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Abstract. Attribute-Based Encryption (ABE) allows to target the recipients of a message according
to a policy expressed as a predicate among some attributes. Ciphertext-policy ABE schemes can
choose the policy at the encryption time.
In this paper, we define a new property for ABE: homomorphic-policy. A combiner is able to (publicly)
combine ciphertexts under different policies into a ciphertext under a combined policy (AND or OR).
More precisely, using linear secret sharing schemes, we design Attribute-Based Key Encapsulation
Mechanisms (ABKEM) with the Homomorphic-Policy property: given several encapsulations of the
same keys under various policies, anyone can derive an encapsulation of the same key under any
combination of the policies.
As an application, in Pay-TV, this allows to separate the content providers that can generate the
encapsulations of a session key under every attributes, this key being used to encrypt the payload,
and the service providers that build the decryption policies according to the subscriptions. The
advantage is that the aggregation of the encapsulations by the service providers does not contain
any secret information.

1 Introduction

Attribute-Based Encryption (ABE), introduced by Sahai and Waters [15], is a generalization of
some advanced primitives such as identity-based encryption [2,16] and broadcast encryption [5]. It
gives a flexible way to define the target group of people who can receive the message: encryption
and decryption can be based on the user’s attributes. This primitive was further developed by
Goyal et al. [8] who introduced two categories of ABE: ciphertext-policy attribute-based encryption
(CP-ABE) and key-policy attribute-based encryption (KP-ABE). In a CP-ABE scheme, the secret
key is associated with a set of attributes and the ciphertext is associated with an access policy
over the universe of attributes: a user can decrypt a given ciphertext if he holds the attributes
that satisfy the access policy underlying the ciphertext. KP-ABE is the dual to CP-ABE in the
sense that an access policy is encoded into the users secret key, and a ciphertext is computed
with respect to a set of attributes: the ciphertext is decryptable by a user only if the attributes in
the ciphertext satisfy the user’s access policy. CP-ABE and KP-ABE consider different scenarios.
In KP-ABE, the encryptor has no control over who has access to the data he encrypts. This is the
key-issuer who generates and controls the appropriate keys to grant or deny access to the users.
In contrast, in CP-ABE, the encryptor is able to decide who should or should not have access to
the data that he encrypts. In the applications we target such as Pay-TV, this would mean that
the access control is either dynamically managed by the encryptor (with a ciphertext-policy ABE)
or statically managed by the key-issuer (with a key-policy ABE), while in real-life a third-party
could be in charge of a dynamic policy.

Fine-Grained Access Control Over the last few years, there has been a lot of progress in constructing
secure and efficient ABE schemes from different assumptions and for different settings [1, 3, 4, 6–9,
12–15,17], to name a few. The Sahai-Waters’ scheme [15] produces ciphertexts decryptable when at
least k attributes overlapped between a ciphertext and a private key. While they showed that this
primitive is useful for error-tolerant encryption with biometrics, the lack of expressibility limits its
applicability to more general systems. Fine-grained access control systems [8] facilitate granting
differential access rights to a set of users and allow flexibility in specifying the access rights of
individual users. Several techniques are known for implementing fine-grained access control. In
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our work, we focus on fine-grained access control which are expressed by logic formulas and we
rely on the standard Linear Secret Sharing Scheme (LSSS) access structures, first considered in
the context of ABE by Goyal et al. [8].

1.1 Homomorphic-Policy Attribute-Based Key Encapsulation Mechanisms

In KP-ABE, the access policy is controlled at the key generation phase. In CP-ABE, the access
policy is controlled at the message encryption phase. We go a step further in this consideration by
postponing the management of the access policy to a later phase and show how one can manage
the access policies without knowing any secret nor the content of message.

Previous works on CP-ABE consider classical encryption: the encryptor, taking as input an
access policy and a message, produces a corresponding ciphertext. The encryptor thus manages
both the access policy and the encryption of the original message. This scenario is unavoidable
when limiting the access policy as a single atomic attribute characterizing a user’s identity (e.g.,
identity-based encryption) or a target group of users (e.g., identity-based broadcast encryption)
because the encryptor needs to know the message to encrypt with the single attribute. However,
in the general case, where the access policy is composed from sub-policies via AND and OR
operators, the encryption of a message for the whole access policy can be computed from the
ciphertexts of the sub-policies, without the knowledge of the original message.

The ability to produce a ciphertext for an access policy without the knowledge of the message
itself can give significant impact in concrete applications. Considering Pay-TV, we can now
separate the roles of the content provider and of the manager of the access policies, as shown in
the Figure 1: the content provider (C) encapsulates a unique session key K for each attribute,
encrypts the content under this session key K, and provides that to the manager of the access
policies (A). The latter broadcasts the encrypted content, but according to the access policy, it
combines the appropriate encapsulations to produce a unique encapsulation, to be broadcast to
the users (the recipients (R)). Each authorized user can decrypt this encapsulation (by owning
attributes satisfying the access policy) and get the session key to decrypt the content.

C A R

Fig. 1. Pay-TV: Separation of the roles of the content provider (C) and of the manager of the access policies (A).

Technically, in order to implement the above principle, we need to define Attribute-Based
Key Encapsulation Mechanisms (ABKEM) which encapsulate a session key for an access policy.
Then, the combination of two encapsulations under the same session key to an encapsulation
for the composed access policy is completed via the homomorphic-policy property: if we have
encapsulations of a session key under two policies p1 and p2, we will be able to produce an
encapsulation of the same session key for the policies p1 ∨ p2 and p1 ∧ p2. The achievement of an
homomorphic-policy ABKEM is the main contribution of this paper.

1.2 Contribution

As explained above, our main contribution is the definition and construction of Homomorphic-
Policy Attribute-Based Key Encapsulation Mechanisms (HP-ABKEM). To this aim

– we focus on homorphic policy and define attribute-based key encapsulation mechanisms
(ABKEM). Our construction of ABKEM relies on the Lewko-Waters ABE scheme [10]. ABKEM
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is very convenient to be used with a Data Encapsulation Method (DEM) for practical
applications which encrypt large contents or streams of data, such as the case of Pay-TV.

– we propose homomorphic-policy methods to combine ciphertexts for AND and OR operations
on policies. Our technique exploits special properties of LSSS for AND and OR operations
and transforms them in an efficient way of combining the corresponding encapsulations.

– we then propose an efficient randomization method for making any ciphertext (possibly
obtained from the above combinations) statistically indistinguishable from a fresh ciphertext
targeting the same policy. This is important for the security of the system.

Putting altogether, our final result gives an HP-ABKEM which is as efficient as the Lewko-Waters
ABE system.

1.3 Our Technique

While the homomorphic property for two group laws over the encrypted messages (usually called
fully homomorphic property) is quite difficult to achieve. Fortunately, achieving homomorphic
policy seems much more easy and efficient.

Our technique exploits specific structures of the LSSS-matrix and carries them on the com-
bination of encapsulations. The OR operation is relatively easy to get, because it essentially
corresponds to a concatenation of the encapsulations. However, the AND operation does require
a particular property on the LSSS-matrix, that we explain below.

Let us first briefly summarize the general method of constructing an LSSS-based ABE, adapted
to an ABKEM. For any policy p, expressed as a logic formula, an LSSS-matrix A ∈ Km×n is
generated such that each line x ∈ {1, . . . ,m} corresponds to an attribute, and from a set of
attributes that satisfies the policy p, one can do a linear combination on the corresponding lines
of the matrix A to reconstruct the vector (1, 0, . . . , 0). One then sets #»v ← (s, $, . . . , $)t and
the share-vector #»ν ← A · #»v for the secret s, where the vector #»v is completed with random
components. A linear combination that reconstructs the vector (1, 0, . . . , 0) leads to the same
linear combination on the share-vector #»ν = A · #»v that reconstructs the secret s. One can thus
encapsulate each element of the vector #»ν so that a legitimate user can reconstruct the session
key e(g, g)s in a pairing-friendly setting.

Now, from an encapsulation for the policy p1 with the session key e(g, g)s1 and an encapsulation
for the policy p2 with the session key e(g, g)s2 , our objective is to produce an encapsulation for the
policy p1 ∧ p2 with the session key e(g, g)s1+s2 . We first observe a property on the LSSS-matrix:
with the LSSS-matrix A1 ∈ Km×n associated to the policy p1 and the LSSS-matrix A2 ∈ Km×n

associated to the policy p2, the LSSS-matrix of A associated to a policy p1 ∧ p2 is of the following
form:

A∧ =

[
A1

1 A1
1 A∗1 0

0 −A1
2 0 −A∗2

]
where for any A, we denote A1 the first column and A∗ the matrix A without the first column
(i.e., A = A1‖A∗).

Looking at the first and the second column of the matrix A∧, the vector A1
1 is repeated

twice in the upper part, and in the bottom part, the corresponding block is 0‖ −A1
2. Therefore,

if we put s1 + s2 and −s2 as the two first components of the vector #»v , when combining the
resulting share-vector according to the known attributes, the upper part will first lead to the
secret s1+ s2− s2 = s1 and the bottom part will lead to the secret −s2. Consequently, in order to
produce the encapsulation of s1 + s2 under A∧, we only need to combine the encapsulation of s1
in A1 and the encapsulation of s2 in A2. The resulting share-vector is A · (s1 + s2,−s2, $, . . . , $)t.
However, as one could recover individually the secret s1 + s2 and −s2 with the appropriate
attributes in each sub-policies, but not necessarily for the same user, a collusion attack is possible.
We thus need a final randomization step to glue everything together.
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Finally, it is interesting to remark that performing homomorphic policy does not introduce
any extra cost for the final encapsulation, compared to producing an encapsulation from scratch
for the same final policy.

2 Definitions

2.1 Access Structure

For any application with limited access, one needs to define the access structure, which precises
which combinations of conditions grant access to the data or to the system.

Definition 1 (Access Structure).
Let P = {P1, P2, . . . , Pm} be a set of parties (human players or attributes). An access structure
in P is a collection A ⊆ 2P\{∅}. The sets in A are called the authorized sets, while the others
are called unauthorized sets.

When some minimal sets of parties are required to access the system (but any superset is good
too), only monotone access structures make sense, since one can always ignore any supplementary
party.

Definition 2 (Monotone Access Structure).
Let P = {P1, P2, . . . , Pm} be a set of parties and A an access structure in P. A is said monotone
if, for any subset B ⊆ C ⊆ P, when B ∈ A then C ∈ A.

2.2 Linear Secret Sharing Scheme

In order to control access rights according to a monotone access structure, the use of a secret
sharing scheme that spreads the secret key among several players is a classical technique. One
must use a secret sharing scheme that just allows authorized sets to reconstruct the secret key.
This is even better if the secret key is never fully reconstructed, but just in a virtual way to run
the restricted process (such as signature or decryption).

Definition 3 (Secret Sharing Scheme).
A secret sharing scheme over a set of parties P, for an access structure A over P, allows to share
a secret s among the players, with shares ν1, . . . , νm such that:

– any set of parties in A can efficiently reconstruct the secret s from their shares;
– any set of parties not in A has no information about the secret s from their shares.

A linear secret sharing scheme is quite appropriate to share a secret key in order to run the
restricted process in a distributed way, since many cryptographic primitives have such linear
properties.

Definition 4 (LSSS).
A Linear Secret Sharing Scheme (LSSS) over a field K and a set of parties P is defined by a
share-generating matrix A ∈ Km×n and a labeling map ρ : {1, . . . ,m} → P according to the access
policy A: for any I ⊂ {1, . . . ,m}, anyone can efficiently find a vector #»c ∈ Km with support I
such that #»c t ·A = (1, 0, . . . , 0) if and only if ρ(I) ∈ A.

In order to share s ∈ K, one chooses v2, . . . , vn
$← K and sets #»v ← (s, v2, . . . , vn)

t, then the
share-vector is #»ν ← A· #»v . One would like to be able to reconstruct s from a few coordinates of this
share-vector is #»ν . Being able to find such a vector #»c with support I is equivalent to reconstruct s for
the players satisfying ρ(I) only:

∑
i∈I ci ·νi =

∑m
i=1 ci ·νi =

#»c t · #»ν = #»c t ·A· #»v = (1, 0, . . . , 0)· #»v = s.
To give an example, we can refer to the LSSS proposed by Lewko-Waters [10]. It generates the
matrix A and the map ρ from any monotone policy p that is encoded as a boolean tree, with
binary AND and OR gates. One does not need to handle NOT gates, since one only considers
monotone policies. It is recalled in Appendix A. We describe it with matrices in Section 4.3, with
the proof in Appendix B.
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2.3 Attribute-Based Key Encapsulation Mechanism

In this paper, we extend ABE to Attribute-Based Key Encapsulation Mechanism (ABKEM), where
the ciphertext encapsulates a session key, later used to encrypt the payload, in a symmetric way.

Definition 5 (ABKEM). An attribute-based key encapsulation mechanism (ABKEM) over an
attribute space A is defined by four algorithms:

– Setup(λ): Takes as input the security parameter, and outputs the master secret key msk and
the public key pk;

– KeyGen(msk, id, a): Takes as input the master secret key msk, the identity id of a player, and
an attribute a ∈ A, to output the private decryption key dkaid for this attribute a;

– Encaps(pk, p): Takes as input the public key pk and a policy p, to output a key K and an
encapsulation E of this key;

– Decaps(dk, E): Takes as input a decryption key and an encapsulation E, to output the
encapsulated key K or ⊥.

A decryption key will indifferently mean a key dkaid for a specific user id and a specific attribute
a, or a set dkAid of keys specific to a user id, but for many attributes a ∈ A ⊂ A. The correctness
property is: for any (msk, pk)← Setup(λ), dkid = {dkaid ← KeyGen(msk, id, a)}a∈A, and (K,E)←
Encaps(pk, p), Decaps(dkid, E) = K if A satisfies the policy p. The main security property is the
usual indistinguishability (IND), which should prevent collusions of adaptively chosen players,
that can also get decryption keys for adaptively chosen attributes:

Definition 6 (IND for ABKEM).
Let us consider an ABKEM over an attribute space A. No adversary A should be able to break the
following security game against a challenger:

– Initialization: the challenger runs the setup algorithm (msk, pk)← Setup(λ), and provides pk
to the adversary A;

– Key Queries: the adversary A can ask KeyGen-queries, for any id and any attribute a of its
choice to get dkaid;

– Challenge: the adversary A provides a policy p to the challenger that runs (K,E) ←
Encaps(pk, p), and sets Kb ← K and K1−b as a random key, for a random bit b. It provides
(E,K0,K1) to the adversary;

– Key Queries: the adversary A can again ask KeyGen-queries of its choice;
– Finalize: the adversary A outputs its guess b′ on the bit b.

We also define the event Cheat, which means that a user (with some identity id) owns a set of
attributes A (the set of all the attributes a asked to a Key Query for id) that satisfies p: in such a
case, the adversary can trivially guess b. Hence, we only allow adversaries such that Pr[Cheat] = 0.
We then define Advind(A) = |2×Pr[b′ = b]− 1|, and say that an ABKEM is (t, ε)-adaptively secure
if no adversary A running within time t can get Advind(A) ≥ ε.

We stress that everything is adaptive in this definition: the identity and the attributes asked to the
key queries, and the policy asked for the challenge query. However, we are in the chosen-plaintext
scenario, without access to any decryption/decapsulation oracle.

3 Homomorphic-Policy

3.1 Definition

While CP-ABE allows to specify the policy at the encryption time, which is also the case for our
definition of ABKEM, the sender may not be aware of the policy yet. We thus suggest to exploit
an homomorphic property on the policy: we would like to allow the derivation of an encapsulation
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of K under a combination p = p1 ∧ p2 or p = p1 ∨ p2 from the encapsulations of K under the
policies p1 and p2 on the attributes in A, without knowing K (which has already been used to
encrypt the payload).

With such an homomorphism on the policies, from the encapsulations of a common key K
under all the attributes a ∈ A, one could publicly generate an encapsulation of K under any policy
on A: as illustrated on Figure 2, from the encapsulations {Ei}i of K for the attributes A = {ai},
one can derive the encapsulation Ep of K under any policy p, encoded as a binary tree with AND
(∧) and OR (∨) gates. Again, we only consider monotone policies, hence the absence of NOT
gates. On attributes, if one wants to consider the negation (or absence) of some attribute a, one
has to define a second attribute a′ that is exclusive with a, so that, if p = (a), then ¬p = (a′).

∨ (→ Ep)

∧ ∨

∨ ∧ ∧ Ea8

E1 E2 E3 E4 ∨ E7

E5 E6

Fig. 2. Derivation of Ep from {Ei}, for p = ((a1 ∨ a2) ∧ (a3 ∧ a4)) ∨ (((a5 ∨ a6) ∧ a7) ∨ a8)

To achieve this goal, we just need to be able to combine two encapsulations of K under p1
and p2 in order to derive the encapsulation of K under p∨ = p1 ∨ p2 and under p∧ = p1 ∧ p2. The
global encapsulation under a more general policy can then be recursively built.

Definition 7 (HP-ABKEM).
An homomorphic-policy attribute-based key-encapsulation mechanism (HP-ABKEM) over an
attribute space A is an ABKEM (see Definition 5), with a more specific encapsulation algorithm
and two additional algorithms for the homomorphism:

– Encaps(pk, P ): Takes as input the public key pk, a list of policies P = (pi)i, to output a key
K and the encapsulations Ei of this key under the policies pi’s;

– Combine(pk, gate, E1, E2): Takes as input the public key pk as well as two encapsulations E1

and E2, and a gate gate ∈ {∧,∨}, to output an encapsulation under the combination of the
initial policies for E1 and E2;

– Rand(pk, E) Takes as input the public key pk as well as an encapsulation, to output a new
encapsulation (of the same key under the same policy).

The intuition behind the new Encaps algorithm is that we want to be able to encapsulate the
same key K under various policies. We thus opt for an encapsulation algorithm that takes as
input all the policies. The correctness properties are:

– if (Ei)i ← Encaps(pk, (pi)i) are common encapsulations of a key K under the pi’s, then for
any i, j, E ← Combine(pk, gate, Ei, Ej) is an encapsulation of the same key K, but under the
policy p = pi gate pj ;

– for any encapsulation E of some key K under a policy p, E′ ← Rand(pk, E) follows the same
distribution as a fresh encapsulation of K under the policy p.

Note that we do not expect the combination to hide the structure of the initial encapsulations.
The randomization will do this work, but there is no need to do it at each step, hence the
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separation of the two processes: one will iteratively combine the encapsulations in order to obtain
the encapsulation under the appropriate policy, and then the randomization will finalize the
process (see Figure 3).

∨

∧ ∨

∨ ∧ ∧ a8

a1 a2 a3 a4 ∨ a7

a5 a6

∨

∧ ∨

∨ ∧ ∧ a8

a1 a2 a3 a4 ∨ a7

a5 a6

⇐⇒

Combination + Randomization

Fig. 3. Randomization Process in Combination

3.2 Security

As explained in the Pay-TV scenario in the introduction, we have three players: the content
provider (or the sender), the manager of the access policy (or the combiner) and the receiver.
We thus expect the sender to encapsulate a key K under all the attributes, and to encrypt the
payload under K; the combiner then generates the encapsulation of K under the appropriate
policy; so that only the legitimate receivers can decapsulate and decrypt the payload.

When the adversary plays the role of the receivers, the required security notion is exactly the
previous indistinguishability: given several keys for various attributes, and even several identities
(to model collusions), an adversary should not be able to get any information about a key
encapsulated under a policy that is not satisfies by any of the users under its control.

On the other hand, the sender does not want to trust the combiner: while the former sends
K encapsulated under many attributes (or more generally many policies), the latter should not
be able to distinguish K from a random key. Hence the new indistinguishability with multiple
encapsulations (m− IND), but without being able to get any decryption key, hence the no-key
attack (NKA).

Definition 8 (m− IND− NKA for ABKEM).
Let us consider an ABKEM over an attribute space A. No adversary A should be able to break the
following security game against a challenger:

– Initialization: the challenger runs the setup algorithm (msk, pk)← Setup(λ), and provides pk
to the adversary A;

– Challenge: the challenger runs (K, (Ei)i)← Encaps(pk,A), and sets Kb ← K and K1−b as a
random key, for a random bit b. It provides ((Ei)i,K0,K1) to the adversary;

– Finalize: the adversary A outputs its guess b′ on the bit b.

We then define Advm−ind−nka(A) = |2× Pr[b′ = b]− 1|, and say that an ABKEM is (t, ε)-m− IND
if no adversary A running within time t can get Advm−ind−nka(A) ≥ ε.

We stress that now, nothing is adaptive, since the adversary cannot get decryption keys, but gets
the encapsulations of the same key K under all the individual attributes. We also remain in the
chosen-plaintext scenario, without access to any decryption/decapsulation oracle. In addition,
since the adversary is the combiner that receives the key K encapsulated under every attribute,
we do not allow any collusion with a user: any attribute would be enough to get K and break the
security game. In real-life, such a combiner would not be a critical party since it does not know
any long-term secret. An ephemeral corruption would just impact the privacy of the ephemeral
content.
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4 Construction

4.1 Modified Lewko-Waters Scheme

We present here a revised version of the ABE scheme from [10]. We actually relax it in two
ways: we do not exploit the decentralized version and so we consider that all the attributes are
managed by the same entity (but we could keep the decentralized version); we consider a Key
Encapsulation Mechanism (KEM) instead of an encryption scheme, which just encaps a session
key. However, we still use an LSSS to realize the access policy, and pairing techniques to ensure
collusion resilience: we consider a symmetric pairing e : G×G −→ GT , where the groups G and
GT will be of composite order N = q1q2q3, with three large prime integers q1, q2, and q3. Let us
first describe our variant of ABKEM.

4.2 Description

– Setup(λ): One first generates a symmetric pairing e : G×G −→ GT for groups of composite
order N = q1q2q3 (of length λ). One also generates a generator g1 of the subgroup G1 ⊂
G of order q1 and a hash function H : {0, 1}∗ −→ G. Then, for each attribute a, the
authority specifies the pair of secret/public keys, respectively ska = (αa, ya) and pka = (Ga =
e(g1, g1)

αa , ga = gya1 ). The master secret key msk is the concatenation of the ska’s, and the
public key pk contains N , g1 and H, together with the concatenation of the pka’s.

– KeyGen(msk, id, a): From msk = {ska}, id and a, the authority outputs dkaid = gαa
1 H(id)ya .

– Encaps(pk, P ): From the public key pk and a set P of policies, one first chooses some random
s

$← ZN and sets the symmetric encapsulated key K ← e(g1, g1)
s. Then, for each p ∈ P , we

process the following encapsulation: from the LSSS matrix A ∈ Km×n and the associated
labeling map ρ onto the attributes describing the access structure defined by the policy
p, we set #»v = (s, v2, . . . , vn) and #»w = (0, w2, . . . , wn), with vk, wk

$← ZN for k = 2, . . . , n

and #»r
$← ZmN . We build the share vectors #»ν = A · #»v and #»ω = A · #»w. Eventually, for

each line x ∈ {1, . . . ,m} of the matrix A, we construct the encapsulation using the keys
pkρ(x) = (Gρ(x), gρ(x)) associated to the attribute ax = ρ(x) involved in the policy p:

E1,x = e(g1, g1)
νx ·Grxρ(x)

E2,x = grx1 E3,x = gωx
1 · g

rx
ρ(x)

The algorithm returns Ep = {(E1,x, E2,x, E3,x)}x for each p ∈ P .
– Decaps(dkid, Ep), where dkid = (dkaid) for the attributes owned by id: First, the user must

find a vector #»c ∈ Km such that #»c t ·A = (1, 0, . . . , 0) and the support I of the non-zero
components of #»c links to a set of attributes owned by the user. Then, for each x ∈ I, the
user computes Fx = E1,x · e(H(id), E3,x)/e(dk

ρ(x)
id , E2,x). He finally gets K by combining with

the vector #»c : K ←
∏
x∈I F

cx
x .

The latter reconstruction works since∑
x∈I

cx · νx =
m∑
x=1

cx · νx = #»c t · #»ν

= #»c t ·A · #»v = (1, 0, . . . , 0) · #»v = s∑
x∈I

cx · ωx =
m∑
x=1

cx · ωx = #»c t · #»ω

= #»c t ·A · #»w = (1, 0, . . . , 0) · #»w = 0



9

In addition, for each x ∈ I,

Fx = E1,x · e(H(id), E3,x)/e(dk
ρ(x)
id , E2,x)

= e(g1, g1)
νxe(H(id), g1)

ωx .

And so, the final combination leads to∏
x∈I

F cxx =
∏
x∈I

(e(g1, g1)
νxe(H(id), g1)

ωx)cx

= e(g1, g1)
#»c t· #»ν · e(H(id), g1)

#»c t· #»ω = e(g1, g1)
s.

One should note that for this construction to work, the map ρ needs to be an injection. In practice,
this is not a real issue, since one can simply duplicate the attributes and provide multiple keys to
users.

4.3 Construction of the LSSS

In this section, we detail a construction of the LSSS, in an iterative way, from a boolean tree
(with only OR and AND gates).

First, we have to start from an LSSS for a simple policy p = (ai), for some i (i.e., a unique
attribute):

Ai = (1) ρ(1) = i.

Then we explain how to combine two policies p1 and p2, represented by the LSSS’s (A1, ρ1) and
(A2, ρ2) respectively, into the policies p∧ = p1 ∧ p2 and p∨ = p1 ∨ p2 with LSSS’s (A∧, ρ∧) and
(A∨, ρ∨) respectively.

In the following, for any A, we denote A1 the first column et A∗ the matrix A without the
first column (i.e., A = A1‖A∗).

Proposition 9. Let (A1, ρ1) and (A2, ρ2) be two LSSS’s for the policies p1 and p2. Then we can
build the LSSS’s (A∧, ρ∧) and (A∨, ρ∨) for the policies p∧ = p1 ∧ p2 and p∨ = p1 ∨ p2 as follows

A∨ =

[
A1

1 A∗1 0
A1

2 0 A∗2

]
A∧ =

[
A1

1 A1
1 A∗1 0

0 −A1
2 0 −A∗2

]
If we label the rows of the matrices from 1 to m1 +m2, where A1 ∈ Km1×n1 and A2 ∈ Km2×n2,
we have

ρ∧ = ρ∨ : x 7→
{
ρ1(x), if x ≤ m1

ρ2(x−m1), if x ≥ m1 + 1

This construction is not really new, since it was described in [11] in a more generic way. We need
this explicit description for the security analysis of our ABKEM. The correctness of this LSSS
construction is provided in the Appendix B. Up to a re-ordering of the rows and columns of
the matrices, this is also the same construction obtained from the algorithm presented in the
Appendix A from [10]. A comparison of the two methods is indeed proposed in the Appendix C.

4.4 Homomorphic Policy

Our main goal is now to show that this iterative construction of the LSSS can be applied to our
ABKEM, starting from encapsulations of the same key K under every attribute. This will follow
from the homomorphic-policy property.

We recall that in the ABKEM, #»ν = A · #»v is a secret sharing of a random scalar s, while
#»ω = A · #»w is a secret sharing of 0, the components νx and ωx being hidden in E1,x and E3,x by
Grxρ(x) and g

rx
ρ(x) respectively. Because of the linear property of the LSSS, by concatenating or by



10

adding the shared, we either obtain the OR or the AND policies of two encapsulations E(1) and
E(2):

Share-Vectors Encapsulations[
#»ν 1
#»ν 2

]
←→ E(1) ∪ E(2)

#»ν 1 +
#»ν 2 ←→ E(1) · E(2)

Of course, the same applies on the shares #»ω of 0, but we focus on the shares #»ν of the random s

One Secret under two Policies Let us be given two encapsulations E(1) and E(2) of the same
secret value K = e(g1, g1)

s under the policies p1 and p2, represented by the LSSS (A1, ρ1) and
(A2, ρ2).

The construction thus used, for i = 1, 2, the share-vectors #»ν i = (νi,1, . . . , νi,mi) = Ai · #»v i,
with #»v i = (s, vi,2, . . . , vi,ni)

t. Using

A∨ =

[
A1

1 A∗1 0
A1

2 0 A∗2

]
and #»v = (s, v1,2, . . . , v1,n1 , v2,2, . . . , v2,n2)

t: #»ν =

[
#»ν 1
#»ν 2

]
.

From attributes satisfying pi, under the LSSS property, one can efficiently find a vector
#»c i = (ci,1, . . . , ci,mi)

t ∈ Km such that #»c ti ·Ai = (1, 0, . . . , 0). By multiplying this vector on the
appropriate half of #»ν , one can get s:

(c1,1, . . . , c1,m1 , 0, . . . , 0) · #»ν = #»c t1 · #»ν 1 = s

(0, . . . , 0, c2,1, . . . , c2,m2) · #»ν = #»c t2 · #»ν 2 = s.

It will be used for the disjunction of policies.

Two Secrets under different Policies Let us be given two encapsulations E(1) and E(2) of
two secret values K1 = e(g1, g1)

s1 and K2 = e(g1, g1)
s2 under the policies p1 and p2, represented

by the LSSS (A1, ρ1) and (A2, ρ2).
The construction thus used, for i = 1, 2, the share-vectors #»ν i = (νi,1, . . . , νi,mi) = Ai · #»v i,

with #»v i = (si, vi,2, . . . , vi,ni)
t. Using

A∧ =

[
A1

1 A1
1 A∗1 0

0 −A1
2 0 −A∗2

]
and #»v = (s1+s2,−s2, v1,2, . . . , v1,n1 , v2,2, . . . , v2,n2)

t, one gets again #»ν =

[
#»ν 1
#»ν 2

]
. This combination

will be used for the conjunction of policies, but only with the same secret. Note that the produced
encapsulation must be randomized to perform the new policy, otherwise there is a colluding
attack: with independent keys for each policy, two players can independently get s1 and s2, and
can then combine them to get s1 + s2.

Two Secrets under the same Policy Let us be given two encapsulations E(1) and E(2) of
two secret values K1 = e(g1, g1)

s1 and K2 = e(g1, g1)
s2 under the same policy p, represented by

the LSSS (A, ρ).
The construction thus used the share-vectors #»ν 1 and #»ν 2 of the random scalars s1 and s2

respectively under the same policy p. Then, one can see #»ν = #»ν 1 +
#»ν 2 as a share-vector of

s = s1 + s2 under the policy p, since #»ν = A · ( #»v 1 +
#»v 2). Indeed, from attributes satisfying p, one

can efficiently find a vector #»c ∈ Km such that #»c t ·A = (1, 0, . . . , 0):
#»c t · #»ν = #»c t ·A · ( #»v 1 +

#»v 2)

= (1, 0 . . . , 0) · ( #»v 1 +
#»v 2) = s1 + s2.

This combination will be used for the randomization, with s2 = 0.
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4.5 Security

In [10], Lewko and Waters proved their ABE scheme to be indistinguishable under several
assumptions on the composite order pairing and the condition that ρ is injective. This easily leads
to the IND security for the above variant of ABKEM, even for adaptive KeyGen-queries. Hence,
this ABKEM construction achieves the IND security level.

In addition, if one looks at the above construction of the LSSS-matrix, for p = a1 ∨ . . . ∨ ak,
then A = (1, . . . , 1)t and #»ν = (s, . . . , s)t: from an encapsulation E of the key K = e(g1, g1)

s

under the policy p, one can easily extract the encapsulations Ei of the same K, under the policies
pi = (ai) respectively: indeed, each triple (E1,x, E2,x, E3,x) is a simple encapsulation of K under
ax = ρ(x).

Hence, from the security result of their ABE, we also get the m− IND security of our variant,
if the keys obtained by the adversary do not satisfy any of the sub-policies p1 or p2. In our
m− IND− NKA security level, no keys can be obtained.

As already noted, in [10], Lewko and Waters assume a one-use restriction on attributes
throughout the proof: this means that the row labeling map ρ of the challenge ciphertext access
matrix (A, ρ) must be injective. The reason is that, if an attribute is used twice in the access
matrix, then there will appear an implicit relation between the randomnesses associated to the
corresponding two lines of the matrix and the proof does not go through anymore. To overcome
this issue, Lewko and Waters suggested to associate k independent attributes to any attribute
a, where k is the bound number of use of a in a policy. Our scheme inherently has the same
limitation.

4.6 Homomorphic Policy

Let us now see how this impacts on the encapsulations, when one wants to do disjunctions and
conjunctions of policies.

Disjunctions Let us be given two encapsulations E(1) and E(2) of the same key K = e(g1, g1)
s

under the policies p1 and p2, represented by the LSSS (A1, ρ1) and (A2, ρ2). We want to make
an encapsulation of K under the policy p1 ∨ p2. Using the construction of the share-vectors from
Section 4.4, which applies on both #»ν 1,

#»ν 2 and #»ω 1,
#»ω 2, we know that the resulting encapsulation

should use
#»ν =

[
#»ν 1
#»ν 2

]
#»ω =

[
#»ω 1
#»ω 2

]
As a consequence, the resulting encapsulation is Ep1∨p2 = {(E(1)

j,x , E
(2)
j,x )j=1,2,3}x∈A.

Conjunctions Let us be given two encapsulations E(1) and E(2) of the same key K = e(g1, g1)
s

under the policies p1 and p2, represented by the LSSS (A1, ρ1) and (A2, ρ2). We want to make
an encapsulation of K under the policy p1 ∧ p2. Using the construction of the share-vectors from
Section 4.4, which applies on both #»ν 1,

#»ν 2 and #»ω 1,
#»ω 2, we know that the resulting encapsulation

should use
#»ν =

[
#»ν 1
#»ν 2

]
#»ω =

[
#»ω 1
#»ω 2

]
However, this will contain the key K2 = e(g1, g1)

2s. We thus have to use square-roots to avoid
that: the resulting encapsulation is Ep1∧p2 = {((E(1)

j,x )
1/2, (E

(2)
j,x )

1/2)j=1,2,3}x∈A.
Note that even if in the Lewko-Waters’ construction there is a modulus N = q1q2q3 that is

hard to factor, this is the order of the group. Hence g1/2 = gα where α = (N + 1)/2.
As already noted, collusion is possible. But this is even worse in this case since we are using

s = s1 = s2: just satisfying one of the two policies, one can recover K1/2 = e(g1, g1)
s/2, which

thereafter easily leads to K. We thus need to randomize the encapsulation, in order to glue
together the policies.
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Randomization If one looks in details the description of the Encaps algorithm, there are 4 kinds
of randomness:

– s, that defined the encapsulated key K = e(g1, g1)
s;

– vk, wk
$← ZN for k = 2, . . . , n, to define #»v and #»w;

– #»r
$← ZmN .

Let us start from any encapsulation E(1) of K under a policy p, with

E
(1)
1,x = e(g1, g1)

ν
(1)
x ·Gr

(1)
x

ρ(x)

E
(1)
2,x = gr

(1)
x

1 E
(1)
3,x = gω

(1)
x

1 · gr
(1)
x

ρ(x)

for each ax = ρ(x) involved in the policy p, where #»ν (1) = A · #»v (1) and #»ω (1) = A · #»w(1).
We now define a new fresh encapsulation E(2):

E
(2)
1,x = e(g1, g1)

ν
(2)
x ·Gr

(2)
x

ρ(x)

E
(2)
2,x = gr

(2)
x

1 E
(2)
3,x = gω

(2)
x

1 · gr
(2)
x

ρ(x)

where #»ν (2) = A · #»v (2) and #»ω (2) = A · #»w(2), for #»v (2) = (0, v′2, . . . , v
′
n)
t and #»w(2) = (0, w′2, . . . , w

′
n)
t,

with v′k, w
′
k

$← ZN for k = 2, . . . , n, and #»r (2) $← ZmN . This is actually a fresh random encapsulation
of K(2) = 1GT

under the policy p. It can be computed from the public key pk that contains N , g1,
and the keys pka = (Ga, ga), for all the attributes, as would be generated a fresh encapsulation of
K = 1GT

.
Eventually, the new encapsulation E = {(E(1)

1,x ·E
(2)
1,x, E

(1)
2,x ·E

(2)
2,x, E

(1)
3,x ·E

(2)
3,x)}x is a truly random

encapsulation of the same K under the policy p.

Conclusion

We proposed a new feature for ABE, with the homomorphic policy. It allows to separate the
roles of the sender and the access right manager. This is already a very interesting property in
the Pay-TV context. One limitation is the need to know the policies when operating the crucial
randomization steps. In our construction, we thus assume the policy is implicitly provided with
the encapsulation. Providing a randomization independent to the policy is an open problem.
Such a solution, or even the hidden policy property, would find even more application, as the
management of medical files, where the doctor can add an access restriction to a patient’s file
without knowing the original access policy.
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A Example of LSSS

We recall the LSSS construction from a predicate [10]: Let p be a predicate, we build the
corresponding binary tree and we apply the following algorithm to build the share-generating
matrix A.
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Algorithm 1 Conversion of Predicate Binary Tree into an LSSS Share-Generating Matrix
Require: Predicate binary tree

c← 1
A← [∅]
Associate (1) to the root
Do a Depth First Search in the tree, from the root, and
for unvisited nodes do

Set v to the vector associated to the node
if node = ∨ then

Associate v||(0, ..., 0)︸ ︷︷ ︸
c

to the children

if node = ∧ then
c← c+ 1
Associate v||(0, ..., 0, 1)︸ ︷︷ ︸

c

to one children (fill with 0 only if necessary)

Associate (0, ..., 0,−1)︸ ︷︷ ︸
c

to the other children

Create the matrix A with the rows corresponding to the vectors associated to the leaves (extend the vectors
with 0 at the end when necessary)
return A

B Proof of the LSSS

In this appendix, we prove the Proposition 9, that we recall here:

Let (A1, ρ1) and (A2, ρ2) be two LSSS’s for the policies p1 and p2. Then we can build the
LSSS’s (A∧, ρ∧) and (A∨, ρ∨) for the policies p∧ = p1 ∧ p2 and p∨ = p1 ∨ p2 as follows

A∨ =

[
A1

1 A∗1 0
A1

2 0 A∗2

]
A∧ =

[
A1

1 A1
1 A∗1 0

0 −A1
2 0 −A∗2

]
If we label the rows of the matrices from 1 to m1 + m2, where A1 ∈ Km1×n1 and
A2 ∈ Km2×n2 , we have

ρ∧ = ρ∨ : x 7→
{
ρ1(x), if x ≤ m1

ρ2(x−m1), if x ≥ m1 + 1

But first, let us remark that with the initialization A = (1) and ρ(1) = i for a simple policy
p = (ai), this is indeed an LSSS:

– ν1 = s, where ν1 is the share of the player i (or with attribute ai). The secret s can be
revocered;

– Without ν1, no information is leaked about s.

Proof. Let us now prove the combinations of LSSS lead to LSSS for the combined policies.

Disjunctions We assume that for some attributes A, there is I such that ρ(I) ⊂ A satisfies the
policy p1 ∨ p2. This also means there is I ′ ⊆ I such that ρ(I ′) ⊂ A satisfies the policy pb, for b = 1
or b = 2: from the LSSS (Ab, ρb), there is #»c b with support I ′ such that #»c tb ·Ab = (1, 0, . . . , 0).
Let us take the other vector #»c t3−b ← (0, . . . , 0)t and build

#»c =

[
(2− b) #»c 1

(b− 1) #»c 2

](
=

[
#»c 1

0

]
or =

[
0

#»c 2

])
.

This vector also has the same support I ′ ⊆ I as #»c b. The first component of #»c t ·A∨ is (2− b) #»c t1 ·
A1

1 + (b − 1) #»c 2 ·A1
2, which is #»c t1 ·A1

1 = 1 if b = 1, or #»c 2 ·A1
2 = 1 if b = 2. The next block of
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n1 − 1 components is (2− b) #»c t1 ·A∗1, which is clearly (0, . . . , 0) if b = 2, and #»c t1 ·A∗1 = (0, . . . , 0)
if b = 1. The last block of n2 − 1 components is also also (0, . . . , 0).

In the other direction, in order to be able to distinguish s from a random value, given the
coordinates of #»ν in I, one must be able to find #»c such that #»c t ·A∨ = (1, 0, . . . , 0), with support

I. Of course, we can split #»c =

[
#»c 1
#»c 2

]
.

#»c t ·A∨ = ( #»c t1 ·A1
1 +

#»c t2 ·A1
2,

#»c t1 ·A∗1, #»c t2 ·A∗2).

As a consequence, #»c t1 ·A1
1 +

#»c t2 ·A1
2 = 1 and #»c t1 ·A∗1 = (0, . . . , 0) and #»c t2 ·A∗2) = (0, . . . , 0). At

least, one of the two elements #»c t1 ·A1
1 or #»c t2 ·A1

2 is non-zero. Let us assume this is the first one,
and it is equal to α ∈ K∗: the vector

#»

c′ 1 ← α−1 · #»c 1 satisfies
#»

c′ t1 ·A1 = (1, 0, . . . , 0). This vector
has a support I ′ ⊆ I, and thus (from the LSSS property) ρ(I ′) must satisfy the policy p1, and so
does ρ(I) because of the monotonicity.

Conjunctions We assume that for some attributes A, there is I such that ρ(I) ⊂ A satisfies the
policy p1 ∧ p2. This also means there is Ib ⊆ I such that ρ(Ib) ⊂ A satisfies the policy pb, for
b = 1, 2: from the LSSS (Ab, ρb), there is #»c b with support Ib such that #»c tb ·Ab = (1, 0, . . . , 0). Let

us build #»c =

[
#»c 1
#»c 2

]
.

#»c t ·A∧ = ( #»c t1 ·A1
1,

#»c t1 ·A1
1 − #»c t2 ·A1

2,
#»c t1 ·A∗1,− #»c t2 ·A∗2)

= (1, 1− 1, (0, . . . , 0), (0, . . . , 0)) = (1, 0, 0, . . . , 0)

This vector #»c has a support I1 ∪ I2 ⊆ I.
In the other direction, in order to be able to distinguish s from a random value, given the

coordinates of #»ν in I, one must be able to find #»c such that #»c t ·A∧ = (1, 0, . . . , 0). Of course, we

can split #»c =

[
#»c 1
#»c 2

]
:

#»c t ·A∧ = ( #»c t1 ·A1
1,

#»c t1 ·A1
1 − #»c t2 ·A1

2,
#»c t1 ·A∗1,− #»c t2 ·A∗2).

Then #»c t1 ·A1
1 = 1 and #»c t1 ·A1

1− #»c t2 ·A1
2 = 0, which also implies #»c t2 ·A1

2 = 1; #»c t1 ·A∗1 = (0, . . . , 0)
and #»c t2 ·A∗2 = (0, . . . , 0).

We thus have both #»c t1 ·A1 = (1, 0, . . . , 0) and #»c t2 ·A2 = (1, 0, . . . , 0) and the supports of #»c 1

and #»c 2 are I1 and I2 included in I. From the LSSS property ρ(Ib) must satisfy the policy pb, for
b = 1, 2, and so does ρ(I) because of the monotonicity. As a consequence, ρ(I) satisfies the policy
p1 ∧ p2.

C Construction of the LSSS

In this section, we illustrate the two methods to construct the LSSS for the policy p = ((a1 ∨
a2) ∧ (a3 ∧ a4)) ∨ (((a5 ∨ a6) ∧ a7) ∨ a8).

Using our combination of matrices, starting from the leaves, associated to the matrix [1], and
going go back to the root, we obtain the construction on Figure 4.

Using Lewko-Waters’ algorithm, we get the tree and the matrix described on Figure 5. This
algorithm explores the tree following nodes corresponding to binary gates (i) and associates
vectors with values in {−1, 0, 1} to the child nodes. The vectors linked to leaves form the final
matrix.

The matrices obtained are equivalent: columns can just differ with the sign. Indeed, if there
exists #»c such that #»c t ·A = (1, 0, . . . , 0), changing the sign of a column of A does not impact the
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a1 : [1]

a2 : [1]

a3 : [1]

a4 : [1]

a5 : [1]

a6 : [1]

a7 : [1]

a8 : [1]

∨ :

[
1
1

]

∧ :

[
1 1
0 −1

]

∨ :

[
1
1

]
∧ :


1 1 0
1 1 0
0 −1 −1
0 0 1



∧ :

1 1
1 1
0 −1


∨ :


1 1
1 1
0 −1
1 0


∨ :



1 1 0 0
1 1 0 0
0 −1 −1 0
0 0 1 0
1 0 0 1
1 0 0 1
0 0 0 −1
1 0 0 0



Fig. 4. Matrix-Based Construction

1(1)

1(2) 1(5)

11(3) 0-1(4) 100(6) 100

11 11 0-11 00-1 1001(7) 000-1

1001 1001

−→



1 1 0 0
1 1 0 0
0 −1 1 0
0 0 −1 0
1 0 0 1
1 0 0 1
0 0 0 −1
1 0 0 0



Fig. 5. Lewko-Waters’s Construction

support of #»c : changing the sign of the first column needs changing the sign of #»c , while changing
the sign of the other columns does not impact #»c at all.

The matrices also have the same size: m rows for n+ 1 columns where m is the numbers of
literals in the predicate p and n is the number of AND gates. If this is well known for the matrices
made from Lewko-Waters’s method, it is easy to see it with our method too, by induction. Let
A1 and A2 be two LSSS matrices, with respectively n1 and n2 columns, for the policies p1 and
p2, with respectively n1 and n2 AND gates. Following our construction, the new LSSS matrices
A∨ and A∧ have respectively n1 + n2 and n1 + n2 + 1 columns, and their associated policies
p1 ∨ p2 and p1 ∧ p2 respectively have n1 + n2 and n1 + n2 + 1 AND gates. Note that we start
from the atomic predicates p = (ai), and we assume them all being distinct.


