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Abstract. At FSE 2006, Iwata introduced the CENC encryption mode and proved its security
up to 22n/3 plaintext blocks processed in total. He conjectured optimal security up to a constant.
In this brief note, we confirm this conjecture. Rather than proving it ourselves, we point out
that the conjecture’s proof follows as a corollary of Patarin’s “Theorem Pi ⊕ Pj for any ξmax”
from 2005. This connection appears to have remained unnoticed, and the sole purpose of this
brief note is to make the connection explicit.

1 Introduction

A blockcipher mode of operation for message encryption (encryption mode for short) is called beyond
birthday-bound (BBB) secure, if the proven upper bound on the adversarial advantage is meaningful
even if the adversary can process more than 2n/2 blocks of data with the same key (with n being the
block size of the blockcipher). In 2006, Iwata proposed a BBB secure encryption mode CENC [3].
CENC is a nonce-based encryption mode which can be seen as a generalization of counter mode.
Given a parameter w, CENC makes w+1 blockcipher calls to encrypt w plaintext blocks, achieving a
rate 1+ 1

w . Iwata proved CENC secure up to 2
2n
3 /w processed blocks but conjectured that it is in fact

optimally secure (i.e., secure up to 2n/w processed blocks). In the same paper, Iwata also proposed
CHM, a mode of operation for authenticated encryption obtained by extending CENC ciphertexts
by and encrypted AXU hash.

Independently, Patarin [8] studied the PRF security of the permutation-sum construction, and
proved that a single-permutation variant of this construction is indistinguishable from a random
function up to ≈ 2n processed blocks.4 The core idea of his proof was to represent the transcript
of adversarial queries and the oracle replies as a system of linear equalities with specific properties.
Patarin also considered a generalization of his techniques to a larger class of systems of equalities:
“Theorem Pi ⊕ Pj for any ξmax.” The first appearance of this result was in 2003 with sub-optimal
22n/3 security [6], optimal 2n security was derived in 2005 [7], with a concrete bound given in 2010 [9].

In this note, we point out that the proof of Iwata’s conjecture about CENC’s optimal security is
in fact a corollary of Patarin’s generalized theorem. We do not claim any novelty of this work. Its
purpose is merely to make the immediate, but not apparent, connection explicit. Pointing out the
optimal security of CENC is of theoretical, but also of practical interest, as this will allow for larger
data volumes to be processed with lightweight (e.g. 64-bit) blockciphers. We note that the security
bound of CENC is now better than that of the scheme in [4]. The analysis of CHM is beyond the
scope of this brief note, but it is conceivable that a better security bound can be obtained analogously.

2 Preliminaries

For m,n ∈ N, {0, 1}n denotes the set of all n-bit strings, P(n) the set of all permutations on {0, 1}n,
F(m,n) the set of all functions from {0, 1}m to {0, 1}n, 〈m〉n the encoding of m as an n-bit string,

and (m)n the falling factorial. For a set X , x
$←− X denotes uniformly random sampling of x from X .

4 This problem was previously addressed also by Bellare and Impagliazzo [1] and Lucks [5].



2.1 Blockcipher

A blockcipher E : {0, 1}k × {0, 1}n → {0, 1}n is a function that is a permutation for every K ∈
{0, 1}k. We denote by B(k, n) the set of all blockciphers E : {0, 1}k × {0, 1}n → {0, 1}n. We denote
by Advprp

E (D) the advantage of a distinguisher D in distinguishing E from an ideal permutation

π
$←− P(n):

Advprp
E (D) = Pr

[
K

$←− {0, 1}k : DEK = 1
]
−Pr

[
π

$←− P(n) : Dπ = 1
]
.

Note that D only gets forward access to E. By Advprp
E (q, t) we denote the supremum of Advprp

E (D)
taken over all distinguishers that can make q queries and operate in t time.

2.2 Pseudorandom Function

A pseudorandom function F : {0, 1}k × {0, 1}m → {0, 1}n gets as input a key K and transforms a

message X to a value Z. We denote by Advprf
F (D) the advantage of a distinguisher D in distinguishing

F from an ideal function ρ
$←− F(m,n):

Advprf
F (D) = Pr

[
K

$←− {0, 1}k : DFK = 1
]
−Pr

[
ρ

$←− F(m,n) : Dρ = 1
]
.

By Advprf
F (q, t) we denote the supremum of Advprf

F (D) taken over all distinguishers that can make
q queries and operate in t time.

2.3 Encryption

A nonce based encryption scheme E : {0, 1}k × {0, 1}m × {0, 1}∗ → {0, 1}∗ gets as input a key K, a
nonce N , and an arbitrarily length message M , and returns a ciphertext C of length |M |. We denote
by Advcpa

E (D) the advantage of a distinguisher D in distinguishing E from an ideal enciphering scheme
$:

Advcpa
E (D) = Pr

[
K

$←− {0, 1}k : DEK = 1
]
−Pr

[
$

$←− F(n+ ∗, ∗) : D$ = 1
]
.

Note that we are abusing notation in the drawing of $: $ is a function that returns a random ciphertext
C of length |M | for every new query (N,M). Distinguisher D is required to be nonce-respecting, i.e.,
it should not repeat nonces. By Advcpa

E (q, `, t) we denote the supremum of Advcpa
E (D) taken over all

distinguishers that can make q queries of length ` blocks and operate in t time.

3 Pseudorandom Function

Let k,m, n,w ∈ N such that m+s = n for s = dlog2(w+1)e. Let E ∈ B(k, n). We define pseudorandom
function XORP[w] : {0, 1}k × {0, 1}m → {0, 1}wn with load w as follows:

XORP[w](K,X) =

wn

j=1

EK(X‖〈0〉s)⊕ EK(X‖〈j〉s) . (1)

Note that XORP[w] makes w + 1 distinct blockcipher calls (the EK(X‖〈0〉s) repeats). See Figure 1
for XORP[w] with w = 1 and w = 3.

For XORP[w], Iwata proved approximately 22n/3 security, and as becomes clear in Section 4, this
bound capped the security of CENC.

Theorem 1 (Iwata (2006) [3]). We have

Advprf
XORP[w](q, t) ≤

(w + 1)4q3

22n+1
+
w(w + 1)q

2n+1
+ Advprp

E ((w + 1)q, t) . (2)

Independently, Patarin proved approximately optimal security in [7, 9]. We follow [9] as this one
includes a concrete bound. As becomes clear in Section 4, this bound implies optimal security of
CENC.
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Fig. 1: XORP[w] for w = 1 (left) and w = 3 (right)

Theorem 2 (Patarin (2010) [9, Theorem 6]). We have, provided wq ≤ 2n/67,

Advprf
XORP[w](q, t) ≤

w2q

2n
+ Advprp

E ((w + 1)q, t) . (3)

[9, Theorem 6] is in fact more general and its application to XORP[w] is not entirely straightforward.
Therefore, we briefly discuss how to interpret XORP[w] in terms of [9, Theorem 6].

Proof. We will consider XORP[w] based on an ideal permutation π
$←− P(n), and consider deterministic

information-theoretic distinguishers solely measured in query complexity. The step to the standard
model is straightforwardly made at the expense of Advprp

E ((w + 1)q, t). For any X and any j ∈
{0, . . . , w}, denote the variable corresponding to the evaluation π(X‖〈j〉s) by PX,j .

Now, consider a given transcript of q distinct evaluations (X1, Z1), . . . , (Xq, Zq), where the Zi’s
can be parsed into w n-bit blocks as Zi = Yi,1‖ · · · ‖Yi,w. This transcript defines equations

PXi,0 ⊕ PXi,1 = Yi,1 ,

PXi,0 ⊕ PXi,2 = Yi,2 ,

...

PXi,0 ⊕ PXi,w = Yi,w ,

(4)

for i = 1, . . . , q. In other words, every of the q queries gives w equations Ei with w + 1 variables
Si := {PXi,0, PXi,1, . . . , PXi,w}.

We say that the transcript is “good” if Yi,j 6= 0 for all (i, j) and Yi,j 6= Yi,j′ for all (i, j) 6= (i, j′).
The following observations are easily made:

(i) There is no variable PXi,j occurring in two different sets. This is because all queries, and thus
all values Xi, are different;

(ii) The set of equations E1∪E2∪· · ·∪Eq does not generate an equation independent of any variable
PXi,j . In the terminology of [9], this means that the set of equations does not contain a “circle.”
This observation follows by close inspection of (4);

(iii) The set of equations E1 ∪ E2 ∪ · · · ∪ Eq does not generate an equation PXi,j = PXi′ ,j
′ with

(i, j) 6= (i′, j′). For i 6= i′ this is apparent as Xi 6= Xi′ . For i = i′, this follows by our definition
of good transcripts.

Central to [9, Theorem 6] is ξmax, defined as the maximum number of indices that are in the same
“block,” i.e., the maximum number of variables that are related to each other through the set of
equations. Observation (i) above shows that no variable PXi,j occurs in two different sets, while on
the other hand, every set contains w+1 variables. Thus, the set of equations defines q blocks of w+1
indices. We henceforth have ξmax = w + 1.
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Fig. 2: CENC[w] for w = 3

[9, Theorem 6] now states that if (ξmax − 1)q ≤ 2n/67, then Advprf
XORP[w](q,∞) ≤ β, where β is

minimal such that5

|good transcripts|
|all transcripts| ≥ 1− β . (5)

Clearly, the number of transcripts is |all transcripts| = 2wnq (we consider the values Xi given and
count the number of possible Zi’s). The number of good transcripts is |good transcripts| = ((2n −
1)w)q, as for every value Zi we have (2n − 1)w possible values. We obtain for (5):

|good transcripts|
|all transcripts| =

((2n − 1)w)q

2wnq
=

q∏
i=1

w∏
j=1

2n − j
2n

≥ 1− w2q

2n
. (6)

This gives β = w2q
2n and completes the proof. ut

4 CENC

Let k,m, n, `, w ∈ N such that m+r+s = n for r = dlog2(`)e and s = dlog2(w+1)e. Let E ∈ B(k, n).
We define encryption scheme CENC[w] : {0, 1}k × {0, 1}m × {0, 1}≤`wn → {0, 1}≤`wn as

CENC[w](K,N,M) =

`m/w−1n

i=0

XORP[w](K,N‖〈i〉r)⊕Mwi‖ · · · ‖Mw(i+1)−1 , (7)

`m := dM/ne and M is parsed into M0‖ · · · ‖M`m−1 where |Mi| = n for i = 0, . . . , `m − 2 and
|M`m−1| ≤ n. CENC[w] is depicted in Figure 2 for w = 3. Note that, compared to [3], the description
of (7) simplifies the format of the blockcipher input blocks and omits the handling of incomplete last
blocks for conciseness and clarity, but we see that these details do not affect the security analysis
presented below.

Theorem 3. Assume w.l.o.g. that `/w is integral. We have

Advcpa
CENC[w](q, `, t) ≤

`wq

2n
+ Advprp

E (w+1
w `q, t) . (8)

Proof. Note that CENC[w] consists of `/w invocations of XORP[w]. We replace XORP[w] by a random
function ρ : {0, 1}m+r → {0, 1}wn at the expense of

Advprf
XORP[w]((`/w) · q, t) ≤ `wq

2n
+ Advprp

E (w+1
w `q, t) (9)

by Theorem 2. However, it is obvious that CENC[w] instantiated with ρ is perfectly secure. ut
5 We are currently adopting the notation from [9]. In the refurbished H-coefficient technique as outlined by

Chen and Steinberger [2], β corresponds to the probability that an ideal world transcript is bad.

4



Acknowledgments. The authors would like to thank Farzaneh Abed, Pierre Karpman, Hristina
Mihajloska, Samuel Neves, and Bart Preneel, as well as the organizers of the Lorentz workshop
“HighLight: High-Security Lightweight Cryptography” for discussions that eventually lead to ana-
lyzing the optimal security of CENC. The work by Tetsu Iwata was supported by JSPS KAKENHI,
Grant-in-Aid for Scientific Research (B), Grant Number 26280045, and was carried out while visiting
Nanyang Technological University, Singapore. Bart Mennink is a Postdoctoral Fellow of the Research
Foundation – Flanders (FWO).

References

1. Bellare, M., Impagliazzo, R.: A tool for obtaining tighter security analyses of pseudorandom function based
constructions, with applications to PRP to PRF conversion. Cryptology ePrint Archive, Report 1999/024
(1999)

2. Chen, S., Steinberger, J.P.: Tight security bounds for key-alternating ciphers. In: Advances in Cryptology
- EUROCRYPT 2014 - 33rd Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Copenhagen, Denmark, May 11-15, 2014. Proceedings. Lecture Notes in Computer
Science, vol. 8441, pp. 327–350. Springer (2014)

3. Iwata, T.: New blockcipher modes of operation with beyond the birthday bound security. In: Fast Software
Encryption, 13th International Workshop, FSE 2006, Graz, Austria, March 15-17, 2006, Revised Selected
Papers. Lecture Notes in Computer Science, vol. 4047, pp. 310–327. Springer (2006)

4. Lefranc, D., Painchault, P., Rouat, V., Mayer, E.: A generic method to design modes of operation beyond
the birthday bound. In: Selected Areas in Cryptography, 14th International Workshop, SAC 2007, Ottawa,
Canada, August 16-17, 2007, Revised Selected Papers. Lecture Notes in Computer Science, vol. 4876, pp.
328–343. Springer (2007)

5. Lucks, S.: The sum of PRPs is a secure PRF. In: Advances in Cryptology - EUROCRYPT 2000, Inter-
national Conference on the Theory and Application of Cryptographic Techniques, Bruges, Belgium, May
14-18, 2000, Proceeding. Lecture Notes in Computer Science, vol. 4047, pp. 470–484. Springer (2000)

6. Patarin, J.: Luby-rackoff: 7 rounds are enough for 2n(1−ε) security. In: Advances in Cryptology - CRYPTO
2003, 23rd Annual International Cryptology Conference, Santa Barbara, California, USA, August 17-21,
2003, Proceedings. Lecture Notes in Computer Science, vol. 2729, pp. 513–529. Springer (2003)

7. Patarin, J.: On linear systems of equations with distinct variables and small block size. In: Information
Security and Cryptology - ICISC 2005, 8th International Conference, Seoul, Korea, December 1-2, 2005,
Revised Selected Papers. Lecture Notes in Computer Science, vol. 3935, pp. 299–321. Springer (2006)

8. Patarin, J.: A proof of security in o(2n) for the xor of two random permutations. In: Information Theoretic
Security, Third International Conference, ICITS 2008, Calgary, Canada, August 10-13, 2008, Proceedings.
Lecture Notes in Computer Science, vol. 5155, pp. 232–248. Springer (2008)

9. Patarin, J.: Introduction to mirror theory: Analysis of systems of linear equalities and linear non equalities
for cryptography. Cryptology ePrint Archive, Report 2010/287 (2010)

5


