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Abstract. True random number generators (TRNGs) are essential for
cryptographic systems, and they are usually evaluated by the concept
of entropy. In general, the entropy of a TRNG is estimated from its s-
tochastic model, and reflected in the statistical results of the generated
raw bits. Oscillator-based TRNGs are widely used in practical crypto-
graphic systems due to its elegant structure, and its stochastic model has
been studied in different aspects. In this paper, we investigate the appli-
cability of the different entropy estimation methods for oscillator-based
TRNGs, including the bit-rate entropy, the lower bound and the approx-
imate entropy. Particularly, we firstly analyze the two existing stochastic
models (one of which is phase-based and the other is time-based), and
deduce consistent bit-rate entropy results from these two models. Then,
we design an approximate entropy calculation method on the output raw
bits of a simulated oscillator-based TRNG, and this statistical calcula-
tion result well matches the bit-rate entropy from stochastic models. In
addition, we discuss the extreme case of tiny randomness where some
methods are inapplicable, and provide the recommendations for these
entropy evaluation methods. Finally, we design a hardware verification
method in a real oscillator-based TRNG, and validate these estimation
methods in the hardware platform.

Keywords: Oscillators, true random number generators, entropy esti-
mation, stochastic model

1 Introduction

Random number generators (RNGs) are widely used in cryptographic systems
to generate sensitive parameters, such as keys, seeds of pseudo-random num-
ber generators, and initialization vectors. The security of many cryptographic
schemes and protocols is built on the randomness of RNGs. The output of a
RNG is expected to be a bit sequence with the properties of unbiasedness, inde-
pendence and unpredictability. Statistical tests (such as NIST SP 800-22 [13] and
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Diehard [11]) cannot evaluate the unpredictability of the sequence, as determin-
istic sequences with good statistical properties are able to pass the statistical
tests.

The concept of entropy, which measures the uncertainty in bits (e.g., bit-
rate entropy), is used to evaluate the unpredictability of a RNG. For a true
RNG (TRNG), the predictability comes from the randomness of physical noises.
The international standard ISO/IEC 18031 [7] and Germany standard AIS 31
[8] recommend to establish the entropy estimator with a stochastic model for
TRNG evaluation. The stochastic model describes the extraction process from
physical random noises to digitized random bits based on reasonable physical
assumptions.

Oscillator-based sampling is a typical structure adopted by many TRNG
designs, and the stochastic models of oscillator-based TRNGs have been well
studied in recent years. To figure out the entropy of oscillator-based TRNGs,
Killmann and Schindler [9] established a common stochastic model by a time-
based approach, and gave a tight lower bound of the entropy; using the similar
approach, Ma et al. [10] presented a calculation method to obtain the precise
entropy. In addition, Amaki et al. [1] calculated the probabilities of certain bit
patterns by using a Markov state transition matrix, but they evaluated the
security using the Poker test [6] rather than entropy estimation. Baudet et al. [2]
proposed a phase-based approach and provided a concise analytical formula for
the entropy calculation (including the n-bit entropy and the lower bound). The
entropy can be rapidly figured out by substituting the TRNG design parameters,
including the jitter ratio and the frequencies of the sampling and sampled signals.
This formula is then employed to estimate the entropy for a sufficient-entropy
TRNG design [4].

While the entropy is estimated with these stochastic models based on the
TRNG design parameters, the approximate entropy (ApEn) is obtained statis-
tically based on the output bit sequence of a TRNG. ApEn is calculated by
comparing the distributions of m-bit and (m+1)-bit blocks in the bit sequence.
However, the parameterm in ApEn shall be chosen carefully to trade off between
the accuracy of entropy estimation and the computation complexity.

Although various entropy estimation methods have been proposed in litera-
ture, a comprehensive and systematical study for their accuracy and applicability
(e.g., the consistency of different methods, the estimation error between theory
and experiment, the extreme cases of design parameters) is still lacking. In this
paper, we investigate the applicability of different entropy calculation methods
for oscillator-based TRNGs, including the bit-rate entropy, the lower bound and
the approximate entropy. Particularly, we make the following contributions.

– We present two bit-rate entropy calculation methods based on the time-
based and phase-based n-bit entropy stochastic models [2, 10], respectively.
The results are analyzed, and we deduce consistent bit-rate entropy results
from these two models by expanding the original analytical expression.

– We propose an approximate entropy calculation method for the output bit
sequence of oscillator-based TRNGs, where the parameter m is obtained
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from the autocorrelation coefficient of the bit sequence. The ApEn calcula-
tion result of a simulated oscillator-based TRNG well matches the bit-rate
entropy from stochastic models, which confirms the correctness of the theo-
retical results.

– We investigate the applicability of these entropy estimation methods in the
extreme case with tiny randomness (i.e., the accumulated jitter is very small
within the sampling interval). As it is possible to make an overestimation
of the entropy in such case, we provide an alternative method to acquire a
conservative estimation for the entropy.

– We design a hardware verification method in a real oscillator-based TRNG.
In the experiment, we calculate the randomness factor under the white noise,
and validate these estimation methods in the hardware platform.

The rest of the paper is organized as follows. In Section 2, we introduce
the preliminary about the principle and existing entropy estimation methods
for oscillator-based TRNGs. We propose our evaluation method on the different
types of entropy in Section 3. In Section 4, we present the evaluation results
and investigate the case of tiny randomness. In Section 5, we investigate the
effectiveness of the estimation methods in the hardware platform. In Section 6,
we conclude the paper.

2 Preliminary

In this section, we first introduce the principle of oscillator-based TRNGs. Then
we summarize the methods of entropy estimation. The types of entropy include
n-bit entropy, lower bound of entropy and approximate entropy.

2.1 Oscillator-based TRNGs

The basic structure of oscillator-based TRNGs contains an unstable oscillator
generating a fast oscillating signal with jitter, and a sampling reference clock that
is assumed without jitter, as shown in Figure 1. The randomness comes from
jitter in the fast signal periods that is caused by noises. In general, the noises that
affect jitter are assumed to be independent and identically distributed (i.i.d.) for
the simplicity of the model. As an exception, the model of [9] partially allows
short-term dependency in the half-periods of the fast oscillating signal.

We firstly present some definitions of the parameters in the aspect of time
evolution. The half-periods of fast oscillating signal are assumed to be i.i.d. with
mean mX = E(Xk) and variance s2X = V (Xk), where Xk is the k-th half-period.
The fixed sampling interval is denoted as ∆t.

As the tiny jitter (sX/mX ≪ 1) accumulates within the sampling interval,
the probability of guessing the sampling point lying in the high or low voltage is
decreasing. Hence, the jitter ratio and the frequency ratio jointly determine the
quality of this type of TRNG, and the integrated factor is often called as quality
factor [2, 10]. Another considerable factor is the divisibility of the half-period
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Fig. 1. The basic structure of oscillator-based TRNGs

mX to the sampling interval ∆t, which is measured using variable r = ∆t/mX

mod 1. The divisibility increases when r approaches to 0.5 from either 0 or 1 and
reaches its maximum at r = 0.5. The cases of r = 0 and r = 0.5 represent the
worst and the best case of the TRNG output quality, respectively. This property
has been discovered in [2, 10, 1].

2.2 n-bit entropy

The n-bit entropy represents the amount of entropy for n-bit output random
sequences. In general, there are two methods to get the n-bit entropy, time-
based and phase-based. The basic idea is to calculate the probability of n-bit
pattern, which is denoted as p(b), from the stochastic model, and then iterate
all the patterns to get n-bit entropy via Equation (1).

Hn =
∑

b∈{0,1}n

−p(b) log p(b). (1)

Time-based method. Ma et al. [10] use the classic model of [9] in the
aspect of time evolution. They utilize the waiting time Wi to represent the rela-
tionship between the adjacent sampling bits, where Wi is the distance of the i-th
sampling position to the closest following edge of fast oscillating signal. They
use a set of conditional probability functions to calculate the n-bit pattern prob-
ability by iterating, and eliminate Wi from the final expression by probability
integration for the uniform distribution of Wi. Here we do not list the detailed
computing process. Furthermore, they gave several curves from the worst to the
best case to demonstrate the entropy variation using numerical computation,
but an analytical probability or entropy expression was not given in their work.

Phase-based method. Baudet et al. [2] use the phase-oriented approach to
model the stochastic behavior of the oscillating signal. The phase evolution of an
oscillation is modeled by a Wiener stochastic process φ(t) with drift µ > 0 and
volatility σ2 > 0. The parameters are equivalent to the time-based definitions

following the equations: µ = 1
2mX

and σ2 =
s2X

4m3
X
.

Another quality factor is denoted as Q = σ2∆t =
s2X∆t

4m3
X
. The frequency ratio

of the fast signal to the slow one is denoted as ν = µ∆t = ∆t
2mX

, so r = 2ν mod 1.
Note that, as the investigated target is the same as the time-based method, two
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sets of parameters can be converted to each other. The quality fact Q in the

phase-based method equals 4q2, where q =
√

∆t
mX

· sX
mX

is the parameter defined

in the time-based model [10]. For convenience, we use Q and r to compute the
entropy for either time-based or phase-based method in the subsequent.

The following two formulas computing the probability and n-bit entropy are
provided in their work, where B = e−2π2Q.

1. The probability to output a vector b = (b1, . . . , bn) ∈ {0, 1}n satisfies

p(b) =
1

2n
+

8

2nπ2
(
n−1∑
j=1

(−1)bj+bj+1) cos(2πν)B +O(B2). (2)

2. The entropy of such an output is

Hn =
∑

b∈{0,1}n

−p(b) log p(b) = n− 32(n− 1)

π4 ln(2)
cos2(2πν)B2 +O(B3). (3)

2.3 Lower Bound of Entropy

Min-entropy or lower bound of entropy is the most conservative measurement
of entropy, and is useful in determining the worst-case entropy of a TRNG. In
the aspect of entropy calculating complexity, min-entropy or a lower bound has
considerable advantages for dependent stochastic process, as only the probability
in the worst case is involved. The methods for calculating a lower bound of
entropy for oscillator-based TRNG are presented in [9, 2], and the worst case is
also investigated in [1].

The calculation expression of the lower bound [9], which is denoted as Hlo,
was presented in Equation (4):

H(Bi|Bi−1, . . . , B1) ≥ Hlo = H(Bi|Wi−1) ≈
∫ s

0

H(R(s−u) mod 2)PW (du), (4)

where Bi is the ith sampling bit and R(s−u) represents the number of crossing
edges in the duration of (s − u). The idea is inspired by the fact that Wi tells
more information about Bi+1 than all the previous bits. Following the similar
idea, [2] also provides an analytical expression for Hlo, as shown in Equation (5).

Hlo = 1− 4

π2 ln(2)
e−4π2Q +O(e−6π2Q) (5)

2.4 Approximate Entropy

Approximate entropy (ApEn) is originally proposed to quantify the unpredictabil-
ity of fluctuations in a time series. ApEn is a statistical value derived from the
tested sequences. Note that, although the entropy of an TRNG shall be esti-
mated from the stochastic model of a TRNG, but ApEn of the raw bits of a
TRNG can also reflect the contained randomness. ApEn randomness test is also
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adopted in the NIST statistical test suite [13], which compares the frequency
of overlapping blocks of two consecutive/adjacent lengths (m and m+1) against
the expected result for a random sequence. The calculation process of ApEn for
b = (b1, . . . , bn) is presented in Algorithm 1. The block length m in Algorithm
1 has an important impact on ApEn calculation, which is treated as a trade-off.
The larger value of m improves the accuracy of entropy estimation, but mean-
while significantly increase the computation complexity and the required length
of the tested bit sequence.

Algorithm 1 Approximate entropy calculation [13]

Input: block length m, bit sequence b = (b1, . . . , bn) ∈ {0, 1}n
Output: ApEn
1: Augment the n-bit sequence to create n overlapping m-bit sequences by appending

m− 1 bits from the beginning of the sequence to the end of the sequence.
2: Make a frequency count of the n overlapping blocks. The count is represented as

#i, where i is the m-bit value.
3: Compute Cm

i = #i/n for each value of i.
4: Compute δm = Σ2m−1

i=0 Cm
i log2 C

m
i .

5: Replace m by m+ 1 and repeat Steps 1-4.
6: Compute ApEn = δm+1 − δm.
7: return ApEn

3 Our Evaluation Method

In this section, we provide three estimation methods for the entropy: phase-
based, time-based and ApEn. The former two utilize the jitter parameters to
perform the estimation in theory, while the latter analyzes the output sequences.

3.1 Bit-rate Entropy Calculation

In practice, the concept of entropy per bit is preferred for entropy evaluation,
rather than the n-bit entropy. As the unit of the lower bound and ApEn is one bit,
it is necessary to transfer n-bit entropy to entropy per bit, which is called bit-rate
entropy. The bit-rate entropy is closely related to the expected workload that is
necessary to guess (sufficiently long) sequences of random bits [7]. In addition,
a precise Shannon entropy expression, which contains more parameters, allows
the TRNG designers to optimize their structures and specifically adjust the
parameters to get more entropy.

The bit-rate entropy H should be calculated from infinitely long random
sequences, as Equation (6) shows. As n shall be infinity, the calculation of H
is nearly infeasible in either statistical or iterative computation. One way is to
figure out reliable H is to deduce the precise expression of Hn in terms of n.
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Another possible case is that n actually can be a finite value, rather than being
asymptotically infinite.

H = lim
n→∞

Hn

n
= lim

n→∞
H(Bn|Bn−1, ..., B1) (6)

Time-based method. In the aspect of time evolution, it is observed that the
correlation between two adjacent sampling bits is decreasing with the increase of
the sampling interval. When the sampling interval is sufficient long, the sampling
bits can be treated as independent. Here we provide a method to determine the
required sampling interval for independent sampling bits.

The correlation coefficient of adjacent bits Bi and Bi+1 is represented as:

cor(Bi, Bi+1) =
COV(Bi, Bi+1)√
Var(Bi)Var(Bi+1)

,

where COV(·) is the covariance function, and Var(·) represents the variance.
Then, using the stationary property [9] that Prob(Bi = 1) = Prob(Bi+1 = 1),
the correlation coefficient is deduced as:

cor(Bi, Bi+1) =
Prob(Bi = 1, Bi+1 = 1)− Prob(Bi = 1)2

Prob(Bi = 1) · Prob(Bi = 0)
.

For different values of Q, we compute the correlation coefficients, as shown
in Figure 2. We observe that the dependence oscillatingly decreases with the
increasing of Q. The absolute value of the coefficient drops below 10−3 when Q
is larger than 0.16, where we consider that the correlation can be ignored and
the adjacent sampling bits are treated as independent.
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Fig. 2. The correlation coefficient in terms of Q

Using this conclusion, we further determine the longest timing distance, with-
in which all the sampling behaviors are dependent. That is to say, when the
distance between two sampling bits is longer than that distance, the two bits are
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treated to be independent. We denote l as the correlation length, which means
the (i + l)th sampling bit Bi+l is only dependent on the previous l bits. Given
a value of Q for a oscillator-based TRNG, the correlation length is deduced as
l = ⌊(Qind

Q )⌋, where Qind is the required Q value for the independence, and Qind

is set to 0.16 in this paper. Then, combining with the additional conclusion that
the sampling process is stationary [9], H can be derived as

H = lim
n→∞

H(Bn|Bn−1, ..., B1) = H(Bl+1|Bl, ..., B1). (7)

A lower threshold of the coefficient certainly is helpful for getting a more
reliable result, but the derived correlation length may be too large to complete
the iterating computation of entropy within an acceptable time. The maximum
l in our computation is limited below 15. For Qind = 0.16, setting l = 15 means
reliable values can be acquired for Q > 0.0107.

Phase-based method. In [2], since an analytical expression of n-bit en-
tropy exists, for n is approaching infinity, the approximated bit-rate entropy is
expressed as Equation (8).

H ≈ 1− 32

π4 ln(2)
cos2(2πν)B2 (8)

Note that using this equation to calculate bit-rate entropy is tentative, s-
ince Hn in Equation (3) is not provably uniform in n [2]. The problem of non-
uniformness in n dose not exist in the time-based method, because the parameter
l has been chosen before calculating Equation (7). In the following sections, we
will learn that Equation (8) is applicable under some parameters, but has non-
ignorable errors under other parameters. Hence, in the next section, we improve
the equation by performing further expansion of original expression, and validate
the effectiveness of the improvement by comparing with the time-based method
and the ApEn of simulated sequences.

3.2 Approximate Entropy for Short-Term Dependent Bits

ApEn is a statistical result to estimate the entropy of the tested sequence. An
important parameter in the algorithm is the block length m, which partially
determine the estimation accuracy of the algorithm. The ideal case is that the
tested bits are independent beyond the bit interval of m, which means the es-
timation algorithm can have a comprehensive overlook on the tested sequence.
Fortunately, for the output of oscillator-based TRNGs, the correlation lags are
limited due to the independence condition, hence the sampling bits only have
short-term dependence.

In the statistical method, we first use the autocorrelation test to find out
the correlation length in the sequence, and set m as the length to calculate
ApEn. The autocorrelation test is based on the autocorrelation plot [3], which
is a commonly-used tool for checking randomness in a data set. Here, we do not
adopt the autocorrelation test in [12] for random bits, because the basis of that
test is the uniformity of the tested sequence. Otherwise (the uniformity is not
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satisfied), a higher correlation value will be acquired and autocorrelation test is
failed. Hence, we return to the original test approach that only focuses on the
correlation. The autocorrelation coefficient is represented as Rh = Ch/C0, and

Ch is the autocovariance function: Ch = 1
n

∑n−h
t=1 (bt − b̄)(bt+h − b̄), where b̄ is

the mean of b1, ..., bn, and C0 is the variance function: C0 = 1
n

∑n
t=1(bt − b̄)2.

For randomness tests, it is recommended to use 99% confidence band to
justify whether the test is passed or not. In this case, the test is passed when
Ch lies in the interval [−z1−α/2/

√
n, z1−α/2/

√
n], where the significance level

α = 0.01 and z is the cumulative distribution function of the standard normal
distribution. Therefore, for the calculation of approximate entropy for short-term
dependent bits, we provide the following statistical method on the oscillator-
based TRNG output, as shown in Algorithm 2. Note that, due to the Type-I
error in the hypothesis test, the intrinsic independent sequences still has the
probability of α to fail the test. However, this fact, which increases the correlation
length m, would not lead to estimation error of the entropy as long as the
sequence length is satisfied, since larger m is preferred for estimation.

Algorithm 2 Approximate entropy calculation for short-term dependent bits

Input: h = 1, bit sequence b = (b1, . . . , bn) ∈ {0, 1}n
Output: ApEn
1: while |Ch| > z0.995/

√
n do

2: h = h+ 1
3: end while
4: Compute ApEn using Algorithm 1 with the parameter m = h
5: return ApEn

4 Entropy Evaluation

In this section, by comparing the results of different entropy calculation methods,
we evaluate the applicability and accuracy of these methods for oscillator-based
TRNGs. Particularly, as the original analytical formula has biases on the bit-
rata entropy estimation for some TRNG parameters, we present a more accurate
formula by performing further deducing, and the correctness is verified with other
entropy results. Finally, we investigate the limitations of these methods in the
case of tiny randomness, i.e., very small Q.

4.1 Bit-rate Entropy Calculation Results

We use the proposed time-based and phase-based methods to calculate bit-rate
entropy, and the results in terms of Q and r are shown in Figure 3. However,
we find that the approximated bit-rate entropy derived from Equation (8) is
not consistent with that calculated by Equation (7). The inconsistency has been
preliminarily pointed out in [10]. Note that the entropy at r = 1− x is identical
to that at r = x, where x ∈ (0, 0.5], thus we only present the cases for r ranging
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from 0 to 0.5. More precisely, the difference between the two results is maximized
with the parameter r approaching 0.5, as shown in Figure 3. Their results are
almost identical in the worse cases (r ∈ [0, 0.2]), but in the other cases of r with
a modest Q value the deviation occurs, especially at r = 0.5.
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Fig. 3. The bit-rate entropy calculated from Ma et al.’s (time-based) and Baudet et
al.’s (phase-based) methods

From the physical perspective, the r value is related to the fractional part of
the ratio of sampling interval to the mean of half-periods (∆t/mX). From the
theoretical result of [10], to achieve a sufficient bit-rate entropy (such as 0.9999),
the required sampling frequency in the best case is about two times faster than
that in the worst case under the same quality factor. Hence, in the condition of
fixed Q, the value of r has a non-negligible impact on the entropy, as shown in
Figure 3. Also, from the perspective of the designer, adjusting r can significantly
improve the entropy without the degradation of the sampling frequency.

4.2 Improved Bit-Rate Entropy Expression Formula

We expand the original approximated expression formula of n-bit entropy by
performing further deducing. The improved results are presented in Theorem 1.

Theorem 1. For r = ∆t
mX

mod 1 and Q =
s2X∆t

4m3
X
, the n-bit entropy is:

Hn
.
= n− 32

ln(2)π4
cos2(πr)(n− 1)e−4π2Q

− 32

ln(2)π4

[
cos4(πr)

(
1.524n− 0.092

)
− 2.379 cos2(πr)(n− 2) + (n− 2)

]
e−8π2Q

+O(e−10π2Q). (9)
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The (trial) approximated bit-rate entropy is expressed as:

H ≈ 1− 32B2

ln(2)π4
cos2(πr)− 32B4

ln(2)π4

[
1.524 cos4(πr)− 2.379 cos2(πr) + 1

]
.

(10)

In the improved expression Equation (9), the first two terms are derived from the
original one. Our work focuses on the deduction of the third term, the higher-
order term. We strictly follow the same assumptions used in [2], but perform the
further deduction on the entropy calculation process based on series expansion.
The proof details are presented in the full version of this paper.

4.3 Bit-Rate Entropy Comparison: Time-based vs. Phase-based

In order to validate the reliability of the improved result, we first compare it
with the bit-rate entropy derived from the time-based method. The comparison
result is shown in Figure 4. We can see that after our improvement the two
results become very close in all six cases from r = 0 to r = 0.5. Note that as the
expression is analytical, the derived entropy is not only the data lying in the six
curves, but the values for all the possible cases of Q and r. We remark that it is
no surprise that the two entropy results are identical, because the focusing target
and the physical assumption of small jitter are both the same. The equivalence
between the two models has been presented in [2].
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Fig. 4. The comparison of bit-rate entropy with the improved formula

Furthermore, from Equation (10) we also explain why the original expression
has a significant estimation error when r is large. When the coefficients of B2,
B4,... (0 < B = e−2π2Q < 1) are comparable, the subsequent terms after B2

can be ignored for large Q and the estimation error is acceptable. However,
with r increasing from 0 to 0.5, the coefficient of B2 decreases from maximum
to 0, while the impact of B4 increases. Especially, when r approaches 0.5, the
coefficient of B2 approaches 0, while the B4 term does not become zero due to
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the existence of the constant 1 in the coefficient of B4. Therefore, in this case
the impact of B4 term cannot be ignored and only using B2 term to estimate
the entropy is not enough.

Another important observation is that expanding the Taylor series to B4

is enough to reliably estimate the entropy for such Q ∈ (0.06,+∞), where Q
is not a very small value. The improved expression might have a bias when Q
becomes a much smaller value, as the impact of the higher-order term of B (such
as B6) exists. But we must admit that getting the higher-order term of B seems
infeasible, as the series in Equation (3) after further expanding are too complex.

4.4 Bit-Rate Entropy vs. Approximate Entropy

After the improvement, the bit-rate entropy values derived from the two meth-
ods are consistent, but it is necessary to confirm that the theoretical results is
consistent with the experimental. For this purpose, we use the approximate en-
tropy, which is a statistical measurement from the output bit sequence, to verify
the applicability of the entropy evaluation method. Note that, the statistical
entropy values are also random for random sequences, so directly using ApEn to
do entropy estimation would lead to measurement errors. However, it is valuable
to compare the trends of ApEn and bit rate entropy, which can be treated as
experimental and theoretical results, respectively.

Following the assumptions in the aspect of time evolution, we perform a
simulation experiment to calculate ApEn. In the experiment, the fast signal
periods are independent and identically distributed, and the distribution is set as
the normal distribution N(1, 0.012). Each ApEn is computed from 105 sampling
bits for each sampling interval which corresponds the values of Q and r. As the
two bit-rate entropy results are almost the same, we use the improved phase-
based result as the reference to compare with ApEn. The comparison results
from r = 0 to r = 0.5 are shown in Figure 5. We find that the two sets of
results are well-matched for all r values. Therefore, Algorithm 2 is suitable to
estimate the bit-rate entropy for this type of short-term dependent sequences. A
more precise results can be acquired by averaging the estimated values of many
statistical experiments.

4.5 Entropy Estimation for Smaller Quality Factor

In the previous entropy estimation results, the investigated values of Q are not
very small, which are available for the entropy evaluation of most practical
TRNGs. However, for very samll Q values, the presented entropy calculation
methods are not applicable. The reasons are explained as follows.

– For the time-based bit-rate entropy calculation method, a very small Q
means that the dependent length l is very large. For example, when Q =
0.005, l equals to 32, meaning that the traversal space should be 232, which
is infeasible for computation. In this case, the estimation would be larger
than the real entropy value, i.e., the overestimation occurs.
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Fig. 5. The comparison between the bit-rate entropy and the approximate entropy

– For the phase-based bit-rate entropy calculation method, when Q decreases,
the estimation error increases with no limitation, as the Hn expression is
not uniform in n. Therefore, the approximated formula is not applicable
to estimate the bit-rate entropy in this case, though our improvement has
extended the applicable range of the formula.

– For the presented approximate entropy estimation method, a very small Q
makes the statistical correlation lasts very long lags, which causes that the
parameter m in Algorithm 2 is too large to complete the computation. For
example, in our experiment, when Q = 0.01 the statistical m of Algorithm
2 is about 30, thus the workload for the traversal loops and the requirement
for the sequence length are unacceptable in this case. The problem also leads
to an overestimation for the entropy of the tested sequence.

Actually, as we mentioned, the lower bound expression formula has be pre-
sented in [2]. As Equation (5) shows, the expression formula of the lower bound
also contains a term of O. Using this approximated expression also causes over-
estimation of the entropy when Q is smaller than 0.01. As shown in Figure 6,
the approximated lower bound becomes larger than the bit-rate entropy derived
from time-based methods with the worst case of r = 0, though the bit-rate
entropy might have been overestimated. However, we emphasize that the com-
putation of this O term in Equation (5) is feasible since the traverse of 2n states
is nonexistent. Therefore, we present the calculation results for the precise lower
bound of entropy for smaller Q values, as labeled in Figure 6. The comparison
result indicates that the precise expression of the lower bound eliminates the
overestimation of entropy for very small Q values.
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Fig. 6. The comparison of entropy values with small Q at r = 0

5 On the Relationship with Physical RNGs

The existing models [2, 10] assume that the oscillating period or phase increment
is independently distributed due to the influence of white noise. This is a com-
mon assumption in literature, which allows to guarantee the simplicity of the
model. However, in real TRNG circuits, the jitter or phase is also influenced by
colored noises (such as 1/f noise) more than white noise, and the phenomenon
has been demonstrated in recent works [5, 10, 14]. Under these colored noises,
the period jitter has long-term dependence, and the dependence is also inher-
ited by the sampling bit sequence [10]. In practical TRNGs, it is infeasible to
perform similar confirmatory experiment as our simulation where the entropy
is calculated via the output sequence, as the randomness amount is inevitably
increased by colored noises and the offset r is hard to be precisely measured.

Fortunately, the white noise is independent from colored noises in principle,
so the existing model and corresponding entropy estimation methods can still
work for estimating the contribution of the white noise. When the estimated
contribution (i.e., entropy) derived from independent jitter is sufficient, we can
also claim that the entropy of the TRNG is satisfied. In practical entropy evalua-
tion, the independent jitter can be acquired by employing an inner measurement
method that excludes the dependent component of the jitter in the measurement
(such as [5]). This evaluation approach neatly sidesteps the impact of colored
noises.

We perform the hardware experiment on an FPGA (Field Programmable
Gate Array) platform (Xilinx XC5LX110T), where two ring oscillators are im-
plemented using Look-Up Tables (LUTs) with the close frequency of 280.5 MHz.
The sampling interval is set as the period number of one oscillating signal, and
the counting period number of the other signal is treated as the random vari-
able, thus the random bit is the LSB of the counting number. Here, we do not
use the number of half-periods to eliminate the impact of the imbalance of the
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duty cycle, and the change is compatible with the above models. The period
number of the sampling signal is set to 256 × i, where i ∈ {20, 21, ..., 40}. For
each sampling interval, we collect the random number sequence with length 220,
and calculate the ApEn of the bit sequence. Particularly, the quality factor that
is influenced by white noises QW is computed by employing the method of [5].
The comparison between the ApEn and the theoretical entropy (worst case and
best case) is depicted in Figure 7. It is observed that ApEn increases between
the worst and the best case of theoretical entropy as expected. As the bit se-
quence has been affected by colored noises, its statistical randomness is much
better than the worst case of the theoretical entropy. From Figure 7, we can
conclude that our improved theoretical entropy is suitable to estimate the lower
and upper bounds of the output bit sequence.
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Fig. 7. The comparison between ApEn and theoretical entropy in the physical RNG

6 Conclusion

Entropy estimation is essential for TRNG security testing, and a reliable re-
sult of entropy estimation is preferred for both designers and verifiers. In this
paper, we investigate the applicability the different entropy calculation meth-
ods for oscillator-based TRNGs, including bit-rate entropy, the lower bound
and approximate entropy. In the evaluation, we present two effective method-
s for bit-rate entropy calculation in theory, and design a specific method for
the approximate entropy. The evaluation results indicate that the theoretical
estimation results are consistent with the experimental measurements, thus the
presented methods are reliable for not small Q values. The mutual verifications
among these estimation methods make us believe that the calculated results are
reliable. Furthermore, for the case with very small quality factor, the existing
entropy estimation methods are inapplicable, thus we recommend to use the
precise lower bound as a conservative estimation. In the hardware experiment,
we validate that the ApEn still lies in the interval between the worst and best
case of the theoretical entropy, though the bit sequence is effected by colored
noises.
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