our scheme Fish (both in terms of signature size as
well as in terms of computational efficiency). In other words, depending on how
conservative/progressive the power of an adversary is estimated, either one of
our schemes can be the right choice.

100 150 200 300 400 500 600 700 800 9001000
Size [kB]

25

50

75

100

200

300

400
500

Ti
m

e
[m

s]

128-128-2-128

128-128-32-19

128-128-12-26

128-128-2-128

128-128-32-19

128-128-12-26

256-256-2-174

256-256-64-14
256-256-26-18

512-512-6-152

512-512-170-25

512-512-34-37

Begol, QH =260,…, 2100

Fish, QH =260

Fish, QH =280

Fish, QH =2100

(a) Concrete 128-bit pre-quantum security level.

150 200 300 400 500 600 700 800 900 1000
Size [kB]

25

50

75

100

200

300

400

500

Ti
m

e
[m

s]

256-256-2-232

256-256-80-22
256-256-20-31

256-256-2-232

256-256-80-22

256-256-20-31

384-384-4-172

384-384-126-25384-384-30-33

512-512-6-152

512-512-170-25

512-512-34-37

Begol, QH =260,…, 2100

Fish, QH =260

Fish, QH =280

Fish, QH =2100

(b) Concrete 128-bit post-quantum security level.

Fig. 3. Efficiency of Sign relative to number of RO queries (average over 100 runs).

24

Parallelization. One positive aspect regarding the γ parallel repetitions is that
they are independent of each other.13 In particular, this holds for all steps in
the signing and verification algorithm up to the initial requests to OpenSSL’s
random number generator and the computation of the challenge. This allows
us to take advantage of the multi-core architecture of modern processors using
OpenMP.14 As exemplified for Begol in Figure 4, we can observe a significant
performance increase until the number of threads matches the actual number of
CPU cores. We note that exactly the same effects also occur for instantiations
of Fish. Furthermore, they also occur regardless of the LowMC parameters.

Signing Arbitrary Length Messages. We have not discussed signing of mes-
sages of arbitrary length with our approaches so far. For Fish, this is already
covered by the FSΣ transform as we are not limited in the message length in
the challenge computation. For Begol, we observe that it needs a bit more care
as we need use a collision-resistant (CR) hash function prior to computing the
signature and thus have to adjust the output size of the CR hash with the in-
put size of the PRF. If we follow the argumentation of Bernstein [Ber09], then
like with Fish our instantiations in the benchmarks already support arbitrary
length messages when using SHA-256 as a CR hash. If we follow the more con-
servative approach of assuming cost 2b/3 for b bit collisions, then for the 128-bit
post-quantum setting we would have to slightly increase the input size of the
PRF (i.e., change the blocksize of the second LowMC instance to 384 bit). This
would slightly increase computation times as well as signature sizes.

180 200 220 240 260 280
Size [kB]

5

10

15

20

25

30

35

40

Ti
m

e
[m

s]

1 thread
2 threads
3 threads
4 threads

(a) Sign

180 200 220 240 260 280
Size [kB]

0

5

10

15

20

25

Ti
m

e
[m

s]

1 thread
2 threads
3 threads
4 threads

(b) Verify

Fig. 4. Runtime of the parallelized version of Sign and Verify of Begol at 128-bit pre-
quantum security level using an increasing number of threads.

13 This observation was also made for ZKBoo in [GMO16].
14 http://openmp.org

25

http://openmp.org

6.4 Comparison with Related Work

To compare our signature scheme to other recent proposals, we selected schemes
which have reference implementations freely available. We benchmarked these
implementations on the machine we used to perform our benchmarks. Table 1
gives an overview of the results, including MQDSS [HRSS16], TESLA [ABB+15],
ring-TESLA [ABB+16], BLISS [DDLL13], and SPHINCS-256 [BHH+15].15

Our implementation can be considered as a general-purpose implementation,
which is flexible enough to cover the entire design spectrum of both our ap-
proaches. In contrast, the implementations of other candidate schemes used for
comparison come with a highly optimized implementation targeting a specific
security level (and often also specific instances). Thus, our timings can be con-
sidered to be more conservative than the ones of the other schemes used for
comparison. Yet, both signing and verification times are comparable to the ones
of the MQ 5pass scheme, and the signing times are comparable to SPHINCS-256.

Scheme
Gen Sign Verify |sk| |pk| |σ|

Tight M PQ
[ms] [ms] [ms] [bytes] [bytes] [bytes]

MQ 5pass 0.96 7.21 5.17 32 74 40952 × ROM X

Fish-128-128-12-26 0.01 9.46 6.25 16 16 86747 × ROM ×
Fish-256-256-20-31 0.01 21.55 13.98 32 32 151368 × ROM X

Begol-256-256-20-31 0.01 43.69 28.85 64 32 302697 X ROM X

SPHINCS-256 0.82 13.44 0.58 1088 1056 41000 X SM X

BLISS-I 44.16 0.12 0.02 2048 7168 5732 X ROM X
Ring-TESLA 16528.50 0.06 0.03 12288 8192 1568 X ROM X

TESLA-768 48570.01 0.65 0.36 3293216 4227072 2336 X (Q)ROM X

Table 1. Timings and sizes of private keys (sk), public keys (pk) and signatures (σ).

It seems that avoiding additional structured hardness assumptions comes
at the cost of larger signatures. An interesting observation when compared to
SPHINCS-256 (which is the only other scheme without additional structured
hardness assumptions) is that our approach can be interpreted as using the RO
heuristic to trade smaller keys for larger signatures. Furthermore, it should also
be noted that our work establishes a new direction to design signature schemes
and we believe that there is much room for improvement, e.g., by the design of
new symmetric primitives especially focusing on optimizing the metrics required
by our approach.

15 Key sizes and signature sizes from BLISS were taken from [DDLL13], as they were
not readily available in the implementation.

26

6.5 Optimizing Signature Sizes

It is a natural question to ask whether it is possible to further decrease the
signatures sizes. We observe that for our implementation of Begol there seems
to be some room for a more aggressive choice of parameters: while we tackle the
minimally required data complexity for the encryption scheme from a theoretical
point of view (via the IND-EAV notion), our used LowMC instances are tailored
to a higher data complexity. Likewise, the way we use the OWF in Fish would
allow to use less conservative values for the data complexity. In particular, the
most progressive choice would be to use a data complexity d = 1 (where the
adversary gets to see at most 2 plaintext-ciphertext pairs under the target key).

To give a lower bound on the signature sizes obtained via more progressive
parameters, we use instances with a minimal number of AND gates. That is, we
use instances with only one S-box (m = 1) as our results above show that these
instances yield the smallest possible signature sizes. For m = 1 and d = 1 we
derive a suitable number of rounds r. This yields the instance 128-128-1-156 for
the 128-bit pre-quantum setting and the instance 256-256-1-243 for the 128-bit
post-quantum setting.16 The resulting signature sizes are 61124 bytes for Fish
in the 128-bit pre-quantum setting, 89446 bytes for Fish and 214167 bytes for
Begol in the 128-bit post-quantum setting.

We note here however that currently our main proposal is with the more
conservative d = n rather than d = 1 possibility discussed above. This may be
seen as a way to introduce a security margin, taking into account the fact that
LowMC is a rather novel design and progress in cryptanalysis is ongoing [DEM15,
DLMW15].

7 Conclusion and Open Questions

In this paper we contribute two new practically efficient post-quantum signature
candidates called Fish and Begol, which open up a new direction for the design of
EUF-CMA secure signature schemes. Likewise to all other practical post-quantum
signature candidates besides hash-based signatures, our scheme comes with a
security proof in the ROM.

A major open question in all those works is whether it is possible to lift
the corresponding security proofs to the QROM while preserving practicality.
One major obstacle in the QROM is to handle the rewinding of adversaries
within security reductions [DFG13]. Possibilities to circumvent this issue are via
history-free reductions [BDF+11] or the use of oblivious commitments within
FSΣ (as, e.g., used by the TESLA authors). Unfortunately, these directions do
not apply to both our approaches. Nevertheless, a very interesting and indeed
promising approach is the adoption of straight-line extractable NIZK secure in
the QROM as proposed by Unruh in [Unr15]. Unfortunately, his results cannot
be directly applied, among others, due to the 3-special soundness of ZKBoo.

16 Note that our signature size estimation uses the instance 256-256-1-458 for the PRF
in Begol (which requires a data complexity of d = 256).

27

Another very important observation is that the security proof for Begol does not
require to rewind the adversary which yields a viable direction for future work.
In particular, such an approach might allow to bypass the overhead imposed by
the requirement for straight-line extractability.

Our work in this paper also informs future developments in the design of sym-
metric primitives with few multiplications. In order to be competitive with other
post-quantum signature candidates we could not rely on already standardized
approaches like AES or SHA-3, but need to use new ones. Even though LowMC
turned out to be the most suitable option, none of the available designs directly
considers the metric we would be most interested in for minimizing our signature
size: the product of the number of binary multiplication gates contained in the
circuit representation and the ring sizes in which the multiplications take place.

Another interesting open issue is a rigorous analysis of resistance of our ap-
proaches to power- or timing-based side-channel attacks or fault attacks. A first
observation in this direction is that the structure of ZKBoo seems to inher-
ently bring some resistance against side-channel attacks due to the use of secret
sharing techniques.

References

[AABN02] M. Abdalla, J. H. An, M. Bellare, and C. Namprempre. From identification
to signatures via the fiat-shamir transform: Minimizing assumptions for
security and forward-security. In EUROCRYPT, 2002.

[ABB+15] E. Alkim, N. Bindel, J. Buchmann, Ö. Dagdelen, and P. Schwabe. Tesla:
Tightly-secure efficient signatures from standard lattices. Cryptology
ePrint Archive, Report 2015/755, 2015.

[ABB+16] S. Akleylek, N. Bindel, J. A. Buchmann, J. Krämer, and G. A. Marson. An
efficient lattice-based signature scheme with provably secure instantiation.
In AFRICACRYPT, 2016.

[ABH10] M. R. Albrecht, G. V. Bard, and W. Hart. Algorithm 898: Efficient multi-
plication of dense matrices over GF(2). ACM Transactions on Mathemat-
ical Software, 37(1), 2010.

[ABP13] M. Abdalla, F. Ben Hamouda, and D. Pointcheval. Tighter reductions for
forward-secure signature schemes. In PKC, 2013.

[ADV+12] S. M. E. Y. Alaoui, Ö. Dagdelen, P. Véron, D. Galindo, and P. Cayrel.
Extended security arguments for signature schemes. In AFRICACRYPT,
2012.

[AFLT12] M. Abdalla, P. Fouque, V. Lyubashevsky, and M. Tibouchi. Tightly-secure
signatures from lossy identification schemes. In EUROCRYPT, 2012.

[AGR+16] M. Albrecht, L. Grassi, C. Rechberger, A. Roy, and T. Tiessen. Mimc: Ef-
ficient encryption and cryptographic hashing with minimal multiplicative
complexity. In Cryptology ePrint Archive, Report 2016/492, to appear in
Asiacrypt 2016, 2016.

[ARS+15] M. R. Albrecht, C. Rechberger, T. Schneider, T. Tiessen, and M. Zohner.
Ciphers for MPC and FHE. In EUROCRYPT, 2015.

[ARS+16] M. Albrecht, C. Rechberger, T. Schneider, T. Tiessen, and M. Zohner.
Ciphers for mpc and fhe. Cryptology ePrint Archive, Report 2016/687,
2016.

28

[BB13] R. E. Bansarkhani and J. A. Buchmann. Improvement and efficient im-
plementation of a lattice-based signature scheme. In SAC, 2013.

[BCG+12] J. Borghoff, A. Canteaut, T. Güneysu, E. B. Kavun, M. Knezevic, L. R.
Knudsen, G. Leander, V. Nikov, C. Paar, C. Rechberger, P. Rombouts,
S. S. Thomsen, and T. Yalçin. PRINCE - a low-latency block cipher for
pervasive computing applications - extended abstract. In ASIACRYPT,
2012.

[BCG+13] E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and M. Virza. Snarks
for C: verifying program executions succinctly and in zero knowledge. In
CRYPTO, 2013.

[BCG+14] E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and
M. Virza. Zerocash: Decentralized anonymous payments from bitcoin. In
IEEE SP, 2014.

[BDF+11] D. Boneh, Ö. Dagdelen, M. Fischlin, A. Lehmann, C. Schaffner, and
M. Zhandry. Random oracles in a quantum world. In ASIACRYPT, 2011.

[BDH11] J. A. Buchmann, E. Dahmen, and A. Hülsing. XMSS - A practical for-
ward secure signature scheme based on minimal security assumptions. In
PQCrypto, 2011.

[Ber09] D. J. Bernstein. Cost analysis of hash collisions: Will quantum computers
make sharcs obsolete? In SHARCS, 2009.

[BG89] M. Bellare and S. Goldwasser. New paradigms for digital signatures and
message authentication based on non-interative zero knowledge proofs. In
CRYPTO, 1989.

[BG14] S. Bai and S. D. Galbraith. An improved compression technique for sig-
natures based on learning with errors. In CT-RSA, 2014.

[BHH+15] D. J. Bernstein, D. Hopwood, A. Hülsing, T. Lange, R. Niederhagen,
L. Papachristodoulou, M. Schneider, P. Schwabe, and Z. Wilcox-O’Hearn.
SPHINCS: practical stateless hash-based signatures. In EUROCRYPT,
2015.

[BKKP15] O. Blazy, S. A. Kakvi, E. Kiltz, and J. Pan. Tightly-secure signatures from
chameleon hash functions. In PKC, 2015.

[BL16] X. Boyen and Q. Li. Towards tightly secure short signature and ibe.
Cryptology ePrint Archive, Report 2016/498, 2016.

[BMP13] J. Boyar, P. Matthews, and R. Peralta. Logic minimization techniques with
applications to cryptology. Journal of Cryptology, 26(2):280–312, 2013.

[BPS16] M. Bellare, B. Poettering, and D. Stebila. From identification to signatures,
tightly: A framework and generic transforms. In Cryptology ePrint Archive,
Report 2015/1157, to appear in Asiacrypt 2016, 2016.

[BPW12] D. Bernhard, O. Pereira, and B. Warinschi. How not to prove yourself:
Pitfalls of the fiat-shamir heuristic and applications to helios. In ASI-
ACRYPT, 2012.

[BR93] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In ACM CCS, 1993.

[BR96] M. Bellare and P. Rogaway. The exact security of digital signatures - how
to sign with RSA and rabin. In EUROCRYPT, 1996.

[CCF+16] A. Canteaut, S. Carpov, C. Fontaine, T. Lepoint, M. Naya-Plasencia,
P. Paillier, and R. Sirdey. Stream ciphers: A practical solution for effi-
cient homomorphic-ciphertext compression. In FSE, 2016.

[CDS94] R. Cramer, I. Damg̊ard, and B. Schoenmakers. Proofs of partial knowledge
and simplified design of witness hiding protocols. In CRYPTO, 1994.

29

[CFH+15] C. Costello, C. Fournet, J. Howell, M. Kohlweiss, B. Kreuter, M. Naehrig,
B. Parno, and S. Zahur. Geppetto: Versatile verifiable computation. In
IEEE SP, 2015.

[CFS01] N. Courtois, M. Finiasz, and N. Sendrier. How to achieve a mceliece-based
digital signature scheme. In ASIACRYPT, 2001.

[CGP+12] C. Carlet, L. Goubin, E. Prouff, M. Quisquater, and M. Rivain. Higher-
order masking schemes for s-boxes. In FSE, 2012.

[CK16] S. Chatterjee and C. Kamath. A closer look at multiple forking: Leveraging
(in)dependence for a tighter bound. Algorithmica, 74(4), 2016.

[CL06] M. Chase and A. Lysyanskaya. On signatures of knowledge. In CRYPTO,
2006.

[DBG+14] Ö. Dagdelen, R. E. Bansarkhani, F. Göpfert, T. Güneysu, T. Oder,
T. Pöppelmann, A. H. Sánchez, and P. Schwabe. High-speed signatures
from standard lattices. In LATINCRYPT, 2014.

[DDLL13] L. Ducas, A. Durmus, T. Lepoint, and V. Lyubashevsky. Lattice signatures
and bimodal gaussians. In CRYPTO, 2013.

[DEM15] C. Dobraunig, M. Eichlseder, and F. Mendel. Higher-order cryptanalysis of
lowmc. In Information Security and Cryptology - ICISC 2015 - 18th Inter-
national Conference, Seoul, South Korea, November 25-27, 2015, Revised
Selected Papers, pages 87–101, 2015.

[DFG13] Ö. Dagdelen, M. Fischlin, and T. Gagliardoni. The fiat-shamir transfor-
mation in a quantum world. In ASIACRYPT, 2013.

[DLMW15] I. Dinur, Y. Liu, W. Meier, and Q. Wang. Optimized interpolation at-
tacks on lowmc. In Advances in Cryptology - ASIACRYPT 2015 - 21st
International Conference on the Theory and Application of Cryptology and
Information Security, Auckland, New Zealand, November 29 - December
3, 2015, Proceedings, Part II, pages 535–560, 2015.

[DP08] C. De Cannière and B. Preneel. Trivium. In New Stream Cipher Designs
- The eSTREAM Finalists. 2008.

[DPVAR00] J. Daemen, M. Peeters, G. Van Assche, and V. Rijmen. Nessie proposal:
Noekeon. In First Open NESSIE Workshop, 2000.

[Duc14] L. Ducas. Accelerating bliss: the geometry of ternary polynomials. IACR
Cryptology ePrint Archive, 2014, 2014.

[FKMV12] S. Faust, M. Kohlweiss, G. A. Marson, and D. Venturi. On the non-
malleability of the fiat-shamir transform. In INDOCRYPT, 2012.

[FS86] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to
identification and signature problems. In CRYPTO ’86, 1986.

[GGH97] O. Goldreich, S. Goldwasser, and S. Halevi. Public-key cryptosystems from
lattice reduction problems. In CRYPTO, 1997.

[GGPR13] R. Gennaro, C. Gentry, B. Parno, and M. Raykova. Quadratic span pro-
grams and succinct nizks without pcps. In EUROCRYPT, 2013.

[GJ03] E. Goh and S. Jarecki. A signature scheme as secure as the diffie-hellman
problem. In EUROCRYPT, 2003.

[GLP12] T. Güneysu, V. Lyubashevsky, and T. Pöppelmann. Practical lattice-based
cryptography: A signature scheme for embedded systems. In CHES, 2012.

[GLSV14] V. Grosso, G. Leurent, F. Standaert, and K. Varici. Ls-designs: Bitslice
encryption for efficient masked software implementations. In FSE, 2014.

[GMO16] I. Giacomelli, J. Madsen, and C. Orlandi. Zkboo: Faster zero-knowledge
for boolean circuits. In USENIX Security, 2016.

[GMR85] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of
interactive proof-systems (extended abstract). In STOC, 1985.

30

[GMW86] O. Goldreich, S. Micali, and A. Wigderson. How to prove all np-statements
in zero-knowledge, and a methodology of cryptographic protocol design.
In CRYPTO, 1986.

[Gol86] O. Goldreich. Two remarks concerning the goldwasser-micali-rivest signa-
ture scheme. In CRYPTO, 1986.

[GPV08] C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices
and new cryptographic constructions. In STOC, 2008.

[Gro96] L. K. Grover. A fast quantum mechanical algorithm for database search.
In STOC, 1996.

[GS08] J. Groth and A. Sahai. Efficient Non-interactive Proof Systems for Bilinear
Groups. In EUROCRYPT, 2008.

[HJ12] D. Hofheinz and T. Jager. Tightly secure signatures and public-key en-
cryption. In CRYPTO, 2012.

[HMR15] Z. Hu, P. Mohassel, and M. Rosulek. Efficient zero-knowledge proofs of
non-algebraic statements with sublinear amortized cost. In CRYPTO,
2015.

[HRSS16] A. Hülsing, J. Rijneveld, S. Samardjiska, and P. Schwabe. From 5-pass mq-
based identification to mq-based signatures. In Cryptology ePrint Archive,
Report 2016/708, to appear in Asiacrypt 2016, 2016.

[JKO13] M. Jawurek, F. Kerschbaum, and C. Orlandi. Zero-knowledge using gar-
bled circuits: how to prove non-algebraic statements efficiently. In ACM
CCS, 2013.

[Kat10] J. Katz. Digital Signatures. Springer, 2010.
[KLLN15] M. Kaplan, G. Leurent, A. Leverrier, and M. Naya-Plasencia. Quantum

Differential and Linear Cryptanalysis. ArXiv e-prints, October 2015.
[KLLN16] M. Kaplan, G. Leurent, A. Leverrier, and M. Naya-Plasencia. Breaking

symmetric cryptosystems using quantum period finding. In CRYPTO,
2016.

[KMP16] E. Kiltz, D. Masny, and J. Pan. Optimal security proofs for signatures
from identification schemes. In CRYPTO, 2016.

[KW03] J. Katz and N. Wang. Efficiency improvements for signature schemes with
tight security reductions. In ACM CCS, 2003.

[Lam79] L. Lamport. Constructing digital signatures from one-way functions. Tech-
nical Report SRI-CSL-98, SRI Intl. Computer Science Laboratory, 1979.

[LS12] G. Landais and N. Sendrier. Cfs software implementation. Cryptology
ePrint Archive, Report 2012/132, 2012.

[Lyu09] V. Lyubashevsky. Fiat-shamir with aborts: Applications to lattice and
factoring-based signatures. In ASIACRYPT, 2009.

[Lyu12] V. Lyubashevsky. Lattice signatures without trapdoors. In EUROCRYPT,
2012.

[McE78] R. J. McEliece. A public-key cryptosystem based on algebraic coding
theory. Technical Report DSN PR 42-44, 1978.

[Mer89] R. C. Merkle. A certified digital signature. In CRYPTO, 1989.
[MGS11] C. A. Melchor, P. Gaborit, and J. Schrek. A new zero-knowledge code

based identification scheme with reduced communication. In ITW, 2011.
[MJSC16] P. Méaux, A. Journault, F. Standaert, and C. Carlet. Towards stream

ciphers for efficient FHE with low-noise ciphertexts. In EUROCRYPT,
2016.

[MKF+16] D. McGrew, P. Kampanakis, S. Fluhrer, S.-L. Gazdag, D. Butin, and
J. Buchmann. State management for hash based signatures. Cryptology
ePrint Archive, Report 2016/357, 2016.

31

[Nie86] H. Niederreiter. Knapsack-type cryptosystems and algebraic coding theory.
Problems of Control and Information Theory, 1986.

[OO98] K. Ohta and T. Okamoto. On concrete security treatment of signatures
derived from identification. In CRYPTO, 1998.

[PCG01] J. Patarin, N. Courtois, and L. Goubin. Quartz, 128-bit long digital sig-
natures. In CT-RSA, 2001.

[PCY+15] A. Petzoldt, M. Chen, B. Yang, C. Tao, and J. Ding. Design principles for
hfev- based multivariate signature schemes. In ASIACRYPT, 2015.

[Pei16] C. Peikert. A decade of lattice cryptography. Foundations and Trends in
Theoretical Computer Science, 10(4), 2016.

[PS96] D. Pointcheval and J. Stern. Security proofs for signature schemes. In
EUROCRYPT, 1996.

[Sch91] C. Schnorr. Efficient signature generation by smart cards. J. Cryptology,
4(3), 1991.

[Sho94] P. W. Shor. Polynominal time algorithms for discrete logarithms and
factoring on a quantum computer. In ANTS-I, 1994.

[SSH11] K. Sakumoto, T. Shirai, and H. Hiwatari. Public-key identification schemes
based on multivariate quadratic polynomials. In CRYPTO, 2011.

[Ste93] J. Stern. A new identification scheme based on syndrome decoding. In
CRYPTO, 1993.

[Unr15] D. Unruh. Non-interactive zero-knowledge proofs in the quantum random
oracle model. In EUROCRYPT, 2015.

[Vér96] P. Véron. Improved identification schemes based on error-correcting codes.
Appl. Algebra Eng. Commun. Comput., 8(1), 1996.

A Required Primitives

One-Way Functions. Below, we recall the notion of one-way functions.

Definition 3. A function f : D → R is called a one-way function, if (1) there
exists a PPT algorithm A1 so that ∀ x ∈ D : A1(x) = f(x), and if (2) for every
PPT algorithm A2 there is a negligible function ε(·) such that it holds that

Pr
[
x←R D, x? ← A2(1κ, f(x)) : f(x) = f(x?)

]
≤ ε(κ).

Unless stated otherwise, we assume D to be efficiently sampleable.

Pseudorandom Functions. Let F : S ×D → R be a family of functions and
let Γ be the set of all functions D → R. F is a pseudorandom function (family) if
it is efficiently computable and for all PPT distinguishers D there is a negligible
function ε(·) such that∣∣∣Pr[s←R S,DFs(·)(1κ)]− Pr[f ←R Γ,Df(·)(1κ)]

∣∣∣ ≤ ε(κ)

Symmetric Encryption. In the following, we recall the definition of symmetric

encryption schemes Ω.

Definition 4 (Symmetric Encryption Scheme). A symmetric encryption
scheme Ω is a tuple of PPT algorithms which are defined as follows:

32

Gen(1κ) : This algorithm takes a security parameter κ as input and outputs a
key k.

Enc(k,m) : This algorithm takes a key k and a message m as input and outputs
a ciphertext c.

Dec(k, c) : This algorithm takes a key k and a ciphertext c as input and outputs
a message m or ⊥.

We requireΩ to be correct and to provide the very mild requirement of ciphertext
indistinguishability in the presence of an eavesdropper (IND-EAV security) as
defined below:

Definition 5 (IND-EAV Security). Ω is IND-EAV secure, if for all PPT ad-
versaries A there exists a negligible function ε(·) such that

Pr

[
k←R Gen(1κ), (m0,m1, st)← A(1κ),
b←R {0, 1}, c← Enc(k,mb), b

∗ ← A(c, st)
:

b = b∗ ∧
|m0| = |m1|

]
≤ 1/2 + ε(κ),

where |m| denotes the length of message m.

Signature Schemes. Below we recall a standard definition of signature schemes.

Definition 6. A signature scheme Σ is a triple (Gen, Sign,Verify) of PPT al-
gorithms, which are defined as follows:

Gen(1κ) : This algorithm takes a security parameter κ as input and outputs a
secret (signing) key sk and a public (verification) key pk with associated
message space M (we may omit to make the message space M explicit).

Sign(sk,m) : This algorithm takes a secret key sk and a message m ∈ M as
input and outputs a signature σ.

Verify(pk,m, σ) : This algorithm takes a public key pk, a message m ∈M and a
signature σ as input and outputs a bit b ∈ {0, 1}.

Besides the usual correctness property, Σ needs to provide some unforgeability
notion. In this paper we are only interested in schemes that provide existential
unforgeability under adaptively chosen message attacks (EUF-CMA security),
which we define below.

Definition 7 (EUF-CMA). A signature scheme Σ is EUF-CMA secure, if for all
PPT adversaries A there is a negligible function ε(·) such that

Pr

[
(sk, pk)← Gen(1κ),
(m?, σ?)← ASign(sk,·)(pk)

:
Verify(pk,m?, σ?) = 1 ∧

m? /∈ QSign

]
≤ ε(κ),

where the environment keeps track of the queries to the signing oracle via QSign.

33

A.1 Security Properties of Non-Interactive Proof Systems

Definition 8 (Completeness). A non-interactive proof system Π is complete,
if for every adversary A it holds that

Pr

[
crs← Setup(1κ), (x,w)← A(crs),
π ← Proof(crs, x, w)

:
Verify(crs, x, π) = 1

∧ (x,w) ∈ R

]
≈ 1.

Definition 9 (Soundness). A non-interactive proof system Π is sound, if for
every PPT adversary A there is a negligible function ε(·) such that

Pr
[
crs← Setup(1κ), (x, π)← A(crs) : Verify(crs, x, π) = 1 ∧ x /∈ LR

]
≤ ε(κ).

If we quantify over all adversariesA and require ε = 0, we have perfect soundness,
but we present the definition for computationally sound proofs (arguments).

Definition 10 (Adaptive Zero-Knowledge). A non-interactive proof system
Π is adaptively zero-knowledge, if there exists a PPT simulator S = (S1,S2)
such that for every PPT adversary A there is a negligible function ε(·) such that∣∣∣∣∣∣

Pr
[
crs← Setup(1κ) : AP(crs,·,·)(crs) = 1

]
−

Pr
[
(crs, τ)← S1(1κ) : AS(crs,τ,·,·)(crs) = 1

]
∣∣∣∣∣∣ ≤ ε(κ),

where, τ denotes a simulation trapdoor. Thereby, P and S return ⊥ if (x,w) /∈ R
or π ← Proof(crs, x, w) and π ← S2(crs, τ, x), respectively, otherwise.

B Proof of Lemma 4

Proof. We prove Lemma 4 using a sequence of games, where Si denotes the
success probability in Game i.

Game 0: The original EUF-CMA game.
Game 1: As in the original game, but we use the following modified Verify

algorithm Verify′ to check whether the forgery is valid:
Verify′(pk,m, σ) : Parse pk as (crs, c), and σ as (y, π). Return 1 if the follow-

ing holds, and 0 otherwise:

Π.Verify(crs, (c, y,m), π) = 1 ∧ Fs(m) = y .

Transition - Game 0 → Game 1: Game 0 and Game 1 proceed identically, un-
less Fs(M) 6= y. If this happens, we have a valid proof π falsely attest-
ing that (c, y,M) ∈ LR. Assume a hybrid game, where we engage with a
soundness challenger to obtain crs upon Gen. Whenever, it happens that
Fs(M) 6= y we output ((c, y,M), π) and break soundness. This gives us the
bound |Pr[S0]− Pr[S1]| ≤ εs(κ).

34

Game 2: As Game 1, but we use the following modified key generation algo-
rithm Gen′:
Gen′(1κ) : Run (crs, τ)← S1(1κ) and store τ , run k ← Ω.Gen(1κ), choose

s←R S, compute c← Ω.Enc(k, s), set pk← (crs, c) and sk← (pk, s, k) and
return (sk, pk).

Furthermore, we use the following modified signing algorithm Sign′ inside
the signing oracle:

Sign′(sk,m) : Parse sk as ((crs, c), s, k), compute y ← Fs(m), π ← S2(crs, τ,

(c, y,m)) , and return σ ← (y, π).
Transition - Game 1 → Game 2: To show that Game 1 and Game 2 are in-

distinguishable, we present a hybrid game, which uses the adaptive zero-
knowledge challenger Cκzk as an oracle to either simulate Game 1 or Game 2.
We use the following key generation algorithm Gen′:

Gen′(1κ) : Run crs← Cκzk , run k← Ω.Gen(1κ), choose s←R S, compute c←
Ω.Enc(k, s), set pk← (crs, c) and sk← (pk, s, k) and return (sk, pk).

Furthermore, we use the following modified signing algorithm Sign′ inside
the signing oracle:

Sign′(sk,m) : Parse sk as ((crs, c), s, k), compute y ← Fs(m), π ← Cκzk.P/S(

(c, y,m), (s, k)) , and return σ ← (y, π).
Then, if the challenger samples from the first distribution we are in Game
1, whereas we are in Game 2 if the challenger samples from the second
distribution (with P/S we denote the oracle provided by the challenger that
the challenger, which either honestly computes the proof or simulates it).
Thus, we have that |Pr[S2]− Pr[S1] ≤ εz(κ).

Game 3: As Game 2, but we further modify the key generation algorithm Gen′:
Gen′(1κ) : Run (crs, τ) ← S1(1κ) and store τ , run k ← Ω.Gen(1κ), choose

(s, s′)←R S2, compute c ← Ω.Enc(k, s′), set pk ← (crs, F, c) and sk ←
(pk, s, k) and return (sk, pk).

Transition - Game 2 → Game 3: A distinguisher D2→3 is an adversary against
IND-EAV of Ω. Consider the following hybrid Game, where we engage with
an IND-EAV challenger Cκe .

Gen′(1κ) : Run (crs, τ)← S1(1κ) and store τ , run k← ⊥ , choose (s, s′)←R S2,

compute c← Cκe (s, s′) , set pk ← (crs, c) and sk ← (pk, s, k) and return
(sk, pk).

If the challenger’s bit is 0, we are in Game 2, whereas we are in Game 3 if
the challengers bit is 1. Thus, |Pr[S2]− Pr[S3]| ≤ εe(κ).

Game 4: As Game 3, but we further modify Verify′ as follows:
Verify′(pk,m, σ) : Parse pk as (crs, c), and σ as (y, π), sample y′←R {0, 1}κ.

Return 1 if the following holds, and 0 otherwise:

Π.Verify(crs, (c, y,m), π) = 1 ∧ y′ = y .

Additionally, we further modify the signing algorithm Sign′ used in the sign-
ing oracle:

35

Sign′(sk,m) : Parse sk as ((crs, c), s, k), compute y←R {0, 1}κ, π ← S2(crs, τ,
(c, y,m)), and return σ ← (y, π).

Transition - Game 3 → Game 4: We bound the success probability of a distin-
guisher D3→4 using the following hybrid game. Let Cκp be a PRF challenger
providing the oracle Fs/f(·), and let Gen′, Sign′, and Verify′ be as follows.

Gen′(1κ) : Run (crs, τ) ← S1(1κ) and store τ , run k ← Ω.Gen(1κ), choose

s← ⊥ , compute c ← Ω.Enc(k, s), set pk ← (crs, c) and sk ← (pk, s, k)
and return (sk, pk).

Sign′(sk,m) : Parse sk as ((crs, c), s, k), compute y ← Cκp .Fs/f(m) , π ← S2(

crs, τ, (c, y,m)), and return σ ← (y, π).
Verify′(pk,m, σ) : Parse pk as (crs, c), and σ as (y, π), sample y′←R {0, 1}κ.

Return 1 if the following holds, and 0 otherwise:

Π.Verify(crs, (c, y,m), π) = 1 ∧ y = Cκp .Fs/f(m) .

Then, depending on the distribution the PRF challenger samples from, we
are either in Game 3 or in Game 4, i.e., |Pr[S3]− Pr[S4]| ≤ εp(κ).

In the last game, the adversary can only guess, which concludes the proof. ut

C Description of LowMC

LowMC by Albrecht et al. [ARS+15, ARS+16] is very parameterizable symmet-
ric encryption scheme design enabling instantiation with low AND depth and low
multiplicative complexity. Given any blocksize, a choice for the number of Sboxes
per round, and security expectations in terms of time and data complexity, in-
stantiations can be created minimizing the AND depth, the number of ANDs, or
the number of ANDs per encrypted bit. Table 2 lists the choices for the parame-
ters which are also highlighted in the figures. The files with all parameters used
for our experiments are provided online at https://github.com/IAIK/fish-

begol.
The description of LowMC is possible independently of the choice of param-

eters using a partial specification of the Sbox and arithmetic in vector spaces
over F2. In particular, let n be the blocksize, m be the number of Sboxes, k the
key size, and r the number of rounds, we choose round constants Ci←R Fn for
i ∈ [1, r], full rank matrices Ki←R Fn×k2 and regular matrices Li←R Fn×n2 inde-
pendently during the instance generation and keep them fixed. Keys for LowMC
are generated by sampling from Fk2 uniformly at random.

LowMC encryption starts with key whitening which is followed by several
rounds of encryption. A single round of LowMC is composed of an Sbox layer,
a linear layer, addition with constants and addition of the round key, i.e.

LowMCRound(i) = KeyAddition(i) ◦ConstantAddition(i)

◦ LinearLayer(i) ◦ SboxLayer.

36

https://github.com/IAIK/fish-begol
https://github.com/IAIK/fish-begol

Blocksize Sboxes Keysize Data Rounds # of ANDs ANDS per bit
n m k d r

128 2 128 128 128 768 6.00
128 12 128 128 26 936 7.31
128 32 128 128 19 1824 14.25
256 2 256 256 174 1044 4.08
256 2 256 256 232 1392 5.44
256 20 256 256 31 1860 7.27
256 26 256 256 18 1404 7.31
256 64 256 256 14 2688 10.5
256 80 256 256 22 5280 20.62
384 4 384 384 172 2064 5.38
384 30 384 384 33 2970 7.73
384 126 384 384 25 9450 24.61
512 6 512 512 152 2736 5.34
512 34 512 512 37 3774 7.37
512 170 512 512 25 12750 24.9

Table 2. A range of different parameter sets for LowMC. The number of rounds
corresponds to the AND depth.

SboxLayer is an m-fold parallel application of the same 3-bit Sbox on the
first 3 ·m bits of the state. The Sbox is defined as S(a, b, c) = (a ⊕ bc, a ⊕ b ⊕
ac, a⊕ b⊕ c⊕ ab).

The other layers only consist of F2-vector space arithmetic. LinearLayer(i)
multiplies the state with the linear layer matrix Li, ConstantAdditon(i) adds
the round constant Ci to the state, and KeyAddition(i) adds the round key to
the state, where the round key is generated by multiplying the master key with
the key matrix Ki.

Algorithm 1 gives a full description of the encryption.

Algorithm 1 LowMC encryption for key matrices Ki ∈ Fn×k2 for i ∈ [0, r],
linear layer matrices Li ∈ Fn×n2 and round constants Ci ∈ Fn2 for i ∈ [1, r].

Input: plaintext p ∈ Fn2 and key y ∈ Fk2
s← K0 · y + p
for i ∈ [1, r] do

s← Sbox(s)
s← Li · s
s← Ci + s
s← Ki · y + s

end for
return s

37

D List of Symbols

– t: running time of adversary;
– ε: success probability of adversary;
– κ: security parameter;
– QH : adversarial queries to oracle H;
– H: random oracle used to generate Fiat-Shamir challenge;
– γ: number of repetition of the Σ-protocol and output size of H;
– H ′: random oracle used to implement commitments in ZKBoo;
– α: size of random tapes for each thread in ZKBoo;
– β: size of “view” in each thread in ZKBoo;
– ν: size of salt used when committing with H ′;
– ρ: size of commitments and output size of H ′;
– Ω: IND-EAV symmetric encryption scheme;
– n: size of PRF output;
– af : number of multiplication gates in circuit implementing f ;
– λf : size of ring in which the multiplications take place;
– Df : bit-length of elements from domain of f ;
– If : bit-length of elements from image of f ;
– r: number of rounds in LowMC instance;
– m: number of SBoxes in LowMC instance;

38

	Digital Signatures from Symmetric-Key Primitives

