
Improved Key Recovery Algorithms from Noisy
RSA Secret Keys with Analog Noise

Noboru Kunihiro1 and Yuki Takahashi2

1 The University of Tokyo, Japan, kunihiro@k.u-tokyo.ac.jp
2 The University of Tokyo, Japan

Abstract. From the proposal of key-recovery algorithms for RSA secret
key from its noisy version at Crypto2009, there have been considerable
researches on RSA key recovery from discrete noise. At CHES2014, two
efficient algorithms for recovering secret keys are proposed from noisy
analog data obtained through physical attacks such as side channel at-
tacks. One of the algorithms works even if the noise distributions are
unknown. However, the algorithm is not optimal especially if the noise
distribution is imbalanced. To overcome this problem, we propose new
algorithms to recover from such an imbalanced analog noise. We first
present a generalized algorithm and show its success condition. We then
construct the algorithm suitable for imbalanced noise under the condi-
tion that the variances of noise distributions are a priori known. Our
algorithm succeeds in recovering the secret key from much more noise.
We present the success condition in the explicit form and verify that our
algorithm is superior to the previous results. We then show its optimal-
ity. Note that the proposed algorithm has the same performance as the
previous one in the balanced noise. We next propose a key recovery algo-
rithm that does not use the values of the variances. The algorithm first
estimates the variance of noise distributions from the observed data with
help of the EM algorithm and then recover the secret key by the first al-
gorithm with their estimated variances. The whole algorithm works well
even if the values of the variance is unknown in advance. We examine
that our proposed algorithm succeeds in recovering the secret key from
much more noise than the previous algorithm. This is the full version
of [12].

1 Introduction

1.1 Background and Motivation

RSA [15] is the most widely used cryptosystem and its security is based
on the difficulty of factoring a large composite. Furthermore, the side-
channel attacks are a real threat to RSA scheme. This kind of attack can
be executed by physically observing cryptographic devices and recover-
ing internal information. Side channel attacks are important concerns for

security analysis in the both of public key cryptography and symmet-
ric cryptography. In the typical scenario of the side channel attacks, an
attacker tries to recover the full secret key when he can measure some
leaked information from cryptographic devices.

In this paper, we focus on the side channel attacks on RSA cryptosys-
tem. In the RSA cryptosystem [15], a public modulus N is the product of
two distinct primes p and q. The public and secret exponents are (e, d),
which satisfy ed ≡ 1 (mod (p− 1)(q − 1)). In the textbook RSA, the se-
cret key is only d. However, the PKCS#1 standard [14] specifies that the
RSA secret key includes (p, q, d, dp, dq, q

−1 mod p) in addition to d, which
allows for fast decryption using the Chinese Remainder Theorem (CRT).
It is important to analyze the security of CRT-RSA in addition to that
of the original RSA.

Halderman et al. [4] presented the cold boot attack at USENIX Secu-
rity 2008, which is classified as a practical side channel attack. They
demonstrated that DRAM remanence effects make possible practical,
nondestructive attacks that recover a noisy version of secret keys stored
in a computer’s memory. They showed how to reconstruct the full of the
secret key from the noisy variants for some encryption schemes including
RSA scheme. How to recover the correct secret key from a noisy version
of the secret key is an important question concerning the cold boot attack
situation.

Inspired by cold boot attacks [4], there have been considerable re-
searches on RSA secret key recovery from discrete noise [5, 6, 9, 13]. In
contrast, Kunihiro and Honda introduced an analog leakage model and
proposed two efficient key recovery algorithm (ML-based algorithm and
DPA-like algorithm) from the observed analog data [10].

Observing Analog Data and Motivation Consider the simple power
analysis [8] for CRT-RSA, which is conducted by observing power con-
sumption while executing decryption process. Power consumption trace
depends on the bit value of dp (and dq). We can obtain analog data from
the observed trace through some adequate functions. Further, the distri-
butions of such analog data for the bit 0 and 1 differ from each other due
to the difference of power consumption trace. In the same manner, we
can obtain the analog data for the bit of d. Note that we cannot obtain
those of p and q in the scenario.

In another attack scenario, analog data may be obtained from a (dis-
crete) measurement value of bit value with an analog value of confidence.
This will be done by some side-channel attacks such as cold boot attack

2

where different pieces of RAM have different preference to flip towards 0
or to flip towards 1.

Our main research aim is to propose efficient algorithms when such
analog data, especially imbalanced analog data, are obtained.

1.2 Our Contributions

This paper discusses secret key recovery algorithms from noisy analog
data. In our noise model, the observed value is output according to some
fixed probability distribution depending on the corresponding correct se-
cret key bit. Unlike [10], we do not assume that the probability density
functions are known. Our strategy for constructing the algorithms is sum-
marized as follows: (i) estimate the probability density functions and (ii)
run the key-recovery algorithm with the score function designed by the
estimated one. We present the success condition (Theorem 3) in adapt-
ing the strategy, which shows that we can recover the secret key from
more noisy keys if we could succeed to obtain a closer estimation of the
probability density functions.

Next, we propose an efficient algorithm (V-based algorithm) to im-
prove the success condition from that of [10]. We propose a new score
function (Variance-based Score) by modifying the DPA-like score func-
tion introduced in [10] to suit for imbalanced noise. Concretely, we in-
corporate the variances of the probability distributions into the DPA-like
score. By this modification, we succeed in improving the success condition
compared to the DPA-like algorithm in [10]. We then present the success
condition in the explicit form (Theorem 4), which significantly improves
the previously shown bounds. We then prove that Variance-based score
is optimal in the weighted variant of DPA-like score. Moreover, we then
verify that our algorithm is superior to the previous results by both of
theoretical analysis and numerical experiments for various noise distribu-
tions. Note it has the same performance as the DPA-like algorithm in the
balanced noise.

Although our first algorithm improves the bound, it requires the values
of the variances as additional inputs, which is a significant disadvantage to
the DPA-like algorithm. To overcome this problem, we use the help of the
Expectation-Maximization (EM) algorithm [1, 3], which is a well-known
algorithm in the area of machine learning, to estimate the variances from
the observed data. The second algorithm (KRP algorithm) is constructed
by combining V-based algorithm and the EM algorithm. In our combined
algorithm, we first run the EM algorithm for the estimation of the vari-
ances and run the V-based algorithm with the estimated variances as

3

additional inputs. The KRP algorithm works under the same condition
as the DPA-like algorithm, that is, that we can use only the observed
data. The numerical results show that our KRP algorithm is superior
to the DPA-like algorithm. For example, when the standard deviation of
noises (a precise noise model is discussed in Section 2.2) is given 0.4 and
2.2, DPA-like algorithm succeeds with probability 0.16, but KRP algo-
rithm succeeds with probability 0.65 (see Table 2). We also verify the
effectiveness of our algorithms by numerical experiments on several noise
distributions: Gaussian, Laplace, and Uniform distributions.

2 Preliminaries

This section presents an overview of the methods [5, 6, 10, 13] using binary
trees to recover the secret key of the RSA cryptosystem. We use similar
notations to those in [5]. For an n-bit sequence x = (xn−1, . . . , x0) ∈
{0, 1}n, we denote the i-th bit of x by x[i] = xi, where x[0] is the least
significant bit of x. Let τ(M) denote the largest exponent such that
2τ(M)|M . We denote by lnn the natural logarithm of n to the base e
and by log n the logarithm of n to the base 2. We denote the expectation
of random variable X by E[X]. We remind readers the Gaussian distri-
bution N (µ, σ2). The probability density function of this distribution is

fN(x;µ, σ
2) = 1√

2πσ2
exp

(
− (x−µ)2

2σ2

)
, where µ and σ2 are the mean and

variance of the distribution, respectively.

2.1 Recovering the RSA Secret Key Using a Binary Tree

An explanation of this subsection is almost the same as previous works [5,
6, 10, 13]. We first explain how to set the keys of the RSA cryptosys-
tem [15], especially of the PKCS #1 standard [14]. Let (N, e) be the RSA
public key and sk = (p, q, d, dp, dq, q

−1 mod p) be the RSA secret key. We
denote the bit length of N by n. As in the previous works, we ignore the
last component q−1 mod p in the secret key. The public and secret keys
follow four equations: N = pq, ed ≡ 1 (mod (p − 1)(q − 1)), edp ≡ 1
(mod p− 1), edq ≡ 1 (mod q− 1). Then, there exist integers k, kp and kq
such that

N = pq, ed = 1+k(p−1)(q−1), edp = 1+kp(p−1), edq = 1+kq(q−1).
(1)

A small public exponent e is usually used in practical applications [16],
so we suppose that e is small enough such that e = 216 + 1 as is the case

4

in [5, 6, 9, 10, 13]. See [5] for how to compute k, kp and kq. Then there are
five unknowns (p, q, d, dp, dq) in the four equations in Eq. (1).

In the same manner as previous methods, our new methods recover
secret key sk by using a binary tree based technique. We explain how to
recover secret keys, considering sk = (p, q, d, dp, dq) as an example.

First we discuss the generation of the tree. Since p and q are n/2
bit prime numbers, there exist at most 2n/2 candidates for each secret
key in (p, q, d, dp, dq). Heninger and Shacham [6] introduced the concept
of slice. We define the i-th bit slice for each bit index i as slice(i) :=
(p[i], q[i], d[i + τ(k)], dp[i + τ(kp)], dq[i + τ(kq)]). Assume that we have
computed a partial solution sk′ = (p′, q′, d′, d′p, d

′
q) up to slice(i − 1).

Heninger and Shacham [6] applied Hensel’s lemma to Eq. (1) and obtained
the following identities

p[i] + q[i] = (N − p′q′)[i] mod 2,

d[i+ τ(k)] + p[i] + q[i] = (k(N + 1) + 1− k(p′ + q′)− ed′)[i+ τ(k)] mod 2,

dp[i+ τ(kp)] + p[i] = (kp(p
′ − 1) + 1− ed′p)[i+ τ(kp)] mod 2,

dq[i+ τ(kq)] + q[i] = (kq(q
′ − 1) + 1− ed′q)[i+ τ(kq)] mod 2.

This means that we have four linearly independent equations in the five
unknowns p[i], q[i], d[i+ τ(k)], dp[i+ τ(kp)], and dq[i+ τ(kq)] of slice(i).
Each Hensel lift, therefore, yields exactly two candidate solutions. Then,
the total number of candidates is given by 2n/2.

Henecka et al.’s algorithm [5] and Paterson et al.’s algorithm (in short,
the PPS algorithm) [13] perform t Hensel lifts for some fixed parameter
t. For each surviving candidate solution on slice(0) to slice(it − 1), a
tree with depth t and whose 2t leaf nodes represent candidate solutions
on slice(it) to slice((i + 1)t − 1), is generated. This causes 5t new bits.
For each new node generated, a pruning phase is carried out. A solution
is kept for the next iteration if the likelihood of the corresponding noisy
variants of the secret key for the 5t new bits is in the highest L nodes
of the L2t nodes as for the PPS algorithm [13]. Kunihiro and Honda [10]
adopted a similar approach to the PPS algorithm [13]. They introduced
a concept of score function, and their algorithms keep the top L nodes
with the highest score.

2.2 Our Noise Model

Let F0 and F1 be probability distributions of an observed value when the
correct secret key bits are 0 and 1, respectively. That means we assume

5

that each the observed value x follows the fixed probability distribution
Fb. Though this assumption comes from simplification, it is frequently
considered in the practice of side channel attacks. In this paper, we as-
sume that F0 and F1 have probability densities f0 and f1, respectively.
Without loss of generality, we assume that the means of Fb are (−1)b.
Throughout this paper, we assume that f0 and f1 are unknown to the
attackers. That implies that we do not use any knowledge about explicit
forms of probability density functions in designing algorithms.

We say that the probability density functions f0 and f1 are imbalanced
when f0(x) and f1(−x) are (very) different. Suppose that f0 = N (+1, σ2

0)
and f1 = N (−1, σ2

1). We say that f0 and f1 are imbalanced when σ0 ≪ σ1.
(Note that f1(−x) = N (x; +1, σ2

1)). In this paper, we mainly focus on the
case that f0 and f1 are imbalanced.

2.3 Previous Works on Key-Recovery for Analog Observed
Data

In [10], a score function is introduced, that is calculated with observed
data and a candidate sequence (if necessary, additional information such
as the probability density functions of noise). A framework of key-recovery
algorithm that uses the score function in Pruning phase is then proposed.
Definition 1 gives the syntax of the score function.

Definition 1 (Syntax of Score Function). The score function receives
a candidate sequence b = (b1, . . . , bn) ∈ {0, 1}n and the corresponding
observed sequence x = (x1, . . . , xn) ∈ Rn and outputs a real number. We
use the notation: Scoren(b,x).

The score function Scoren(b,x) is designed so that the following proper-
ties hold for any fixed x: the score will be large if b is a correct candidate;
the score will be small if b is incorrect.

We review a framework shown in [10, 13] for the RSA key-recovery
algorithm. Our proposed algorithms are based on the same framework.
It is pointed out in [10] that the setting t = 1 is enough for gaining
high success rates. We use slightly different notations of generalized PPS
algorithm from [10]. Algorithm 2 in Appendix A.1 shows the framework
for key-recovery. Revising the algorithm framework itself is not our target.
This paper mainly focuses on designing the score function.

The following two score functions have been proposed in [10]. Denote
a candidate sequence b = (b1, . . . , bn) and an observed sequence x =

6

(x1, . . . , xn). The first one is defined by

ML(b,x) :=

n∑
i=1

log
fbi(xi)

g(xi)
, (2)

where g(x) = (f0(x) + f1(x))/2. The second one is defined by

DPA(b,x) :=
n∑

i=1

(−1)bixi. (3)

Eq. (2) and Eq. (3) are called as ML-based score and DPA-like score,
and the algorithms employing Eq. (2) and Eq. (3) are called as ML-based
algorithm and DPA-like algorithm, respectively. Note that the ML-based
algorithm requires the complete information about probability density
functions as inputs. In contrast, the DPA-like algorithm does not require
them as shown in Eq. (3).

We summarize the success condition for the ML-based algorithm, and
the DPA-like algorithm [10]. First, we introduce a differential entropy [2].

Definition 2. The differential entropy h(f) of a probability density func-
tion f is defined as

h(f) = −
∫ ∞

−∞
f(y) log f(y)dy.

Theorem 1 (Cor.1, [10]). Assume that the probability density func-
tions for b = 0, 1 are given by fb. The error probability of the ML-based
Algorithm converges to zero as L → ∞ if

h

(
f0 + f1

2

)
− h(f0) + h(f1)

2
>

1

5
. (4)

Theorem 2 (Thm.2, [10]). Assume that the probability density func-
tions for b = 0, 1 are given by fb. Denote the variance of Fb by σ2

b . The
error probability of the DPA-like Algorithm converges to zero as L → ∞
if

h

(
f0 + f1

2

)
− log

√
πe(σ2

0 + σ2
1) >

1

5
. (5)

Consider the case that f0 and f1 are imbalanced. Without loss of
generality, we assume that σ0 ≪ σ1. In this case, the left-hand side of
Eq. (5) heavily depends on only the variance σ1, which is unnatural. We
will give improvement of the success condition by incorporating the values
σ2
b to the score function in Section 4.

7

Remark 1. Throughout the paper, we only consider the case that we em-
ploy (p, q, d, dp, dq) as secret key tuple. However, we can easily extend to
more general case. For the (p, q), (dp, dq), (p, q, d), and (d, dp, dq) cases, we
just replace 1/5 with 1/2, 1/2, 1/3, and 1/3, respectively in Theorems 1–4
and Eq. (11).

3 Generalized Algorithm via Estimation of Distributions

In actual attack situations, the attacker does not know the exact form
of fb. Then, we cannot apply the ML-based score directly. On the other
hands, if one could obtain a closer estimation of probability density func-
tions, one can hope to attain the key-recovery from larger noise. The
second best strategy is then (i) to estimate fb in some way (discussed in
Section 5) and (ii) to run the key recovery algorithm with the score func-
tion designed by estimated probability density functions. In this section,
we will derive the success condition under the condition that we have
learned the estimation of the distributions. We denote the estimated dis-
tributions of f0 and f1 by f

(E)
0 and f

(E)
1 , respectively.

Before giving the detailed analysis, we introduce the Kullback-Leibler
divergence [2].

Definition 3. For the probability density functions p and q, the Kullback–
Leibler divergence D(p||q) of p and q is defined as

D(p||q) =
∫ ∞

−∞
p(y) log

p(y)

q(y)
dy.

It is well-known that the Kullback–Leibler divergence D(p||q) is non-
negative and it is zero if and only if p = q. It is considered as some kind
of the distance between p and q.

We introduce a new notion of the score function based on the esti-
mated probability density functions, which would be a natural modifica-
tion of ML-based score. We define the new score as

R(E)(b,x) =
∑
i

log f
(E)
bi

(xi). (6)

In the modification, we replace the true densities fb with their estimations

f
(E)
b (and ignore the denominator). Using R(E)(b,x) as a score function,
we have the following theorem.

8

Theorem 3. Assume that the probability density functions for b = 0, 1
are given by fb. The error probability of Algorithm with the scoreR(E)(b,x)
converges to zero as L → ∞ if(

h

(
f0 + f1

2

)
− h(f0) + h(f1)

2

)
− D(f0||f (E)

0) +D(f1||f (E)
1)

2
>

1

5
. (7)

Proof. A proof strategy is almost the same as that of Theorem 2 in [11].
The score R(E)(b,x) is essentially equivalent to the score

R′(E)(b,x) =
∑
i

log
f
(E)
bi

(xi)

g(xi)

since g(xi) does not depend on b. It is enough for proving the theorem
to calculate

I(E) :=
∑

b∈{0,1}

1

2

∫
x

(
log

f
(E)
b (x)

g(x)

)
fb(x)dx.

The exact form of I(E) is calculated as follows.

I(E) =
∑

b∈{0,1}

1

2

∫
x

(
log

f
(E)
b (x)

g(x)

)
fb(x)dx

= −
∫
x
(log g(x))g(x)dx+

1

2

∑
b∈{0,1}

∫
x

(
log f

(E)
b (x)

)
fb(x)dx

= h(g) +
1

2

∑
b∈{0,1}

∫
x

(
log

f
(E)
b (x)

fb(x)
fb(x)

)
fb(x)dx

= h(g)− 1

2

∑
b∈{0,1}

h(fb)−
1

2

∑
b∈{0,1}

∫
x

(
log

fb(x)

f
(E)
b (x)

)
fb(x)dx

= h

(
f0 + f1

2

)
− h(f0) + h(f1)

2
− D(f0||f (E)

0) +D(f1||f (E)
1)

2

The rest of the proof is the same as that of Theorem 2 in [11]. Then, we
have the theorem. 2

The former half of the left hand side in Eq. (7), h((f0+f1)/2)−(h(f0)+
h(f1))/2, is equivalent to the condition when the true distributions are

9

known (see Theorem 1). Its latter half (D(f0||f (E)
0) +D(f1||f (E)

1))/2 cor-
responds to the information loss or penalty caused by mis-estimations.
From the definition, it is always non-negative. If the probability density

function is correctly estimated (which means that the both of f
(E)
0 = f0

and f
(E)
1 = f1 hold), the information loss vanishes since D(f0||f (E)

0) =

D(f1||f (E)
1) = 0. Conversely, if the accurate estimation fails, the success

condition is much worse than expected due to the information loss caused
by mis-estimation of f0 and f1.

4 New Score Function with a Priori Known Variances

In this section, we propose an effective score function when the noise
distributions are unknown but their average and variances are a priori
known. Note that we remove this requirement in Section 5. Our score
function explicitly uses the values of the variances of the noise distribu-
tions. Specifically, the proposed score is much more effective than previous
one when the variance of F0 and F1 are different.

First, we point out drawbacks of DPA-like algorithm introduced in
[10]. The DPA-like algorithm works with only observed data even if the
probability density functions are not known. From the nature of the DPA-
like score, it can not use any other side information of probability density
function such as variances even if they are available.

We try to incorporate the side information into the DPA-like function.
It is natural to consider the weighted variant of DPA-like score, which is
defined by

w-DPA(b,x) :=
n∑

i=1

wbi(−1)bixi (8)

for some kind of weights w0 and w1. The performance on weighted variant
of DPA-like score heavily relies on how to set w0 and w1. If the observed
value is reliable, the corresponding weight should be large. We propose a
new score by following this idea.

4.1 New Score Function: Variance-based Score

We consider the case where F0 and F1 (and hence also f0 and f1) are
unknown, but, their variances are known a priori. We denote by σ2

0 and
σ2
1 the variances of F0 and F1. Under the situation, we have a chance

to choose an adequate score function including the explicit values of the
variances.

10

We introduce a new score function (Variance-based Score):

V(b,x) :=
∑
i

(−1)bixi
σ2
bi

. (9)

It can be considered that w0 = 1/σ2
0 and w1 = 1/σ2

1 in the context of
weighted variant of DPA. We denote Algorithm 2 employing Variance-
based Score V(b,x) as a score function by V-based algorithm. Note that
in evaluating the score function by Eq. (9), we explicitly use the variances
σ2
0 and σ2

1. Consider the case when σ2
0 = σ2

1 = σ2. Then, the score function
can be transformed into

V(b,x) =

∑
i(−1)bixi
σ2

=
1

σ2

∑
i

(−1)bixi =
1

σ2
DPA(b,x).

Since the part 1/σ2 does not affect the order of score value, we can ignore
it and recover the DPA-like score. The Variance-based score then includes
the DPA-like score in the special case.

Our strategy for designing a score function can be interpreted as fol-
lows: The observed data from the distribution with larger variance will
not be reliable. Then, its contribution is set to be small if the variance is
large, and vice versa. Appendix B explains how the Variance-based score
is derived via estimation of distributions.

4.2 Theoretical Analysis for V-based algorithm

In this section, we discuss the success condition of the V-based algorithm
for recovering the secret key. The following theorem shows the success
condition on f0 and f1 when we use V-based algorithm for recovering the
RSA secret key.

Theorem 4. Assume that the probability density function for b = 0, 1
are given by fb. The error probability of the V-based algorithm converges
to zero as L → ∞ if

h

(
f0 + f1

2

)
− log

√
2πeσ0σ1 >

1

5
. (10)

Proof. A proof is almost the same as the proof [11] of Theorem 2 in [10].

We denote by f
(G)
b the probability density function of Gaussian distribu-

tions with average (−1)b and σ2
b , respectively. The Variance-based score

11

is essentially equivalent to the score

R(G)(b,x) =
∑
i

log
f
(G)
bi

(xi)

g(xi)
.

As the same discussion in [11], it is enough to calculate

I(G) :=
∑

b∈{0,1}

1

2

∫
x

(
log

f
(G)
b (x)

g(x)

)
fb(x)dx.

According to Theorem 1 in [10], the condition is given by I(G) > 1/5. The
exact form of I(G) is calculated as follows.

I(G) =
∑

b∈{0,1}

1

2

∫
x

(
log

f
(G)
b (x)

g(x)

)
fb(x)dx

= −
∫
x
(log g(x))g(x)dx+

1

2

∑
b∈{0,1}

∫
x

(
log f

(G)
b (x)

)
fb(x)dx

= h(g)− 1

2

∑
b∈{0,1}

{
log(2πσ2

b)

2
+

1

2(ln 2)σ2
b

∫
x
(x− (−1)b)2fb(x)dx

}
= h(g)− log(

√
2πeσ0σ1).

Then, we have the theorem. 2

We give a comparison between the DPA-like algorithm and the V-
based algorithm. The difference between the left hand side of two in-
equalities: Eqs. (5) and (10) is given by

log
√

πe(σ2
0 + σ2

1)− log
√
2πeσ0σ1 =

1

2
log

σ2
0 + σ2

1

2σ0σ1
.

Since the arithmetic mean is always larger than or equal to the geometric

mean, it holds that
σ2
0+σ2

1
2 ≥

√
σ2
0σ

2
1 = σ0σ1. Then, the difference is always

non-negative. Furthermore, the difference is 0 if and only if σ0 = σ1.
It shows that V-based algorithm is superior to the DPA-like algorithm
except the case that σ0 = σ1. As the ratio between σ0 and σ1 becomes
larger, our improvement is more significant.

12

4.3 Optimality of Variance-based Score

We show that our proposed variance-based score is optimal in the frame-
work of weighted variant of DPA-score. If we adopt w0 and w1 as weights,
the success condition is given by

h

(
f0 + f1

2

)
− log

√
2πe− log e

4
(− lnw0 − lnw1 + σ2

0w0 + σ2
1w1 − 2) >

1

5
.

(11)
Denote the the left hand side of Eq. (11) by H(w0, w1). By solving a
simultaneous equation ∂H

∂w0
= ∂H

∂w1
= 0, we obtain w0 = 1/σ2

0 and w1 =

1/σ2
1, which maximizes H(w0, w1). We recover the Variance-based score

introduced in Section 4.1. This shows its optimality.

4.4 Experimental Results for V-based algorithm

We give experiment results on DPA-like algorithm [10] and our proposed
V-based algorithm, which uses Eq. (9) as a score function. We imple-
mented our algorithm in gcc with NTL 6.0, GMP 5.1.3 library and tested
it on Intel Xeon 6-Core processor at 2.66 GHz with 32 GB memory. We
set the public exponent to e = 216 + 1. In all experiments shown in
this section, we generated the output sk for each sk from the Gaussian
distribution. Denoting the correct secret bit in sk by b, we concretely
generated sk as follows: the observed value follows N (−1, σ2

1) if b = 1;
and the observed value follows N (+1, σ2

0) if b = 0. In our experiments on
1024 bit RSA, we prepared 200 different tuples of secret keys sk, e. g.,
sk = (p, q, d, dp, dq). We set a parameters L as L = 212.

We especially focus on the case where the σ2
1 ̸= σ2

0. Figure 1 shows the
success rates of DPA-like algorithm and V-based algorithm for σ0 = 0.4
and σ0 = 1.0. The vertical axis represents the success rates, and the
horizontal axis shows the value of σ1.

We give some discussion for the case of σ0 = 0.4 from Fig. 1(a). When
σ1 ≤ 1.6, the both algorithms succeed in recovering the secret key with
success rate 1. Further, when σ1 ≥ 2.6, the both algorithms fail to do that
for all trials. Meanwhile, when 1.7 ≤ σ1 ≤ 2.5, the two algorithms show
the different behavior. For example, when σ1 = 2.1, our algorithm recovers
the secret key with success rate 0.8; while DPA-like algorithm recovers
one with success rate 0.35. For another example, when σ1 = 2.4, our
algorithm recovers one with success rate 0.20; while DPA-like algorithm
fails to recover the keys for all trials. These observations show that our
V-based algorithm has superior performance to the DPA-like algorithm.

13

(a) σ0 = 0.4 (b) σ0 = 1.0

Fig. 1. Comparison between DPA-like and V-based algorithms

The running time for the V-based algorithm to find the secret key is at
most 36.9 seconds under our computer circumstance for any cases.

Figure 2 shows the success rate of V-based algorithm for some typical
values of σ0 (σ0 = 0.1, 0.4, 0.7, 1.0). This graph shows that for any values
σ1, the success rate will decrease if σ0 increase.

5 Estimation of Variances by the EM algorithm

Our new score function V(b,x) requires the additional inputs: variances
σ2
0 and σ2

1 of F0 and F1. It is a significant disadvantage against the DPA-
like algorithm. To solve this problem, we will use the help of the EM
algorithm [1, 3] in estimating the variances from the observed data. The
EM algorithm is a popular algorithm in the area of machine learning and
is used to estimate hidden parameters of mixture distributions.

We will use the EM algorithm to estimate the variances σ2
0 and σ2

1

as a pre-processing of the V-based algorithm. That means, we first run
the EM algorithm to estimate the variances and then run the V-based
algorithm with the estimated variances to recover the secret key. It enables
us to recover the secret key by using only the observed data, as well as
the DPA-like algorithm. Unlike DPA-like algorithm, we succeed in taking
account of the values of the variances in the combined algorithm. It can
lead to a significant improvement of the bound for key-recovery against
DPA-like algorithm, which will be examined in Section 5.2.

14

Fig. 2. Success Rates of V-based algorithm for σ0 = 0.1, 0.4, 0.7, 1.0

5.1 Variance Estimation by the EM algorithms

Before giving the detailed explanation of the EM algorithm, we present
another view of our noise model. It can be regarded as follows:

– The probability density functions fb(x;θb) are defined by hidden pa-
rameters θb for b = 0, 1.

– The observed value follows the mixture distribution p(x) of f0 and f1,
where p(x) = αf0(x;θ0) + (1− α)f1(x;θ1) for 0 ≤ α ≤ 1．

In the usual setting in the EM algorithm, the form of f0 and f1 are known
(say, f0 is the Gaussian distribution, etc.), but, the set of parameters
Θ = {α,θ0,θ1} are a priori unknown (or hidden). The EM algorithm is
usually used to estimate these parameters from the observed data.

We show the EM algorithm in more details. We denote by D a set
of the observed values. Assume that all the observed value xi ∈ D fol-
lows the mixture density: p(x) = α0f0(x;θ0)+α1f1(x;θ1). We introduce
Membership Weight γik for xi ∈ D given parameters Θ as follows:

γik =
αkf̄k(x;θk)

α0f̄0(x;θ0) + α1f̄1(x;θ1)
(12)

15

for 1 ≤ i ≤ |D| and k = 0, 1. Note that α0 + α1 = 1 and α0, α1 ≥ 0.
Intuitively, the γik corresponds to a probability that xi comes from the
bit k. If we know the exact form of fk, we use fk itself for f̄k for k = 0
and 1. However, in our attack scenario, we have no knowledge about fk
as described before. Then, we cannot use the EM algorithm as-is. We use
the Gaussian distribution in place of true unknown distribution, which
enables the EM algorithm to work. We adopt the probability density
function of Gaussian distribution for f̄k = N (µk, σ

2
k). In this setting,

the purpose of the EM algorithm will estimate means and variances for
mixture distributions. Appendix C gives some discussion on a relation
between cumulants and our estimation.

Next, we focus on our attack scenario. The attacker now wants to
know the means µ0 and µ1, and variances σ2

0 and σ2
1 by using the EM

algorithm. In this scenario, it is implicitly assumed that the noise distri-
butions f0 and f1 are the Gaussian. Then, we can explicitly write Θ as
Θ = {α0, α1, µ0, µ1, σ0, σ1}. Algorithm 3 in Appendix A.2 shows the EM
algorithm for estimating all the parameters Θ.

It is proved that the log-likelihood of the mixture distribution mono-
tonically decreases by using the EM algorithm. On the other hand, it is
hard to estimate precisely in advance the number of iteration required
until the log-likelihood converges. We will verify that the computational
time for the estimation phase for variances is negligible to the total time
for the whole key-recovery by measuring an actual running time of the
EM algorithm.

Algorithm 1 shows the whole proposed algorithm. This algorithm is
composed of two phase: Parameter Estimation Phase and Key-Recovery
Phase. That means we use Algorithm 3 as a pre-processing of the key-
recovery algorithm. We call the whole algorithm KRP algorithm.

Algorithm 1 KRP algorithm (Key Recovery with Pre-processing Algo-
rithm)

Input: Public Key (N, e)，observed noisy sequences sk
Output: Correct Secret Key sk
Parameter: L ∈ N
Parameter Estimation Phase Run Algorithm 3 (EM algorithm) to estimate the

variances σ2
0 and σ2

1 from the observed sequence.
Key-Recovery Phase: Run V-based algorithm with inputs (estimated) σ2

0 and σ2
1 ,

the observed sequence, and L.

16

5.2 Experimental Results for KRP algorithm

We first examine the running time of Algorithm 3 for various input length
of the observed sequence. We repeat the EM algorithm 100 times given
an initial parameter for Θ and calculate the average of the running time.
The environment for computation is the same as that in Section 4.4. In
the experiments, we iterate E-step and M-step until convergence.

Table 1 shows the average time for the EM algorithm.

Table 1. Average of Running Time for the EM algorithm

Input Data Length 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Computational Time (ms) 1.90 3.94 6.22 8.38 10.5 12.8 15.1 17.5 19.9 21.8

In general, we can estimate parameters with higher accuracy if we
use more data for estimation. On the other hand, it causes more running
time. We can see that the running time is at most 21.8ms even if we use
full sequences for estimating the variances. Since the running time for
the V-based algorithm is in average 36.9 seconds as shown in Section 4.4,
the running time of the EM-algorithm is negligible to the whole running
time. From now on, we ignore the running time of the EM Algorithm.

Figure 3 shows success rates of KRP algorithm for σ0 = 0.1, 0.4, 0.7
and 1.0. The success rates for any σ0 show similar behavior. Namely, if
σ1 is small (for example, if σ1 ≤ 1.7 for σ0 = 0.4), the success rates are
1. If σ1 is bigger than some threshold that depends on σ0, the success
rate decreases gradually. Further, if σ1 is large enough (for example, if
σ1 ≥ 2.6 for σ0 = 0.4), the success rates are 0 for any σ0.

Comparison between KRP algorithm and V-based algorithm
Next, we compare KRP algorithm and V-based algorithm. Remember
that V-based algorithm requires additional input: σ0 and σ1 but KRP
algorithm works without them. In the experiments, we consider the case
that both of f0 and f1 are the Gaussian distributions: fk = N ((−1)k, σ2

k)
for k = 0 and 1. Here, we run the experiments under the same environ-
ments as in Section 4.4.

Figure 4 shows the success rates of the KRP algorithm and the V-
based algorithm for σ0 = 0.4 and 1.0. We give some discussion for the case
of σ0 = 0.4. Fig. 4(a) shows that the success rates of the both algorithms
are almost 1 if σ1 is less than or equal to 1.8. We can see that when
1.8 ≤ σ1 ≤ 2.6, their success rates decrease gradually, but, they are almost

17

Fig. 3. Success rates of KRP algorithm for σ0 = 0.1, 0.4, 0.7, 1.0

the same. Hence, we can say that there is no difference between their
performance. The success rates for σ0 = 1.0 denote the same tendency as
for σ0 = 0.4, that is, there is no difference in performance between the two
algorithms. The above discussion shows that the EM algorithm succeeds
in estimating the variances with enough accuracy and KRP algorithm.
Consequently, the KRP algorithm, which does not receive σ0 and σ1 as
inputs, has almost the same performance as the V-based algorithm.

Comparison between KRP and DPA-like algorithm Finally, we
compare KRP and DPA-like algorithms [10]. Note that the both algo-
rithms work given only the observed data, which means that they do not
require additional information about the probability density functions.

We consider the case that the both of f0 and f1 are the Gaussian
distributions: fk = N ((−1)k, σ2

k) for k = 0 and 1. Here, we execute the
experiments under the same environments as in Section 4.4.

Figure 5 shows the success rates of KRP algorithm and DPA-like al-
gorithm for σ0 = 0.4 and σ0 = 1.0. We can see that KRP algorithm
attains higher success rates than the DPA-like algorithm from Figs. 5(a)
and 5(b). Further, their computational time for recovering the keys are

18

(a) σ0 = 0.4 (b) σ0 = 1.0

Fig. 4. Success Rates of KRP algorithm and V-based algorithm

Table 2. Success Rates of Three Algorithms for σ0 = 0.4

σ1 0 · · · 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8

DPA-like [10] 1 0.99 0.95 0.85 0.68 0.38 0.16 0.05 0.01 0 0 0 0

V-based (this paper) 1 1 1 0.97 0.92 0.81 0.60 0.37 0.18 0.07 0.01 0.01 0.01

KRP (this paper) 1 1 0.99 0.96 0.95 0.75 0.65 0.39 0.23 0.06 0.01 0 0

almost the same because the running time of the EM algorithm is negligi-
ble as described before. Summing up, we can conclude that our proposed
KRP algorithm is superior to the DPA-like algorithm.

Tables 2, 3 and 4 summarize the success rates of the DPA-like algo-
rithm, the V-based algorithm, and the KRP algorithm.

Table 3. Success Rates of Three Algorithms for σ0 = 1.0

σ1 0 · · · 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5

DPA-like [10] 1 0.99 0.98 0.92 0.88 0.61 0.35 0.19 0.06 0.01 0 0 0

V-based (this paper) 1 1 1 1 0.98 0.92 0.74 0.63 0.42 0.18 0.05 0.02 0.02

KRP (this paper) 1 1 1 1 0.97 0.94 0.82 0.64 0.27 0.18 0.05 0.01 0

We can see that the proposed algorithms in this paper are superior
to DPA-like algorithm [10]. Moreover, the proposed two algorithms have
almost the same performance; while V-based algorithm requires the vari-
ances of the noise distributions and KRP algorithm does not.

19

(a) σ0 = 0.4 (b) σ0 = 1.0

Fig. 5. Success Rates of KRP algorithm and DPA-like algorithm

Table 4. Success Rates of Three Algorithms for σ0 = 1.5

σ1 0 · · · 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1

DPA-like [10] 1 0.99 0.98 0.95 0.91 0.76 0.66 0.41 0.24 0.10 0.04 0.01 0 0

V-based (this paper) 1 1 1 1 1 0.99 0.94 0.87 0.78 0.55 0.37 0.17 0.09 0.01

KRP (this paper) 1 1 1 1 1 0.98 0.98 0.93 0.67 0.58 0.39 0.13 0.06 0

5.3 Performance of KRP Algorithm for non-Gaussian
Distributions

We have verified that our algorithms are effective when the true distri-
butions are the Gaussian. As claimed in [7], the assumption of Gaussian
noise may not always hold in practice. We will provide some evidence in
this subsection that our algorithms are effective for non-Gaussian distri-
butions We consider the case that the both of f0 and f1 are non-Gaussian
distributions. As like [7], we will examine two non-Gaussian distributions.
The first one comes from the exponential family, Laplace distribution.
The second one is a uniform distribution, which is far from the Gaus-
sian. The first has sharp form and the second has flat form compared to
the Gaussian. It is important to study the performance under these two
distributions in practice (see [7]).

We remind readers the Laplace distribution. The probability density
function fL for Laplace distribution L(µ, a) with mean µ and a positive

real a is given by fL(x;µ, a) = 1
2a exp

(
− |x−µ|

a

)
. The variance of the

Laplace distribution L(µ, a) is given by 2a2. We consider the case that
fk = L((−1)k, ak) for k = 0 and 1. The probability density function fU for

20

Uniform distribution U(µ, c) with mean µ and a positive real c is given by
fU(x;µ, c) =

1
2c when −c+ µ ≤ x ≤ c+ µ and 0 otherwise. The variance

of the Uniform distribution U(µ, c) is given by 3c2. We consider the case
that fk = U((−1)k, ck) for k = 0, 1.

Figure 6 shows the success rates of KRP algorithm for the Gaus-
sian, the Laplace, and the Uniform distributions with the same variances
σ0 = 0.4 and σ0 = 1.0, respectively. Note that we set ai = σi/

√
2 and

ci = σi/
√
3 to be the same variances. Also, note that we do not use any

knowledge about true distributions at all in our experiments. We can
see that KRP algorithm can attain almost the same (but slightly worse)
success rates even if the true distribution is Laplace or Uniform distribu-
tion. These results give strong evidence that our algorithm works for any
probability distribution.

One might think that we have showed the experimental results for only
two non-Gaussian distributions. We again stress on some restrictions in
our analysis. Our algorithms and analysis are valid only if the probabil-
ity density functions f0 and f1 are fixed through the observation, which
implies that our analysis is valid for any form of the noise distributions.

(a) σ0 = 0.4 (b) σ0 = 1.0

Fig. 6. Success Rates of KRP algorithm for Three Different Distributions

Acknowledgement

This research was supported by CREST, JST and supported by JSPS
KAKENHI Grant Number 25280001 and 16H02780.

References

1. C. M. Bishop, “Pattern Recognition and Machine Learning,” Springer, 2006.

21

2. C. M. Cover and J. A. Thomas, “Elements of Information Theory, 2nd Edition,”
Wiley-Interscience, 2006.

3. A. P. Dempster and N. M. Laird and D. B. Rubin, “Maximum likelihood from
incomplete data via the EM algorithm,” in Journal of the Royal Statistical Society,
Series B Vol. 39, no. 1, pp. 1–38, 1977.

4. J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J. A. Ca-
landrino, A. J. Feldman, J. Appelbaum and, E. W. Felten, “Lest We Remember:
Cold Boot Attacks on Encryption Keys,” in Proc. of USENIX Security Symposium
2008, pp. 45–60, 2008.

5. W. Henecka, A. May, and A. Meurer, “Correcting Errors in RSA Private Keys,”
in Proc. of Crypto 2010, LNCS 6223, pp. 351–369, 2010.

6. N. Heninger and H. Shacham, “Reconstructing RSA Private Keys from Random
Key Bits,” in Proc. of Crypto 2009, LNCS 5677, pp. 1–17, 2009.

7. A. Heuser, O. Rioul and S. Guilley, “Good is Not Good Enough: Deriving Optimal
Distinguishers from Communication Theory,” in Proc. of CHES2014, LNCS 8731,
pp. 55–74, 2014.

8. P. Kocher, J. Jaffe and B. Jun, “Differential Power Analysis,” in Proc. of
CRYPTO’99, LNCS 1666, pp.388–397, 1999.

9. N. Kunihiro, N. Shinohara and T. Izu, “Recovering RSA Secret Keys from Noisy
Key Bits with Erasures and Errors,” in Proc. of PKC2013, LNCS 7778, pp. 180–
197, 2013.

10. N. Kunihiro and J. Honda, “RSA meets DPA: Recovering RSA Secret Keys from
Noisy Analog Data,” in Proc. of CHES 2014, LNCS 8731, pp. 261–278, 2014.

11. N. Kunihiro and J. Honda, “RSA meets DPA: Recovering RSA Secret Keys from
Noisy Analog Data,” IACR eprint: 2014/513, 2014.

12. N. Kunihiro and Y. Takahashi, “Improved Key Recovery Algorithms from Noisy
RSA Secret Keys with Analog Noise,” to appear in CT-RSA2017, 2017.

13. K. G. Paterson, A. Polychroniadou and D. L. Sibborn, “A Coding-Theoretic Ap-
proach to Recovering Noisy RSA Keys,” in Proc. of Asiacrypt 2012, LNCS 7658,
pp. 386–403, 2012.

14. PKCS #1: RSA Cryptography Specifications Version 2.0. Available at http://

www.ietf.org/rfc/rfc2437.txt.

15. R. Rivest, A. Shamir, and L. Adleman, “AMethod for Obtaining Digital Signatures
and Public-Key Cryptosystems,” Communications of the ACM, vol. 21(2), pp.
120–126, 1978.

16. S. Yilek, E. Rescorla, H. Shacham, B. Enright, and S. Savage, “When Private
Keys are Public: Results from the 2008 Debian OpenSSL Vulnerability,” IMC
2009, ACM Press, pp. 15–27, 2009.

A Algorithm Description

A.1 Key Recovery Algorithm in [10, 13]

Let b1,a ∈ {0, 1}5, a ∈ {1, 2}, be the a-th candidate of the first slice
slice(0). We write the two candidates of the first (i+ 1) slices when the
first i slices are bi,a = (slice(0), · · · , slice(i − 1)) by bi+1,2a−1, bi+1,2a ∈
{0, 1}5(i+1). Similarly, for a secret key sequence bi,a, the observed sequence

22

Algorithm 2 Key Recovery Algorithm in [10]

Input: Public keys (N, e), observed data sk (and some information about noise
distributions if necessary)
Output: Secret keys sk.
Parameter: L ∈ N.
Initialization: Set L0 := {1}.
Loop: For r = 1, 2, · · · , n/2 do the following.

1. Expansion Phase Generate list L′
r of all ancestors with depth 1 from nodes in

Lr−1, that is, L′
r :=

∪
a∈Lr−1

{2a− 1, 2a}.
2. Pruning Phase If 2r ≤ L then set Lr := L′

r. Otherwise, set Lr to a subset of
L′

r with size L such that Score5r(br,a,xr) are the largest so that for any a ∈ Lr

and a′ ∈ L′
r \ Lr

Score5r(br,a,xr) ≥ Score5r(br,a′ ,xr) .

Output of Loop: List of candidates Ln/2.
Finalization: For each candidate in Ln/2, check whether the candidate is indeed a
valid secret key with the help of public information.

is denoted by xi ∈ R5i. Under the these notation, the key-recovery algo-
rithm is summarized in Algorithm 2.

We say that the recovery error occurred if the output Ln/2 does not
contain the correct secret key.

The computational cost of Algorithm 2 is summarized as follows. The
costs of Expansion and Pruning phases in each loop are evaluated by
2L and 2L. Since each phase is repeated n/2 times, the total cost of the
Expansion phase and Pruning phase are given by nL and nL, respectively.

A.2 The EM Algorithm for Estimating Θ

We briefly review the EM algorithm [1]. The EM algorithm is an iterative
method for finding maximum likelihood in statistical models, where the
model depends on hidden parameters. The EM iteration alternates be-
tween performing an expectation (E)-step and a maximization (M)-step.
The E-step creates a function for the expectation of the log-likelihood
evaluated using the current estimate of the parameters. Moreover, the M-
step computes parameters maximizing the expected log-likelihood found
on the E-step. These estimated parameters are then used to determine
the distribution of the hidden parameters in the next E-step.

Algorithm 3 shows the EM algorithm for estimating parameters Θ
from the observed data.

23

Algorithm 3 The EM Algorithm for Estimating Θ
Input: Observed data set D = {x1, . . . , xn} and initial values for Θ
Output: Parameter Θ maximizing the log-likelihood of p(D|Θ).
Iteration: Repeat E-Step and M-Step until the log-likelihood of the mixture density

converges.
E-Step: Compute the Membership weight γ(i, k) for all xi ∈ D.
M-Step: Obtain the updated state estimates Nk, µ

new
k , σnew

k , αnew
k for k = 0 and 1 via

the following equations.

Nk =

N∑
i=1

γ(i, k) for k = 0, 1

µnew
k =

1

Nk

N∑
i=1

γ(i, k)xi for k = 0, 1

σ2 new
k =

1

Nk

N∑
i=1

γ(i, k)(xi − µnew
k)2 for k = 0, 1

αnew
k =

Nk

N
for k = 0, 1

B V-based algorithm via Estimation of Distributions

We will give another view of V-based algorithm. In deriving a new score
function, we go back to Eq. (6). In the discussion of Section 3 (espe-

cially, Theorem 3), it is critical to estimate f
(E)
0 and f

(E)
1 more precisely

in designing the score function. But, how can we do? We will use the
Gaussian distribution with variance σ2

0 and σ2
1 in place of unknown (but

true) probability density functions f0 and f1 for their estimations f
(E)
0 and

f
(E)
1 . Substituting f

(E)
0 = N (+1, σ2

0) and f
(E)
1 = N (−1, σ2

1) into Eq. (6),
we have

R(E)(b,x) =
∑
i

(
(−1)bixi

σ2
bi

)
−
∑
i

(
x2i + 1

2σ2
bi

+
1

2
log(2πσ2

bi
)

)
(13)

We will adopt its former part as a new score function since the terms

in latter part of Eq. (13):
∑

i

(
x2
i+1

2σ2
bi

+ 1
2 log(2πσ

2
bi
)

)
does not (almost)

depend on the sequence b in the case that each bi is randomly generated.

C Cumulants

The main technical tools in the paper is estimating the average and the
variance of the true noise distributions. Theorem 3 claims that we can

24

improve the success condition if we succeed to precisely estimate the prob-
ability density functions. For better understanding, we review cumulant
as the useful statistic.

The cumulant generating function M(s) for the random variable X,
which is the logarithm of the moment generating function, is defined by
M(s) = lnE[esX]. The cumulants cj are obtained from a power series
expansion of the cumulant generating function:

M(s) =
∞∑
j=1

cj
j!
sn

We consider the Gaussian distribution N (µ, σ2). The cumulant gener-

ating function M(s) is given by M(s) = µs+ σ2

2! s
2. Then, c1 = µ, c2 = σ2

and cj = 0 for j = 3, 4, We can verify it by following calculations.

E[esX] =

∫ ∞

−∞
esx

1√
2πσ2

exp

(
−(x− µ)2

2σ2

)
dx

=
1√
2πσ2

∫ ∞

−∞
exp

(
−(x− (µ+ σ2s))2 − 2µσ2s− σ4s2

2σ2

)
dx

= exp

(
µs+

σ2

2!
s2
)

Estimating precise probability density function is equivalent to ob-
taining all precise values of cumulants. In the discussion of Section 5,
we conduct the attack after calculating c1 and c2. It is enough for the
Gaussian distribution since its cumulants satisfy cj = 0 for j ≥ 3.

25

