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Abstract

In broadcast encryption schemes, a distribution center broadcasts an encrypted message to a subset S chosen from

a universe of receivers and only the intended users are able to decrypt the message. Most broadcast encryption schemes

do not provide anonymity and the identities of target receivers are sent in plaintext. However, in several applications, the

authorized users’ identities has the same sensitivity as themessage itself. YRL, is an anonymous attribute-based broadcast

encryption scheme with linear computation, communication and storage overheads in the number of attributes. In this

paper, we first propose an attack on the YRL scheme and show that unfortunately the unauthorized receivers can also

decrypt the broadcasted message. Next, we propose the Improved-YRL scheme and prove that it achieves anonymity and

semantic security under adaptive corruptions in the chosen ciphertext setting. The proof is provided using the dual system

encryption technique and is based on three complexity assumptions in composite order bilinear maps. The Improved-

YRL scheme is a step forward in solving the long-standing problem of secure and low overhead anonymous broadcast

encryption.

Index Terms

Broadcast Encryption, Ciphertext-Policy Attribute-Based Encryption (CP-ABE), Access Structure, Anonymity, Prov-

able Security, Attack.

F

1 Introduction

The concept of Broadcast Encryption (BE) is used when a sender wants to send a message to an arbitrary subset

chosen from a universe of receivers via an insecure broadcast channel. In this scenario, the distribution center chooses

an arbitrary subgroup of receivers, S, encrypts the message due to the set S and broadcasts the ciphertext through the
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channel. In a secure broadcast encryption scheme, only the legitimate receivers which belong to the set S, can decrypt

the received message; while the unauthorized users obtain no information about the message even if they collude. BE

schemes are helpful in several applications including TV subscription services, access control in encrypted file systems,

copyrighted content protection and group key distribution.

Since the introduction of BE in 1993 by Fiat and Naor [1], lots of schemes have been proposed (see e.g., [2]–[8]).

In these schemes, the broadcaster specifies the legitimate receivers individually; while in real applications, broadcasters

often address groups of receivers with the same characteristics. In these scenarios, especially when the number of

receivers is large, identifying each individual receiver is impractical. Using attribute-based broadcast encryption (ABBE),

a broadcaster can encrypt a massage under a specified attribute policy, and only the receivers who own the intended

attributes can decrypt the message. In other words, in an ABBE scheme, the target set of receivers, S, is specified by the

attributes of its members stated as an access policy. Therefore, the broadcaster has the flexibility to encrypt the message,

either with or without the identity information of each individual receiver. Several ABBE schemes have been proposed

in the literature, which among them we can refer to [9]–[12].

In the traditional BE schemes, the authorized receiver, in order to decrypt the ciphertext correctly, needs information

about the intended set of receivers, S. Therefore, the set S must be transmitted as part of the ciphertext. Hence, all

users including the authorized and unauthorized ones, will be aware of the authorized set of receivers. This causes

important privacy issues; for example in group key distribution, everyone will know which users and how many of

them are involved in a task. Also, in applications like television broadcasting, the user who has paid a subscription to

a certain channel, will know who else has paid for that subscription and the user’s privacy is violated. To solve this

issue, Barth et al. [13], proposed the first anonymous BE scheme. Their scheme protect receivers’ identities but number

of receivers is leaked by the ciphertext length. Also, the computation and communication overheads are linear in the

number of users. Libert et al. [14] suggested another anonymous BE scheme in the standard model with overhead linear

in the number of receivers. Schemes [13] and [14] provide full anonymity; which means that any user, whether he

is in the set S or not, is unable to obtain information about intended receivers. Outsider anonymity [15], is another

definition which only guarantees the anonymity of intended receivers from the view of users outside of the set S. But,

users in S, can still learn the identities of other legal receivers. Fazio et al. in [15], proposed an outsider-anonymous

BE with sublinear overheads. Attribute-based anonymous multicast scheme presented by Yu et al. [10], which we call

it YRL scheme in this paper, suggests stronger definition of full anonymity; the scheme not only hides the identities of

receivers, but also it protects the number of intended users. Also, communication and computation overheads are linear

in the number of attributes and independent of the number of receivers; so the scheme provides a high efficiency thank

to its attribute-based structure. The scheme relies on Ciphertext-Policy Attribute-Based Encryption (CP-ABE) and aims

solving the group key distribution problem. So instead of broadcasting a message M , a group key GK is emitted.

Our contributions. In this paper, we have the following three main contributions:

• We propose an attack on the YRL scheme. This attack shows that all the users including the authorized and

unauthorized ones can decrypt the broadcasted message. Therefore, the YRL scheme is not secure and does not

provide the main requirement of broadcast encryption schemes that only the authorized users should be able to

decrypt the broadcasted message [16].
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• We develop an enhanced scheme in composite order bilinear groups, called Improved-YRL, which is secure

against the proposed attack. We also prove the security of Improved-YRL in the standard model using dual

system encryption technique [17]. Our proof is based on the security model for adaptive CCA adversaries

proposed in [14] which considers anonymity and indistinguishability in one security game, simultaneously.

• We demonstrate that the new scheme retains low performance overhead property of the basic YRL scheme;

which means computation and communication overheads are linear in the number of attributes and independent

of the number of receivers.

Boneh et al. have stated in [8] that “it is a long-standing open problem to build a low-overhead anonymous broadcast

encryption system”; so presenting Improved-YRL as an anonymous BE scheme with adaptive security and overhead

proportional to the number of attributes is an effort toward solving this open problem.

The paper is organized as follows. In Section 2, we give background on bilinear groups and state the access policy

used in the YRL scheme. In Section 3, we present the YRL scheme. Section 4 proposes the attack on the YRL. In Sections

5 and 6 we describe our Improved-YRL scheme and prove its security, respectively. Section 7 gives the performance

evaluation, and finally Section 8 concludes the paper.

2 Preliminaries

2.1 Bilinear Maps

The YRL scheme is based on bilinear maps. Let G and GT be two multiplicative cyclic groups of prime order p. Let g

be a generator of G and e be a bilinear map, e : G × G → GT . The bilinear map e is a function with the following

properties:

1) Bilinearity: for all u, v ∈ G and a, b ∈ Zp, e(ua, vb) = e(u, v)ab.

2) Non-degeneracy: e(g, g) 6= 1, where 1 denotes the identity element of GT .

3) Computability: There is an efficient algorithm to compute e(u, v) for u, v ∈ G.

2.2 Composite Order Bilinear Maps

The notion of composite order maps was first introduced in [18]. Let G be an algorithm called group generator. It takes

as input a security parameter, λ, and outputs a tuple, (N = p1p2p3, G,GT , e), where p1, p2, p3 are distinct prime

numbers, G and GT are multiplicative cyclic groups of composite order N = p1p2p3 and e : G × G → GT is a

composite order bilinear map. For each pi, i ∈ {1, 2, 3}, let Gpi
, be a subgroup of G of order pi with a generator named

as gi. Each T ∈ G can be represented as T = X1X2X3 where Xi ∈ Gpi
is referred to as the “Gpi

component of

G”. Also, for all x, y, z ∈ {1, p1, p2, p3}, Gxyz denotes a subgroup of order xyz in G. To generate a random element

r ∈ Gpi
, one can set r = gαi where α is a random element in Zpi

.

The main property of composite order bilinear maps is that the subgroups Gp1, Gp2, Gp3 are orthogonal under the

bilinear map e, meaning that if h ∈ Gpi and u ∈ Gpj for i 6= j, then e(h, u) = 1. The other properties of composite

order bilinear maps are the same as prime order bilinear maps described in Subsection 2.1.
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2.3 Access Policy

Here we review the access policy used in the YRL scheme to specify the intended group of receivers [10]. Let n denote

the total number of attributes. Each user is assigned an n-element string, {Atti,b | ∀i ∈ Zn, b = 0 or 1}, such that

Atti,0 and Atti,1 show the negative and positive incident of i-th attribute, respectively. In other words, the binary

sequence Xn−1Xn−2...X0 can be used to demonstrate the attribute set of each user. In this sequence, the bit ′0′ imply

that the user does not have the corresponding attribute and the bit ′1′ show that the user owns that attribute.

The access policy is demonstrated using AND logic. For example, (Att3,1 ∧ Att1,0) or X3X̄1 is used for showing

the access policy for the users which have the 3rd attribute and do not possess the 1st attribute. Here, X2 is don’t-care,

i.e., for this access policy, it is not important what the value of X2 is.

3 The YRL Scheme

YRL [10] which aims solving the group key distribution problem is a Ciphertext-Policy Attribute-Based Encryption

(CP-ABE) scheme in which the intended subset of users, S, is specified with the access policy, T . YRL, also provides

anonymity, i.e., unlike some CP-ABE schemes, in which the access policy T is clearly broadcasted along with the

ciphertext, in the YRL scheme, the access policy T is not sent and the authorized users can decrypt the received

messages without knowing the access structure. The scheme consists of four algorithms: Setup, KeyGen, Encryption and

Decryption. In the following, we will describe in detail how the scheme works.

Setup. This algorithm chooses a group G of order p with generator g. Each attribute is mapped to one of the members

of G. Consider hi,b as the member of G which the attribute Atti,b is mapped to. The Setup algorithm randomly selects

(ai, bi) ∈ Zp and sets the values of hi,0 and hi,1 equal to gai and gbi , respectively and sets γi = ai + bi. Finally, this

algorithm outputs the Master KeyMK = (α, β, {ai, bi}∀i∈Zn
) where α, β∈RZN .MK is only held by the broadcaster.

KeyGen. This algorithm takes the master key MK and the attribute set of each user, Xn−1Xn−2...X0, as input and

outputs the secret key of the user through Relation 1.

SK = (D = g(α+r)/β, D̂ = gr, D̆ = gβr, {Di = hr
i,X̄i
}∀i∈Zn

) (1)

Where r ∈R Zp.

Encryption. In order to distribute the group key, GK , the broadcaster first encrypts GK using this algorithm. It takes

GK , the access policy, T , and MK and generates a ciphertext CT = (C̃, C̆, {Ĉj}j=0,1, {Ci}∀i∈Zn). The first term

of CT is of the form C̃ = (GK ‖ MAC).X , where X is a blinding factor to hide the value of (GK ‖ MAC).

The other three terms in the ciphertext are used to construct X and obtain GK . In the last term, each Ci is generated

corresponding to the i-th bit of the attribute set, Xn−1Xn−2...X0 through the following procedure:

1) The random values, s0, s1,…, sn−1, k0, k1 ∈R Zp are chosen and δ is set equal to
∑n−1

i=0 γisi; where γi was

determined in the Setup algorithm.
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2) Ci is equal to the tuple (gsi, Ci,0, Ci,1) where Ci,0 and Ci,1 are the members ofG. IfXi ∈ T , the i-th attribute

is an intended attribute in the access policy. Then a random value ti ∈R Zp is chosen and Ci,Xi
= hsi+ti

i,Xi
and

Ci,1−Xi
= hsi

i,1−Xi
are computed. Otherwise, Ci,0 and Ci,1 are set equal to hsi

i,0 and hsi
i,1, respectively.

3) The broadcaster sets gs
′
=

∏n−1
i=0 Ci,0Ci,1 = gδ+x where δ was defined in step 1 and x ∈ Zp satisfies the

equation gx =
∏

∀j,Xj∈T h
tj
j,Xj

. Then the second term of the ciphertext is calculated as C̆ = gβs
′
and the

values of Ci,0 and Ci,1 are updated as follows:

Ci,0 = gk0Ci,0, Ci,1 = gk1Ci,1 (2)

4) Finally, the ciphertext is generated through Relation 3.

CT = (C̃ = (GK ‖MAC)e(g, g)αs
′
, C̆ = gβs

′
, {Ĉj = gkj/β}j=0,1, {Ci}∀i∈Zn) (3)

Where MAC = H(GK) (H(.) is a cryptographic hash function).

Decryption. Each authorized group member, GM, runs this algorithm to obtain the group key GK . The inputs of this

algorithm are the ciphertext, the attribute set, Xn−1Xn−2...X0, and the secret key of the GM. The output is GK or ⊥

depending on whether the attribute set of the GM satisfies the access structure or not. The Decryption procedure is as

follows:

1) For j = 0, 1, Bj = e(Ĉj, D̆) = e(gkj/β, gβr) = e(g, g)rkj is calculated. Then, for each bit Xi of the user’s

attribute set, Xn−1Xn−2...X0, Fi corresponding to Xi is computed using Ci = (gsi, Ci,0, Ci,1) through

Equation 4.

Fi = e(Di, g
si)e(Ci,Xi

, D̂)/BXi

= e(hr
i,X̄i

, gsi)e(gkXihsi+ti
i,Xi

, gr)/BXi

= e(g, g)rγisie(g, hi,Xi
)rti (4)

In (4), If Xi ∈ T , ti 6= 0; and otherwise, ti = 0.

2) F is computed by multiplying the values of Fi:

F =
n−1∏
i=0

Fi =
n−1∏
i=0

e(g, g)rγisie(g, hi,Xi
)rti = e(g, g)rδe(g, g)rx

′
(5)

where x′ ∈ Zp is defined in Equation 6:

gx
′
=

n−1∏
i=0

hti
i,Xi

, (ti = 0ifXi /∈ T ) (6)

Therefore, according to properties of bilinear maps, we will have:

n−1∏
i=0

e(g, hi,Xi
)rti = e(g, g)rx

′
(7)

Equation 7 is used in calculating F in (5).

If the GM’s attributes satisfies the access policy, x′ will be equal to x. Otherwise, the probability of x′ being

equal to x will be negligible (note that x was defined in encryption algorithm as gx =
∏

∀j,Xj∈T h
tj
j,Xj

).
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3) Finally, each GM computes M ′ and recovers the group key, GK using (8).

M ′ =
C̃

e(C̆,D)/F
=

(GK ‖MAC)e(g, g)αs
′

e(g, g)αs′+rs′/e(g, g)r(δ+x′)
= (GK ‖MAC)e(g, g)r(x

′−x) (8)

Then the user checks whether the hash value of the first part of M ′ is equal to its second part or not. If the

user is a member of the target subset, x′ will be equal to x, and as a result the hash value of the first part will

be equal to the second part. Thus, the user obtains the correct GK . Otherwise, the user is unauthorized and

cannot obtain GK .

As can be seen, in the YRL scheme, the access structure T is not sent along with the ciphertext and the authorized

users are able to decrypt the received message without knowing the access structure. As a result, the authorized user,

after decryption, does not know which attributes or how many of them make the message accessible to him. Also, he

is not aware of the membership of other users in the subset or even the number of authorized users. So, not only the

unauthorized users, but also the authorized ones are not able to obtain any information about the access structure and

the YRL scheme provides the anonymity property.

Yu et. al. [10] also claim that the scheme is secure, meaning that a user can obtain the correct GK iff his attributes

satisfy the access policy. But, no proof is provided for neither anonymity nor security in their paper. In the next section,

we propose an attack which violates the security of the YRL scheme.

4 Attack on the YRL Scheme

Here, we demonstrate that the claim that a user can obtain GK iff he holds all the attributes required by the access

policy, is not true and all of the users (including authorized and unauthorized ones) can decrypt the received message.

Assume a user u with secret key SKu has received a broadcasted ciphertext CT . As mentioned in Section 3, the secret

key SKu and the ciphertext CT are as follows:

SKu = (D = g(α+r)/β, D̂ = gr, D̆ = gβr, {Di = hr
i,X̄i
}∀i∈Zn) (9)

CT = (C̃ = (GK ‖MAC)e(g, g)αs
′
, C̆ = gβs

′
, {Ĉj = gkj/β}j=0,1, {Ci}∀i∈Zn

) (10)

Now, user u can decrypt the ciphertext using his secret key through the following procedure:

1) Computes e(D, C̆) = e(g(α+r)/β, gβs
′
) = e(g, g)(α+r)s′ .

2) Calculates e(g, g)rs
′
:

As mentioned in the Decryption algorithm, s′ satisfies the equation, gs
′
=

∏n−1
i=0 Ci,0Ci,1; but after that Ci,0

and Ci,1 were updated to new values, Ci,0 = gk0Ci,0, Ci,1 = gk1Ci,1. Since Ci = (gsi, Ci,0, Ci,1), user u can

compute
∏n−1

i=0 Ci,0Ci,1 by using Cis:

Ci,0 = gk0Ci,0, Ci,1 = gk1Ci,1

n−1∏
i=0

Ci,0Ci,1 =
n−1∏
i=0

gk0Ci,0.g
k1Ci,1 = gn(k0+k1)gs

′
(11)

So,

e(gn(k0+k1)gs
′
, D̂) = e(gn(k0+k1)gs

′
, gr) = e(gs

′
, gr)e(gn(k0+k1), gr) = e(g, g)rs

′
e(g, g)rn(k0+k1) (12)
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Furthermore, we have:

Bj = e(Ĉj, D̆) = e(gkj/β, gβr) = e(g, g)rkj , j = 0, 1→ B0.B1 = e(g, g)r(k0+k1) (13)

Thus, using Equations 12 and 13, user u can obtain e(g, g)rs
′
as follows:

(12)

(13)n
=

e(g, g)rs
′
e(g, g)rn(k0+k1)

(e(g, g)r(k0+k1))n
= e(g, g)rs

′
(14)

3) Computes e(g, g)αs
′
by dividing the result of the first step of the attack, e(g, g)(α+r)s′ , by the result of the

second step, e(g, g)rs
′
.

e(g, g)(α+r)s′

e(g, g)rs′
= e(g, g)αs

′
(15)

4) Finally, user u can obtain GK as follows:

C̃

e(g, g)αs′
=

(GK ‖MAC)e(g, g)αs
′

e(g, g)αs′
= (GK ‖MAC) (16)

So this user, regardless of what his attributes set is, can obtain GK . This shows that the YRL scheme is not secure and

does not provide the main requirement of a broadcast encryption scheme that only the intended users should be able to

decrypt the broadcasted message.

5 Improved-YRL Scheme

In this section we improve the YRL scheme in order to remove its weakness and make it secure against the proposed

attack in Section 4. The update procedure of Ci,0 and Ci,1 is the vulnerability point of YRL. As mentioned before, for

all i ∈ Zn, the broadcaster uses fixed values k0, k1 for updating Ci,0 and Ci,1 to new values Ci,0 = gk0Ci,0, Ci,1 =

gk1Ci,1. So e(
∏n−1

i=0 Ci,0Ci,1, D̂) has a fixed term e(g, g)rn(k0+k1) which can be omitted using the term Ĉj in the

ciphertext. As a result, e(g, g)rs
′
and e(g, g)αs

′
are obtained which helps the attacker to obtain GK . Hence, in order

to fix this weakness, we randomize the update process and eliminate the third term in both ciphertext and secret key.

Also, in order to propose a security proof, Improved-YRL is based on composite order bilinear maps. In what follows,

we describe the Improved-YRL scheme in detail:

Setup. This algorithm selects a cyclic group G of composite order N = p1p2p3. Let Gp1, Gp2 and Gp3 be three

subgroups of G with orders p1, p2, p3 and generators g1, g2, g3 respectively. Then, the same as before, each of the

attributes Atti,b is mapped to hi,b. hi,0 and hi,1 are set equal to gai
1 R3,0 and gbi1 R3,1, respectively where ai and bi are

randomly selected form Zp1 and γi = ai + bi. The only difference here is that hi,0 and hi,1 have an additional factor

R3,0 and R3,1 which are randomly chosen from Gp3 . Hence hi,b is an element of the subgroup Gp1p3 . The algorithm

outputs the master key MK = (α, β, {ai, bi}∀i∈Zn), where α, β∈RZN and MK is only held by the broadcaster as

before.

KeyGen. This algorithm takes the master key MK , the attribute set of a user, Xn−1Xn−2 . . . X0, chooses random

r ∈R Zp1 and outputs the user’s private key using Equation 17:

SK = (D = g
(α+r)/β
1 , D̂ = gr1, {Di = hr

i,X̄i
}∀i∈Zn

) (17)

November 17, 2016 DRAFT



8

So it is the same as the YRL’s KeyGen algorithm except that the third term D̆ = gβr is omitted and Dis are members of

Gp1p3
.

Encryption. As before, The inputs are the group key GK , the access policy T , and the master key MK and the output

is the ciphertext CT . But, this algorithm has some differences with the YRL’s Encryption algorithm; The first difference

is the procedure of updating the values of Ci,0 and Ci,1 and the second one is omitting the term {Ĉj = gkj/β}j=0,1

from the ciphertext because the decryption successfully works without it. Also g is turned into g1, so the first term in

Ci is g
si
1 ∈ Gp1

and because hi,Xi
is an element of Gp1p3

as stated in the setup algorithm, Ci,0 and Ci,1 are elements

of Gp1p3
, too.

So the ciphertext CT = (C̃, C̆, {Ci}∀i∈Zn
) is generated as below:

1) The values, s0, s1,…, sn−1 ∈R Zp1
are randomly selected and δ is set equal to

∑n−1
i=0 γisi.

2) ∀i ∈ Zn : Ci = (gsi1 , Ci,0, Ci,1), where Ci,0 and Ci,1 belong to the group Gp1p3
. If Xi ∈ T (the i-th attribute

is an intended attribute in the access policy), then a random value ti ∈R Zp1
is selected and the values of Ci,Xi

and Ci,1−Xi
are set equal to hsi+ti

i,Xi
and hsi

i,1−Xi
, respectively. Otherwise, Ci,0 = hsi

i,0 and Ci,1 = hsi
i,1.

3) The term gs
′

1 is computed through Equation 18:
n−1∏
i=0

Ci,0Ci,1 = gs
′

1 R3 = gδ+x
1 R3 (18)

Where R3 is the product of all elements in Gp3 . Also, x ∈ Zp1 is such that gx1 =
∏

∀j,Xj∈T h
tj
j,Xj

, where only

Gp1 part of hj,Xj is considered. Then the value of C̆ is set equal to (gs
′

1 R3)
β = gβs

′

1 R′
3 ∈ Gp1p3 . In other

words, C̆ has an extra R′
3 term in comparison to the basic YRL.

4) Ci,0 and Ci,1 are updated as follows: If Xi ∈ T , the random value ki ∈ Zp1 is selected and Ci,Xi =

Ci,Xi, Ci,1−Xi = gki
1 Ci,1−Xi . In this way, only Ci,1−Xi , which is not intended in the access policy is updated

and Ci,Xi , which is intended in the access policy does not change. Otherwise, if Xi /∈ T or Xi is don’t-care,

Ci,0 and Ci,1 remain unchanged. For example, if we have an access policy with n = 4 and T = X̄3X2X0, only

the values of C0,0, C2,0 and C3,1 are updated and the other values do not change.

5) Finally, the ciphertext is computed as CT = (C̃ = (GK ‖ MAC)e(g1, g1)
αs′, C̆ = gβs

′

1 R′
3, {Ci}∀i∈Zn),

where e(g1, g1)
αs′ is computed as e(

∏n−1
i=0 Ci,0Ci,1, g

α
1 ) = e(gs

′

1 R3, g
α
1 ) = e(g1, g1)

αs′ . The last equality

holds due to the orthogonality property of composite order bilinear maps.

Decryption. The inputs of this algorithm are the ciphertext, the attribute set Xn−1Xn−2...X0, and the private key of

a GM and its output is GK or ⊥ depending on whether the GM’s attribute set satisfies the access structure or not.

In this algorithm, the first step of the basic YRL’s Decryption algorithm for calculating Bj is omitted. Also, Fis are

computed in a simpler way:

1) For each bit Xi of the GM’s attribute set Xn−1Xn−2...X0, Fi is computed through Equation 19:

Fi = e(Di, g
si
1 )e(Ci,Xi, D̂)

= e(hr
i,X̄i

, gsi1 )e(gki
1 hsi+ti

i,Xi
, gr1) (19)

= e(g1, g1)
rγisie(g1, hi,Xi)

rtie(g1, g1)
kir
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It can be easily verified that the elements of Gp3
are omitted due to the orthogonality property of composite

order bilinear maps. Also, values of the parameters ti and ki change due to the following conditions:

• Xi ∈ T, ti 6= 0 and ki = 0

• X̄i ∈ T, ti = 0 and ki 6= 0

• Xi /∈ T, ti = 0 and ki = 0

2) The GM calculates F by multiplying the values of Fis obtained in the previous step:

F =
n−1∏
i=0

Fi =
n−1∏
i=0

e(g1, g1)
rγisie(g1, hi,Xi

)rtie(g1, g1)
kir = e(g1, g1)

rδe(g1, g1)
rx′

e(g1, g1)
kr (20)

x′ satisfies the Equation 21 where only Gp1 part of hj,Xj is considered:

gx
′

1 =
n−1∏
i=0

hti
i,Xi

, (ti = 0ifXi /∈ T ) (21)

If the GM’s attributes satisfies the access policy, then we will have:

• x′ = x

• ∀i, ki = 0→ k = 0

Otherwise, the probability of x′ = x or k = 0 will be negligible.

3) Each user calculates M ′ corresponding to his attributes through Equation 22 to obtain GK :

M ′ =
C̃

e(C̆,D)/F
=

(GK ‖MAC)e(g1, g1)
αs′

e(g1, g1)αs
′+rs′/e(g1, g1)r(δ+x′+k)

= (GK ‖MAC)e(g1, g1)
r(k+x′−x) (22)

Then, each user verifies whether the hash value of the first part of M ′ is equal to its second part or not. If the

user is a member of the target group, this equality will be obtained because x = x′ and k = 0. Otherwise, the

user is unauthorized and cannot obtain the correct value of GK .

In the next section we will analyze security of the proposed scheme and prove that it achieves both inditiguishability

and anonymity in the standard model.

6 Security Analysis

We begin by explaining why the proposed attack in Section 4 would not succeed on the Improved-YRL construction.

Then, in order to prove the security of the proposed scheme, we will formally define the exact security definition in

Subsection 6.1. Next, we state the complexity assumptions in composite order bilinear groups and present the proof in

Subsections 6.2 and 6.3, respectively.

Lemma. The Improved-YRL scheme is secure against the proposed attack in Section 4.

Proof. The attack process involves computing the equation
∏n−1

i=0 Ci,0Ci,1 = gkr
1 .gs

′

1 R3, where kr is sum of all ki

values that is used for updating Ci,0 and Ci,1 in the update phase of the Improved-YRL scheme. kr is completely

random and unpredictable because there is no term in the ciphertext containing information about it. Therefore, the

attacker will not be able to obtain e(g1, g1)
rs′ and the blinding factor e(g1, g1)αs

′
and the attack will not work.
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6.1 Security Definition

Here we define a model for anonymous broadcast encryption with CCA security against adaptive adversaries. This model

is a modification of the security model defined in [14].

Definition 1. ANO-IND-CCA security game for a broadcast encryption scheme, BE, is as follows.

Setup. The challenger C runs Setup algorithm to generate the master key MK .

Phase1. Adversary A issues queries for secret keys corresponding to the set of attributes Att1, Att2, . . . , Attq′ .

Challenger C runs KeyGen algorithm and returns the corresponding sectret keys SK1, SK2, . . . , SKq′ to A. A can

also make decryption queries (CT,Atti), which means decryption of the ciphertext CT for user i with attribute set

Atti, and the challenger C will return the decrypted message or ⊥ using Decryption algorithm.

Challenge. A submits two equal length group keys GK0 and GK1 and two access policies T ∗
0 and T ∗

1 . The submitted

access policies T ∗
0 and T ∗

1 should be such that none of the queried attribute sets Att1, Att2, . . . , Attq′ in Phase 1 satisfy

them. Then the challenger chooses a random bit b ∈ {0, 1} and encrypts GKb under T ∗
b using Encryption algorithm

and returns CT ∗ to A.

Phase2. A continues querying secret keys corresponding to the set of attributes Attq′+1, Attq′+2, . . . , Attq which

none of them satisfies T ∗
0 or T ∗

1 and receives corresponding sectret keys SKq′+1, SKq′+2, . . . , SKq . A also continues

making decryption queries (CT,Atti) with the restriction that if CT = CT ∗, then Atti should not satisfy any of T ∗
0

or T ∗
1 .

Guess. A outputs b′ as its guess for b and wins the game if b = b′. The advantage of A in this game is defined as

AdvANO−IND−CCA
A,BE (λ) = |Pr[b = b′]− 1/2|.

Definition 2. A broadcast encryption scheme, BE, is said to be anonymous and indistinguishable against CCA adver-

saries or is ANO-IND-CCA secure, if any PPT adaptive CCA adversary, has at most a negligible advantage in the above

security game.

6.2 Complexity Assumptions

In what follows, we state three complexity assumptions in composite order bilinear groups which we will rely on to

prove security of the Improved-YRL scheme. Rao et al. in [19] closely followed [20] to show that Assumptions 1, 2, 3

hold in the generic group model under the assumption that finding a non-trivial factor of N , where N = p1p2p3, is

hard.

Assumption 1. Let G be a group generator and ~y = (N = p1p2p3, G,GT , e) ← G(λ). Choose g1, g3 randomly from

Gp1
and Gp3

respectively. Then for each PPT adversary A which is given D = (~y, g1, g3), A’s advantage to distinguish

T0 ∈ G from T1 ∈ Gp1p3
, is negligible; where T0 and T1 are randomly chosen from the corresponding groups. In other

words, for any PPT algorithm A, we have:

Adv1A = |Pr[A(D,T0) = 1]− Pr[A(D,T1) = 1]| ≤ negl(λ) (23)

Where negl(.) is a negligible function.

Assumption 2. Let G be a group generator and ~y = (N = p1p2p3, G,GT , e) ← G(λ). Choose random el-

ements g1 ∈ Gp1
, g3 ∈ Gp3

, X1X2X3 ∈ G,Y1Y2 ∈ Gp1p2
. Then for each PPT adversary A which is given
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D = (~y, g1, g3, X1X2X3, Y1Y2), A’s advantage to distinguish T0 ∈ Gp1
from T1 ∈ Gp1p2

, is negligible; where

T0 and T1 are randomly chosen from the corresponding groups. In other words, for any PPT algorithm A, we have:

Adv2A = |Pr[A(D,T0) = 1]− Pr[A(D,T1) = 1]| ≤ negl(λ) (24)

Where negl(.) is a negligible function.

Assumption 3. Let G be a group generator and ~y = (N = p1p2p3, G,GT , e) ← G(λ). Choose random el-

ements α, ς ∈ ZN , g1 ∈ Gp1, X2, Y2 ∈ Gp2, X3, Y3 ∈ Gp3 . Then for each PPT adversary A which is given

D = (~y, g1, g
α
1X2, X3, g

ς
1Y2Y3), A’s advantage to distinguish T0 = e(g1, g1)

ας from T1 which is a random element in

GT , is negligible. In other words, for any PPT algorithm A, we have:

Adv3A = |Pr[A(D,T0) = 1]− Pr[A(D,T1) = 1]| ≤ negl(λ) (25)

Where negl(.) is a negligible function.

6.3 Security Proof

Here we use a technique called dual system encryption [17] to prove security of Improved-YRL scheme in the ANO-

IND-CCA security game described in Subsection 6.1. In a dual system, ciphertexts and secret keys can be either normal

or semi-functional. Semi-functional terms are not part of the real system, but they are only used in the security proof.

A normal secret key, can decrypt both normal and semi-functional ciphertexts, but a semi-functional secret key can

only decrypt normal ciphertexts. In other words, one would fail to decrypt a semi-functional ciphertext using a semi-

functional secret key. The semi-functional ciphertexts and secret keys for Improved-YRL are defined as below:

Semi-functional ciphertext. To obtain a semi-functional ciphertext, we first run Encryption algorithm to obtain a

normal ciphertext CT = (C̃, C̆, {Ci}∀i∈Zn), where Ci = (gsi, Ci,0, Ci,1) for all i ∈ Zn. Then the semi-functional

ciphertext CT ′ = (C̃ ′, C̆ ′, {Ci
′}∀i∈Zn) is computed as below

C̃ ′ = C̃, C̆ ′ = C̆ × g2
δβ, Ci

′ = Ci × g2
δ/n (26)

where δ is chosen randomly from ZN and in Ci
′ = Ci × g2

δ/n only the terms Ci,0, Ci,1 are multiplied by g2
δ/n. Also,

n is the number of attributes and β is a part of master key as stated before.

Semi-functional secret key. To compute a semi-functional secret key for a user with the attribute setXn−1Xn−2...X0,

we first run the algorithm KeyGen to obtain a normal secret key SK = (D, D̂, {Di}∀i∈Zn
), where Di = hr

i,x̄i
for all

i ∈ Zn. The semi-functional secret key SK ′ = (D′, D̂′, {Di
′}∀i∈Zn

) is computed as below

D′ = D × g2
γ/β, D̂′ = D̂ × g2

γ , Di
′ = Di × g2

γei (27)

Where γ is a random element in ZN and ei = ai if hi,x̄i
= gai

1 X3 and ei = bi if hi,x̄i
= gbi1 X3.

Security is proved using a sequence of games which are proven to be indistinguishable under assumptions given in

Section 6.2 . Considering q as the maximum number of secret key queries an adversary can make, the sequence of games

are as follows:
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GameANO−IND−CCA: In this game which was described in Section 6.1, all ciphertexts and secret keys are normal.

Game0: Here the challenge ciphertext is semi-functional, but all secret keys are normal.

Gamek(1 ≤ k ≤ q): In this game, in addition to the challenge ciphertext, the first k queried secret keys are semi-

functional and the rest of them are normal. So in Gameq , all the secret keys would be semi-functional.

Gamefinal: This game is the same as Gameq except that the ciphertext is randomized. So the challenge ciphertext is

independent of the group keys and access policies given by the adversary in the challenge step.

The sequence of hybrid games in the proof are related as follows:

GameANO−IND−CCA ⇔ Game0 ⇔ Game1...⇔ Gameq−1 ⇔ Gameq ⇔ Gamefinal.

Where the notation “ ⇔ “ means that the two games are computationally indistinguishable. Now, we will show the

above relations through the following lemmas.

Lemma 1. Suppose that there exists a polynomial time algorithm A such that Adv
GameANO−IND−CCA

A −AdvGame0
A =

ε. Then we can build a PPT algorithm B with advantage ε in breaking Assumption 1.

Proof. B is given (~y, g1, g3, T ). It will simulate GameANO−IND−CCA or Game0 for A depending on whether T is

an element of G or it is an element of Gp1p3
. We now describe how B interacts with A to break Assumption 1.

Setup. B chooses random elements α, β ∈ ZN , and for each element of the attribute set, it chooses ai, bi randomly from

Zp1
and keeps the master key MK = (α, β, {ai, bi}∀i∈Zn

).

Phase1 and Phase2. B generates normal secret keys SK = (D, D̂, {Di}∀i∈Zn
) in response to A’s secret key queries

using the KeyGen algorithm. This is possible since B possess the master key MK and g1, g3. As we mentioned in the

ANO-IND-CCA security game, non of the attribute sets queried in secret key requests, should satisfy the access policies

given by A in the challenge phase. Also, in response to A’s decryption requests (CT,Atti), B generates the secret key

corresponding to Atti, and decrypts CT using Decryption algorithm.

Challenge. A sends B two equal length group keys GK0 and GK1 and two access policies T ∗
0 and T ∗

1 . B chooses a

random bit b and performs the normal encryption of GKb under T ∗
b to obtain CTb = (C̃, C̆, {Ci}∀i∈Zn

). Next, in

order to generate the challenge ciphertext CT ∗ = (C̃ ′, C̆ ′, {Ci
′}∀i∈Zn

), B performs the following calculations:

C̃ ′ = C̃ × e(gα1 , T )

C̆ ′ = C̆ × T β (28)

C ′
i0,1 = Ci0,1 × T 1/n

Guess. A outputs a bit b′ as its guess of b and wins if b = b′. It can be seen that if T ∈ Gp1p3 , CT ∗ is a properly

distributed normal ciphertext and GameANO−IND−CCA is simulated. Else, if T ∈ G, CT ∗ is a properly distributed

semi-functional ciphertext and we have Game0. So, if ε is a non-negligible function, B can use the output of A to

distinguish between two values of T and break Assumption 1.

Lemma 2. Suppose that there exists a polynomial time algorithm A such that Adv
Gamek−1

A − AdvGamek
A = ε, where

1 ≤ k ≤ q and q is the maximum secret key queries that A can make. Then we can build a PPT algorithm B that has

advantage ε in breaking Assumption 2.

Proof. B is given (~y, g1, g3, X1X2X3, Y1Y2, T ). It will simulate Gamek−1 or Gamek depending on whether T is an

element of Gp1 or it is an element of Gp1p2 . We now describe how B interacts with A to break Assumption 2.
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Setup. B chooses random elements α, β ∈ ZN , and for each element of the attribute set, it chooses ai, bi randomly from

Zp1
and keeps the master key MK = (α, β, {ai, bi}∀i∈Zn

).

Phase1 and Phase2. Here B responds to secret keys queries from A in three ways depending on the query number. For

the first k − 1 queries, B generates semi-functional secret keys. For this purpose, B first computes a normal secret key

(D, D̂, {Di}∀i∈Zn
) using the KeyGen algorithm. Then SKj = (D′, D̂′, {Di

′}∀i∈Zn
) for 1 ≤ j ≤ k − 1 is computed

as below:

rj∈RZN

D′ = D × (Y1Y2)
rj/β

D̂′ = D̂ × (Y1Y2)
rj (29)

Di
′ = Di × (Y1Y2)

rjei

Where ei can take two values; ei = ai if hi,x̄i
= gai

1 X3 and ei = bi if hi,x̄i
= gbi1 X3.

For the query k, B first generates normal secret key (D, D̂, {Di}∀i∈Zn
) and sets SKk as below:

D′ = D × T 1/β

D̂′ = D̂ × T (30)

Di
′ = Di × T ei

Where ei is as defined above. It can be seen that if T ∈ Gp1
, the SKk is a normal secret key and if T ∈ Gp1p2

, SKk is

a semi-functional secret key.

Finally, for SKj, k + 1 ≤ j ≤ q, B simply generates a normal secret key.

Also, in response to A’s decryption requests (CT,Atti), B generates the normal secret key corresponding to Atti, and

decrypts CT using Decryption algorithm.

Challenge. A sends B two equal length group keys and two access policies T ∗
0 and T ∗

1 . B chooses a random bit b and

performs the normal encryption of GKb under T ∗
b to obtain CTb = (C̃, C̆, {Ci}∀i∈Zn

). Next, in order to generate the

semi-functional ciphertext CT ∗ = (C̃ ′, C̆ ′, {Ci
′}∀i∈Zn

), B performs the following calculations:

C̃ ′ = C̃ × e(gα1 , (X1X2X3))

C̆ ′ = C̆ × (X1X2X3)
β (31)

C ′
i0,1 = Ci0,1 × (X1X2X3)

1/n

CT ∗ is sent back to A.

Guess. A outputs a bit b′ as its guess of b and wins if b = b′. It can be seen that if T ∈ Gp1
, B has interacted with A in

Gamek−1. Else if T ∈ Gp1p2
, Gamek is simulated. So B can use the output of A to distinguish between two values of

T and break Assumption 2.

Lemma 3. Suppose that there exists a polynomial time algorithm A such that Adv
Gameq
A − Adv

Gamefinal

A = ε. Then

we can build a PPT algorithm B that has advantage ε in breaking Assumption 3.

Proof. B is given (~y, g1, g
α
1X2, X3, g

ς
1Y2Y3, T ). It will simulate Gameq or Gamefinal depending on whether T =
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e(g1, g1)
ας or it is a random element of GT . We now describe how B interacts with A to break Assumption 3.

Setup. B chooses random β ∈ ZN , and for each element of the attribute set, it chooses ai, bi randomly from Zp1

and keeps the master key MK = (β, {ai, bi}∀i∈Zn
). Here, B can not choose the parameter α himself, because this

parameter is given to him via the term gα1X2. But it can be easily shown that normal ciphertext and secret keys can be

generated using the term gα1X2, without having α directly.

Phase1 and Phase2. Here all the queried secret keys are semi-functional. In response to A’s secret key queries,

B first generates normal secret key (D, D̂, {Di}∀i∈Zn
) using the KeyGen algorithm, g1, X3, g

α
1X2 and MK . Then

semi-functional secret key SKj = (D′, D̂′, {Di
′}∀i∈Zn

) for 1 ≤ j ≤ q is computed as below:

rj∈RZN

D′ = D × (gα1X2)
rj/β

D̂′ = D̂ × (gα1X2)
rj (32)

Di
′ = Di × (gα1X2)

rjei

Where ei is as defined in Lemma 2.

Also, in response to A’s decryption requests (CT,Atti), B generates the normal secret key corresponding to Atti,

and decrypts CT using the Decryption algorithm.

Challenge. A sends B two equal length group keys and two access policies T ∗
0 and T ∗

1 . B chooses a random bit b and

performs the normal encryption of GKb under T ∗
b to obtain CTb = (C̃, C̆, {Ci}∀i∈Zn). Next, the challenge ciphertext

CT ∗ = (C̃ ′, C̆ ′, {Ci
′}∀i∈Zn) is generated as below:

C̃ ′ = C̃ × T

C̆ ′ = C̆ × (gς1Y2Y3)
β (33)

Ci0,1
′ = Ci0,1 × (gς1Y2Y3)

1/n

CT ∗ is sent back to A.

Guess. A outputs a bit b′ as its guess of b and wins if b = b′. It can be seen that if T = e(g1, g1)
ας , B has interacted

with A in Gameq . Else if T ∈R GT , the challenge ciphertext is randomized and Gamefinal is simulated. So B can use

the output of A to distinguish between two values of T and break Assumption 3.

Theorem 1. If Assumptions 1, 2 and 3 hold, then Improved-YRL is an anonymous adaptive CCA secure broadcast

encryption scheme.

Proof. We have shown in previous lemmas that the GameANO−IND−CCA is indistinguishable from Gamefinal. In

Gamefinal, the adversary receives no information about b information theoretically and the chance of any adversary

in guessing the true b is exactly 1/2. So this is true in GameANO−IND−CCA and the adversary can not guess which

GK is encrypted and also can not obtain any information about access structure from the ciphertext with a probablity

greater than 1/2. So the Improved-YRL scheme has both indistinguishability and anonymity and the proof is completed.

�
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7 Performance Evaluation

This section analyzes the performance of the proposed scheme. For this aim, we compute the computation, communica-

tion and storage overheads in terms of the total number of attributes in the network which is denoted by n. These results

are achieved due to the YRL scheme’s overheads presented in [10]. We denote modular multiplications, exponentiations

and pairings over prime and composite orders by Mul, Mul.cmp, Exp, Exp.cmp, Pair and Pair.cmp respectively.

7.1 Computation Overhead

Here we investigate the computation load of the Setup, KeyGen and Encryption algorithms of Improved-YRL executed

by the broadcaster and Decryption algorithm executed by the receivers.

Similar to the YRL’s setup overhead [10], Improved-YRL’s setup has a term 2nExp.cmp; also as in the Improved-

YRL’s setup, some elements of subgroup G1 are multiplied with some elements of subgroup G3, the extra term

2nMul.cmp is added. So the total overhead of the Improved-YRL’s setup is 2nExp.cmp+ 2nMul.cmp.

In the KeyGen algorithm, there is no need to compute grβ in comparison with KeyGen algorithm of YRL. Therefore,

the computation overhead of the KeyGen algorithm is (n+ 2)Exp.cmp.

In the Encryption algorithm, the terms g
k0
β and g

k1
β are eliminated. Therefore, in comparison with the Encryption

algorithm of YRL, two Exp computations are omitted and the resulting computation overhead is reduced to (3n +

1)Exp.cmp.

In the Decryption algorithm, there is no need to compute {Bj = e(g
kj
β , grβ)}j∈{0,1} and consequently, the total

number of pairing computations is reduced by two units. Therefore, the total computation overhead of Decryption

algorithm becomes nMul.cmp+ (n+ 2)Pair.cmp.

These results are summarized in Table 1.

7.2 Communication Overhead

The total communication overhead of the proposed scheme is (n+1) log2 p1+2n log2(p1p3)+ log2 |G
cmp
T | as presented

in Table 1

7.3 Storage Overhead

The main storage load for users comes from the secret key SK . The storage load of the YRL scheme is (n + 3) log2 p

[10], and as in the Improve-YRL scheme, gβr is omitted from the secret key, each user needs 2 log2 p1 + n log2(p1p3)

bits to store his secret key. These results are illustrated in Table 1.

8 Conclusion

In this paper, we investigated an anonymous broadcast encryption scheme called YRL and showed its vulnerability. Our

investigation demonstrated that all of the users in this scheme, including authorized and unauthorized ones, can decrypt

the received message. Thus, it does not provide the main requirement of the broadcast encryption schemes.

Since introducing an anonymous, efficient and provably secure broadcast encryption scheme is one of the most

important open problems in this field, we improved the YRL scheme in composite order bilinear groups and made it
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TABLE 1

Comparison between the proposed scheme and the basic YRL scheme [10]. Note that, according to [21], to achieve 192-bit security level we

should select log2 pi = log2 p = 192.

Criteria Improved-YRL YRL [10]

Computation Overhead

Setup 2nExp.cmp+ 2nMul.cmp 2nExp

KeyGen (n+ 2)Exp.cmp (n+ 3)Exp

Encryption (3n+ 1)Exp.cmp (3n+ 3)Exp

Decryption nMul.cmp+ (n+ 2)Pair.cmp nMul + (n+ 4)Pair

Communication Overhead (n+ 1) log2 p1 + 2n log2(p1p3) + log2(|G
cmp
T |) (3n+ 3) log2 p+ log2(|GT |)

Storage Overhead 2 log2 p1 + n log2(p1p3) (n+ 3) log2 p

secure against the proposed attack. We also proved anonymity and semantic security of the Improved-YRL scheme under

adaptive corruptions in the chosen ciphertext setting.

The same as the basic YRL, the computation and communication overheads of the Improved-YRL scheme, as

illustrated in Table 1, are O(n), where n is the number of attributes and independent of the number of receivers.

Since the attributes are usually shared by unlimited number of group members, the scheme is more efficient than the

anonymous BE schemes with overheads related to the number of receivers.
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