
Indistinguishability Obfuscation
from DDH on 5-linear Maps and Locality-5 PRGs

Huijia Lin∗
University of California, Santa Barbara

Abstract

We present a new construction of Indistinguishability Obfuscation (IO) from the following:

• asymmetric L-linear maps [Boneh and Silverberg, Eprint 2002] with subexponential De-
cisional Diffie-Hellman (DDH) assumption,

• locality-L polynomial-stretch pseudorandom generators (PRG) with subexponential se-
curity, and

• the subexponential hardness of Learning With Errors (LWE).

When plugging in a candidate PRG with locality-5 (e.g., [Goldreich, ECCC 2010, O’Donnell
and Witmer, CCC 2014]), we obtain a construction of IO from subexponential DDH on 5-linear
maps and LWE. Previous IO constructions rely on multilinear maps or graded encodings with
higher degrees (at least larger than 30), more complex functionalities (e.g., graded encodings
with complex label structures), and stronger assumptions (e.g., the joint-SXDH assumption).

∗rachel.lin@cs.ucsb.edu. Huijia Lin was partially supported by NSF grants CNS-1528178 and CNS-1514526.

Contents

1 Introduction 1
1.1 Our Results . 2
1.2 Local Pseudo-Random Generators . 6
1.3 Concurrent and Independent Work . 7
1.4 Organization . 7

2 Technical Overview 7
2.1 Bootstrapping . 7
2.2 Quadratic Secret-Key FE . 9
2.3 Degree-D Secret-Key FE . 16
2.4 Simple Function Hiding IPE . 18

3 Preliminaries 18
3.1 µ-Indistinguishability . 19
3.2 Indistinguishability Obfuscation . 19
3.3 Pseudorandom Generator . 20
3.4 Randomized Encodings . 20
3.5 Functional Encryption . 21

3.5.1 Public-Key Functional Encryption . 21
3.5.2 Secret Key Functional Encryption . 22
3.5.3 FE for P/poly, NC1 and Compactness . 23

3.6 Zero-Testing FE for Arithmetic Functions . 24

4 Degree-D Asymmetric Multilinear Maps with SXDH Assumption 25

5 IO from Locality-L PRG and Degree-L FE 26
5.1 IO from Degree-D PRG and Degree-(3D + 2) FE . 26
5.2 IO from Locality-L PRG and Degree-L FE . 29

6 Inner Product Encryption 32
6.1 Definition of Weak Function Hiding . 32
6.2 Review of the ABCP Public Key IPE . 33
6.3 Our New Weakly Function Hiding IPE . 35
6.4 Our New Function Hiding IPE . 36
6.5 Special-Purpose Two-Slot IPE . 37

6.5.1 Special Properties of Our Two-Slot IPE . 39

7 High-Degree IPE 41
7.1 Definition of HIPE . 41
7.2 Degree-D HIPE from Degree-D MMaps . 42

7.2.1 Overview of Construction . 43
7.2.2 Construction — The Induction Step . 46
7.2.3 Efficiency . 49

7.3 Security Proof . 50
7.3.1 Overview of Security Proof . 50
7.3.2 Proof of Proposition 2 . 55

i

7.3.3 Proof Lemma 6 . 60
7.3.4 Proofs of Lemma 7, 8 and 9 . 62

8 FE for Degree-D Polynomials from Degree-D MMaps 68
8.1 Construction . 68
8.2 Security Proof . 71

8.2.1 Proof of Lemma 14 . 79
8.2.2 Proof of Lemma 15 to 17 . 80

ii

1 Introduction

Indistinguishability obfuscation, defined first in the seminal work of Barak et al. [BGI+01a], aims
to obfuscate programs into “unintelligible” ones while preserving functionality. IO is an extraordi-
narily powerful object. Starting from the elegant work of Sahai and Waters [SW14], IO now gives
us a treasure-chest of cryptographic constructions, providing answers to a long list of open prob-
lems (e.g., [SW14, GGH+13b, GGHR14, GHRW14, CHN+15, GP15, BPW16, BGJ+16]), solutions
to new cryptographic goals (e.g., [GGSW13, CHJV15, BGL+15, KLW15]), and even implications
outside cryptography [BPR15].

Unfortunately, so far, the existence of IO remain uncertain. Most known candidate IO schemes
[GGH+13b, BR14, BGK+14, PST14, AGIS14, GLSW15, Zim15, AB15, GMS16, MSZ16] are built
from the so-called graded encoding schemes [GGH13a], a framework of complex algebraic struc-
tures that, in essence, enables evaluating polynomial-degree polynomials on secret encoded values
and revealing whether the output is zero or not. The security of most IO candidates are either
analyzed in the ideal model or based on strong uber assumptions [PST14], with the only excep-
tion that Gentry, Lewko, Sahai and Waters [GLSW15] came up with an IO construction under the
multilinear subgroup elimination assumption. However, instantiating graded encodings from con-
crete mathematical objects has proved elusive: Vulnerabilities were demonstrated in all known
instantiations [GGH13a, CLT13, LSS14, GGH15, CLT15].

The state-of-affairs motivates one of the most important questions in theory of cryptogra-
phy today: What mathematical objects and assumptions imply IO? In a recent works [Lin16],
the author took the first step in simplifying the algebraic structure needed for constructing IO,
and showed that graded encodings supporting only evaluation of constant-degree polynomials,
called constant-degree graded encodings, already suffice, assuming the existence of polynomial-
stretch PRG in NC0 and hardness of Learning With Errors (LWE). Following that, the author and
Vaikuntanathan [LV16] further weakened the assumption on constant-degree graded encodings
from a uber assumption in [Lin16] to the joint-SXDH assumption, which resembles the classical
Decisional Diffie-Hellman (DDH) assumption. Following the trajectory of recent developments,
we ask,

How much can we narrow the gap between mathematical objects and assumptions that imply IO,
and well-studied mathematical objects, like bilinear pairing groups with DDH assumption?

In this work, we show that assuming LWE and the existence of a PRG with small output local-
ity L (i.e., every output bit depends on at most L input bits), IO can be constructed from degree-L
(asymmetric) multilinear paring groups, with exactly the DDH assumption. In the literature, can-
didate PRGs with locality-5 [Gol00, OW14] exist.1 Assuming their security and LWE, we immedi-
ately obtain a construction of IO from the DDH assumption on 5-linear maps.

Our result improves the previous state-of-the-art at multiple fronts. First, our construction
is based on the simpler algebraic structure of multilinear pairing groups than graded encodings.
Multilinear pairing groups, introduced by Boneh and Silverberg [BS02], are direct generalization
of bilinear pairing groups to higher degree, whereas graded encodings provides more complex
functionalities that in particular allows one to pose constraints on what type of polynomials can
and cannot be evaluated on a set of secret encoded values. Second, we reduce the concrete degree
of graded encodings / multilinear maps needed for IO construction from 6L in [LV16] to now L,
matching exactly the locality L of the PRG. This is, in some sense, optimal under current tech-
niques that require using the graded encoding / multilinear maps to evaluate the PRG on secret

1There is no PRG with locality-4, achieving polynomial stretch [CM01, MST03].

1

encoded seeds. Last but not least, we simplify the assumption from joint-SXDH that resembles
the DDH assumption to the DDH assumption itself on multilinear maps.

1.1 Our Results

SXDH on Multilinear Maps Asymmetric multilinear pairing groups as introduced by Boneh
and Silverberg [BS02] generalize asymmetric bilinear pairing maps to a collection of source groups
G1, · · · , GD, whose elements can be paired to produce elements in a target group GT via a multi-
linear map e(ga11 , · · · , gaDD) = ga1···aDT . The degree (a.k.a. multilinearity) of the (asymmetric) multi-
linear map is the number of elements that can be paired together, which equals to the number of
source groups D. We say that the multilinear pairing groups have prime order if all source groups
and the target group have the same prime order, and composite order if all groups have the same
composite order. In this work, we consider constant-degree multilinear paring groups, and in
particular 5-linear pairing groups, with either prime or composite order.

The SXDH assumption on (asymmetric) multilinear pairing groups is a natural generalization
of the standard symmetric external Diffie-Hellman (SXDH) assumption on (asymmetric) bilinear
pairing groups. In short, SXDH states that the decisional Diffie-Hellman assumption holds in
every source group: It postulates that the distribution of gad , g

b
d, g

ab
d in any source group d should

be indistinguishable to that of gad , g
b
d, g

r
d. Formally

SXDH over D-linear maps: ∀d ∈ [D],{
gad , g

b
d

$← Gd : {gi}i∈[D], g
a
d , g

b
d, g

ab
d

}
≈
{
gad , g

b
d, g

r
d

$← Gd : {gi}i∈[D], g
a
d , g

b
d, g

r
d

}
,

where {gi} is the set of generators in all groups. When D = 2, this gives exactly the SXDH
assumption on bilinear pairing groups.

Multilinear maps are much simpler than graded encodings. The interface of multilinear pairing groups
is much simpler than that of graded encoding schemes introduced by [GGH13a]. First, graded
encoding schemes support graded multiplication over a collection of groups {Gl}: Graded multipli-
cation can pair elements of two groupsGl1 , Gl2 , indexed by two labels l1, l2, to produce an element
in the group Gl1+l2 , indexed by label l1 + l2 (according to some well-defined addition operation
over the labels; for example, if labels are integers, + is integer addition, and if labels are sets, +
is set union). In particular, the output element in Gl1+l2 can be further paired with elements in
other groups to produce elements in group Gl1+l2+l3+··· and so on. In contrast, multilinear map
allows only “one-shot” multiplication, where the output element belongs to the target group GT
that cannot be paired anymore. Second, graded encoding schemes support the notion of “pairable
groups” in the sense that only elements from groups Gl1 , Gl2 that satisfy a “pairable” relation can
be paired (e.g., if labels are sets, then two groups are pairable, if their label-sets l1, l2 are disjoint).

The support for graded multiplication between pairable groups provides powerful capabili-
ties. In essence, GES allows one to “engineer” the labels of a set of group elements {gaili }, so that,
only polynomials of certain specific forms can be evaluated on values in the exponent. In contrast,
the simple interface of multilinear maps does not provide such capabilities.

SXDH is simpler than Joint-SXDH Lin and Vaikuntanathan introduced the joint-SXDH assumption
on graded encoding schemes, and showed that IO for P/poly can be based on subexponential
joint-SXDH and PRG in NC0. Their joint-SXDH assumption further generalizes the SXDH as-
sumption above: It considers the joint distribution of elements (gal , g

b
l , g

ab
l)l∈S in a set S of groups.

The intuition is that as long as no pairs of groups Gl1 , Gl2 in the set S are pairable, in the same

2

spirit as SXDH, the distribution is possibly indistinguishable to the joint distribution of elements
(gal , g

b
l , g

r
l)l∈S in the same set of groups, with random exponents (a, b, r) (note that the same ran-

dom exponents are used in all groups in S). Though joint-SXDH is a natural generalization of the
SXDH assumption, its relation with the SXDH assumption is unknown and is potentially much
stronger than the SXDH assumption.

Our Main Result: IO from SXDH on Low-degree Multilinear Maps and Local PRG We are
now ready to state our main result:

Theorem 1 (Main Theorem). Let L be any positive integer. Assume the subexponential hardness of LWE.
Then, IO for P/poly is implied by the subexponential SXDH assumption on L-linear pairing groups (with
prime or composite order), and the existence of a subexponentially secure locality-L PRG with n1+ε-stretch
for any ε > 0.

We remark that the subexponential hardness of SXDH, PRG, and LWE required by our theorem
is weaker than standard notions of subexponential hardness of decisional problems, in the sense
that we only require the distinguishing gap to be subexponentially small against polynomial time
adversaries, as opposed to subexponential time adversaries (See Section 3 for definition).

Our result establishes a direct and tight connection between the degree D of multilinear maps
needed for constructing IO and the locality L of PRGs — they are the same D = L — assuming
subexponential LWE. In the literature, there are many works studying local PRGs. On the nega-
tive side, it was shown that there is no PRG with locality 4 that achieves super-linear stretch [CM01,
MST03]. On the positive side, candidate PRGs with locality 5 and polynomial stretch exist [Gol00,
OW14]2; they are the so-called “random” NC0 functions [CEMT09, BQ12, OW14, AL16] — a vari-
ant of Goldreich’s OWFs [Gol00] (See section 1.2 for a brief survey of local PRG.) Plugging a
locality-5 PRG in our main theorem immediately gives the following corollary that IO can be
based on SXDH on 5-linear maps, assuming subexponential LWE.

Corollary 1 (IO from 5-linear maps and locality-5 PRG). Assume the subexponential hardness of LWE.
IO for P/poly is implied by the subexponential SXDH assumption on 5-linear pairing groups (with prime
or composite order), and the existence of a subexponentially-secure locality-5 PRG with n1+ε-stretch for
any ε > 0.

Our result improves previous works at several fronts. Most candidate IO schemes are built
from polynomial-degree graded encodings. Recently, Lin [Lin16] presented the first IO construc-
tion from constant-degree graded encodings, assuming the existence of subexponentially secure
PRGs in NC0 and LWE. A drawback of her result is that the security of IO relies on strong subex-
ponential uber assumptions (similar to the semantic security of [PST14]) on the graded encod-
ings. This is improved by Lin and Vaikuntanathan [LV16], who showed that it suffices to assume
joint-SXDH on constant-degree graded encodings (without subexponential LWE). Our result fur-
ther simplifies the algebraic structures and assumptions needed for constructing IO towards the
“minimal”: First, we give the first construction of IO from constant-degree multilinear maps, as
opposed to graded encodings, which provide much more complex functionalities (in particular,
graded multiplication between pairable groups). Second, we simplify the assumption from joint-
SXDH to SXDH. Third, the multilinear maps that our IO construction are based on have a much
smaller degree than that of the graded encodings used in previous works.

2The best known attacks on these candidates takes certain specific subexponential time.

3

So far, the IO construction that is based on graded encodings with the smallest degree is given
by [LV16], which additionally relies on a PRG in NC0. Suppose that the NC0-PRG can be evaluated,
in the exponent of graded encodings, using a degree-D polynomial P (that is, gPRG(s) = gP (s)).
Then the graded encodings just need to support evaluation of degree-(6D + 4) polynomials (in
the exponent). Since the degree D is at least 2 (for there are no linearly-computable PRGs), the
degree of their graded encodings is at least 16. In fact, to the best of our knowledge, it is not
even clear whether there exist candidate PRGs that admit a degree D lower than 5. On the other
hand, the locality L of a PRG upper bounds the degree D (no matter what exponent space the
graded encodings have). This is because the PRG has binary input strings and any polynomial
that computes the PRG is multilinear (for x2 = x when x ∈ {0, 1}). Therefore, the degree of the
graded encodings needed in [LV16] is only upper bounded by (6L+ 4), much higher than degree
L needed in our IO construction.

Our Approach via Bootstrapping: IO from Locality-L PRG and Degree-L FE We follow the
same two-step approaches in all previous IO constructions: First, construct IO for P/poly from
some simpler primitives — call this the bootstrapping step — and then instantiate the primitives
needed, using graded encodings or multilinear maps. In recent works, simplifying the inter-
mediate primitives acts as the “catalyst” for simplifying the underlying algebraic structures and
assumptions. Often, additional cryptographic assumptions, like LWE and the existence of NC0-
PRGs [LV16], are used in the bootstrapping step, in order to “trade” for the simplicity of the in-
termediate primitives, and eventually the simplicity of the underlying algebra and assumptions.
This provides a framework for using more well-studied or just completely different types of as-
sumptions, to weaken the requirements on graded encodings and multilinear maps.

In this work, one of our goals is minimizing the degree of multilinear maps needed. To achieve
this, we first build IO from FE for computing low degree, L, polynomials in some ring R (which
eventually corresponds to the exponent space of multilinear maps used for instantiating the FE),
assuming the existence of a polynomial-stretch PRG with locality-L.

Theorem 2 (Bootstrapping Theorem). Let L be any positive integer. Assume the subexponential hard-
ness of LWE. IO for P/poly is implied by the existence of sub-exponentially secure (collusion resistant)
secret-key FE schemes for computing degree-L polynomials in any ring R, with linear efficiency and a
sub-exponentially secure locality-L PRG with n1+ε-stretch for any ε > 0.

(In the case that the FE schemes are public-key, the assumption on the hardness of LWE is not needed.)

Above, the linear efficiency of FE schemes means that encryption time is linear in the input length
N(λ), that is, TimeFE.Enc = N(λ) poly(λ). In fact, we only need the FE scheme to achieve the
weaker functionality of revealing whether the output of a degree-L polynomial is zero in R (see
Section 3.6 for the formal definition). We refer to such FE schemes as degree-L FE inRwith linear
efficiency.

Previous bootstrapping theorems build IO for P/poly from either of the following: i) from IO
for NC1 [GGH+13b], or ii) from subexponentially secure FE for NC1 [AJ15, BV15, AJS15, BNPW16],
or iii) from subexponentially secure IO for constant degree computations and PRG in NC0 [Lin16],
or iv) from subexponentially secure FE for NC0 and PRG in NC0 [LV16]. (Some bootstrapping
theorems additionally assume LWE [GGH+13b, Lin16] or the existence of public key encryp-
tion [BNPW16]). The the bootstrapping theorem most related to this work is that of [LV16]: The
parameterized version of their theorem states that IO can be built from degree-(3L + 2) FE and
locality-L PRG. We here reduce the degree of FE to exactly L.

4

An overview of our bootstrapping step is given in Section 2.1 and details provided in Sec-
tion 5.1.

Degree Preserving Construction of FE: Degree-L FE from SXDH on Degree -LMultilinear Maps
Using multilinear paring groups whose exponent space corresponds to a ringR, we can instantiate
degree-L FE in ringR, if the multilinear map has degree L.

Theorem 3 (Degree-Preserving Construction of FE). Let D be any positive integer and R any ring.
Assuming SXDH onD-linear maps over ringR, there exist secret key FE schemes for degree-D polynomials
inR, with linear efficiency.

Previous constructions of FE for NC1 either relies on IO for NC1 or high degree multilinear
maps [GGH+13b, GGHZ16], whose degree is polynomial in the circuit-size of the computations.
In [LV16], Lin and Vaikuntanathan constructed FE for NC0 from constant-degree graded encod-
ings. Their construction, however, is not degree-preserving: To compute NC0 functions that can be
evaluated in degree D, they require degree 2D graded encodings. Our FE construction is the first
one that supports degree-D computations using only degree-D multilinear maps. An intriguing
question to ask is whether we can rely on multilinear maps with degree even less thanD. This can
be done when the degree D of the computations is high enough, for instance, polynomial, since
one can apply randomized encodings [IK02, AIK04] to represent such computations with ones that
have a much smaller degree. However, when the degree D of the computations is already small,
and cannot be reduced via randomized encodings, it is unclear whether one can construct FE for
such degree-D computations, using multilinear maps with degree less than D. In this setting, it is
not unclear how to achieve functionality, and would require completely new ideas.

See Section 2.2 and 2.3 for an overview of our degree-preserving FE construction, and details
in Section 8.

Additional Contributions. Along the way of designing our degree-preserving FE construction,
we also construct the following primitives that are of independent interests.

Simple Function Hiding IPE Schemes from SXDH on Bilinear Maps Without using the heavy hammers
of multilinear maps or IO, the state-of-the-art collusion resistant FE schemes can only compute in-
ner products, they are called Inner Product Encryption (IPE). In the literature, Abdalla, Bourse, De
Caro and Pointcheval (ABCP) [ABCP15] came up with a public key IPE scheme based on one of a
variety of assumptions, such as the decisional Diffie-Hellman assumption, the Paillier assumption
and the learning with errors assumption. Bishop, Jain and Kowalczyk [BJK15] (BJK) constructed
the first secret-key IPE scheme based on the SXDH assumption over asymmetric bilinear pair-
ing groups; however, their scheme achieves a stronger notion of security than the ABCP scheme,
called weak function-hiding. A followup construction [DDM16] further achieved fully function hiding
IPE. Moreover, Lin and Vaikuntanathan [LV16] showed how to generically transform any weak
function hiding IPE to full function hiding IPE.

While the ABCP public-key IPE scheme is simple, the secret-key (weak) function hiding IPE
schemes [BJK15, DDM16] are much more complex. This is attributed by the fact that they achieve
the stronger function hiding property, which guarantees hiding of both inputs and functions (re-
vealing only the function outputs), whereas standard security only hides inputs. In this work,
we give a simple construction of weak function hiding IPE scheme from SXDH on bilinear maps
(which can then be lifted to function hiding IPE using [LV16]). Our IPE scheme is built from
the ABCP public-key IPE scheme in a modular way, and inherits its efficiency and simplicity:

5

Ciphertexts and secret keys of length-N vectors consists of (N + 2) group elements, and the con-
struction and security proof of our scheme fits within 2 pages (reducing to the security of the
ABCP IPE scheme). In addition, the new scheme satisfies certain special properties that are im-
portant for our construction of degree-L FE schemes above, which are not satisfied by previous
IPE schemes [BJK15, DDM16]. (See Section 2.4 for an overview of our simple function hiding IPE
and Section 6 for details.)

High-Degree IPE We also generalize IPE to the notion of high-degree IPE, or HIPE for short. They
are multi-input FE scheme, introduced by [GGG+14], for computing, what we call, degree-D inner
product defined as 〈

x1, · · · ,xD
〉

= Σi∈[N]x
1
ix

2
i · · ·xDi .

We construct HIPE for degree-D inner products from degree-D multilinear maps, which is then
used as a key tool in our construction of degree-D FE schemes. We believe that this notion is
interesting on its own and may have other applications. (See Section 2.3 for an overview of HIPE
and Section 7 for details.)

1.2 Local Pseudo-Random Generators

We briefly survey constructions of local PRGs. On the negative side, it was shown that there is no
PRG in NC0

4 (with output locality 4) achieving super-linear stretch [CM01, MST03]. On the positive
side, Applebaum, Ishai, and Kushilevitz [AIK04] showed that any PRG in NC1 can be efficiently
“compiled” into a PRG in NC0 using randomized encodings, but with only sub-linear stretch. They
further constructed a linear-stretch PRG in NC0 under a specific intractability assumption related
to the hardness of decoding “sparsely generated” linear codes [AIK08], previously conjectured
by Alekhnovich [Ale03]. Applebaum [App12] showed that based on the one-wayness of “ran-
dom” NC0 functions (with appropriate output length) – a variant of Goldreich’s one-way func-
tions [Gol00], there exists a linear stretch PRG in NC0, as well as a polynomial-stretch weak PRG
(where the distinguishing advantage is 1/ poly(n)). In fact, the random NC0 functions themselves
are polynomial-stretch weak PRGs.

Random NC0 functions are also candidate polynomial-stretch PRGs. They are defined w.r.t. a
D-ary predicate P and a stretch parameterm(n): Let FP,m be a distribution overD-local functions
f : {0, 1}n → {0, 1}m defined by setting every output bit as P evaluated on D randomly cho-
sen input bits. Several works investigated the (in)security of random NC0 functions as one-way
functions or pseudo-random generators. So far, best known attacks take (certain specific) sub-
exponential time when the choice of the predicate P avoids degenerate cases [CEMT09, BQ12,
OW14, AL16]. In particular, O’Donnell and Witmer [OW14] gave evidence for the security of
random NC0 functions defined by the 5-local predicate P (x1, x2, x3, x4, x5) = x1 ⊕ x2 ⊕ x3 ⊕
x4x5 (mod 2). They showed that when the stretch is n1.499, this family is secure against both
subexponential-time F2-linear attacks, as well as subexponential-time attacks using SDP hierar-
chies such as Sherali-Adams+ and Lasserre/Parrilo. We remark that to build IO, local PRG with
any non-trivial stretch factor 1 + ε > 1 suffices; we can in particular use the O’Donnell-Witmer
PRG with n1.0001-stretch.

6

1.3 Concurrent and Independent Work

In a concurrent work3, Ananth and Sahai introduce a new primitive called projective arithmetic FE
(PAFE) – a version of FE tailored to arithmetic circuits. They obtain sub-linear secret key FE, which
suffices to build IO, from PAFE for degree d polynomials and randomizing polynomials for de-
gree d polynomials, assuming sub-exponential LWE. The randomizing polynomials they need are
required to satisfy some special properties. They give a degree preserving reduction from degree
d multilinear maps to PAFE for degree d polynomials. Finally, they show some instantiations of
the randomizing polynomials that they need, including an instantiation from degree 5 multilinear
maps. This yields a construction of IO from degree-5 multilinear maps, assuming subexponential
LWE, subexponentially secure PRGs of locality 5, and a specific family of subexponential assump-
tions over degree-5 multilinear maps.

1.4 Organization

In Section 2, we give an overview of our constructions and techniques. We present in Section 3 ba-
sic notations and definitions, and in Section 4 the definition of multilinear pairing groups and the
SXDH assumption on them. In Section 5, we show how to bootstrap FE for degree-L polynomials
and locality-L PRGs to IO for P/poly, assuming LWE. In Section 6, we construct various function
hiding IPE schemes that are building blocks of our constructions of FE. In Section 7, we define and
construct high-degree IPE, HIPE, schemes. Finally, in Section 8, we use HIPE schemes to construct
our FE schemes for degree-L polynomials from degree-L multilinear pairing groups.

2 Technical Overview

2.1 Bootstrapping

Our bootstrapping theorem follows the same two step approach as [Lin16, LV16]. To construct IO
for P/poly,

Step 1. First, construct sub-exponentially secure single-key FE schemes CFE for NC1 that are
weakly compact, meaning that encryption time scales polynomially in the security parameter
λ and the input length N , but also scales sublinearly in the maximal size S of the circuits for
which secret keys are generated. More precisely, a FE scheme is said to be (1 − ε)-weakly-
compact if its encryption time is poly(λ,N)S1−ε.

Step 2. If the FE schemes obtained from Step 1 are public-key schemes, invoke the result of [AJ15,
BV15] that any public-key (single-key) weakly-compact FE schemes (for any ε > 0) imply
IO for P/poly.

3We have engaged in several amicable exchanges with Ananth and Sahai about our respective results over the few
weeks preceding the initial posting of our papers. During this time, with regard to the minimum level of multilinearity
needed for constructing iO, certain milestones were reached at different times. In particular, Ananth and Sahai had
the first paper claiming iO from degree-15 maps. After that, we had the first paper claiming iO from degree-5 maps,
and thereafter Ananth and Sahai were also able to modify their paper to claim iO from degree-5 maps. Both groups
independently relied on PRGs of locality 5 to achieve these results, and the common bottleneck at degree 5 reflects
this. Prior to posting, however, the groups did not exchange any manuscripts, and worked independently. There are
several other differences in our results, most notably with regard to the assumptions. In addition, the techniques are
substantially different.

7

Otherwise, if the FE schemes obtained are secret-key schemes, then invoke the recent re-
sult of [BNPW16] that any secret-key weakly-compact FE schemes also imply IO for P/poly,
assuming additionally the sub-exponential hardness of LWE.

The challenging task is constructing (public-key or secret-key) weakly-compact FE schemes for
NC1 from simpler primitives. In [LV16] (LV), they constructed such schemes from (public key or
secret key respectively) collusion resistant FE schemes for NC0 with linear efficiency, assuming the
existence of a polynomial-stretch PRG in NC0. There, linear efficiency means that encryption time
is linear in input length, N poly(λ). Our first observation is that in their construction, the NC0-FE
schemes can be replaced with FE schemes for computing low degree D polynomials in any R
(also collusion resistant and has linear efficiency), where the degree D is bounded by (3L + 2) if
PRG has locality L. In this work, we show that the degree of the FE schemes (i.e., the degree of
the polynomials supported) can be reduced to L, which gives our bootstrapping theorem. Below,
we start with reviewing the LV construction of weakly-compact FE for NC1, and then modify their
construction to reduce the degree of the underlying FE schemes. (In the exposition below, we do
not differentiate public-key vs secret-key schemes, since they are handled in the same way.)

The LV Weakly-Compact FE for NC1. To construct weakly-compact FE schemes for NC1 from
FE schemes for NC0, LV uses randomized encodings to represent every NC1 function f(x), as a
simpler NC0 randomized function f̂(x; r). Then, to enable computing f(x), it suffices to pub-
lish a secret key for f̂ ∈ NC0, which can be done using the NC0-FE scheme, together with a
ciphertext encrypting (x, r). However, the resulting ciphertext is not compact, since the ran-
domness r for computing the randomized encoding is at least of length S(λ) poly(λ), where S(λ)
is the size of the circuit computing f . The key idea of LV is using a polynomial-stretch PRG
PRG : {0, 1}n → {0, 1}n1+α

in NC0 to generate pseudo-randomness for RE, that is, computing
instead g(x, s) = f̂(x;PRG(s)). Now the input of the function becomes (x, s), whose length is
sublinear in S(λ) thanks to the fact that the PRG has polynomial stretch. Since the NC0-FE scheme
has linear efficiency, the ciphertext size is also sublinear in S(λ). In addition, the function g to be
computed is still in NC0.

Observe that if g can be computed by a degree-D polynomial in some ringR, then one can in-
stantiate the LV construction with degree-D FE schemes inR. The question is how large is the de-
gree D? Plug in the randomized encoding scheme by Applebaum, Ishai, and Kushilevitz [AIK04],
whose encodings f̂(x; r) are computable in NC0

4 and has degree 1 in x and degree 3 in r. Then, the
degree of g is determined by the degree DPRG of the PRG (i.e., the minimal degree of polynomials
that computes PRG inR), namely, D = 3DPRG + 1. Since the degree of the PRG is upper bounded
by its locality DPRG ≤ L, the degree of g is bounded by 3L+ 1. For the security proof to work out,
the actual functions used in the LV construction are more complicated and has degree 3L+ 2; we
omit details here. In summary, in the LV construction, it suffices to use with a degree-(3L+ 2) FE
scheme.

Relying on Degree-L FE To reduce the degree of polynomials computed using the low-degree
FE, our key idea is pre-processing the input (x, s), so that, part of the computation of the function
g is already done at encryption time. To illustrate the idea, recall that g is linear in x. Thus, if one
pre-computes x ⊗ s (where x ⊗ s is the tensor product of x and s), then g can be computed with
one degree less. More specifically, there exists another function g′ that takes input (x, s,x⊗ s) and
computes g(x, s) in degree 3L, by replacing every monomial of form xisi1si2 · · · with (xisi1) si2 · · · ,
where xisi1 is taken directly from x⊗ s. Therefore, we can modify the LV construction to encrypt

8

(x, s,x ⊗ s), whose length is still sublinear in S(λ), and generate keys for functions g′ that have
degree 3L.

The more tricky part is how to further reduce the degree of g in s. The naive method of pre-
computing s⊗ s at encryption time would not work, since it would make encryption time exceed
S(λ), losing compactness. To avoid this, consider a simple case where the NC1 function f to
be computed is decomposable, in the sense that it has I = S(λ)/ poly(λ) output bits, and every
output bit i ∈ [I] can be computed by a function fi of fixed polynomial size poly(λ). (In fact,
it is w.l.o.g. to assume this, since every function f can be turned into one that is decomposable
using Yao’s garbled circuits.) Then, the AIK randomized encoding of f consists of {f̂i(x, r[i])}i∈[I],
where the random tape r[i] for every encoding has a fixed polynomial length Q = poly(λ), since
|fi| = poly(λ).

In LV, all the random tapes {r[i]} are generated by evaluating a PRG on a single seed r =
PRG(s). We first modify how these random tapes are generated. Parse s as Q equally-long seeds,
s1, · · · sQ, and use sq to generate the qth bit in all the random tapes, that is,

∀ q ∈ [Q], i ∈ [I], r[i]q = PRG(sq)|i = PRGi({sq,γ}γ∈Γ(i)) ,

where PRGi is the function that computes the ith output bit of the PRG, which depends on at
most L seed bits with indexes γ ∈ Γ(i). PRG(sq) is a length-I string, and hence the length |sq|
of each seed sq is sublinear in S(λ). Since each encoding f̂i has degree 3 in its random tape r[i],
consider an arbitrary degree 3 monomial r[i]q1r[i]q2r[i]q2 .

r[i]q1r[i]q2r[i]q2 = PRGi({sq1,γ}γ∈Γ(i)) PRGi({sq2,γ}γ∈Γ(i)) PRGi({sq3,γ}γ∈Γ(i))

=
∑

Monomials
X,Y,Z in PRGi

 X(sq1,γ1 , · · · , sq1,γL)
× Y (sq2,γ1 , · · · , sq2,γL)
× Z(sq3,γ1 , · · · , sq3,γL)

 , where Γ(i) = {γ1, · · · , γL}

Now, suppose that for every index γ ∈ [|vsq|] in all seeds, the encryptor pre-compute all the degree
≤ 3 monomials over the γth bits in all Q seeds; denote this set as

M3(s, γ) =
{

degree ≤ 3 monomials over {sq,γ}q∈[Q]

}
.

Note that given M3(s, γ) for every γ ∈ Γ(i), the above monomial r[i]q1r[i]q2r[i]q2 can be computed
in just degree L. Therefore, given M3(s, γ) for every γ ∈ [|sq|], the function g can be computed
in degree L (with additionally the above-mentioned trick for reducing the degree in x). More
precisely, there exists a degree-L polynomial g′′ that, on input x, {M3(s, γ)}γ , and their tensor
product, computes g(x, s).

Finally, we need to make sure that the total number of such degree≤ 3 monomials is sublinear
in S(λ), so that, encryption remains weakly-compact. Note that, for each γ ∈ [|sq|], the number of
degree ≤ 3 monomials over the γth bits in these Q seeds is bounded by (Q+ 1)3 = poly(λ). More-
over, the length of each seed |sq| is still sublinear in S(λ). Thus, the total number of monomials to
be pre-computed is sublinear in S(λ).

2.2 Quadratic Secret-Key FE

Before proceeding to constructing degree-D FE schemes from SXDH on degree-D MMaps, we
describe a self-contained construction of FE for quadratic polynomials from SXDH on bilinear
maps. The degree-D scheme is a generalization of the quadratic scheme.

9

In the literature, the only constructions of collusion-resistant FE from standard assumptions
are for computing inner products, referred to as Inner Product Encryption (IPE). Roughly speak-
ing, a (public key or secret key) IPE scheme allows to encode vectors y and x in a ring R, in a
function key iSK(y) and ciphertext iCT(x) respectively, and decryption evaluates the inner prod-
uct 〈y,x〉. In this work (like in [LV16]), we use specific IPEs that compute the inner product in the
exponent, which, in particular, allows the decryptor to test whether the inner product is zero, or
whether it falls into any polynomial-sized range. 4

Given IPE schemes, it is trivial to implement FE for quadratic polynomials, or quadratic FE
schemes for short: Simply write a quadratic function f as a linear function over quadratic mono-
mials f(x) = Σi,jci,jxixj = 〈c,x⊗ x〉. Then, generate an IPE secret key iSK(c), and an IPE ci-
phertext iSK(x ⊗ x), from which the function output can be computed. However, such a scheme
has encryption time quadratic in the input length N = |x|. and improving the encryption time
to become linear in the input length under standard assumptions (e.g. bilinear maps) has proved
elusive.

In this work, we construct the first quadratic FE schemes in R with linear encryption time,
based on SXDH on bilinear maps over R. At a high-level, our key idea is starting with the above
trivial quadratic FE schemes, and “compress” the encryption time from quadratic to linear, by
publishing only certain “compressed information” of linear size at encryption time, which can
later be expanded to an IPE ciphertext of x ⊗ x at decryption time. To make this idea work,
we will use, as our basis, the public key IPE scheme by Abdalla, Bourse, De Caro, Pointcheval
(ABCP) [ABCP15] based on the DDH assumption. Let us start with reviewing their scheme.

The ABCP public key IPE scheme The ABCP scheme IPE resembles the El Gamal encryption and is
extremely simple. Let G be a cyclic group of order p with generator g, in which DDH holds. A
master secret key of the ABCP scheme is a random vector s = s1, · · · , sN

$← ZNp , and its corre-
sponding public key is iMPK = gs1 , · · · gsN . A ciphertext encrypting a vector x = x1, · · · , xN looks
like iCT = g−r, grs1+x1 , · · · , grsN+xN , where r is the random scalar “shared” for encrypting every
coordinate. It is easy to see that it follows from DDH that this encryption is semantically secure.

To turn El Gamal into an IPE scheme, observe that given a vector y ∈ ZNp , and in addition the
inner product 〈y, s〉 in the clear, one can homomorphically compute inner product in the exponent
to obtain g−r〈y,s〉gr〈s,y〉+〈x,y〉 = g〈x,y〉, which reveals whether the inner product 〈x,y〉 is zero or not.
Therefore, the ABCP scheme simply sets the secret key to be iSK = 〈s,y〉 ||y.

In this work, we will use the bracket notation [x]l = gxl to represent group elements. Under
this notation, the ABCP scheme can be written as,

iMSK = s
$← Zp, iMPK = [s], iCT = [−r || (r s + x)] iSK = 〈s,y〉 ||y

where au denotes coordinate-wise multiplication with a scalar a and u + v denotes coordinate-
wise addition between two vectors. We will also refer to [x]l as an encoding of x in group Gl.

Compress an ABCP ciphertext iCT(x⊗ x) Our intuitive idea of “compressing” a ciphertext iCT(x ⊗
x) encrypting all quadratic monomials of x immediately hits a barrier: The ciphertext has form
iCT = [−r || (r s + x⊗ x)] and contains information of the master secret key s of quadratic length,
which is truely random and cannot be “compressed”.

Our first idea is replacing the truly random secret key s with the tensor product of two length-
N vectors s1 ⊗ s2, so that, the new ciphertext iCT =

[
−r || (r s1 ⊗ s2 + x⊗ x)

]
depends only

4Such IPEs should be contrasted with functional encryption for testing the orthogonality of two vectors (see, e.g.,
[KSW08, LOS+10] and many others), which reveals only whether the inner product is zero and nothing else; in partic-
ular, they do not compute the inner product in the exponent in a way that allows for further computation.

10

on information, namely (r, s1, s2,x), of linear size in total. Roughly speaking, the reason that
we resolve to using the tensor product s1 ⊗ s2 is that, under the DDH assumption, encodings[
s1 ⊗ s2

]
is indistinguishable to encodings of N2 truely random elements. Thus, there is hope

that generating the master secret key as a tensor product is just “as good as” using truly random
master secret keys. As we will see later, this hope is true, however through complicated security
proof.

Now, it is information theoretically possible to compress iCT(x⊗x). However, simply publish-
ing (r, s1, s2,x) would blatantly violate security. We need a way to securely and succinctly encode
them so that only the ciphertext iCT is revealed. Classical cryptographic tools for hiding compu-
tation like garbled circuits or randomized encodings do not help here, since the output length is
quadratic, garbled circuits or randomized encodings would have at least quadratic size as well.
Instead, we leverage the special structure of iCT: The last N2 encodings of iCT each encodes an
element (or exponent) that is the inner product of two length-2 vectors, that is,

iCT[0] = [−r],
(
iCT[i, j] =

[〈
xi||s1

i , xj ||rs2
j

〉])
i∈[N],j∈[N]

Here, for convenience, we use 0 and {(i, j)} to index different encodings in iCT.
Suppose that we have a (secret key) IPE scheme cIPE that is function hiding (defined shortly)

from bilinear maps, and has certain canonical form: In particular, its ciphertexts and secret keys
encodes the input and function vectors in different source groups G1, G2 of the bilinear map, and
decryption simply uses pairing to produce an encoding of the output inner product in the target
group G3. (Unfortunately, off-the-shelf function hiding IPEs [BJK15, LV16, DDM16] do not have
the canonical form and we discuss how to construct such a scheme later.)

Then, we can use a canonical function hiding IPE, to generate the lastN2 encodings {iCT[i, j]}:
Publish N ciphertext {cCTi} where each cCTi encrypts vector (xi||s1

i), and N secret keys {cSKj}
where each cSKj encrypts vector (xj ||rs2

j). To obtain the (i, j)th encoding, one can simply decrypt
the ith ciphertext using the jth secret key, which produces

iCT[i, j] =
[〈

xi||s1
i , xj ||rs2

j

〉]
= cIPE.Dec(cSKj , cCTi)

In order to hide r, xj ’s, and s2
j ’s, the IPE scheme needs to have the stronger function hiding prop-

erty, which guarantees that secret keys and ciphertexts for two sets of vectors {ui,vi} and {u′i,v′i}
are indistinguishable if they produce identical inner products 〈ui,vj〉 = 〈u′i,v′j〉. Intuitively, the
hope is that function hiding ensures that only the set of possible outputs {iCT[i, j]} is revealed,
and all other information of (r,x, s1, s2) is hidden.

In summary, we now have the first version of our quadratic FE schemes.

VERSION 1 OF OUR SECRET KEY QUADRATIC FE SCHEME qFE

• SETUP: A master secret key msk consists of two random vectors s1, s2 of length N .

• KEY GENERATION: A secret key SK(c) of a function fc(x) = 〈c,x⊗ x〉 consists of

SK(c) =
(〈

s1 ⊗ s2, c
〉
, c
)
.

Note that the secret key is identical that of the ABCP scheme for vector c.

• ENCRYPTION: Sample a random scalar r $← Zp. A ciphertext CT(x) of input vector x contains

CT(x) =
(
[−r],

{
cCTi(χ

1
i), cSKi(χ

2
i)
}
i∈[N]

,
)

where χdi =

{
xi||s1

i if d = 1

xi||rs2
i if d = 2

(1)

11

and {cSKj , cCTi} are generated using a freshly sampled master secret key cMSK of a canonical
function hiding IPE cIPE.

• DECRYPTION: For every (i, j) ∈ [N]2, decrypt cCTi using cSKj to obtain

cIPE.Dec(cSKj , cCTi) =
[〈
χ1
i ,χ

2
j

〉]
=
[
rs1
i s

2
j + xixj

]
= iCT[i, j] . (2)

Homomorphically compute encoding Λ1 =
〈
s1 ⊗ s2, c

〉
[−r] =

[
−r
〈
s1 ⊗ s2, c

〉]
, and Λ2 =

〈{iCT[i, j]} , c〉. Homomorphically add Λ1+Λ2 to produce an encoding of the output [fc(x)].

Next, we move to describing ideas for the security proof. As we develop the proof ideas, we will
need to make a few modifications to the above scheme.

Selective IND-Security of Our Quadratic FE Scheme. We want to show that ciphertexts of qFE
of one set of inputs {ui} is indistinguishable from that of another {vi}, as long as all the secret keys
published are associated with functions {fcj} that do not separate these inputs, that is, fcj (ui) =
fcj (vi) for all i, j. For simplicity of this overview, we restrict our attention to the simpler case
where only a single ciphertext and many secret keys are published. Proving security in this case
already requires overcoming all the main challenges. The security proof for the general case with
many ciphertexts follows from a hybrid argument where the encrypted vectors are switched one
by one from ui to vi, and the indistinguishability of each step is proven using the same ideas to
the single-ciphertext case.

Naturally, we want to reduce the security of qFE the security of the ABCP IPE scheme IPE
and the function hiding of cIPE. Our intuition is that given a ciphertext CT(x) for x = u or
v, the security of cIPE ensures that the N ciphertexts and secret keys {cCTi}, {cSKj} contained
in ciphertext CT(x) reveals only the output encodings {iCT[i, j]} and nothing else. Then, the
security of the ABCP scheme ensures that the derived ciphertext iCT encrypting either u ⊗ u or
v⊗v is indistinguishable, at the presence of secret keys for vectors {cj} that do not separate them.
This intuition would go through if the two building blocks cIPE and IPE provide very strong
security guarantees: Naturally, cIPE has simulation security, so that, its ciphertexts and secret
keys {cCTi}, {cSKj} can be simulated from the set of output encodings {iCT[i, j]}, and second, the
ABCP scheme is secure even when the master secret keys are generated as a tensor product s1⊗s2

as opposed to be truely random.
Unfortunately, our building blocks do not provide such strong security guarantees, and prov-

ing security of qFE without relying on such strong security requirements are the main technical
challenges.

• Challenge 1 — Relying only on indistinguishability-based function hiding of cIPE. The
simulation security of cIPE essentially allows one to easily reduce the security of qFE to
that of IPE. With only indistinguishability-based security of cIPE, the reduction to security
of IPE becomes significantly harder. Typically, one build a black-box security reduction
that receives from its challenger IPE secret keys and a ciphertext, in this case {SKj}, iCT,
and embeds them in the view of the adversary attacking the qFE scheme. However, the
ciphertext CT of qFE has only linear size, but iCT has quadratic size — there is not enough
space for embedding. 5

5Non-black-box security reduction may get around this difficulty, but is unclear how one can design a non-black-box
reduction here.

12

To resolve this problem, our idea is to embed iCT in “piecemeal”. Observe that the ABCP
scheme encrypts its input vector bit by bit using different master secret key bits, and a shared
random scalar. Thus, we can flexibly view its ciphertext iCT either as a single ciphertext, or
as a list of many ciphertexts encrypting a list of vectors of shorter length. In particular, we
will “cut” the ciphertext into N pieces, each of length N and indexed by i ∈ [N].

iCT = [r],
{
iCT[i, ?] = {

[
rs1
i s

2
j + xixj

]
}j∈[N]

}
i∈[N]

.

Since the ith ciphertext-piece can be viewed as an IPE ciphertext of vector xix, generated
with master secret key s1

i s
2 and shared random scalar r. Our idea is gradually switching

the values of xix from uiu to viv piece by piece in N steps. In each step, we first apply the
function hiding of cIPE to move to a hybrid distribution where the challenge-piece iCT[i, ?]
is directly hardwired the qFE ciphertext — since |iCT[i, ?]| = N , there is enough space for
it. Then, we rely on the indistinguishability-security of IPE to argue that switching the
plaintext-piece underlying iCT[i, ?] from uiu to viv is indistinguishable.

• Challenge 2 — Relying on the security of the ABCP scheme under correlated randomness.
Arguing the indistinguishability of switching the vectors underlying each ciphertext-piece
iCT[i, ?] from uiu to viv turns out to be tricky. First, An acute reader might have already
noticed the problem that changing pieces in the tensor product would affect the function
output, which is noticeable. For example, after switching the first plaintext piece to viv, the
function output changes to 〈cj ,u⊗ u〉 6= 〈cj , v1v||u≥1 ⊗ u〉. To resolve this problem, we
modify the scheme to build in an offset value ∆j in every secret key SKj to ensure that the
function output remains the same throughout all steps.

Second, the challenge ciphertext-piece is generated with master secret key s1
i s

2, which is not
truly random, since the vector s2 is used for generating the master secret keys s1

ks
2 of other

ciphertext-pieces for k 6= i. We overcome this by relying on the SXDH assumption to argue
that encodings of s1

i s
2, given encodings of s1

i and s2, are indistinguishable to encodings of
random elements, and hence as good as a truly random master secret key. Similar idea was
used in [LV16].

Overcoming Challenge 1 — Embed ABCP IPE ciphertext in piecemeal. Our goal is switching
piece by piece the tensor product underlying the derived IPE ciphertext from u⊗u to v⊗v, which
corresponds to changing the encrypted input from u to v. To do so, we build a sequence of 2N
hybrids {Hb

ρ}ρ∈[N],b∈{0,1} satisfying the following desiderata:

1. In Hb
ρ, the ρth ciphertext-piece iCT[ρ, ?] is embedded in the qFE ciphertext CT,

2. The derived IPE ciphertext iCT encrypts the following “hybrid” vectors.

In H0
ρ , v1v|| · · · ||vρ−1v|| uρu ||uρ+1u|| · · · ||uNu

In H1
ρ , v1v|| · · · ||vρ−1v|| vρv ||uρ+1u|| · · · ||uNu

To build such hybrids, we need to modify our qFE scheme to build in more “redundant space” in
its ciphertext.

VERSION 2 OF OUR SECRET KEY QUADRATIC FE SCHEME qFE

13

• ENCRYPTION: A ciphertext CT(x) consists of

CT(x) =

(
[−r],

{
cCTi(X

1
i)
}
i∈[N]

,
{
cSKj(X

2
j)
}
j∈[N]

)
, where Xd

i = (χdi ||0, 0) (3)

where {cCTi} and {cSKj} encode vectors χdi like before, but now padded with 3 zeros.

We refer to the first 4 elements in X’s as the first slot, which holds two vectors of length 2, and
the last element as the second slot. In the honest executions, these vectors {Xd

i } are set to either
(µd||0, 0) if u is encrypted, or (νd||0, 0) if v is encrypted, with µ and ν defined as χ in Equation 1
but replacing xi with ui or vi respectively.

Set the vector X’s in hybrid Hb
ρ. Hybrid Hb

ρ uses the following set of vectors X’s, which leverages
the “space” of the additional zeros to satisfy the above desiderata.

X1
i =


0 || ν1

i if i < ρ

µ1
i || 0 if i > ρ

0 || 0 if i = ρ

,


0 if i < ρ

0 if i > ρ

1 if i = ρ

X2
j = µ2

j ||ν2
j ,


〈
µ1
ρ,µ

2
j

〉
in H0

ρ〈
ν1
ρ,ν

2
j

〉
in H1

ρ

(4)

Let us first see how the challenge ciphertext-piece iCT[ρ, ?] is hardwired. Observe that the last slots
of X2

j ’s contain exactly the values encoded in iCT[ρ, ?]: InH0
ρ , they are set to {

〈
µ1
ρ,µ

2
j

〉
= rs1

ρs
2
j + uρuj}j∈[N]

(see Equation 2), corresponding to encrypting uρu, while inH1
ρ , they are set to {

〈
ν1
ρ,ν

2
j

〉
= rs1

ρs
2
j + vρvj}j ,

encrypting vρv. By the fact that cIPE encodes its function vectors, X2
j ’s here, in a bilinear source

group,
[
X2
j

]
is effectively embedded in cSKj ’s and hence so is iCT[ρ, ?]. Next, we check that the

IPE ciphertext derived by decrypting every pair (cCTi, cSKj) indeed encrypts the right hybrid
vector.

cIPE.Dec(cSKj , cCTi) =
[〈
X1
i ,X

2
j

〉]
=



〈
0 || ν1

i || 0 , µ2
j || ν2

j || ?
〉

=
〈
ν1
i , ν

2
j

〉
if i < ρ〈

µ1
i || 0 || 0 , µ2

j || ν2
j || ?

〉
=
〈
µ1
i , µ

2
j

〉
if i > ρ〈

0 || 0 || 1 , µ2
j || ν2

j || ?
〉

= ? if i = ρ


In the case i = ρ, iCT[ρ, ?] encodes exactly the values hardwired in the last slot, which as argued
above encrypts uρu in H0

ρ and vρv in H1
ρ as desired. In the case i < ρ, the derived ciphertext-piece

iCT[i, ?] encodes values {
〈
ν1
i ,ν

2
j

〉
}j , corresponding to encrypting viv; and similarly, when i > ρ,

the ciphertext-piece iCT[i, ?] encrypts uiu as desired. Therefore, all desiderata above are satisfied.
Now, to show the security of qFE, it suffices to argue that every pair of neighboring hybrids

is indistinguishable. Note that the only difference between different hybrids lies in the values of
the X vectors encoded in the ciphertexts and secret keys of cIPE. Observe first that in hybrids
H1
ρ and H0

ρ+1, every pair of vectors (X1
i ,X

2
j) produce the same inner products, and hence the

indistinguishability of H1
ρ and H0

ρ+1 follows immediately from the function hiding property of
cIPE. This is, however, not the case in hybrids H0

ρ and H1
ρ , where for the special index ρ, the

challenge ciphertext-piece change from encrypting uρu to vρv. Next, we show how to reduce the
indistinguishability of H0

ρ and H1
ρ to the security of the ABCP IPE scheme, which turns out to be

quite tricky.

14

Overcoming Challenge 2: Indistinguishability of H0
ρ and H1

ρ from IPE security The goal is
relying on the security of IPE to argue that the embedded challenge ciphertext-pieces in H0

ρ and
H1
ρ are indistinguishable, and hence so are the hybrids. But, we immediately encounter a problem:

The function outputs obtained when decrypting the derived ciphertext iCT using secret keys SKj ’s
are different in H0

ρ and H1
ρ , namely〈

v1v|| · · · ||vρ−1v|| uρu ||uρ+1u|| · · · ||uNu, , cj
〉
6=
〈
v1v|| · · · ||vρ−1v|| vρv ||uρ+1u|| · · · ||uNu , cj

〉
.

This means the hybrids are clearly distinguishable. To fix this, we modify our qFE scheme to
build in an offset value ∆ in its secret keys, which will be added to the decryption output. In the
honest execution, the offsets are set to zero, whereas in hybrid Hb

ρ, they are set to ∆b
j(ρ) in each

secret key SKj , so that, the above inner products when added with ∆0
j (ρ) in the left hand side and

∆1
j (ρ) in the right hand side become equal. Clearly, whether the offset values ∆ are used (set to

non-zero) at all and their values must be hidden, we do so by encoding it using cIPE, as described
below.

VERSION 3 OF OUR SECRET KEY QUADRATIC FE SCHEMES qFE

• SETUP: A master secret key msk = (s1, s2, cMSK′) contains additionally a master secret key
cMSK′ of cIPE.

• KEY GENERATION: In the secret key SK(c), the inner product
〈
s1 ⊗ s2, c

〉
is now encoded,

together with an offset value ∆, using cMSK′ of cIPE as below.

SK(c) =
(
cSK′

(〈
s1 ⊗ s2, c

〉
||∆ = 0

)
, c
)
.

• ENCRYPTION: In the ciphertext CT(x), the random scalar r is now encrypted, with an addi-
tional 0, using cMSK′ of cIPE as below.

CT(x) =
(
cCT′(−r||0),

{
cCTi(X

2
j)
}
i∈[N]

,
{
cSKj(X

2
j)
}
j∈[N]

)
• DECRYPTION: Decryption proceeds as before, except that now encoding Λ1 is obtained by

decrypting cCT′ using cSK′, which yields
[
−r
〈
s1 ⊗ s2, c

〉
+ ∆

]
as desired.

With the new offset value in secret key, we can now fix our hybrids so that the function outputs
always stay the same.

Set the offsets in hybrid Hb
ρ. In hybrid Hb

ρ, not only that the vectors X’s are set differently as above,
the cIPE ciphertext cCT′ in ciphertext CT encrypts (0||1) instead of (−r||0) and the correspond-
ing cIPE secret key cSK′j in SKj encodes vector (

〈
s1 ⊗ s2, c

〉
|| r
〈
s1 ⊗ s2, c

〉
+ ∆b

j(ρ)), instead of
(
〈
s1 ⊗ s2, c

〉
||0). At decryption time, the offset ∆b

j(ρ) is added to the inner product between cj
and hybrid vector underlying iCT. Setting ∆b

j(ρ) appropriately ensures that〈
v1v|| · · · ||vρ−1v|| uρu ||uρ+1u|| · · · ||uNu, , cj

〉
+ ∆0

j (ρ)

=
〈
v1v|| · · · ||vρ−1v|| vρv ||uρ+1u|| · · · ||uNu , cj

〉
+ ∆1

j (ρ) = fc(u) .

Now H0
ρ and H1

ρ have the same function outputs. But, to formally reduce their indistinguisha-
bility to the security of IPE, we need a way to incorporate the offsets ∆’s into the challenge IPE

15

ciphertexts. We do so by viewing ∆j ’s as extension of the plaintext. More specifically, we im-
plicitly switch from encrypting U = uρu||∆0

1(ρ)|| · · · ||∆0
L(ρ) to V = vρv||∆1

1(ρ)|| · · · ||∆1
L(ρ) using

master secret key S = s1
ρs

2||t1|| · · · ||tL, at the presence of secret keys for vectors Yj = {cj [ρ, ?]||ej}j ,
where L is the total number of keys, tj ’s are implicitly sampled secret key elements, and ej is the
unit vector of length L with a single one at index j. Observe that from such ciphertexts and secret
keys, one can extract the challenge ciphertext-piece iCT[ρ, ?] encrypting uρu or vρv, and obtain an
encoding of −r

〈
s1 ⊗ s2, c

〉
+ ∆b

j(ρ) embedded in each secret key cSK′j — these are the only parts
that hybrids H0

ρ and H1
ρ differ at. Given that 〈U,Yj〉 = 〈V,Yj〉 for every j, we are almost done:

Apply the security of IPE to argue that H0
ρ and H1

ρ are indistinguishable, except that we must
overcome one last hurdle — the master secret key for encrypting uiu or viv is not truely random.

Pseudorandomness from SXDH The master secret key of the challenge ciphertext-piece is s1
ρs

2. It is
not truely random since s2 is also used for generating the master secret keys of other ciphertext-
pieces. But, observe that both the challenge ciphertext-piece and s2 are embedded in secret keys
{cSKj}, and hence encoded in the same bilinear map source group. Furthermore, thanks to the
fact that in Hb

ρ, the ρth ciphertext cCTρ encrypts the vector (0||0, 1), the key element s1
ρ does not

appear in the other source group. Therefore, we can apply the SXDH assumption to argue that
encodings of s1

ρs
2 is indistinguishable to that of a truly random vector w — in other words, the

master secret key s1
ρs

2 is pseudorandom, inside encodings. Therefore, the security of IPE applies,
and we conclude that hybrid H0

ρ and H1
ρ are indistinguishable.

2.3 Degree-D Secret-Key FE

Generalizing from quadratic FE to degree-D secret key FE, the natural idea is again starting from
the trivial IPE-based construction that encrypts all degree-D monomials, denoted as ⊗x≤D =
⊗d∈[D]x, and compressing the ND-size ciphertext into linear size. Naturally, instead of compress-
ing a ciphertext generated using a truly random master secret key, we will use a structured master
secret key ⊗s≤D = ⊗d∈[D]s

i. Thus the IPE ciphertext to be compressed looks like:

iCT[0] = [−r], iCT[I1, · · · , Id] =
[
rs1
I1 · · · s

D
ID

+ xI1 · · ·xID
]

The challenge is how to generate the ND encodings iCT[I] from just linear-sized information?

Key Tool: High-Degree IPE We generalize IPE to the notion of high-degree IPE, or HIPE for short.
More precisely, a degree-D HIPE is a multi-input functional encryption scheme for degree-D inner
product defined as follows, 〈

x1, · · · ,xD
〉

= Σi∈[N]x
1
ix

2
i · · ·xDi

Introduced by [GGG+14], a multi-input functional encryption allows one to encrypt inputs at dif-
ferent coordinates, and generate secret keys associated with multi-input functions, so that, decryp-
tion computes the output of the function evaluated on inputs encrypted at different coordinates.
In the context of HIPE, a degree-D HIPE encryption scheme hIPE allows one to generate a cipher-
text hCTd(xd) encrypting an input vector xd at a coordinate d ∈ [D − 1], and a secret key hSK(xD)
at coordinateD, so that, decryption reveals whether the degree-D inner product

〈
x1 · · ·xD

〉
is zero

or not. Under this generalization, standard IPE is a special case of HIPE for degree D = 2.
In terms of security, the notion of function hiding also generalizes naturally, an HIPE scheme

is function hiding, if ciphertexts and secret keys {hCT1
i , · · · hCTD−1

i , hSKi}i∈[L] encrypting one
set of vectors {u1

i , · · · u
D−1
i , uDi }i∈[L] or another {v1

i , · · · v
D−1
i , vDi }i∈[L] are indistinguishable,

16

whenever all degree-D inner products that can be computed from them are identical, that is,

∀I ∈ [L]D,
〈
u1
I1 , · · ·u

D
ID

〉
=
〈
v1
I1 , · · ·v

D
ID

〉
In this work, we give a construction of function hiding degree-D HIPE scheme from the SXDH

assumption on degree-D multilinear maps. Our construction starts from a canonical function
hiding IPE scheme (for D = 2), and inductively build degree-(D+ 1) HIPE scheme, by composing
a degree-D HIPE scheme and a special-purpose function hiding IPE scheme. Our HIPE schemes
have canonical form (similar to the canonical form described above for standard IPE), in the sense
that ciphertexts at coordinate d (or secret keys) consist of encodings in the dth (or Dth respectively)
MMap source group, and decryption simply uses degree-D pairing to produce an encoding of the
degree-D inner product. That is,

hIPE.Dec(hSK(xD), hCT1(x1), · · · , hCTD(xD−1)) =
[〈
x1, · · · ,xD

〉]
From Degree-D HIPE to Degree-D FE HIPE serves perfectly for our goal of compressing the cipher-
text iCT. Generalizing qFE, our degree-D FE scheme dFE generates ciphertexts that look as
follows:

CT(x) =

(
cCT′(−r||0),

{
cCT1

i (X
1
i), · · · , cCTD−1

i (XD−1
i), cSKi(X

D
i)
}
i∈[N]

)
,

where Xd
i = χdi ||0 and χdi =

{
xi||sdi if d < D

xi||rsDi if d = D

From such a ciphertext, a decryptor can “expand” out a size-ND IPE ciphertext iCT by decrypting
every combination of HIPE ciphertexts and secret keys. Namely, for every I ∈ [N]D,

hIPE.Dec(cCT1
I1 , · · · , cCT

D−1
ID−1

, cSKID) =
[〈
X1
I1 , · · · ,X

D
ID

〉]
=

r ∏
d∈[D]

sdId +
∏
d∈[D]

xId

 = iCT[I]

where iCT[I] encrypts the I th degree-D monomial
∏
d∈[D] xId , using the I th key element

∏
d∈[D] s

d
Id

.
To show security of dFE, we, again, switch the degree-D monomials encrypted in the IPE

ciphertext iCT in piecemeal. In each step, we can still only embed a size-N ciphertext-piece; nat-
urally we embed iCT[ρ, ?] for a prefix ρ ∈ [N]D−1 of length D − 1. Thus, the ND encrypted
monomials are changed piece by piece in ND−1 steps, where in the ρth step, all monomials with
index I smaller than ρ (i.e., I≤D−1 < ρ) have already been switched to

∏
d∈[D] vId , monomials with

index I larger than ρ (i.e., I≤D−1 > ρ) remain to be
∏
d∈[D] uId , and monomials with index I that

agrees with ρ (i.e., I≤D−1 = ρ) are being switched from
∏
d∈[D] uId in H0

ρ to
∏
d∈[D] vId in H1

ρ .
Creating a sequence of hybrids that carry out these steps is more complex than the case for

degree 2. First, we need more space in the ciphertext to make sure that the right monomials are
encrypted for every index I ; thus, the vectors X’s are padded to length 2D−1. Second, it becomes
significantly harder to argue that the key elements (

∏
d∈[D−1] s

d
ρd

)s≤D are pseudorandom, as the
shares sdi ’s are encoded in different MMap source groups, and unlike the degree 2 case, we cannot
eliminate the appearance of all shares {sdρd} since they are also used for generating the master
secret keys of other ciphertext-pieces (whereas in the degree 2 case, s1

ρ is only used for generating
s1
ρs

2). To resolve this, we apply the SXDH assumption iteratively to gradually replace every partial
product

∏
d∈[d?] s

d
ρd

with an independent and random element wdρ, so that, the master secret keys
for other ciphertext-pieces are generated using independent w elements.

17

Construction of HIPE As mentioned above, we inductively construct a degree-(D+1) HIPE scheme
hIPE by composing a degree-D HIPE scheme dIPE with a special purpose IPE scheme sIPE.
The construction of the degree-(D + 1) HIPE scheme resembles that of the degree-D FE scheme.
The degree-D FE scheme dFE uses dIPE to compute a ciphertext of the ABCP scheme, which
allows one to control what linear function is computed on the monomials. Now, in hIPE, we
use dIPE to compute instead a ciphertext of the special-purpose IPE scheme sIPE that encrypts
a degree-D (coordinate-wise) product x1 · · ·xD, which can be further combined with a sIPE se-
cret key of vector xD+1 to compute the degree-(D + 1) inner product, as

〈
x1, · · · ,xD,xD+1

〉
=〈

(x1 · · ·xD),xD+1
〉
. More precisely, the ciphertexts hCT1(x1), · · · , hCT(xD) and secret key hSK(xD+1)

of hIPE look as follows:

hSK(xD+1) = sSK(xD+1)

hCT1(x1) = dCT1(x1), · · · , hCTD−1(xD−1) = dCTD−1(xD−1), hCT(xD) = dSK(xD)︸ ︷︷ ︸
decrypts to sCT(x1 · · ·xD)

where sCT and sSK are respectively a ciphertext and secret key of sIPE. The security proof of
hIPE also resembles that of qFE. The main difference lies in the “inner” IPE scheme; for HIPE
the “inner” IPE is has a two-slot structure resembling the slotted IPE introduced in [LV16]. See sec-
tion 7.2 for a more detailed overview of the construction and security proof of our HIPE schemes.

2.4 Simple Function Hiding IPE

As described above, our construction of degree-D FE crucially relies on a canonical function hiding
IPE. However, none of the known secret-key IPE schemes [BJK15, DDM16, LV16] have the canoni-
cal form, in particular, their decryption does not produce an encoding of the output inner product
[〈x,y〉], but produce the inner product masked by a scalar [〈x,y〉 θ] together with [θ], where the
scalar θ is determined by the randomness used in key generation and encryption. In this work,
we give a construction of a canonical function hiding IPE. Our construction is extremely simple
and of independent interests. Its description and security proof fit within 2 pages, and we now
summarize the idea of the construction in one paragraph.

Lin and Vaikuntanathan [LV16] give a simple transformation from IPE with weak function hid-
ing to IPE with full function hiding. Our construction starts from the ABCP public key IPE scheme,
whose secret key for a vector y reveals y and its inner product with the master secret key 〈s,y〉
in the clear. To achieve weak function hiding, we need to hide y. Our idea is to simply encrypt
the secret key as an input vector using the ABCP scheme itself, with an independently sampled
master secret key s′ of lengthN+1, which yields the new secret key iSK′ = [r′s′ + (〈s,y〉 ||y)]. Re-
call that decryption of the ABCP scheme simply computes (homomorphically) the inner product
between its secret key and ciphertext. Now that the original secret key is encrypted, we corre-
spondingly encode the original ciphertext in a secret key using s′, which gives the new ciphertext
iCT′ = [〈s′ , (rs + x)〉 || (rs + x)]. Computing the inner product of iCT′ and iSK′ simultaneously
decrypts both “layers” of ABCP encryption, and produce exactly an encoding of the output inner
product.

3 Preliminaries

Let Z and N denote the set of integers, and positive integers, respectively. Let [n] denote the set
{1, 2, . . . , n}. We use R to denote either a ring, or an ensemble of rings R = {Rλ}, which will be

18

clear in the context.
We denote by PPT probabilistic polynomial time Turing machines. The term negligible is used

for denoting functions that are (asymptotically) smaller than any inverse polynomial. More pre-
cisely, a function ν(?) from non-negative integers to reals is called negligible if for every constant
c > 0 and all sufficiently large n, it holds that ν(n) < n−c.

We use boldface to denote vectors, for example, u,v, c etc., and use ui, vi, ci to denote the ith

elements in the vectors.

3.1 µ-Indistinguishability

Definition 1 (µ-indistinguishability). Let µ : N→ [0, 1] be a function. A pair of distribution ensembles
{Xλ}λ∈N, {Yλ}λ∈N are µ-indistinguishable if for every family of polynomial-sized distinguishers {Dλ}λ∈N,
and every sufficiently large security parameter λ ∈ N, it holds that

|Pr[x
$← Xλ : D(1λ, x, z) = 1]− Pr[y

$← Yλ : D(1λ, y, z) = 1]| ≤ µ(λ)

Definition 2 (Computational and Sub-exponential Indistinguishability). A pair of distribution en-
sembles {Xλ}λ∈N, {Yλ}λ∈N are computationally indistinguishable if they are 1/p-indistinguishable for
every polynomial p, and are sub-exponentially indistinguishable if they are µ-indistinguishable for some
sub-exponentially small µ(λ) = 2λ

ε with a constant ε > 0.

Note that the above definition of sub-exponential indistinguishability is weaker than standard
sub-exponential hardness assumptions that consider distinguishers running in sub-exponential
time.

Below, we provide definitions of standard cryptographic primitives using the terminology
of µ-indistinguishability, which implicitly defines variants with polynomial or sub-exponential
security. As a matter of convention, we will drop µ when µ is a negligible function, and say sub-
exponential security when µ is a sub-exponentially small function.

3.2 Indistinguishability Obfuscation

We recall the notion of indistinguishability obfuscation for a class of circuit defined by [BGI+01b].

Definition 3 (Indistinguishability Obfuscator (iO) for a circuit class). A uniform PPT machine iO is
an indistinguishability obfuscator for a class of circuits {Cλ}λ∈N, if the following conditions are satisfied:

Correctness: For all security parameters λ ∈ N, for every C ∈ Cλ, and every input x, we have that

Pr[C ′ ← iO(1λ, C) : C ′(x) = C(x)] = 1

where the probability is taken over the coin-tosses of the obfuscator iO.

µ-Indistinguishability: For every ensemble of pairs of circuits {C0,λ, C1,λ}λ∈N satisfying thatCb,λ ∈ Cλ,
|C0,λ| = |C1,λ|, and C0,λ(x) = C1,λ(x) for every x, the following ensembles of distributions are µ-
indistinguishable: {

C1,λ, C2,λ, iO(1λ, C1,λ)
}
λ∈N{

C1,λ, C2,λ, iO(1λ, C2,λ)
}
λ∈N

Definition 4 (IO for P/poly). A uniform PPT machine iOP/poly(?, ?) is an indistinguishability obfuscator
for P/poly if it is an indistinguishability obfuscator for the class {Cλ}λ∈N of circuits of size at most λ.

19

3.3 Pseudorandom Generator

Definition 5 (Pseudo-Random Generator (PRG)). Let ` be a polynomial-bounded function. A deter-
ministic polynomial-time uniform machine PRG is a `(λ)-stretch pseudorandom generator if the following
conditions are satisfied:

Syntax For every λ ∈ N and every r ∈ {0, 1}λ, PRG(r) outputs r′ ∈ {0, 1}`(λ)

µ-Indistinguishability: The following ensembles are µ-indistinguishable{
r

$← {0, 1}λ : PRG(r)
}
λ∈N

≈µ
{
r′

$← {0, 1}`(λ)
}
λ∈N

We defining the locality of PRGs and the degree of PRGs in a family of rings.

Definition 6 (Locality and degree of PRGs). Let PRG : {0, 1}∗ → {0, 1}∗ be an `(n)-stretch pseudo-
random generator. For every λ ∈ N, and every polynomial n, let PRGn(λ) : {0, 1}n(λ) → {0, 1}`(n(λ))

denote the binary function corresponding to PRG for n(λ)-bit inputs. We define the following parameters
w.r.t. PRG:

• PRG has locality L (for a universal constant L) if for every λ ∈ N and every polynomial n, every
output bit of PRGn(λ) depends on at most L input bits.

• PRG has R-degree D (for a universal constant D), w.r.t. a family of rings R = {Rλ}, if for ev-
ery λ ∈ N and every polynomial n, every output bit of PRGn(λ) can be computed by a degree-D
polynomial inRλ.

Since the PRGs we consider are binary, mapping binary input strings to binary output strings,
it holds that its locality upper bounds its degree in any ring family.

Fact 1. For any pseudorandom generator PRG : {0, 1}∗ → {0, 1}∗, and any family of ringsR, the degree
of PRG w.r.t.R is no larger than its locality.

3.4 Randomized Encodings

In this section, we recall the traditional definition of randomized encodings with simulation secu-
rity [IK02, AIK06].

Definition 7 (Randomized encoding scheme for circuits). A randomized encoding scheme RE consists
of two PPT algorithms,

• Ĉx
$← REnc(1λ, C, x): On input a security parameter 1λ, circuit C, and input x, REnc generates an

encoding Ĉx.

• y = REval(Ĉx): On input Ĉx produced by REnc, REval outputs y.

Correctness: The two algorithms REnc and REval satisfy the following correctness condition: For all
security parameters λ ∈ N, circuit C, input x, it holds that,

Pr[Ĉx
$← REnc(1λ, C, x) : Eval(Ĉx) = C(x)] = 1

20

µ-Simulation Security: There exists a PPT algorithm RSim, such that, for every ensemble {Cλ, xλ}λ
where |Cλ|, |xλ| ≤ poly(λ), the following ensembles are µ-indistinguishable for all λ ∈ N .{

Ĉx
$← REnc(1λ, C, x) : Ĉx

}
λ∈N{

Ĉx
$← RSim(1λ, C(x), 1|C|, 1|x|) : Ĉx

}
λ∈N

where C = Cλ and x = xλ.

Furthermore, let C be a complexity class, we say that randomized encoding scheme RE is in C, if the
encoding algorithm REnc can be implemented in that complexity class.

3.5 Functional Encryption

We provide the definition of a public-key functional encryption (FE) scheme with indistinguishability-
based security which originally appeared in [BSW12, O’N10]. Below we define public key FE first,
and then note the difference with secret key FE.

3.5.1 Public-Key Functional Encryption

Syntax Let X = {Xλ}λ∈N and Y = {Yλ}λ∈N be ensembles of sets. Let F = {Fλ}λ∈N, where every
function in the set Fλ maps inputs in Xλ to outputs in Yλ.

A public-key functional encryption scheme FE for {Fλ}λ∈N consists of four PPT algorithms
(FE.Setup,FE.KeyGen,FE.Enc,FE.Dec).

• Setup: FE.Setup(1λ, pp) is an algorithm that on input a security parameter and some public
parameter (e.g., description of bilinear pairing groups) outputs a master public key and a
master secret key (mpk,msk).

• Key Generation: FE.KeyGen(msk, f) on input the master secret key msk and the description of
a function f ∈ Fλ, outputs a secret key SKf .

• Encryption: FE.Enc(mpk, x) on input the master public key mpk and a message x ∈ Xλ, out-
puts an encryption CT of x.

• Decryption: FE.Dec(SK,CT) on input the secret key associated with f and an encryption of
x, outputs y ∈ Yλ.

Correctness: We define perfect correctness here. For every λ, f ∈ Fλ, x ∈ Xλ, it holds that,

Pr

 (mpk,msk)
$← FE.Setup(1λ, pp)

CT
$← FE.Enc(mpk, x)

SK
$← FE.KeyGen(msk, f)

: f(x) = FE.Dec(SK,CT)

 = 1

21

Indistinguishability Security. Indistinguishability security of a functional encryption requires
that no adversary can distinguish the FE encryption of one input x0 from that of another x1, if the
adversary only obtains secret keys for functions that yield the same outputs on x0 and x1, that is,
for every secret key SKf , it holds that f(x0) = f(x1). In the adaptive setting, the two challenge
inputs (x0, x1) and all functions f are chosen adaptively by the adversary. In the weaker selective
setting, the adversary is restricted to choose (x0, x1) and all functions f statically.

Definition 8 (IND-security). A public-key FE scheme FE = (FE.Setup,FE.KeyGen,FE.Enc,FE.Dec)
for {Fλ}λ∈N is µ-IND-secure, if for every PPT adversaryA, and every sufficiently large security parameter
λ ∈ N, the adversary’s advantage in the following games is bounded by µ(λ)

AdvtFE
A =

∣∣∣Pr[INDFE
A (1λ, 0) = 1]− Pr[INDFE

A (1λ, 1) = 1]
∣∣∣ ≤ µ(λ)

INDFE
A (1λ, b) proceeds as follows:

1. Key Generation. The challenger CH samples (mpk,msk)
$← FE.Setup(1λ, pp) and sends mpk to

the adversary.

2. Function Queries. Repeat the following for an arbitrary number of times determined by A: Upon
A choosing a function query f ∈ Fλ, CH sends A a function key SKf

$← FE.KeyGen(msk, f).

3. Message Queries. Upon A choosing a pair of messages (x0, x1), CH sends A a ciphertext CT $←
FE.Enc(mpk, xb).

4. Function Queries Repeat the second step, for an arbitrary number of times determined by A.

5. Finally A outputs a bit b′ which is also the output of the experiment.

Restriction: Every function query f must satisfy that f(x0) = f(x1).

Definition 9 (Selective security). We say that FE is µ-selectively secure if the condition in Definition 8
holds for modified experiments SINDFE

A (1λ, b) where the adversaries choose challenge messages (x0, x1) and
all function queries {f} at the beginning of the experiment.

Definition 10 (1-key FE). We say that FE is a µ-secure (or µ-selectively secure) 1-key FE scheme if it
satisfies the security requirements in Definition 8 (or, respectively, Definition 9) against adversaries that
ask for at most one function key query.

3.5.2 Secret Key Functional Encryption

A secret key FE scheme (SKFE) FE = (FE.Setup,FE.KeyGen,FE.Enc,FE.Dec) for a class of function
{Fλ}λ∈N has the same syntax and correctness as a public key FE scheme, except that, the FE.Setup

algorithm outputs only the master secret key msk
$← FE.Setup(1λ, pp), and the encryption algo-

rithm encrypts using the master secret key CT
$← FE.Enc(msk, x).

In terms of security, the same (adaptive or selective) indistinguishability security is considered,
with a slight modification to the definitions above for public key FE that the attacker can (adap-
tively or selectively) request for arbitrarily many challenge ciphertexts of messages of his/her
choice. In the literature, there is also a stronger notion of security for secret key FE, called function
hiding, which roughly speaking requires the scheme to hide both information of the encrypted
inputs, as well as, the functions encoded in secret keys. We now define the notion of function
hiding.

22

Definition 11 (Function hiding). A secret-key FE scheme FE = (FE.Setup,FE.KeyGen,FE.Enc,FE.Dec)
for {Fλ}λ∈N is µ-function-hiding, if for every PPT adversary A, and every sufficiently large security pa-
rameter λ ∈ N, the adversary’s advantage in the following games is bounded by µ(λ)

AdvtFE
A =

∣∣∣Pr[FHFE
A (1λ, 0) = 1]− Pr[FHFE

A (1λ, 1) = 1]
∣∣∣ ≤ µ(λ)

FHFE
A (1λ, b) proceeds as follows:

1. Key Generation. The challenger CH samples msk
$← FE.Setup(1λ, pp).

2. The challenger CH repeats the following with A for an arbitrary number of times determined by A:

• Function Queries. UponA choosing a pair of functions (f0, f1) ∈ Fλ,CH sendsA a function
key SKf

$← FE.KeyGen(msk, fb).

• Message Queries. Upon A choosing a pair of messages (x0, x1), CH sends A a ciphertext
CT

$← FE.Enc(mpk, xb).

3. Finally A outputs a bit b′ which is also the output of the experiment.

Restriction: Every function query (f0, f1) and message query x0, x1 must satisfy that f0(x0) = f1(x1).

We can define selective function hiding similar to Definition 9, by restricting the above security
definition to a class of adversaries that choose all input queries {(x0, x1)} and all the function
queries {(f0, f1)} at the beginning of the experiment. We can also define 1-key secret-key FE as in
Definition 10.

3.5.3 FE for P/poly, NC1 and Compactness

Definition 12 (FE schemes for families of function classes). Let F = {FI}I∈I be a family of function
classes. We say that FE = {FEI}I∈I is a family of (1-key) FE schemes for F with (selective) µ-IND-
security or µ-function-hiding if for every function class FI = {FIλ}λ∈N, FEI is a (1-key) FE scheme for
FI with (selective) µ-IND-secure or µ-function hiding.

Moreover, define the following special cases:

• FE for P/poly is a family of FE schemes for F = {FN,D,S}N∈N ,D∈D,S∈S , whereN ,D,S are the sets
of all polynomials and FN,D,S is the class of binary functions that can be computed by circuits with
N(λ)-bit inputs, S(λ) size, and D(λ) depth.

• FE for NC1 is a family of FE schemes for F = {FN,D,S}N∈N ,D∈D,S∈S as defined above but with D
the set of all logarithmic functions.

Compactness In the above definition of families of FE schemes, algorithms in scheme FEN,D,S

could run in polynomial time depending on polynomials N,D, S. In the literature, stronger ef-
ficiency requirements have been considered. In particular, the works of [AJ15, BV15] defined
compact FE schemes for NC1, which requires the encryption time to be independent of the circuit
size S of the functions.

Definition 13 (Compactness of FE schemes for NC1). Let FE = {FEN,D,S} be a family of FE schemes
for NC1.

23

Compactness: We say that the functional encryption scheme FE is compact if for every logarithmic func-
tion D, there is a polynomial p, such that, for every polynomials N,S, the encryption algorithm of
FEN,D,S runs in time p(λ,N(λ), logS(λ)).

(1− ε)-Sublinear Compactness (a.k.a. (1− ε)-Weakly Compactness): We say that FE is (1 − ε)-
sublinearly compact, if for every logarithmic function D, there is a polynomial p, such that, for every
polynomials N,S, the encryption algorithm of FEN,D,S runs in time p(λ,N(λ)) · S(λ)1−ε.

3.6 Zero-Testing FE for Arithmetic Functions

For any ring R, we refer to functions mapping from R∗ to R∗ as arithmetic functions in R. Many
previous works (e.g. [ABCP15, BJK15]) constructed FE schemes for classes of arithmetic functions
inRwith a relaxed correctness guarantee, namely, decryption does not reveal the output (inR) en-
tirely, but only reveals whether the output is zero or not. We refer to this relaxed correctness guar-
antee as zero-testing correctness, and FE schemes with such relaxed correctness as zero-testing FE.
We stress that though the correctness requirement is relaxed, the security requirements, namely
IND-security and function hiding, remain the same. Therefore, zero-testing FE is strictly weaker
than standard FE.

Definition 14 (Zero-testing FE). Let R = {Rλ} be an ensemble of rings, and {Fλ} a class of functions
where Fλ maps from Xλ ⊆ R∗λ to Yλ ⊆ R∗λ. We say that FE is a (1-key) zero-testing FE scheme for {Fλ}
with (selective) µ-IND-security or µ-function hiding, if it is a FE scheme for {Fλ} with the same security
guarantee as in Definition 8 or 11 (or 9) respectively, and the following relaxed correctness guarantee.

• Zero-Testing Correctness: For every λ, f ∈ Fλ, x ∈ Xλ, it holds that,

Pr

 (mpk,msk)
$← FE.Setup(1λ, pp)

CT
$← FE.Enc(mpk, x)

SK
$← FE.KeyGen(msk, f)

: ZT(f(x)) = FE.Dec(SK,CT)

 = 1

where ZT is a predicate that outputs 1 iff its input is the zero element inRλ, and in the case of secret
key FE, mpk = msk.

Zero-Testing FE for Degree-d Polynomials and Inner Products

Definition 15 (Zero-testing FE schemes for families of arithmetic function classes). Let F = {FI}I∈I
be a family of arithmetic function classes. A family FE = {FEI}I∈I of (1-key) zero-testing FE schemes for
F is defined identically as in Definition 12 except that every scheme FEI has zero-testing correctness.

Moreover, define the following special cases:

• Zero-testing FE for degree-d polynomials inR is a family of zero-testing FE schemes for F =

{FN} where where FN is the set of degree-d polynomials mapping fromRN(λ)
λ toRλ.

• Zero-testing FE for inner products inR is a family of zero-testing FE schemes for F = {FN}
where FN is the set of functions of form fv(x) = 〈v,x〉 that compute the inner product between a
fixed vector v and an input vector x in RN(λ)

λ . Such a family of schemes is also called zero-testing
Inner Product Functional Encryption (IPE) inR.

24

Definition 16 (Linear efficiency). Let FE = {FEN} be a family of FE schemes for degree-d polynomials
or inner products inR. We say that FE has linear efficiency if there exists a polynomial function p, such
that, for every polynomial N , the encryption algorithm of FEN runs in time N(λ) poly(λ).

In the rest of the paper, whenever we talk about FE for arithmetic functions, in particular,
IPEs and FEs for degree-d polynomials, over a family of non-binary ringR, we mean by default a
zero-testing FE.

4 Degree-D Asymmetric Multilinear Maps with SXDH Assumption

Introduced by Boneh and Silverberg [BS02], asymmetric Multilinear Maps (MMaps) naturally
generalize asymmetric bilinear maps to higher degree. Let G denote a group generator that on
input 1λ outputs (p,G1, · · · , GD,
GD+1,pair), where G1, · · · , GD, GD+1 are cyclic groups with order p (prime or composite). G1

to GD are referred to as the source groups and GD+1 the target group. Assume without loss of
generality that the description of the source groups contain generators g1, · · · , gD of G1, · · · , GD.
In addition, the following properties hold.

• Admissible: pair : G1×· · ·×GD → GD+1 is efficiently computable and gD+1 = pair(g1 · · · , gD)
generates GD+1.

• Multilinear: For any a1, · · · , aD ∈ Zp, pair(ga11 , · · · , gaDD) = pair(g1, · · · , gD)a1a2···aD = ga1a2···aDD+1 .

We denote by Rλ = (Zp,+,×) the ring corresponding to the exponent space of these multilinear
pairing groups.

The Bracket Notation For clarity of notions, we use the following bracket notations to denote
group elements.

∀l ∈ [D + 1], [a]l = gal

We refer to [a]l as an encoding of a in group Gl, or with label l. Under this notation, the generator
in group l ∈ [D + 1] is represented as [1]l = gl. We also use the following vector notation to
represent vectors of group elements succinctly: For any v = (v1, · · · , vm) ∈ Zmp , and l ∈ {0, 1, T}:

[v]l = [v1]l · · · [vm]l

Homomorphic Operations Using multiplication and exponentiation in each group, we can per-
form addition “⊕” and scalar multiplication “�” to vectors encoded in the same group l. Formally,
for any v,w ∈ Zmp , and α ∈ Zp,

[v]l ⊕ [w]l := [v + w]l = ([v1 + w1]l · · · [vm + wm]l)

α� [v]l := ([v]l)
α = [αv]l = ([αv1]l · · · [αvm]l)

In particular, this means we can homomorphically evaluate any linear function L in Zp, over
encoded vectors. We conveniently write

L([v]l) = [L(v)]l

Using the multilinear map pair, we can homomorphically compute any multilinear polynomial
p with degree ≤ D over encoded vectors {vd}d∈[D], where vd is encoded in Gd. This is because,

25

one can first homomorphically compute every multilinear monomial in p using pair and obtain
an encoding of the value of the monomial in the target group. (If a monomial has exactly degree
D, pair directly applies; otherwise, one can raise the degree to D using encodings of 1 (i.e., the
generators) in appropriate groups.) Next, encodings of the values of all monomials in p can be
homomorphically added in the target group to produce an encoding of the output in the target
group. We conveniently write

p([v1]1, · · · , [vD]D) = [p(v1, · · · ,vD)]D+1

The SXDH Assumption The SXDH assumption states that the standard DDH assumption holds
in each of the source groups. Formally, for every source group Gl for l ∈ [D], the following two
ensembles are µ-indistinguishable.{

pp = (p,G1, · · ·GD, GD+1,pair)
$← G(1λ), a, b

$← Zp : (pp, [a]l, [b]l, [ab]l)
}
λ{

pp = (p,G1, · · · , GD, GD+1,pair)
$← G(1λ), a, b, r

$← Zp : (pp, [a]l, [b]l, [r]l)
}
λ

5 IO from Locality-L PRG and Degree-L FE

In this section, we review the bootstrapping theorem by Lin and Vaikuntanathan (LV) [LV16] that
IO can be bootstrapped from subexponentially secure PRG in NC0 and FE for NC0, which in turn
is based on [BV15, AJS15]. We observe that in their bootstrapping theorem, if the PRG in NC0 has
degree D in any ringR, then it suffices to start with a FE scheme for degree-(3D+ 2) polynomials
in the same ring R. (See Definition 6 for the locality and degree of a PRG.) Since the locality of a
binary PRG upper bounds its degree in any ring, we have that IO can be constructed from locality-
L PRG and degree-(3L+2) FE. Next, we modify their bootstrapping theorem to reduce the degree
of polynomials that FE needs to support from 3L+ 2 to just L, exactly the locality of the PRG.

5.1 IO from Degree-D PRG and Degree-(3D + 2) FE

The following theorem follows from the bootstrapping theorem in [LV16].

Theorem 4 ([LV16]). Let R = {Rλ} be any family of rings and ε > 0 any positive constant. Assume
the existence of a sub-exponentially secure PRG with n1+ε-stretch andR-degree D. Then, IO for P/poly is
implied by either of the following:

• any selectively sub-exponential-IND-secure public key (zero-testing) FE for degree-(3D + 2) poly-
nomials inR, with linear efficiency, or

• any selectively sub-exponential-IND-secure secret key (zero-testing) FE for degree-(3D + 2) poly-
nomials inR with linear efficiency, and the sub-exponential hardness of LWE.

As discussed in the Overview section (Section 2), to construct IO for P/poly, the LV bootstrap-
ping theorem first constructs a selectively subexponential-IND-secure single-key FE scheme with
(1−ε)-sublinear compactness for NC1 circuits, and then invoke the result of [AJ15, BV15] to further
bootstrap such a NC1-FE scheme to IO for P/poly in the public key case, or the result of [BNPW16]
in the secret key case, assuming additionally the subexponential hardness of LWE.

In Section 2.1, we give an overview of the LV construction of sublinearly-compact NC1-FE
schemes, from PRG in NC0 and collusion resistant FE schemes for NC0 that has linear efficiency; we
also discussed there that the LV NC1-FE schemes can also be instantiated with collusion resistant
FE schemes for degree-(3D + 2) polynomials in some ringR if the PRG has degree-D inR.

26

Using Degree-D PRG and Degree-(3D + 2) FE We now describe formally how to instantiate
the LV construction of a degree-D PRG and degree-(3D + 2) FE scheme. We focus on the public
key case; the secret key case follows identically. Their FE scheme CFEN,D,S for NC1 circuits with
input-length N = N(λ), depth D = D(λ), and size S = S(λ), uses the following tools: Let R be a
family of rings.

• A pseudorandom generator PRG with n1+α-stretch for any α > 0 andR-degree D.

• A weak PRF F in NC1.

• Selectively IND-secure (collusion resistant) FE schemes for degree-(3D + 2) polynomials in
R, {FEN ′ = (FE.Setup,FE.KeyGen,FE.Enc,FE.Dec)}, with linear efficiency.

• A specific randomized encoding scheme, which is the composition of Yao’s garbling scheme
[Yao82, Yao86] and the AIK randomized encoding scheme in NC0 [AIK04].

Below, we explicitly describe how Yao’s garbling and AIK RE are used, which helps us to
calculate the degree later. Denote by Ĉx = Yao(C,x; r) Yao’s garbling algorithm that com-
piles a circuit C and an input x into a garbled circuit Ĉx, and by Π = AIK(f,x ; r) the AIK
encoding algorithm.

The scheme CFEN,D,S = (CFE.Setup,CFE.KeyGen,CFE.Enc,CFE.Dec) is defined in Figure 1. We
refer the reader to [LV16] for the correctness and security of the scheme.

Compactness The compactness of the scheme CFE follows from the following facts:

1. The length of the input (x,k, s, s′, 0) encrypted using FE isO(`1/(1+α)) = S(λ)1/(1+α) poly(λ).

2. FE has linear efficiency.

Putting them together, we have that

TimeCFE.Enc(mpk,x) = TimeFE.Enc(mpk, (x,k, s, s′, 0))

= poly(λ)|(x,k, s, s′, 0)| = S(λ)1/(1+α) poly(λ)

which is sublinear in the function size as desired.
It remains to verify Fact 1). Recall that ` is the total length of the AIK randomized encodings

of computations {hi(x,k)}, which evaluate every bit in Yao’s garbled circuit of (f,x). Since f(x)
can be computed in size S(λ), its Yao’s garbled circuit has size S(λ) poly(λ), and every bit i in the
garbled circuit can be computed by a function hi of a fixed polynomial size poly(λ). Thus, the AIK
randomized encoding for each hi(x,k) also has size poly(λ), and the total length ` = S(λ) poly(λ),
which concludes Fact 1).

Degree-(3D + 2) FE suffices we show that degree-(3D + 2) FE indeed suffices for the construction.

Claim 1. If PRG has R-degree D, then for every λ ∈ N, every output bit of the function g described in
Figure 1 can be computed by a degree-(3D + 2) polynomial inRλ.

Proof. Fix any λ ∈ N. LetPAIKk(hi,?)((x,k), r) be the polynomial inRλ computing AIKk(hi, (x,k); r),
the kth bit in the AIK randomized encoding of hi(x, r), PPRGl

the polynomial that computes the
lth output bit of PRG, and PCTl⊕?(x) the polynomial that computes XOR CTl ⊕ x. For conve-
nience, we also denote by PPRG[i] the multi-output polynomial that computes the ith portion of the

27

Single-key Compact FE Scheme CFE by [LV16]

SETUP: CFE.Setup(1λ) samples (mpk,msk)
$← FE.Setup(1λ).

KEY GENERATION: CFE.KeyGen(msk, f) does the following:

• Sample CT
$← {0, 1}`, where ` = `(λ) is set below.

• Define function g as follows: On input x of length N , a weak PRF key k of length poly(λ),
two PRG seeds s, s′ each of length `1/(1+α) and a bit b,

g(x,k, s, s′, b) does the following:

– Let hi(x,k) denote the function that computes the ith bit in Yao’s garbling of (f,x)
using pseudo-randomness generated by a weak PRF

∀i ∈ [I], hi(x,k) := Yaoi(f,x ; r = {rj = F(k, j)}) ,

where I is the length of Yao’s garbling of (f,x). (Note that h ∈ NC1 since Yao’s
garbling algorithm and the weak PRF are both computable in NC1.)

– If b = 0, for every i ∈ [I], compute the AIK encoding Π[i] of computation (hi, (x,k))),
using pseudo-randomness generated by a PRG

∀ i ∈ [I], Π[i] = AIK(hi, (x,k) ; r[i]) , where r[i] = PRG[i](s)

where PRG[i](s) denotes the ith portion in the output of PRG, and each portion has
equal length poly(λ).
Output Π = {Π[i]}i.

– If b = 1, output Π = CT⊕PRG(s′).

For every l ∈ [` = |Π|], let Pl denote the degree-(3D + 2) polynomial in Rλ that computes
the lth output bit of g. (We show below in Claim 1 that every output bit of g can indeed be
computed by a degree-(3D + 2) polynomial inRλ.)

• For every l ∈ [`], generate a secret key SKl
$← FE.KeyGen(msk, Pl) for Pl.

Output SK = {SKl}l∈[`].

ENCRYPTION: CFE.Enc(mpk,x) samples k $← {0, 1}poly(λ) and s, s′
$← {0, 1}`1/(1+α)

, and generates

CT
$← FE.Enc(mpk, (x,k, s, s′, 0))

DECRYPTION: CFE.Dec(SK,CT) computes Π = {FE.Dec(SKl,CT)}l∈[`], parses Π = {Π[i]}i∈I , and
decodes every Π[i] using the AIK decoding algorithm to obtain a garbled circuit, which is further
decoded to obtain the output f(x).

Figure 1: Single-key Compact FE CFE by [LV16]

28

output of PRG. Every output bit l ∈ [`] of g corresponds to a bit, say the jth, in a AIK randomized
encoding for some function hi. Then, gl can be computed by the following polynomial Pl inRλ.

Pl(x,k, s, s
′, b) = (1− b)PAIKj(hi,?)((x,k), PPRG[i](s)) + bPCTl⊕?(PPRGl

(s′)) (5)

PPRG[i], PPRGl
, and PCTl⊕? have respectively degree D and degree 1. AIK randomized encoding

has the property that every output bit depends on at most 3 random bits and 1 input bit. Therefore,
PAIKj(hi,?) has at most degree 3 in outputs of PPRG[i](s), and at most degree 1 in (x,k), and hence
at most total degree 3D + 1. Therefore, the degree of Pl is bounded by 3D + 2.

5.2 IO from Locality-L PRG and Degree-L FE

By the fact that the locality L of a PRG upper bounds the degree of a PRG in any ring R, we
have that IO can be constructed from locality-L PRG and degree-(3L + 2) FE. We now present
modification to the LV bootstrapping theorem to reduce the degree of the FE to L.

Theorem 5 (Our Bootstrapping Theorem). LetR = {Rλ} be any family of rings and ε > 0 any positive
constant. Assume the existence of a sub-exponentially secure PRG with n1+ε-stretch and locality-L. Then,
IO for P/poly is implied by either of the following:

• any selectively sub-exponential-IND-secure public key (zero-testing) FE for degree-L polynomials
inR, with linear efficiency, or

• any selectively sub-exponential-IND-secure secret key (zero-testing) FE for degree-L polynomials in
R with linear efficiency, and the sub-exponential hardness of LWE.

To show the theorem, our main idea is pre-processing the input (x,k, s, s′, b) to be encrypted,
at encryption time, in order to reduce the degree of the polynomials that FE needs to support.
Observe that each polynomial Pl (in Equation 5) computed in the LV FE scheme CFE in Figure 1
is the sum of two polynomials, where the first term has degree (3D+ 2) and the second has D+ 1.
We start with reducing the degree of the second term from D + 1 to D. We can write the second
term Tl as a sum of monomials over b, s′ as follows

Tl(b, s
′) = bPCTl⊕?(PPRGl

(s′)) =
∑

Monomial
M in Tl

cMM(b, s′) .

Since Tl is linear in b, every monomial M contained in it is also linear in b. For every monomial
M = bs′i1s

′
i2
· · · of degree d, if bs′i1 is pre-computed, then M can be computed in degree d − 1.

Therefore, there exists a polynomial T ′l that on input (1||b)⊗ (1||s′) computes Tl(b, s′) in degree D.

T ′l ((1||b)⊗ (1||s′)) := The degree D polynomial that computes Tl(b, s′) (6)

Moreover, the length of (1||b) ⊗ (1||s′) is still O(|s′|) = S(λ)1/(1+α) poly(λ), and hence we can
pre-compute (1||b)⊗ (1||s′) at encryption time, without losing compactness.

We now use the idea of pre-processing to reduce the degree of computing the first term in Pl.
Again, we can write the first term Ol as a sum of monomials,

Ol(x,k, s, b) = (1− b)PAIKj(hi,?)((x,k) ; r[i]) =
∑

Monomial
M in Ol

cMM(x,k, r[i], b) , where r[i] = PPRG[i](s) .

29

By the property of AIK, Ol has degree 3 in r[i], and 1 in b and x||k. We can eliminate multiplication
with b and x||k using the same method above. The challenge lies in reducing the degree for
computing degree-3 monomials on r[i]. We cannot naively pre-compute, say, s ⊗ s, as its length
would exceed S(λ). But, we do not need to. To do so, we first modify how each random bit r[i]q is
generated as follows:

Let Q = |r[i]|, s = s1, · · · , sQ; ∀ q ∈ [Q], set r[i]q = PRGi(sq)

where Q is the maximal number of random bits needed for computing the AIK encoding of each
hi. Since every function hi computes a single bit in Yao’s garbling in a fixed polynomial time,
Q = |r[i]| = poly(λ). In other words, we parse s as consisting of Q seeds, and the qth seed sq is
used for generating the qth bit in the random tapes for computing every AIK encodings, that is,
PRG(sq) = r[1]q, · · · , r[I]q. Since the number of AIK encodings is I = S(λ) poly(λ), the length
of each seed is |sq| = I1/(1+α) = S(λ)1/(1+α) poly(λ), and the length of s is Q|sq|, also sublinear in
S(λ).

Now, an arbitrary degree 3 monomial on r[i], say r[i]q1r[i]q2r[i]q3 , can be written as

r[i]q1r[i]q2r[i]q3 = PRGi(sq1)PRGi(sq2)PRGi(sq3)

= PRGi({sq1,γ}γ∈Γ(i))PRGi({sq2,γ}γ∈Γ(i))PRGi({sq3,γ}γ∈Γ(i))

=
∑

Monomials
X,Y,Z in PRGi

 X(sq1,γ1 , · · · , sq1,γL)
× Y (sq2,γ1 , · · · , sq2,γL)
× Z(sq3,γ1 , · · · , sq3,γL)

 , where Γ(i) = {γ1, · · · , γL}

and Γ(i) is the set of indexes of the input bits that the ith output bit of PRG depends on. Given
that PRG has locality L, |Γ(i)| ≤ L. For every γ ∈ [|sq|], denote by s?,γ = s1,γ || · · · ||sQ,γ the string
consisting of the γth bit in all Q seeds. Suppose that we pre-compute for every γ, all the degree
≤ 3 monomials over s?,γ , that is, Sγ = (1||s?,γ) ⊗ (1||s?,γ) ⊗ (1||s?,γ). Then, the above degree 3
monomial over r[i] can be computed by a polynomial of degree at most L on Sγ for γ ∈ Γ(i).
Therefore, there exists a degree L + 2 polynomial O′′l that on input x,k, b and these degree ≤ 3
monomials, computes Ol.

O′′l (x,k,S, b) := The degree L+ 2 polynomial that computes Ol(x,k, s, b) ,
where S = {(1||s?,γ)⊗ (1||s?,γ)⊗ (1||s?,γ)}γ .

In addition, since Ol and O′′l has degree 1 in x||k and b, if we pre-compute multiplications with
x||k and b, we can further reduce the degree to L. That is, define

O′l((1||x||k||b)⊗ (1||S), (b(x||k))⊗ S)

:= The degree L polynomial that computes Ol(x,k, s, b) . (7)

Finally, we argue that the input of O′l has length sublinear in S(λ). It boils down to argue that S
has length sublinear in S(λ). For each γ ∈ [|sq|], the total number of degree ≤ 3 monomials over
s?,γ is bounded by (Q+ 1)3 = poly(λ). Since |sq| = S(λ)1/(1+α) poly(λ), the length of S is bounded
by S(λ)1/(1+α) poly(λ).

Combining Equation (6) and (7), we conclude that there exists a degree L polynomial P ′l , such
that,

P ′l ((1||x||k||b)⊗ (1||S), (b(x||k))⊗ S, (1||b)⊗ (1||s′)) = Pl(x,k, s, s
′, b)

30

Single-key Compact FE Scheme CFE from locality-L PRG and degree-L FE

SETUP: CFE.Setup(1λ) samples (mpk,msk)
$← FE.Setup(1λ).

KEY GENERATION: CFE.KeyGen(msk, f) does the following:

• Sample CT
$← {0, 1}`, where ` = `(λ) is set below.

• Define function g defined as follows: On input x of length N , a weak PRF key k of length
poly(λ), PRG seeds s and s′ of length I1/(1+α) ×Q and `1/1+α respectively, and a bit b,

g(x,k, s, s′, b) does the following:

– Let hi(x,k) denote the function that computes the ith bit in Yao’s garbling of (f,x),

∀i ∈ [I], hi(x,k) := Yaoi(f,x ; r = {rj = F(k, j)}) ,

where I is the length of Yao’s garbling of (f,x).

– If b = 0, parse s into Q strings, s = s1|| · · · ||sQ, of equal length I1/(1+α), and compute

∀ i ∈ [I], Π[i] = AIK(hi, (x,k) ; r[i]) , where Q = |r[i]| and ∀ q ∈ [Q] , r[i]q = PRGi(sq)

Output Π = {Π[i]}i.

– If b = 1, output Π = CT⊕PRG(s′).

For every l ∈ [` = |Π|], let Pl denote the degree-(3D + 2) polynomial in Rλ that computes
the lth output bit of g. Moreover, define

P ′l ((1||x||k||b)⊗ (1||S), (b(x||k))⊗ S, (1||b)⊗ (1||s′))
:= The degree L polynomial that computes Pl(x,k, s, s′, b) in Figure 1

where L is the locality of PRG and S = {(1||s?,γ)⊗ (1||s?,γ)⊗ (1||s?,γ)}γ∈[I1/(1+α)].

• For every l ∈ [`], generate a secret key SKl
$← FE.KeyGen(msk, P ′l) for P ′l .

Output SK = {SKl}l∈[`].

ENCRYPTION: CFE.Enc(mpk,x) samples k
$← {0, 1}poly(λ), s

$← {0, 1}I1/(1+α)×Q, and s′
$←

{0, 1}`1/(1+α)

, and generates

CT
$← FE.Enc(mpk, (1||x||k||0)⊗ (1||S), (0(x||k))⊗ S, (1||0)⊗ (1||s′))

DECRYPTION: CFE.Dec(SK,CT) computes Π = {FE.Dec(SKl,CT)}l∈[`], parse Π = {Π[i]}i∈I , and
decodes every Π[i] using the AIK decoding algorithm to obtain a garbled circuit, which is further
decoded to obtain the output f(x).

Figure 2: Single-key Compact FE CFE from locality-L PRG and degree-L FE

31

Therefore, we modify the LV compact FE scheme to encrypt the input of these polynomials P ′l ’s,
and generate secret keys for them. Since P ′l has only degree L, it suffices to use a degree-L FE
scheme. The resulting new compact FE scheme CFE is described in Figure 2 (with the difference
from the LV scheme highlighted). The compactness of the new scheme follows directly from the
fact that the encrypted input, that is, the input of P ′l ’s, is sublinear in S(λ), and that the degree-L
FE scheme has linear efficiency. Moreover, its correctness and security follows from the same
proof as that in [LV16], which concludes Theorem 5.

6 Inner Product Encryption

In this section, we construct families of (zero-testing by default) secret key IPE schemes (Defini-
tion 15), with different properties.

• In Section 6.3, we give a new construction of weakly function hiding IPE schemes based on
the SXDH assumption on bilinear maps. Our construction builds upon the public key IPE
schemes by [ABCP15] (ABCP) in a simple and modular way.

• Lin and Vaikuntanathan [LV16] presented a simple and generic transformation from any
weakly function hiding IPE schemes to fully function hiding IPE schemes. In Section 6.4,
we apply their transformation to our weakly function hiding IPE schemes to obtain fully
function hiding IPE schemes that have certain canonical form. (The canonical form is not
satisfied by previous constructions [BJK15, LV16, DDM16]).

• In Section 6.5, we further build function hiding IPEs with special two-slot structures and
special security properties, namely partial weakly-function-hiding and strong IND-security. The
special structures and properties will be important for our construction of FE for degree-d
polynomials later.

Before constructing the above schemes, we first review the definition of weak function hiding [LV16]
in Section 6.1, and the ABCP public key IPE scheme in Section 6.2.

6.1 Definition of Weak Function Hiding

Let {skIPEN} be a family of secret key IPE schemes for inner products, where skIPEN consist-
ing algorithms (skIPE.Setup, skIPE.Enc, skIPE.KeyGen, skIPE.Dec) is a an IPE scheme for computing
inner products of length N(λ) vectors inR, with the following syntax:

• Setup: skIPE.Setup(1λ, pp) outputs a master secret key msk. (The public parameter pp used in
our constructions will be the description of bilinear pairing groups).

• Key Generation: skIPE.KeyGen(msk,y) outputs a secret key SK encoding a vector y ∈ RNλ .

• Encryption: skIPE.Enc(msk,x) outputs an encryption CT encrypting a vector x ∈ RNλ .

• Decryption: skIPE.Dec(SK,CT) computes ZT(〈x,y)〉, that is, whether the inner product is
zero inRλ.

The function hiding property as defined in Definition 11 requires that secret keys and ciphertexts
for one set of vectors {y0

j} and {x0
i } are indistinguishable from that for another vectors {y1

j} and
{x1

i }, as long as all their inner products satisfy the following constraint:

Constraint R: ∀i, j,
〈
x0
i ,y

0
j

〉
=
〈
x1
i ,y

1
j

〉
.

32

The weak function hiding property weakens function hiding, by relaxing the above constraint R
to the following

Constraint R’: ∀i, j,
〈
x0
i ,y

0
j

〉
=
〈
x0
i ,y

1
j

〉
=
〈
x1
i ,y

1
j

〉
.

For completeness, we provide the formal definition below.

Definition 17 (Weak Function Hiding for Secret Key IPE). We say that a secret key IPE scheme
skIPEN for computing length-N inner products in R is µ-weak function hiding, if for every PPT ad-
versaryA, and every sufficiently large security parameter λ ∈ N, the adversary’s advantage in the following
games is bounded by µ(λ):

AdvtskIPEN

A =
∣∣∣Pr[wFHskIPEN

A (1λ, 0) = 1]− Pr[wFHskIPEN

A (1λ, 1) = 1]
∣∣∣ ≤ µ(λ)

The game wFHskIPEN

A (1λ, b) proceeds as follows:

• Key Generation. The challenger generates a master secret key msk
$← skIPE.Setup(1λ, pp).

• Function and Input Queries. Repeat the following for an arbitrary number of times decided by A:

– Upon A choosing a pair of challenge functions y0
i ,y

1
i ∈ R

N(λ)
λ , CH sends A a function key

SKi
$← skIPE.KeyGen(msk,ybi).

– Upon A choosing a pair of challenge messages x0
i ,x

1
i ∈ R

N(λ)
λ , CH sends A a ciphertext

CTi
$← skIPE.Enc(msk,xbi).

• Finally A outputs a bit b′.

Restriction R′: Every message query x0
i ,x

1
i and every function query y0

j ,y
1
j must satisfy that

〈
x0
i ,y

0
j

〉
=〈

x1
i ,y

0
j

〉
=
〈
x1
i ,y

1
j

〉
.

6.2 Review of the ABCP Public Key IPE

In [ABCP15], Abdalla, Bourse, De Caro, and Pointcheval constructed public key IPE schemes
with IND-security, based on a variety assumptions. We recall their scheme based on the DDH
assumption, which is very similar to the ElGamal encryption scheme.

The Decisional Diffie-Hellman (DDH) Assumption Let G denote a group generator that on
input 1λ outputs (p,G), where G is a group of order p, and g is a generator of G contained in
its description. As above, we use the bracket notation to denote elements in G: [v] = gv and
[x] = gx = gx1 , · · · , gxm for v ∈ Zp,x ∈ Zmp . The DDH assumption states that the following two
ensembles are µ-indistinguishable:{

(p,G)
$← G(1λ), a, b

$← Zp : (p,G), [a], [b], [ab]
}
λ∈N{

(p,G)
$← G(1λ), a, b, r

$← Zp : (p,G), [a], [b], [r]
}
λ∈N

33

Overview of the ABCP Scheme Recall that the basic ElGamal encryption scheme for message
space Zp is as follows:

msk
$← Zp, mpk = gmsk, CT = (gr, mpkrgx) = (gr, g(r msk+x)) for r $← Zp

Note that in this scheme, decryption can be done when x is small.
Under our bracket notation this is written as:

msk
$← Zp, mpk = [msk], CT = [r], (r �mpk)⊕ [x] = [r || (r msk + x)]

(Recall that “�” and “⊕” are respectively the homomorphic scalar multiplication and addition
operations over encodings.) The ElGamal encryption can be easily modified to encrypt vectors x ∈
ZNp , while sharing the random scalar r, and maintaining security under the same DDH assumption.

msk
$← ZNp , mpk = [msk], CT = [−r], (r �mpk)⊕ [x] = [(−r || r msk + x)]

(We encode −r instead of r for convenience.) To turn the above scheme into an IPE scheme,
observe that given a vector y ∈ ZNp and the inner product 〈y,msk〉 in the clear, one can homomor-
phically evaluate,

〈 (〈y,msk〉 || y),CT 〉 =
〈 (
〈y,msk〉 || y

)
, [−r || (r(msk + x))]

〉
= [〈−ry,msk〉+ 〈ry,msk〉+ 〈x,y〉] = [〈x,y〉] .

Therefore, it suffice to release 〈y,msk〉 || y as the secret key for computing the inner product.

The ABCP Scheme We now formally describe the ABCP public key IPE scheme pkIPEN . Let
pp = (p,G)

$← G(1λ) be a public parameter that describes a group G of order p; the inner product
is computed over ZNp .

• pkIPE.Setup(1λ, pp) samples s
$← ZNp , and outputs master public key mpk = [s] and master

secret key msk = s.

• pkIPE.KeyGen(msk,y) on input the master secret key msk = s and vector y both in ZNp , simply
outputs SK = sk = 〈y, s〉 || y.

• pkIPE.Enc(mpk,x) on input the master public key mpk = [s] and vector x ∈ ZNp , samples a

random scalar r $← Zp and outputs

CT = [−r] || (r �mpk)⊕ [x] = [−r || rs + x] = [ct]

• pkIPE.Dec(SK,CT) on input SK = sk and CT = [ct] homomorphically computes the inner
product between them.

〈SK,CT〉 = [〈sk, ct〉] =
[〈 (
〈y, s〉 || y

)
,
(
− r || rs + x

) 〉]
= [〈x,y〉]

Output 1 iff the output encoding encodes zero. 6

Correctness of the scheme is easy to see. The security proof is, however, non-trivial. Abdalla et
al. [ABCP15] showed that the scheme in fact satisfies simulation-based security, which implies the
notion of IND-security considered in this work.

Lemma 1. Assume that the DDH assumption holds in the group (p,G). Then, for any polynomial N , the
ABCP public key IPE scheme pkIPEN is IND-secure.

6More generally, if the output value z falls into any polynomial-sized range Γ ⊆ R, it can be extracted by trying all
possible values i ∈ [Γ], and outputting the value i satisfying [〈x,y〉] = i� [1].

34

6.3 Our New Weakly Function Hiding IPE

We construct weakly function hiding IPE schemes {wIPEN}, from the SXDH assumption on bilin-
ear pairing groups. Our construction uses the ABCP public key IPE schemes {pkIPEN} described
above as a building block in a modular way. At a very high-level, to make the ABCP IPE scheme
weakly function hiding, we treat its secret key as a plaintext vector, and its ciphertext as a key
vector, and use an “outer instance” of the ABCP IPE scheme itself to “encrypt” the secret key in
an “outer ciphertext” and “encode” the ciphertext in an “outer secret key”. Since decryption es-
sentially performs inner product, decrypting the outer instance effectively decrypts also the inner
instance and yields the desired output. Furthermore, since now the secret key is encrypted, the
IND-security of the ABCP IPE scheme provides some hiding guarantees for the key vector, based
on which we can argue that weak-function hiding holds.

Let pp = (p,G1, G2, G3, pair) be a public parameter that describes bilinear pairing groups
with order p; letR = Zp. Algorithms of the scheme wIPEN proceed as follows:

• skIPE.Setup(1λ, pp) samples s1, s2
$← RN , and outputs master secret key wMSK = (s1, s2).

• skIPE.KeyGen(wMSK,y) on input the master secret key wMSK = (s1, s2) and vector y ∈ RN ,
samples a random scalar r2

$← R and outputs SK computed as follows.

SK = pkIPE.KeyGen(s1,y) = sk = 〈y, s1〉 || y
wSK = pkIPE.Enc(s2, sk; r2) = [−r2 || (r2s2 + sk)]2 (8)

Basically, wSK is an ABCP encryption (with key s2 and randomness r2) of the ABCP secret
key sk of the vector y (with key s1) in group G2.

• skIPE.Enc(wMSK,x) on input the master secret key wMSK = (s1, s2) and vector x ∈ RN ,
samples a random scalar r1

$← R and outputs wCT computed as follows.

CT = pkIPE.Enc(s1,x; r1) = [ct]1, where ct = (−r1 || r1s1 + x) (9)
wCT = pkIPE.KeyGen(s2,CT) = [〈s2, ct〉 || ct]1

Basically, wCT can be viewed as the ABCP secret key (with key s2) of an ABCP ciphertext of
the vector x (with key s1 and randomness r1).

• skIPE.Dec(wSK,wCT) on input wSK and wCT homomorphically computes their inner prod-
uct using pairing, which gives an encoding of 〈sk, ct〉 = 〈x,y〉 in the target group G3.

〈wSK,wCT〉 = [〈sk, ct〉]3 = [〈x,y〉]3

Output 1 iff the obtained encoding encodes zero.

Correctness of the scheme wIPE is easy to see. We next show that it is weakly function hiding,
based on the fact that the ABCP scheme pkIPE is IND-secure.

Lemma 2. Assume that SXDH holds in bilinear pairing groups. For every polynomial N , the above secret
key IPE scheme wIPEN is weakly function hiding.

Proof. We want to show that for every PPT adversaryA, its view in games Exp0 = wFHwIPEN

A (1λ, 0)

and Exp1 = wFHwIPEN

A (1λ, 1) (Definition 18) are indistinguishable.
To show this, we consider an intermediate hybrid Hyb:

35

• Hybrid Hyb proceeds identically as Exp0, except that, upon A choosing a pair of challenge
messages x0

i ,x
1
i , the challenger returns a ciphertext wCTi encrypting x1

i as opposed to x0
i .

Observe that the only difference between Exp0 and Hyb is that in Exp0, vectors {x0
i } are encrypted,

whereas in Hyb, vectors {x1
i } are encrypted (and both games encode vectors {y0

i } in the secret
keys). On the other hand, the only difference between Hyb and Exp1 is that in the former, vectors
{y0

i } are encoded in the secret keys, whereas in the latter, {y1
i } are encoded (and both games

encrypt vectors {x1
i } in the ciphertexts).

Recall that the weak-function-hiding games Exp0,Exp1 have the constraint that every message
query x0

i ,x
1
i and every function query y0

j ,y
1
j satisfy that〈

x0
i ,y

0
i

〉
=
〈
x1
i ,y

0
i

〉
=
〈
x1
i ,y

1
i

〉
.

Therefore, in all three games Exp0,Hyb,Exp1, the inner products of the vectors encrypted and
encoded in ciphertexts and secret keys are identical.

To see that Exp0 is indistinguishable from Hyb, recall that the encryption algorithm of wIPEN

first encrypts a vector x using pkIPE and master secret key s1 to produce a ciphertext CT = [ct]1
(Line (9)) and then homomorphically generates a secret key of the encoded vector ct using an
independently sampled master secret key s2. Therefore, it follows directly from the IND-security
of the “inner” pkIPE instance with master secret key s1 that switching from encrypting x0

i in Exp0

to encrypting x1
i in Hyb is indistinguishable.

Similarly, to see that Hyb and Exp1 are indistinguishable, recall that the key generation algo-
rithm of wIPEN first generates a secret key SK = sk of y using pkIPE and master secret key
s1, and then encrypts vector sk using pkIPE and master secret key s2 (Line (8)). Therefore, it
follows directly from the IND-security of the “outer” pkIPE instance with master secret key s2

that switching from encoding y0
i in Hyb to encoding y1

i in Exp1 is indistinguishable.

6.4 Our New Function Hiding IPE

Lin and Vaikuntanathan [LV16] showed that any IPE scheme with weak function hiding can be
generically “lifted” to an IPE scheme with full function hiding. Applying their technique to our
weak-function hiding IPE schemes {wIPEN} in Section 6.3 immediately gives a family of function
function IPE schemes, denoted as {tIPEN}.

Corollary 2. Assume that SXDH holds in bilinear pairing groups over ring R. There is a family of
function-hiding secret-key IPE schemes for computing inner products inR.

The [LV16] transformation is extremely simple: To generate a key or a ciphertext for a vec-
tor v, tIPEN simply uses the weak function hiding IPE scheme wIPE2N to generate a key or a
ciphertext for the vector v||0 padded with zeros upto to length 2N . (The setup and decryption
algorithms are identical to that of wIPE2N .) That is,

tIPE.Enc(msk,x) : tCT
$← wIPE.Enc(msk,x||0) ,

tIPE.KeyGen(msk,y) : tSK
$← wIPE.KeyGen(msk,y||0) .

Since the transformation is so simple, tIPEN inherits many nice properties of wIPE2N that
will be instrumental for our construction of FE schemes later. Jumping ahead, we remark here that
tIPEN has the so-called canonical form (defined in Section 7.2).

36

Remark 1. tIPEN has canonical form, that is, it satisfies the following three properties (as inherited from
wIPE2N).

1. Its ciphertext or secret key consist of only encodings in group G1 or G2 respectively of ring elements
that depend linearly in the encoded vector v.

2. The setup, key generation, and encryption algorithms do not use pairing nor the target group G3.

3. The decryption algorithm homomorphically evaluates a degree 2 polynomial (namely inner product),
on the encodings in the secret key and ciphertext, and then zero-tests the output encoding.

6.5 Special-Purpose Two-Slot IPE

We construct a family of special-purpose secret key IPE schemes with the following special struc-
ture: We view the vectors x = x1||x2 and y = y1||y2 encoded in the ciphertext and secret key as
consisting of two parts, referred to as the first- and second-slot vectors. A master secret key of
the schemes contains three parts, a shared key s and two specific keys k′1,k

′
2, so that, encrypting

a vector of form u1||null uses only (s,k′1) while encrypting null||u2 uses only (s,k′2). Moreover,
the scheme also satisfies several special properties, including strong IND-security and partial weak-
function-hiding. Roughly speaking, the former states that the IND-security of the schemes hold as
long as the shared key s is hidden (even when the slot keys are revealed), and the latter states that
the schemes are weakly function hiding w.r.t. individual slot, even when the keys for encrypting to
the other slot are published.

We call such IPE schemes, two-slot IPE schemes. Below we first formally describe their syntax
and define partial weak-function-hiding. Then, we construct two-slot IPE schemes by modularly
combined the ABCP public-key IPE scheme and the function hiding secret-key IPE scheme con-
structed in previous sections.

Syntax

• sIPE.Setup(1λ, pp) outputs a master secret key msk consisting of a shared key s and two
specific keys k′1,k

′
2. We denote by k1 = (s,k′1) the first-slot key, and k2 = (s,k′2) the second-

slot key. For convenience, we write msk = (k1,k2) below.

• sIPE.KeyGen(msk,y1,y2) on input msk and first- and second-slot vectors y1 and y2 in RN ,
outputs a secret key sSK associated with (y1,y2).

• sIPE.Enc(msk,x1,x2) on input msk and first- and second-slot vectors x1 and x2 in RN , out-
puts a ciphertext sCT associated with (x1,x2).

• sIPE.Dec(sSK, sCT) on input a secret key sSK associated with (y1,y2) and a ciphertext sCT
associated with (x1,x2), outputs whether 〈x1||x2,y1||y2〉 is zero or not.

In addition, there is a new partial encryption algorithm sIPE.PEnc that uses either the first- or
second-slot key to encrypt to only the first or second slot respectively.

• Partial Encryption: For β ∈ [2], sIPE.PEnc(β,kβ,xβ), on input the β-slot key kβ and a vector
xβ , outputs a ciphertext sCT associated with (x1, null) if β = 1 and (null,x2) if β = 2. When
decrypting such a ciphertext with a secret key sSK associated with (y1,y2), sIPE.Dec(sSK, sCT)
outputs whether 〈yβ,xβ〉 is zero.

37

Partial Weak-Function-Hiding This property states that weak function hiding holds w.r.t. the
first (or the second) slot, even when the second-slot key (or the first-slot key respectively) are
revealed. Formally,

Definition 18 (Partial Weak Function Hiding). A two-slot IPE scheme sIPEN inR is µ-partial weak-
function-hiding, if for every β ∈ [2], every PPT adversary A, and every sufficiently large security param-
eter λ ∈ N, the adversary’s advantage in the following games is bounded by µ(λ):

AdvtsIPEN

A =
∣∣∣Pr[pwFHsIPEN

A (1λ, 0) = 1]− Pr[pwFHsIPEN

A (1λ, 1) = 1]
∣∣∣ ≤ µ(λ)

The game pwFHsIPEN

A (1λ, b, β) for β = 1 proceeds as follows:

• Key Generation. The challenger generates a master secret key msk = (k1,k2)
$← sIPE.Setup(1λ, pp)

and sends A the second slot-key k2.

• Function and Input Queries. Repeat the following for an arbitrary number of times decided by A:

– Upon A choosing challenge vectors y0
1,i,y

1
1,iy2,i ∈ RN(λ), CH sends A a function key sSKi

$←
sIPE.KeyGen(msk,yb1,i,y2,i).

– UponA choosing a pair of challenge messages x0
1,i,x

1
1,i,x2,i ∈ RN(λ), CH sendsA a ciphertext

sCTi
$← sIPE.Enc(msk,xb1,i,x2,i).

• Finally A outputs a bit b′.

Restriction R′: Every message query (x0
1,i,x

1
1,i,x2,i) and every function query (y0

1,jy
1
2,j ,y2,j) must sat-

isfy that
〈
x0

1,i,y
0
1,j

〉
=
〈
x0

1,i,y
1
1,j

〉
=
〈
x1

1,i,y
1
1,j

〉
.

For β = 2, the game proceeds identically except that the second-slot challenge vectors differ, instead of
the first-slot vectors.

Construction Let pp = (p,G1, G2, G3,pair) be a public parameter that describes bilinear pairing
groups with order p; let R = Zp. Let pkIPE be the ABCP public key IPE scheme and wIPE the
weakly function hiding IPE scheme constructed in Section 6.3. Our two-slot IPE scheme combines
these two schemes in a modular way as follows.

• sIPE.Setup(1λ, pp) on input 1λ and public parameter pp = (p,G1, G2, G3,pair) generates:

(s, [s]1) = pkIPE.Setup(1λ, (p,G1)) and ∀β ∈ [2], wMSKβ = wIPE.Setup(1λ, pp)

It outputs msk = (k1,k2) where kβ = (s,wMSKβ) for β ∈ [2]. s is the shared key and kβ is
the β-slot key.

• sIPE.KeyGen(msk,y1,y2) on input msk and first- and second-slot vectors y1 and y2 in RN ,
first generates a wIPE secret key for each vector yβ to obtain

∀β ∈ [2], wSKβ
$← wIPE.KeyGen(wMSKβ,yβ) .

Recall that wSKβ = [wskβ]2 for some vector wskβ . It then homomorphically computes a
pkIPE secret key of the concatenation wsk1||wsk2.

sSK = pkIPE.KeyGen(s, (wSK1||wSK2)) = [〈s, (wsk1||wsk2)〉 || (wsk1||wsk2)]2 .

It outputs sSK.

38

• sIPE.Enc(msk,x1,x2) on input msk and first- and second-slot vectors x1 and x2 in RN , first
encrypts each xβ using wIPE, to obtain

∀β ∈ [2], wCTβ
$← wIPE.Enc(wMSKβ,xβ) .

Recall that wCTβ = [wctβ]1 for some vector wctβ . It then homomorphically computes a
pkIPE ciphertext of the concatenation wct1||wct2,

sCT = pkIPE.KeyGen([s]1, (wCT1||wCT2)) = [r || rs + (wct1||wct2)]1 .

(Note that homomorphic evaluation of pkIPE.KeyGen can be done using only homomorphic
addition and scalar multiplication in G2, as the algorithm does not need to multiply s, wct1

and wct2.)

It outputs sCT.

• Partial Encryption: For β ∈ [2], sIPE.PEnc(β,kβ,xβ), on input the β-slot key kβ and β-slot
vector xβ , proceeds identically as the normal encryption algorithm sIPE.Enc above except
that it does not generate the ciphertext wCT3−β as it does not have wMSK3−β , and instead
homomorphically computes a pkIPE ciphertext of wct1||0 if β = 1 or a ciphertext of 0||wct2

if β = 2.

If β = 1, sCT = pkIPE.KeyGen([s]1, (wCT1||[0]1)) =
[
r || rs + (wct1||0)

]
1

If β = 2, sCT = pkIPE.KeyGen([s]1, ([0]1||wCT2)) =
[
r || rs + (0||wct2)

]
1

• sIPE.Dec(sSK, sCT) simply homomorphically evaluates the inner product between sCT and
sSK. Since the decryption algorithms of pkIPE and wIPE involve only homomorphically
evaluating inner product, this effectively performs two layers of decryption.

pkIPE.Dec(sCT, sSK) = 〈sCT, sSK〉 = [〈wsk1||wsk2,wct1||wct2〉]3

Output 1 iff the obtained encoding encodes zero.

To see correctness, let sSK be associated with (y1,y2), and consider the following three cases for sCT:

– If sCT is associated with (x1,x2), 〈wsk1||wsk2,wct1||wct2〉 = 〈x1||x2,y1||y2〉.
– If sCT is associated with (x1, null), wct2 is set to 0, 〈wsk1||wsk2,wct1||wct2〉 = 〈wsk1,wct1〉 =
〈x1||y1〉.

– If sCT is associated with (null,x2), wct1 is set to 0, 〈wsk1||wsk2,wct1||wct2〉 = 〈wsk2,wct2〉 =
〈x2||y2〉.

Therefore, in all three cases, the decryption outputs whether the correct inner product is zero or not.

6.5.1 Special Properties of Our Two-Slot IPE

Our two-slot IPE scheme sIPEN has the following special properties:

• LINEARITY IN INPUT AND FUNCTION VECTORS A secret key of sIPE encoding vectors (y1,y2)
consists of only encodings in group G2 of elements that depend linearly in y1 and y2. Sim-
ilarly, a ciphertext of sIPE encrypting vectors (x1,x2) (or (x1, null), or (null,x2)) consists of
only encodings in group G1 of elements that depend linearly in x1 and/or x2.

39

• LINEARITY IN SHARED KEY Recall that the β-slot key kβ consists of a shared key s and a spe-
cific key k′β = wMSKβ . The ciphertext of sIPE produced by the partial encryption algorithm
sIPE.PEnc using kβ consists of only encodings in group G1 of elements that depend linearly
in the shared key s.

In particular, this means, given encoding [s]1 of s in group G1, one can homomorphically
compute a ciphertext sCT = sIPE.PEnc(β,kβ,xβ; r) with knowledge of β, k′β , xβ , and r.

• STRONG IND-SECURITY. sIPE is IND-secure even when encodings [s]1 of the shared key s
in group G1 (the group to which ciphertext encodings belong) and the specific keys (k′0,k

′
1)

are published. This follows directly from the IND-security of pkIPE, and the fact that en-
codings [s]1 of s in G1 is exactly the public key of pkIPE, and that (k′0,k

′
1) only affects the

input vectors encrypted using pkIPE.

Lemma 3. Assume that DDH holds in G1. For every polynomial N , the above secret key IPE
scheme sIPEN satisfies IND-security even when encodings of the shared key [s]1 (in the group where
ciphertexts are generated) and the specific keys (k′0,k

′
1) are published.

(Note that DDH in G1 is implied by SXDH on the bilinear pairing groups.)

• PARTIAL WEAK-FUNCTION-HIDING sIPE satisfies partial weak-function-hiding.

Lemma 4. Assume that SXDH holds in bilinear pairing groups. For every polynomial N , the above
secret key IPE scheme sIPEN satisfies partial weak-function-hiding.

Proof of Lemma 4. We prove partial weak-function hiding w.r.t. the first slot, that is, the case of
β = 1. Partial weak-function hiding w.r.t. the second slot, that is, the case of β = 2, follows from
the same proof.

To show this, it suffices to show that there exists a simulator S, such that, for every PPT ad-
versary A, its view in game pwFHsIPEN

A (1λ, b, β = 1) can be simulated by SA in the weak-function
hiding game wFHwIPEN

S (1λ, b). Therefore, if A can violate the partial weak-function-hiding prop-
erty w.r.t. the first slot of sIPEN , S can violate the weak-function-hiding property of wIPEN ,
which rules out the existence of such attackers A.

The simulator SA proceeds as follows:

• It internally samples s, and a master secret key wMSK2 of wIPEN , and sendsA k2 = (s,k′2 =
wMSK2).

• Upon A choosing challenge vectors y0
1,i,y

1
1,iy2,i ∈ RN(λ), S sends y0

1,i,y
1
1,i to its challenger

as its function query, and receives a secret key wSK1 for yb1,i. It then emulates a secret key
sSK for A as follows:

– Generate a secret key wSK2 for y2,i using wMSK2.
– Homomorphically evaluate a pkIPE secret key of wsk1||wsk2 encoded in wSK1||wSK2

as the key generation algorithm sIPE.KeyGen does. This can be done since S knows the
master secret key s of pkIPE.

It sends the produced secret key sSK to A.

• Upon A choosing a pair of challenge messages x0
1,i,x

1
1,i,x2,i ∈ RN(λ), S sends x0

1,i,x
1
1,i to

its challenger as its input query, and receives a ciphertext wCT1 for xb1,i. It then emulates a
ciphertext sCT for A as follows:

40

– Generate a ciphertext wCT2 for x2,i using wMSK2.

– Homomorphically evaluate a pkIPE ciphertext of wct1||wct2 encoded in wCT1||wCT2

as the encryption algorithm sIPE.Enc does. Again, this can be done since S knows the
master secret key s of pkIPE.

It sends the produced ciphertext sCT to A.

• Upon A outputting b′, S outputs the same bit.

It is easy to verify that S simulates the view of A perfectly. Therefore, it follows from the weak-
function-hiding property of wIPEN that sIPEN satisfies partial weak-function-hiding.

7 High-Degree IPE

In this section, we define and construct High-degree IPE (HIPE) schemes, which are multi-input
functional encryption for computing high-degree inner products (defined shortly). HIPEs are key
tools for constructing collusion reisstant FE for polynomials later. We start with formalizing the
notion of HIPE and then construct degree-D HIPE schemes from SXDH on degree-D multilinear
pairing groups.

7.1 Definition of HIPE

Degree-D Inner Product: Operation
〈
x1,x2, · · · ,xD

〉
, on input D vectors inR, computes

〈
x1,x2, · · · ,xD

〉
= Σi∈[N]

 ∏
d∈[D]

xdi

 inR .

Syntax A family of high-degree IPE schemes {hIPED,N} in R consists of for every constant
D and polynomial N , a D-ary multi-input functional encryption scheme hIPED,N for computing
degree-D inner products of length-N vectors inR. The scheme hIPED,N has the following syntax.

• Setup: hIPE.Setup(1λ, pp) outputs a master secret key msk.

• Key Generation: hIPE.KeyGen(msk,xD) outputs a secret key hSK encoding a vector xD ∈ RN .

• Encryption: For every d ∈ [D−1], hIPE.Encd(msk,xd) outputs an encryption hCTd encrypting
a vector xd ∈ RN .

• Decryption: hIPE.Dec(hSK, hCT1, · · · , hCTD−1) computes ZT(
〈
x1, · · · ,xD

〉
), that is, whether

the degree-D inner product is zero inR.

Function Hiding of HIPE We define only the selective function-hiding property of HIPE, which
is what we achieve and sufficient for constructing selectively IND-secure FE for degree-d polyno-
mials later.

Definition 19 (Selective Function Hiding for HIPE). We say that a HIPE scheme hIPED,N in R is
selectively µ-function hiding, if the following holds: For every polynomial Γ and every two ensembles of

41

sets of vectors { {u1
γ , · · · ,uDγ }γ∈[Γ(λ)] }λ∈N and { {v1

γ , · · · ,vDγ }γ∈[Γ(λ)] }λ∈N satisfying udγ ,v
d
γ ∈ RN(λ),

and the constraint that

∀ I ∈ [Γ]D,
〈
u1
I1 , · · · ,u

D
ID

〉
=
〈
v1
I1 , · · · ,v

D
ID

〉
,

the two ensembles of distributions {D0(λ)}λ and {D1(λ)}λ defined below are µ-indistinguishable.

{Db(λ)}λ =


msk

$← hIPE.Setup(1λ, pp){
CTdγ

$← hIPE.Encd(msk,xdγ)
}
γ∈[Γ],d∈[D−1]{

SKγ
$← hIPE.KeyGen(msk,xDγ)

}
γ∈[Γ]

:
{
SKγ , CT

1
γ , · · · ,CTD−1

γ

}
γ∈[Γ]


λ∈N

where xdγ = udγ for every d ∈ [D] when b = 0, and xdγ = vdγ when b = 1.

7.2 Degree-D HIPE from Degree-D MMaps

In this section, we construct a family of function hiding HIPE schemes {hIPED,N} in R; Every
scheme hIPED,N for computing degree-D inner product (for a universal constant D) of length-N
vectors is built from degree-D MMaps, and has the following canonical form.

Canonical Form We say that a HIPE scheme hIPED,N based on degree-D MMaps has canonical
form if it satisfies the following properties:

1. For every d ∈ [D − 1], every ciphertext hCTd in the support of its encryption algorithm
hIPE.Encd(?,xd) consists of only encodings in groupGd of ring elements that depend linearly
in the encrypted vector x. Moreover, every secret key hSK in the support of its key generation
algorithm hIPE.KeyGen(?,y) consists of only encodings in group GD of ring elements that
depend linearly in the encoded vector y.

2. Second, the setup, key generation, and encryption algorithms do not use pairing nor the
target group GD+1.

3. Third, the decryption algorithm hIPE.Dec(hSK, hCT1, · · · , hCTD−1) homomorphically eval-
uates a polynomial p of degree ≤ D on the encodings in the secret key hSK and the cipher-
texts hCTd using degree-D MMaps, and then test whether the output encoding encodes zero.
More specifically,

hIPE.Dec(hSK, hCT1, · · · , hCTD−1) = ZT(p(hSK, hCT1, · · · , hCTd))

= ZT(
[〈
x1, · · ·xD

〉]
D+1

)

We call HIPE schemes in such canonical form, canonical HIPE schemes.
For simplicity of notation, below we will omit ZT in the decryption equation, and write

hIPE.Dec(hSK, hCT1, · · · , hCTD−1) = p(hSK, hCT1, · · · , hCTd)

=
[〈
x1, · · ·xD

〉]
D+1

to mean that decryption homomorphically evaluates polynomial p and yields encoding of the
degree-(D + 1) inner product.

42

7.2.1 Overview of Construction

We construct function hiding canonical HIPE schemes {hIPED,N}, by induction in the degree D.

• For the base case of D = 2, function hiding degree-2 HIPE is identical to function hiding
IPE. In Section 6.3, we constructed such schemes {tIPEN} from SXDH on bilinear maps. It
is easy to check that the construction in Section 6.3 indeed has canonical form; see Remark 1.

• For the induction step, we show that for any D ≥ 2, if there exist canonical degree-D
HIPE schemes {hIPED,N}with function hiding from SXDH on degree-D MMaps, there ex-
ist canonical degree-(D + 1) HIPE schemes {hIPED+1,N} with function hiding from SXDH
degree-(D + 1) MMap.

Below, we describe high-level ideas for the induction step. For simplicity of exposition, we
do not explicitly specify the lengths of vectors discussed below, nor the groups in which they are
encoded in this high-level description; see details in the formal construction below.

We construct a canonical degree-(D + 1) HIPE scheme, denoted by hIPE, by combining a
canonical degree-D HIPE scheme, denoted by dIPE, with a two-slot IPE scheme sIPE con-
structed in Section 6.5. We will use the following notations for different schemes:

• We use notations (hCT1, · · · , hCTD) and hSK to represent the ciphertexts and secret key of
the degree-(D + 1) HIPE scheme hIPE we construct.

• For dIPE, we denote by dCT1, · · · , dCTD−1 and dSK its the ciphertexts (at different coordi-
nates) and secret key. Recall that If they encode vectors (χ1, · · · ,χD−1) and χD respectively,
decryption produces an encoding of the degree-D inner product.

dIPE.Dec(dSK, dCT1, · · · , dCTD−1) =
[〈
χ1, · · · ,χD−1,χD

〉]
• For sIPE, we denote by sCT and sSK its ciphertext and secret key, and their decryption

produces an encoding of the inner product of the encoded vectors v1 and v2.

sIPE.Dec(sSK, sCT) =
[
v1,v2

]
Recall that in the two-slot scheme the encoded vectors v1,v2 are viewed as consisting of
two slots vβ = vβ1 ||v

β
2 , and the scheme satisfies several special properties. As we will see

later, the sepcial two-slot structure and properties of sIPE are crucial for the security proof.
In the high-level description of the construction below, it will, however, be convenient to
temporarily ignore these special features, and simply think of sIPE as a normal function
hiding IPE scheme.

Overview of Our Degree-(D + 1) HIPE Scheme. To achieve functionality, we need to specify
how to generate ciphertexts and secret key for input vectors x1, · · · ,xD and xD+1, so that,

hIPE.Dec(hSK, hCT1, · · · , hCTD) =
[〈
x1, · · · ,xD,xD+1

〉]
.

Observe that a degree-(D+ 1) inner product of x1, · · ·xD+1, can be computed as the inner product
between xD+1 and the coordinate-wise product of the first D vectors

∏
d∈[D] x

d, denoted as x≤D,
that is,

y =
〈
x1, · · ·xD+1

〉
=

〈 ∏
d∈[D]

xd,xD+1

〉
=
〈
x≤D,xD+1

〉
43

Therefore, if the decryptor obtains a pair of sIPE ciphertext and secret key (sCT, sSK) for (x≤D,xD+1),
he/she can decrypt to obtain [y]. To do so, our new scheme hIPE simply publishes sSK as its se-
cret key,

Secret key of hIPE: hSK = sSK← sIPE.KeyGen(sMSK,xD+1) .

However, it cannot directly publish a ciphertext of x≤D, as x≤D is the product of D input vectors,
but each encryption algorithm hIPE.Encd receives only a single vector xd as input and cannot
compute x≤D. The idea is to include in the D ciphertexts hCT1, · · · , hCTD of hIPE, ciphertexts
and secret keys of the degree-D scheme, so that the decryptor can combine them to generate a
ciphertext sCT of x≤D.

Towards this end, recall that every sIPE ciphertext sCT consists of many encodings {sCTl}l∈[L].
If the element encoded sctl in every encoding sCTl can be expressed as the inner product ofD vec-
tors

Condition C: sctl =
〈
χ1
l , · · ·χDl

〉
, and each χdl depends only on xd ,

it suffices to encode these vectors in a tuple (dCT1
l , · · · dCTD−1

l , dSKl) of D− 1 ciphertexts and one
secret key of dIPE using an independently sampled master secret key dMSKl, from which the
decryptor can obtain exactly sCTl. Thus, the D ciphertexts hCT1, · · · , hCTD of our new scheme
hIPE consists of exactly one such tuple (dCT1

l , · · · dCTD−1
l , dSKl for every l), namely,

Ciphertext of hIPE: hCTd =

{{
dCTdl ← dIPE.Enc(dMSKl,χ

d
l)
}
l∈[L]

if d ≤ D{
dSKl ← dIPE.KeyGen(dMSKl,χ

D
l)
}
l∈[L]

if d = D
.

Given (hCT1, · · · , hCTD) and hSK as specified above, the decryptor proceeds in two steps:

1. First, decrypt for every l, the tuple (dCT1
l , · · · dCTD−1

l , dSKl) using the decryption algorithm
of dIPE to obtain sCTl; put them together to get a ciphertext sCT of x≤D.

2. Then, decrypt the obtained ciphertext sCT using the decryption algorithm of sIPE and secret
key hSK = sSK of xD+1 to obtain an encoding of the final inner product y, as illustrated
below.

hCT1 = {dCT1
l }l , · · · , hCTD−1 = {dCTD−1

l }l , hCTD = {dSKl}l︸ ︷︷ ︸ hSK = sSK

Decrypt to sCT︸ ︷︷ ︸
Decrypt to [y]

Setting Condition C – A First Attempt We now argue that Condition C above indeed holds.
This crucially relies on the fact that the two-slot IPE scheme sIPE has the special property that the
elements {sctl} encoded in its ciphertext sCT, depends linearly in the encrypted vector x≤D and
randomness r of encryption. More specifically, when the master secret key sMSK is fixed, each
element sctl is the output of a linear function h(sMSK)

l on input (x≤D, r),

sCT = sIPE.Enc(sMSK, x≤D ; r) = {[sctl]}l ,

with sctl = h
(sMSK)
l (x≤D, r) =

〈
c

(sMSK)
l , (x≤D||r)

〉
,

44

where c
(sMSK)
l is the coefficient vector of h(sMSK)

l . Then, since x≤D = x1 · · ·xD, we can represent
sctl as the inner product of D vectors χ1

l , · · · ,χDl , each depending on only one input vector xD, as
follows:

sctl =
〈
χ1
l ,χ

2
l , · · ·χDl

〉
χdl =


x1||r if d = 1

xd||1 if 1 < d < D

(xD||1)(c
(sMSK)
l) if d = D

.

Therefore, as discussed above, encrypting the vectors {χdl } in the ciphertexts of hIPE guarantees
that the decryptor can obtain sCT from the ciphertexts, and decrypting the ciphertext sCT further
produces an encoding of the correct output y.

A Security Issue The above way of setting the vectors {χdl }d,l achieves functionality, but, does
not guarantee security. A security issue stems from the fact that the randomness r used for gen-
erating the ciphertext sCT is hardcoded entirely in the input vectors {χ1

l }l encrypted at the first
coordinate. Consider a simple scenario where a single ciphertext of hIPE at the first coordinate,
two ciphertexts at each other coordinate, and a single secret key, are published:

hCT1, hCT2
0, · · · , hCTD0 , hSK

hCT2
1, · · · , hCTD1

Since the randomness r is embedded in hCT1, different combinations of ciphertexts, say hCT1 and
hCT2

b2 · · · hCT
D
bD

, produce sIPE ciphertexts encrypting different vectors, x1x2
b2
· · ·xDbD , but using

the same random coins r. The security of sIPE does not hold when attackers can observe cipher-
texts with shared randomness, and in particular, information of the encrypted vector x1x2

b2
· · ·xDbD

may be revealed. On the other hand, the function hiding property requires that only the final
degree-(D + 1) inner products x1x2

b2
· · ·xDbDx

D+1 are revealed, and nothing else.

Setting Condition C, Right To address this security issue, we need to ensure that ciphertexts
sCT produced by different combinations of ciphertexts of hIPE correspond to (at the very least)
distinct randomness. To do so, we embed fresh randomness rd in ciphertexts at every coordinate
by modifying the encrypted vectors χdl to the following:

χdl =

{
xd||rd if d < D

(xD||rD)(c
(sMSK)
l) if d = D

Note that the inner products of these vectors correspond exactly to a ciphertext sCT generated
using random coins r≤D =

∏
d∈[D] r

d, aggregating the shares of randomness embedded at all
coordinates. That is,

〈χ1, · · · ,χD〉 =
〈
c

(sMSK)
l , (x≤D||r≤D)

〉
= h

(sMSK)
l (x≤D, r≤D) = sctl ,

sCT = {[sctl]}l = sIPE.Enc(sMSK, x≤D ; r≤D) .

In the simple scenario above, combining hCT1, hCT2
b2 · · · , hCT

D
bD

now produces sCT with random-
ness r1r2

b2
· · · rDbD , which is distinct for each combination.

Having distinct randomness is still not enough for applying the security of sIPE, which re-
quires independently and uniformly sampled randomness. The security analysis of the above

45

scheme turns out to be quite complicated, and in fact for security to hold, the scheme needs to
further pad the vectors χdl with zeros, serving as redundant space for hardwiring information in
different hybrids in the security proof. Below, we first describe our construction formally, and
then move to describe ideas of the security proof.

7.2.2 Construction — The Induction Step

Fix any polynomialN . We construct a canonical degree-(D+1) HIPE scheme hIPE = hIPED+1,N

for input length N with algorithms (hIPE.Setup, hIPE.Enc, hIPE.KeyGen, hIPE.Dec) relying on the
following building blocks:

• A canonical degree-DHIPE scheme dIPE = hIPED,M = (dIPE.Setup, dIPE.Enc, dIPE.KeyGen,
dIPE.Dec) from SXDH on degree-D MMaps, for a specific input length M specified below.

• The two-slot IPE scheme sIPE = sIPEN = (sIPE.Setup, sIPE.Enc, sIPE.KeyGen, sIPE.Dec)
from SXDH on bilinear maps constructed in Section 6.5. Let L = L(λ) denote the length of
ciphertexts of the scheme sIPEN .

• Degree-D + 1 multi-linear pairing groups described by pp = (p,G1, · · · , GD+1, GD+2,pair).

It would be convenient to assume that the multilinear pairing groups support a slightly
richer interface. Namely, one can pair encodings in the first D groups to obtain an encoding
in an intermediate target group denoted asG≤D, which can further be paired with encodings
in group GD+1 to yield encodings in the actual target group GD+2. The presentation of our
scheme becomes simpler using this interface. As we discuss later, since our scheme has
canonical form, this interface is not necessary, since decryption simply homomorphically
evaluate a polynomial of degree ≤ D + 1, which can be done using degree-(D + 1) MMaps
with standard interface. (See discussion on canonical form and Remark 2.)

The scheme hIPE proceeds as follows. We inline analysis of correctness in italic font in the de-
scription of the construction below.

• hIPE.Setup(1λ, pp) samples a master secret key of sIPE and L independent master secret
keys of dIPE.

sMSK = (k1,k2)
$← sIPE.Setup(1λ, (p,G≤D, GD+1, GD+2)){

dMSKl
$← dIPE.Setup(1λ, (p,G1, · · · , GD, G≤D))

}
l∈[L]

Output master secret key hMSK = (sMSK, {dMSKl}l∈[L]).

• hIPE.KeyGen(hMSK,xD+1) generates a secret key of the sIPE scheme using sMSK, encoding
xD+1 in the first slot, and the zero vector 0 in the second slot.

sSK
$← sIPE.KeyGen(sMSK,xD+1,0)

Output hSK = sSK. (Note that the second-slot vector encoded in sSK is set to zero.)

• hIPE.Encd(hMSK,xd) for d ∈ [D] proceeds in the following steps:

1. Sample rd ← R5.
(The encryption algorithm of sIPE samples only 5 random elements.)

46

2. Prepare vectors {χdl }l∈[L] as follows.
By construction, the partial encryption algorithm sIPE.PEnc of sIPE produces a set of
L encodings

sCT = [sct1, · · · sctL]≤D = sIPE.PEnc(1,k1,u; w) ,

where each encoded element sctl depends linearly on u and w. Let sctl = h
(k1)
l (u,w)

denote the linear function that computes the lth encoded element, and c
(k1)
l its coeffi-

cient vector, that is, sctl =
〈
c

(k1)
l ,u||w

〉
.

Then, set the vector χdl as follows.

χdl =

{
xd || rd if d < D

(xD|| rD)(c
(k1)
l) if d = D

The length of χdl is M ′ = |χdl | = N + 5.

Note that encodings of the inner products of vectors χdl , · · ·χDl , for every l, is a sIPE ciphertext
of the vector x≤D =

∏
d∈[D] x

d (in the first slot), generated using the first slot key k1 and
random elements r≤D =

∏
d∈[D] r

d. That is,{[〈
χ1

1 · · · ,χDl
〉]
≤D =

[
h

(k1)
l (x≤D, r≤D)

]
≤D

}
l∈[L]

= sCT = sIPE.PEnc(0,k1,x
≤D; r≤D)

3. Pad the above vectors with zeros to get {Xd
l }l∈[L].

Xd
l = χdl ||0, where M = |Xd

l | = 2(D − 1)|χdl |+ 1 = 2(D − 1)(N + 5) + 1 = Θ(DN)

Since padding with zero does not change inner products, we still have{[〈
X1

1 · · · ,XD
l

〉]
≤D

}
l∈[L]

= sCT = sIPE.PEnc(0,k1,x
≤D; r≤D) .

4. Encrypt
{
Xd
l

}
l

in one of the following two ways, depending on whether d = D: If
d < D, it encrypts every Xd

l at the dth coordinate, using dIPE and master secret key
dMSKl. Otherwise, if d = D, it encodes every XD

l as a function using dIPE and master
secret key dMSKl. Formally,

hCTd =


{
dCTdl

$← dIPE.Enc(dMSKl,X
d
l)
}
l∈[L]

if d < D{
dSKl

$← dIPE.KeyGen(dMSKl,X
D
l)
}
l∈[L]

if d = D

Finally, output hCTd.

• hIPE.Dec(hSK, hCT1, · · · , hCTD) parses hCTd = {dCTdl }l for d ≤ D and hCTD = {dSKl}l as
ciphertexts and secret keys of dIPE, and hSK = sSK as a secret key of sIPE. Decryption
proceeds in two steps

47

1. Decrypt, for every l ∈ [L], the tuple (dSKl, dCT
1
l , · · · , dCTD−1

l) using dIPE, obtaining a
ciphertext of sIPE.

sCT =
{
sCTl = dIPE.Dec(dSKl, dCT

1
l , · · · , dCTD−1

l)
}
l∈[L]

2. Decrypt sCT using sSK,

[y]D+2 = sIPE.Dec(sSK, sCT)

Output 1 iff the obtained encoding [y]D+1 encodes zero.

For correctness, we argue that y equals to
〈
x1, · · · ,xD

〉
.

By construction, the tuple (dCT1
l , · · · , dCTD−1

l , dSKl) encodes vectors (X1
l , · · · ,XD

l). Therefore, it
follows from the correctness of dIPE,

sCT =
{
sCTl = dIPE.Dec(dSKl, dCT

1
l , · · · , dCTD−1

l)
}
l∈[L]

=
{[〈

X1
l , · · ·XD

l

〉]
≤D

}
l∈[L]

which as analyzed above is exactly the output of sIPE.PEnc(0,k1,x
≤D; r≤D).

Then, in the second step, by the correctness of sIPE, decrypting sCT with sSK encoding vector xD+1

produces

sIPE.Dec(sSK, sCT) =
[〈
x≤D, xD+1

〉]
D+2

=
[〈
x1, · · · ,xD+1

〉]
D+2

= [y]D+2 .

This concludes the correctness of the scheme hIPED,N .

hIPE Has Canonical Form We verify the following three properties.

• First, we show that for every d ∈ [D], every ciphertext hCTd consists of only encodings in
group Gd of elements that depend linearly in the encrypted vector xd, and every secret key
hSK consists of encodings in group GD+1 of elements linear in xD+1. By construction, every
ciphertext hCTd of xd consists of a set of ciphertexts {dCTdl } at coordinate d (if d < D) or
secret key {dSKl} (if d = D) of dIPE encoding vectors {Xd

l } derived from xd. Note that
by definition, vector Xd

l for every d, l is linear in xd. Thus, by the induction hypothesis that
dIPE has canonical form, every hCTdl consists of only encodings in group Gd of elements
linear in Xd

l , which in turn are linear in xd. Moreover, every secret key hSK is simply a secret
key sSK of sIPE encoding the same vector xD+1. By the fact that sIPE secret keys consist of
only encodings in GD+1 of elements linear in xD+1, so are secret keys of hIPE.

• Second, since dIPE satisfies that its setup, key generation, and encryption algorithms do not
use pairing nor the target group G≤D, it is easy to verify that hIPE’s setup, key generation
and encryption algorithms also do not use pairing, nor the target group GD+2.

• Third, we argue that the decryption algorithm of hIPE can be carried out by homomorphi-
cally evaluating a polynomial q of degree≤ D+1. By the fact that dIPE has canonical form,
which means that its decryption homomorphically evaluates a polynomial p of degree ≤ D
over the encodings contained in the ciphertexts and secret key under decryption. Therefore,
in the first decryption step of of hIPE, the decryptor does

sCT =
{
dIPE.Dec(dSKl, dCT

1
l , · · · , dCTD−1

l)
}
l∈[L]

=
{
p(dSKl, dCT

1
l , · · · , dCTD−1

l)
}
l∈[L]

48

Furthermore, by the fact that decryption of sIPE simply homomorphically evaluate inner
product, we have

[y]D+2 = sIPE.Dec(sSK, sCT) = 〈sSK, sCT〉

=

〈
sSK,

{
p(dSKl, dCT

1
l , · · · , dCTD−1

l)
}
l,∈[L]

〉
= q(hSK, hCTD, hCT1, · · · , hCTD−1) ,

where q is the polynomial corresponding to the composition of p and 〈•, •〉, up to appropriate
re-arrangement of input variables. Clearly the degree of q is no larger than D + 1.

Remark 2 (Standard MMaps Suffices). In the above construction, we used a slightly richer interface of
degree-(D + 1) MMaps, where the first D groups can be paired together into an intermediate target group
G≤D, which can further be paired with GD+1 into target group GD+2. We now argue that this richer
interface is not necessary, and our construction can be instantiated with standard MMaps supporting only
pairing all groups together to the target group GD+2.

First, it follows from the fact that dIPE has canonical form, that the setup, key generation, and encryp-
tion algorithms of hIPE actually do not use the intermediate pairing, nor the intermediate target group
G≤D. Second, by that hIPE has canonical form, its decryption algorithm only involves homomorphically
evaluating a degree ≤ D + 1 polynomial over the encodings contained in the ciphertexts and secret keys of
hIPE, which can be done using standard degree-(D + 1) MMaps.

7.2.3 Efficiency

We analyze the maximum time TimeD+1(N) the key generation and encryption algorithm of
hIPE = hIPED+1,N runs. In the base case, when D + 1 = 2, the hIPE scheme is simply a
standard IPE scheme; our construction in Section 6 has Time2(N) = poly(λ)N .

In the induction step from degree D to D + 1, hIPE is constructed from the degree-D HIPE
scheme dIPED,M with efficiency TimeD(M) and the sIPEN scheme whose encryption and key
generation time is Θ(N). By construction, the key generation time is much smaller than the en-
cryption time. Thus, we focus on analyzing the latter. The encryption algorithm hIPE.Enc gen-
erates dIPE ciphertexts or secret keys of vectors {Xd

l } each of length M = Θ(DN), and l is the
length of ciphertexts of sIPEN , which is Θ(N). Let c be a sufficiently large universal constant.

TimeD+1(N) = Θ(l × TimeD(M)) = Θ(N)× TimeD(Θ(DN))

≤ cN TimeD(cDN)

≤ cN
(
c2DN × TimeD−1(c(D − 1) (cDN))

)
≤ c3DN2 TimeD−1(c2D2N)

· · ·

≤ cΘ̃(D2)ND−1 Time2((cD)D−1N)

≤ ND poly(λ)

where the third line used the fact that Timed for any d is a non-decreasing function.
The decryption algorithm of hIPE scheme simply homomorphically evaluates a degree ≤

D + 1 polynomial over all encodings contained in ciphertexts and secret keys, followed by a zero
test. Thus, its runtime is at most ((D + 1)× TD+1(N))D+1 poly(λ) = NΘ(D2) poly(λ).

49

7.3 Security Proof

In this section, we prove that hIPE is selectively function hiding.

Proposition 1. Assume SXDH on degree-(D+1) multilinear pairing groups, and that dIPE is selectively
function hiding. The scheme hIPE described above is also selectively function hiding.

Fix any polynomial Γ and any two ensembles of sets of vectors {{u1
γ , · · · ,uD+1

γ }γ∈[Γ(λ)]}λ∈N and
{{v1

γ , · · · ,vD+1
γ }γ∈[Γ(λ)]}λ∈N, such that, udγ ,vdγ ∈ RN(λ) and the following holds.

∀ I ∈ [Γ]D+1,
〈
u1
I1 , · · · ,u

D+1
ID

〉
=
〈
v1
I1 , · · · ,v

D+1
ID

〉
We need to show the indistinguishability of ensembles of distributions {D0(λ)}λ and {D1(λ)}λ
defined below.

{Db(λ)}λ =


hMSK

$← hIPE.Setup(1λ, pp){
hCTdγ

$← hIPE.Encd(hMSK,xdγ)
}
γ∈[Γ],d∈[D]{

hSKγ
$← hIPE.KeyGen(msk,xD+1

γ)
}
γ∈[Γ]

: pp,
{
hSKγ , hCT

1
γ , · · · , hCTD+1

γ

}
γ∈[Γ]


λ∈N

where xdγ = udγ when b = 0, and xdγ = vdγ when b = 1.

Below, we first describe the high-level ideals for the security proof and then provide the formal
proof.

7.3.1 Overview of Security Proof

We reduce function hiding of hIPE to function hiding of dIPE and the special security properties
of sIPE. Consider proving the indistinguishability of distributions D0 = D0(λ) and D1 = D1(λ)
above, where up to Γ ciphertexts are published at every coordinate d. By construction, any com-
bination of ciphertexts (hCT1

I1 , · · · , hCT
D
ID

) at different coordinates indexed by I ∈ [Γ]D+1, yields
a sIPE ciphertext denoted by sCTI , satisfying that

sCTI = sIPE.PEnc(0,k1,x
≤D
I ; r≤DI), where x≤DI =

∏
d∈[D]

xdId , r
≤D
I =

∏
d∈[D]

rdId

and k1 is the first slot key of sIPE contained in hMSK. This ciphertext sCTI can then be decrypted
with any secret key hSKID+1

= sSKID+1
to obtain an encoding of the output inner product

[yI]D+1 =
[〈

x1
I1 , · · ·x

D+1
ID+1

〉]
D+1

= sIPE.Dec(sCTI , sSKID+1
) .

A natural first idea for proving the security of hIPE is using the security of dIPE to argue that
the set of ciphertexts in distribution Db reveals nothing except from the set of sIPE ciphertexts
{sCTI}I that can be possibly computed, and then reduce the indistinguishability of D0 and D1 to
the indistinguishability of {sCTI}I at the presence of the secret keys {sSKID+1

}I included these
distributions. The latter indistinguishability seems to follow from the function hiding property of
sIPE, since the inner products of vectors encoded in {sCTI , sSKID+1

}I are identical in D0 and D1,
that is, {〈

u≤DI ,uD+1
ID+1

〉}
I

=
{〈

v≤DI ,vD+1
ID+1

〉}
I
.

For the above idea to go through, the two building blocks dIPE and sIPE need to satisfy very
strong (potentially impossible) security properties:

50

• dIPE have simulation security, in the sense that its ciphertexts and secret keys can be simu-
lated from the set of possible output encodings. This means that Db can be simulated from
the set of derived ciphertexts {sCTI}I , together with {sSKID+1

}I . Then, the indistinguisha-
bility of D0 and D1 reduces in a black-box way to that of {sCTI , sSKID+1

}I .

• The indistinguishability of {sCTI , sSKID+1
}I has to rely on the security of sIPE. This, how-

ever, requires the security of sIPE to hold even when the ciphertexts are generated using
correlated randomness of certain specific form — namely, for different I , sCTI is generated
with random elements r≤DI .

Unfortunately, the above strong security properties do not hold, and proving security without
them are the main technical challenges.

• Challenge 1 — Relying only on indistinguishability-based Function Hiding of dIPE.
dIPE satisfies only indistinguishability-based function hiding property, which means Db
cannot be simulated using the sIPE ciphertexts and secret keys {sCTI , sSKID}i. Then, how
can we reduce to the security of sIPE? To do so in a black-box way, typically, the security
proof moves to a hybrid distribution where the challenge ciphertexts of sIPE can be embed-
ded directly into the hybrid distributions. 7 Unfortunately, given that the total number of
sIPE ciphertexts that can be derived from Db is ΓD, but the total size of hIPE ciphertexts in
Db is way smaller than that (there are (D+ 1)Γ of them, each of size independent of Γ), there
is not enough space to embed all sIPE ciphertexts.

To resolve this problem, instead of attempting to embed all ciphertexts {sCTI} in one shot,
we hardwire them in “piecemeal”, through a long sequence of ΓD−1 steps. In each step, we
hardwire only Γ ciphertexts {sCTI} that are indexed by a fixed prefix ρ, I = ρ||ID. When
the Γ ciphertexts are hardwired, we rely on the security of sIPE to argue that switching
the vector encrypted inside from u≤DI to v≤DI is indistinguishable. After ΓD−1 steps, all
encrypted vectors are switched, and by a hybrid argument, we conclude that D0 and D1 are
indistinguishable.

• Challenge 2 — Relying on the Security of sIPE. To argue the indistinguishability of the
Γ hardwired ciphertexts {sCTρ||ID}, we still need to overcome two issues. First, ciphertexts
of {u≤Dρ||ID} and {v≤Dρ||ID} are indistinguishable only if vectors encoded in the secret keys are
simultaneously switched from {uD+1

γ }γ to {vD+1
γ }γ (as otherwise, the inner products differ).

But, switching the vectors encoded in secret keys would affect the inner products obtained
when decrypting other sIPE ciphertexts with prefix different from ρ. To resolve this prob-
lem, we leverage the two-slot structure and partial weak-function-hiding of sIPE.

Another issue is that the hardwired ciphertexts are generated with structured randomness
rρ||ID = r1

ρ1 · · · r
D−1
ρD−1

rDID . The hope is that given that each randomness corresponds to a
unique combination I of random shares, we can try to apply the the SXDH assumption on
MMaps to argue that their product is pseudorandom inside MMap encodings. Then, by the
strong IND-security of sIPE, the hardwired ciphertexts are indistinguishable.

Hardwiring dIPE Ciphertext in Piecemeal To hardwire ciphertexts {sCTI} in piecemeal, we
build a sequence of 2×ΓD−1 hybrid distributions {H0

ρ , H
1
ρ}ρ∈[Γ]D−1 , where in the ρth pair of hybrids

7One can also resolve to non-black-box security reduction, but is is unclear to us how to design non-black-box
reductions here.

51

(H0
ρ , H

b
ρ), the ciphertexts {sCTρ||ID} indexed by prefix ρ are hardwired, while all other ciphertexts

sCTI (indexed by prefix different from ρ) are computed in ways different from that in the honest
distributions Db, in order to satisfy the following desiderata .

Desiderata For every I , combining hCT1
I1 , · · · , hCT

D
ID

produces sCTI , such that,

• if I has a prefix smaller than ρ (i.e., I≤D−1 < ρ), sCTI is a ciphertext of vector u≤DI ,

• if I has a prefix greater than ρ (i.e., I≤D−1 > ρ), sCTI is a ciphertext of v≤DI , and

• if I has exactly prefix ρ (i.e., I≤D−1 = ρ), sCTI is hardwired, and is a ciphertext of u≤DI in H0

and a ciphertext of v≤DI in H1.

The only difference between H0
ρ and H1

ρ is that the vectors encrypted in the Γ hardwired cipher-
texts are switched from u≤DI to v≤DI — we refer to them as the sIPE challenge ciphertexts below.
Our idea is to 1) rely on the security of sIPE to show the indistinguishability of H0

ρ and H1
ρ , and

2) rely on the security of dIPE to show that of H1
ρ and H0

ρ+1. Following the sequence of hybrids
allows us to step by step switch the encrypted vectors from u’s to v’s, corresponding to moving
from D0 to D1 in an indistinguishable way. Below, we first show that we can indeed build hybrids
satisfying the above desiderata, and then describe ideas for showing the indistinguishability of
neighboring hybrids.

Our Hybrids {Hb
ρ} The hybrid distribution Hb

ρ is generated like the honest distribution Db, except

that, the set of vectors {Xd
γ,l}γ,l encoded in the dIPE ciphertexts {hCTdγ = {dCTdγ,l}l}γ and secret

keys {hCTDγ = {dSKγ,l}l}γ are “engineered” carefully to fulfill the desiderata . Recall that for any
combination I , combining {hCTdId} produces{[〈

X1
I1,l · · · ,X

D
ID,l

〉]
≤D

}
l∈[L]

= {sCTI,l}l∈L = sCTI

In an honest distribution Db, vectors {Xd
γ,l} have much “redundant space” filled with zeros, and

their inner products are determined by their non-zero prefixes, µ’s and ν’s below, derived from
the actual input vectors u’s and v’s.

In D0,X
d
Id,l

= µdId,l||0 s.t.
{[〈

µ1
I1,l · · · ,µ

D
ID,l

〉]
≤D

}
l

= sCTI = sIPE.Enc(1,k1,u
≤D
I ; r≤DI) (10)

In D1,X
d
Id,l

= νdId,l||0 s.t.
{[〈

ν1
I1,l · · · ,ν

D
ID,l

〉]
≤D

}
l

= sCTI = sIPE.Enc(1,k1,v
≤D
I ; r≤DI) (11)

In a hybrid distribution Hb
ρ, we will use the redundant space in vectors Xd

γ,l for two purposes:
First, for hardwiring the Γ challenge ciphertexts {sCTρ||ID}, and second, for differentiating how
ciphertexts indexed with prefix different from ρ. To do so, we parse Xd

γ,l as containing D slots —
each of the first D − 1 slots fits two vectors of length |χdγ,l|, and the last slot fits 1 element. Under
this parsing, Xd

γ,l in an honest distribution can be written as:

Xd
γ,l = χdγ,l||0︸ ︷︷ ︸ 0||0︸︷︷︸ · · · 0||0︸︷︷︸, 0︸︷︷︸

slot 1 slot 2 · · · slot D − 1 slot D

In D0, χdγ,l = µdγ,l, whereas In D1, χdγ,l = νdγ,l.

Setting the vectors {Xd
γ,l} in hybrid Hb

ρ Consider two cases depending on d.

52

• If d = D, we hardwire the Γ challenge ciphertexts {sCTρ||γ}γ indexed with prefix ρ in {XD
γ,l},

XD
γ,l = µDγ,l||νDγ,l︸ ︷︷ ︸ µDγ,l||νDγ,l︸ ︷︷ ︸ · · · µDγ,l||νDγ,l︸ ︷︷ ︸


〈
µ<Dρ,l ,µ

D
γ,l

〉
in H0

ρ〈
ν<Dρ,l ,ν

D
γ,l

〉
in H1

ρ︸ ︷︷ ︸
slot 1 slot 2 · · · slot D − 1 slot D

where χ<Dρ,l =
∏
d<D χdρd,l for χ ∈ {µ,ν}. Note that in the last slot, the inner product hard-

wired equals exactly to the element in the lth encoding of ciphertext sCTρ||γ , which encrypts
u≤Dρ||γ in H0

ρ and v≤Dρ||γ in H1
ρ . (See equation (10) and (11).)

• If d < D, we use the dth slot to “differentiate” what ciphertexts to produce for combinations
I with prefix ρ<d, depending on whether i) Id < ρd or ii) Id > ρd or iii) Id = ρd. In case i)
sCTI should encrypt v≤DI (i.e., the encrypted vector has already been switched in previous
hybrids), in case ii) sCTI should encrypt u≤DI (i.e., the encrypted vector will be switched in
later hybrids), and in case iii) the vector encrypted in sCTI depends on the suffix I>d and
will be “differentiated” by vectors Xd′

γ,l for larger coordinates d′ > d.

Xd
γ,l = µdγ,l||νdγ,l︸ ︷︷ ︸ · · · µdγ,l||νdγ,l︸ ︷︷ ︸


0 || ν<dρ,l ν

d
γ,l i) if γ < ρd

µ<dρ,lµ
d
γ,l || 0 ii) if γ > ρd

0 || 0 iii) if γ = ρd︸ ︷︷ ︸


0 i) if γ < ρd

0 ii) if γ > ρd

1 iii) if γ = ρd︸ ︷︷ ︸
slot 1 · · · slot d− 1 slot d slot > d

Desiderata are satisfied We now verify that setting {Xd
γ,l} as above indeed satisfies our desiderata.

First consider any combination I = ρ||ID that starts with ρ. For every d < D, the corresponding
vector Xd

ρd
has zeros in the dth slot, and thus their product X≤D−1

ρ,l has all zeros in the first D − 1

slots and ones in the Dth slot. Hence, the inner product is determined by the values in the last slot
of XD

ID,l
, which are exactly elements encoded in sCTI,l. And the ciphertext sCTI encrypts u≤DI in

H0
ρ or v≤DI in H1

ρ .
Second, consider any other combination I that agrees with ρ at the first d? < D−1 coordinates,

I≤d? = ρ≤d? , and is, say, smaller than ρ at coordinate d? + 1, Id?+1 < ρd?+1. In this case we want
the inner product of {Xd

Id,l
}d to produce the lth element in a ciphertext of v≤DI ; this follows from

the following observations.

• The product of vectors at the first d? coordinates X≤d
?

I,l =
∏
d≤d? X

d
Id,l

have zeros in the first
d? slots, and ones in the rest slots.

• At coordinate d? + 1, since Id? < ρd? , slot d? + 1 of Xd?

Id? ,l
contains 0||ν<d?+1

ρ,l νd
?+1
Id?+1,l

=

0||ν≤d
?+1

I,l and zeros in following slots.

• At larger coordinates d′ ≥ d? + 2, slot d? + 1 are set to µd
′
Id′ ,l
||νd′Id′ ,l.

Therefore, inner product
〈
X1
I1,l
, · · · ,XD

ID,l

〉
is exactly

〈
ν≤d

?+1
I,l ,νd

?+2
Id?+2,l

, · · · ,νDID,l
〉

, which corre-

sponds to an encryption of v≤DI as desired. The other case where Id?+1 > ρd?+1 can be verified
similarly.

53

Indistinguishability of H1
ρ and H0

ρ+1 Given that the desiderata is satisfied, it is easy to see that in

H1
ρ and H0

ρ+1, inner products of all combination of vectors {Xd
γ,l} are identical. By construction,

these vectors are encoded in dIPE ciphertexts and secret keys, and hence by function hiding of
dIPE, H1

ρ and H0
ρ+1 are indistinguishable. (Jumping ahead, later, we need to further modify the

hybrids Hb
ρ, which would make the argument for the indistinguishability between H1

ρ and H0
ρ+1

more compliciated.)

Indistinguishability of H0
ρ and H1

ρ The only difference between H0
ρ and H1

ρ is that the Γ hardwired

challenge ciphertexts {sCTρ||γ}γ encrypt {u≤Dρ||γ} in H0
ρ , and {v≤Dρ||γ} in H1

ρ . Hence, we want to
apply function hiding of sIPE to argue that H0

ρ and H1
ρ are indistinguishable. To do so, however,

we need to simultaneously switch the vectors encoded in the secret keys {hSKγ = sSKγ}γ from
{uD+1

γ } to {vD+1
γ }. This would ensure the output decrypted from the challenge ciphertexts remain

the same in the two hybrids, but would change the outputs decrypted from other ciphertexts
sCTI indexed with prefix different from ρ (whose encrypted vectors remain the same), making the
hybrids easily distinguishable.

To address this problem, we rely on the special structure and properties of sIPE. First, sIPE
has two slots, and so far we only used the first slot. Instead, whenever we want to switch an
encrypted vector from u≤DI to v≤DI , we actually switch from encrypting u≤DI in the first slot, to en-
crypting v≤DI in the second slot — more precisely, switching from encrypting u≤DI ||null to null||v≤DI .
This can be done by modifying the values of vectros ν’s, such that,{[〈

µ1
I1,l, · · ·µ

D
ID,l

〉]
≤D

}
l

= sCTI = sIPE.PEnc(1 ,k1,u
≤D
I ; r≤DI) , and{[〈

ν1
I1,l, · · ·ν

D
ID,l

〉]
≤D

}
l

= sCTI = sIPE.PEnc(2 ,k2,v
≤D
I ; r≤DI) .

Suppose that the secret keys encode vectors {uD+1
γ ||vD+1

γ }γ (in the first and second slots respec-
tively). Then, we can rely on the strong IND-security of sIPE to show that switching from encrypt-
ing u≤DI ||null to null||v≤DI in the sIPE challenge ciphertexts is indistinguishable, since

∀I,
〈
u≤DI ||null, u

D+1
I ||vDID

〉
=
〈
null||v≤DI , uD+1

I ||vDID
〉
.

This step requires overcoming the issue of correlated randomness. Before addressing this, we first
complete the steps in the proof.

Putting Pieces Together Starting from the honest distribution D0, where the secret keys encode vec-
tors {uD+1

γ ||0}γ , we first move to an initial hybrid distribution Init0 where secret keys encode
vectors {uD+1

γ ||vD+1
γ }γ . Since all the ciphertexts in D0 are generated using only the first-slot key

k1 of sIPE, by the partial weak-function-hiding w.r.t. the second slot of sIPE, changing the second-
slot vectors in secret keys is indistinguishable. Next, starting from Init0, we follow the above
sequence of hybrid {Hb

ρ} all the way to hybrid H1
ΓD−1 , in which all derived ciphertext {sCTI} en-

crypt vectors {null||v≤DI }I . Now, since only the second-slots in these ciphertexts are active, the
distribution can be generated using only the second-slot key k2 of sIPE. Therefore, by the partial
weak-function-hiding w.r.t. the first slot of sIPE, we can change the vectors encoded in the secret
keys from {uD+1

γ ||vD+1
γ }γ to {0||vD+1

γ }— call the resulting distribution Mid. Mid is almost iden-
tical to D1, except that in Mid, all vectors {v≤DI ,vD+1

γ } are encoded in the second slot of sIPE
ciphertexts and secret keys, but in D1, the same vectors are encoded in the first slot. Nevertheless,
it follows from a sequence of syntactically identical hybrids that D1 is also indistinguishable from
Mid, which implies that D0 and D1 are indistinguishable.

54

Overcoming Correlated Randomness Finally, we come to address the issue of correlated ran-
domness of the Γ challenge ciphertexts {sCTρ||γ}γ hardwired in H0

ρ and H1
ρ . Recall that the ran-

domness of the challenge ciphertexts has form r≤Dρ||γ = r1
ρ1 · · · r

D−1
ρD−1

rDγ , and the problem is that the
shares are encoded at different coordinates for generating other ciphertexts. More specifically,
in Hb

ρ, each rDγ is encoded in hCTDγ at coordinate D, and each partial product r≤dρ =
∏
i≤d r

i
ρi is

encoded in {hCTd+1
γ }γ at coordinate d+ 1. Thus, the following encodings are embedded in Hb

ρ.[
rD1
]
D
, · · ·

[
rDΓ
]
D
,

[
r≤1
ρ

]
2
, · · ·

[
r≤dρ

]
d+1

, · · ·
[
r≤D−1
ρ

]
D

{[
r≤D−1
ρ rDγ

]
D

}
γ

Suppose that the multilinear pairing groups were ideal (i.e., the only ways to interact with encod-
ings are through the honest interface). The above distribution would be indistinguishable to the
following, where the correlated randomness is replaced with truly random elements wD

ρ||γ .[
rD1
]
D
, · · ·

[
rDΓ
]
D
,

[
r≤1
ρ

]
2
, · · ·

[
r≤dρ

]
d+1

, · · ·
[
r≤D−1
ρ

]
D

{[
wD
ρ||γ

]
D

}
γ

This means that the correlated randomness are pseudorandom, under encodings, and hence we can
apply the security of sIPE.

But, in this work, we assume only the SXDH assumption over MMaps, which does not imply
the above indistinguishability. Instead, we further change the above-described hybrids Hb

ρ, so
that, every partial product r≤dρ is replaced with an independently and randomly sampled vector wd

ρ.
In particular, now every sCTρ||γ is generated using randomness wD−1

ρ rDγ (instead of r≤D−1
ρ rDγ),

and wd
ρ (instead of r≤dρ) is encoded at coordinate d + 1. Thus, the set of encodings embedded in

Hb
ρ becomes[

rD1
]
D
, · · ·

[
rDΓ
]
D
,

[
w1
ρ

]
2
, · · ·

[
wd
ρ

]
d+1

, · · ·
[
wD−1
ρ

]
D

{[
wD−1
ρ rDγ

]
D

}
γ
,

which by SXDH is indistinguishable to[
rD1
]
D
, · · ·

[
rDΓ
]
D
,

[
w1
ρ

]
2
, · · ·

[
wd
ρ

]
d+1

, · · ·
[
wD−1
ρ

]
D

{[
wD
ρ||γ

]
D

}
γ
.

Changing the hybrids as such allows us to argue that the correlated randomness are pseudoran-
dom, and makes it easy to show the indistinguishability of H0

ρ and H1
ρ . However, it brings new

technical challenges when proving the indistinguishability of H1
ρ to H0

ρ+1, as it is no longer true
that the inner products of all combination of vectors {Xd

γ,d} are identical. In particular, their in-
ner products correspond to sIPE encryption of the same vectors, but with different randomness.
Hence we cannot apply the security of dIPE directly. Nevertheless, we are able to use additional
hybrids to show the indistinguishability of H1

ρ to H0
ρ+1. At a very high-level, the (overly simpli-

fied) idea is iteratively applying the SXDH assumption to switch the random elements wd
ρ back to

the form of partial products r≤dρ one by one, till we can again apply the security of dIPE.

7.3.2 Proof of Proposition 2

We want to show the indistinguishability of ensembles {Db(λ)}λ, for b = 0 or 1,

{Db(λ)}λ =


hMSK

$← hIPE.Setup(1λ, pp){
hCTdγ

$← hIPE.Encd(hMSK,xdγ)
}
γ∈[Γ],d∈[D]{

hSKγ
$← hIPE.KeyGen(msk,xD+1

γ)
}
γ∈[Γ]

: pp,
{
hSKγ , hCT

1
γ , · · · , hCTD+1

γ

}
γ∈[Γ]


λ∈N

55

where xdγ = udγ when b = 0 and xdγ = vdγ when b = 1, such that,

∀ I ∈ [Γ]D+1,
〈
u1
I1 , · · · ,u

D+1
ID

〉
=
〈
v1
I1 , · · · ,v

D+1
ID

〉
.

Fix a λ and Γ = Γ(λ), we construct an intermediate hybrid Mid, and show that both D0

and D1 are indistinguishable to Mid and hence are indistinguishable. To show the indistin-
guishability between D0 and Mid, we construct a sequence of 2ΓD−1 + 2 hybrid distributions
Init, {Hb

ρ}b∈{0,1},ρ∈[Γ]D−1 ,Mid′, and show that D0 is indistinguishable to Init, Mid′ is indistin-
guishable to Mid, and all neighboring hybrids are indistinguishable; then by a hybrid argument,
D0 is indistinguishable to Mid. It follows from syntactically the same proof that D1 is also in-
distinguishable to Mid. Below we focus on proving the former and note in the end why the
indistinguishability of D1 and Mid follows from the same the proof.

Hybrid Init(λ) is generated identically as D0 except that instead of generating the secret keys
hSKγ as the sIPE key sSKγ encoding vector uD+1

γ in the first slot, Init generates sSKγ en-
coding both vectors uD+1

γ ,vD+1
γ in the first and second slot respectively. See figure 3 for a

precise description. (The difference from distribution Db(λ) is underlined.)

Hybrid distribution Init(λ)

Generate the following

• hMSK
$← hIPE.Setup(1λ, pp) and parse hMSK = (sMSK, {dMSKl}l∈[L]) and sMSK =

(k1,k2).

• For every γ ∈ [Γ] and d ∈ [D], generate hCTdγ
$← hIPE.Encd(hMSK,udγ).

• For every γ ∈ [Γ], generate hSKγ = sSKγ
$← sIPE.KeyGen(sMSK,uD+1

γ ,vD+1
γ).

Output
{
hSKγ , hCT

1
γ , · · · , hCT

D+1
γ

}
γ∈[Γ]

Figure 3: Initial Hybrid Distribution Init(λ)

We show thatD0 and Init are indistinguishable, relying on the partial weak-function-hiding
property of sIPE w.r.t. the second slot.

Lemma 5. The ensembles {D0(λ)}λ and {Init(λ)}λ are indistinguishable.

Proof. The only difference between D0 and Init lies in the second-slot vectors encoded in
the secret keys, 0 in the former and vD+1

γ in the latter. Note that by construction of hIPE,
its encryption algorithm hIPE.Enc uses only the first slot key k1. Therefore, distributions D0

and Init can be emulated perfectly given just (k1, {sSKγ}γ), where the latter encode 0 or
vD+1
γ in the second slot respectively. More precisely, D0 can be emulated from D̃0 and Init

from D̃1 defined below.

D̃b =


sMSK = (k1,k2)

$← sIPE.Setup(1λ, (p,G≤D, GD+1, GD+2)){
sSKγ

$← sIPE.KeyGen

(
sMSK,uD+1

γ ,

{
0 if b = 0

vD+1
γ if b = 1

)}
γ

: k1, {sSKγ}γ


It follows directly from the partial weak-function-hiding w.r.t. the second slot of sIPE that
D̃0 and D̃0 are indistinguishable, and hence so are D0 and Init.

56

Hybrid Hb
ρ(λ) Hybrid Hb

ρ for any ρ ∈ [Γ]D−1 and b ∈ {0, 1} is identical to Init, except that every
ciphertext hCTdγ encode a set of vectors {X̃d

γ,l}l different from that in Init. Recall that in Init,

Xd
γ,l = µdγ,l||0︸ ︷︷ ︸ 0||0︸︷︷︸ · · · 0||0︸︷︷︸, 0︸︷︷︸

slot 1 slot 2 · · · slot D − 1 slot D

The vectors µ’s are set as follows:

µdγ,l =

{
udγ || rdγ if d < D

(uDγ || rDγ)(c
(k1)
l) if d = D

, s.t.

∀ I ∈ [ΓD],
{[〈

µ1
I1,l · · · ,µ

D
ID,l

〉]
≤D

}
l

= sIPE.PEnc(1,k1,u
≤D
I ; r≤DI)

where c
(k1)
l is the coefficient vector of the linear function that computes the lth output ele-

ment of sIPE.PEnc(1,k1, ?; ?).

In addition to vectors µdγ,l, hybrid Hb
ρ generates vectors νdγ,l as follows:

νdγ,l =

{
vdγ || rdγ if d < D

(vDγ || rDγ)(c̃
(k2)
l) if d = D

, s.t.

∀ I ∈ [ΓD],
{[〈

ν1
I1,l · · · ,ν

D
ID,l

〉]
≤D

}
l

= sIPE.PEnc(2,k2,v
≤D
I ; r≤DI)

where c̃
(k2)
l is the coefficient vector of the linear function that computes the lth output ele-

ment of sIPE.PEnc(2,k2, ?; ?).

Hb
ρ also generates vectors µ̃dρ≤d−1||γ,l, ν̃

d
ρ≤d−1||γ,l for every prefix of form ρ≤d−1||γ (of length

d) as follows. These vectors are derived from the partial products associated with the prefix
ρ≤d−1||γ. Take a partial product of µ’s for example,

µ≤dρ≤d−1||γ,l =

 ∏
i≤d−1

µiρi,l

µdγ,l =

u≤dρ≤d−1||γ || r
≤d
ρ≤d−1||γ if d < D

(u≤Dρ≤d−1||γ || r
≤D
ρ≤d−1||γ)c

(k1)
l if d = D

Then, µ̃dρ≤d−1||γ,l is derived by replacing the partial product of random shares r≤dρ≤d−1||γ for

d > 1 in it, with an independently and randomly sampled vector wd
ρ≤d−1||γ

$← R5. Vector

ν̃≤dρ≤d−1||γ,l is derived similarly from the corresponding partial product of ν’s. More precisely,

µ̃dρ≤d−1||γ,l =

{
u≤dρ≤d−1||γ || w

d
ρ≤d−1||γ if d < D

(u≤Dρ||γ || w
D
ρ||γ)c

(k1)
l if d = D

ν̃dρ≤d−1||γ,l =

{
v≤dρ≤d−1||γ || w

d
ρ≤d−1||γ if d < D

(v≤Dρ||γ || w
D
ρ||γ)c̃

(k2)
l if d = D

where for any γ ∈ [Γ], w1
γ = r1

γ , and wd
ρ≤d−1||γ

$← R for d > 1.

Fact 2. Observe that since w1
γ = r1

γ , µ̃1
γ,l = µγ,l, and ν̃1

γ,l = νγ,l.

Hb
ρ encodes in every ciphertext hCTdγ a set of vectors {X̃d

γ,l}l depending on {µdγ,l,νdγ,l} and
{µ̃dρ≤d−1||γ,l, ν̃

d
ρ≤d−1||γ,l}d,γ , as described in Figure 4. (The difference from distribution Init(λ)

is underlined.)

57

Hybrid distribution Hb
ρ(λ) for ρ ∈ [Γ]D−1

Generate the following:

• hMSK
$← hIPE.Setup(1λ, pp) and parse hMSK = (sMSK, {dMSKl}l∈[L]) and sMSK =

(k1,k2).

• For every γ ∈ [Γ] and d ∈ [D], generate

hCTdγ =


{
dCTdγ,l

$← dIPE.Encd(dMSKl, X̃
d
γ,l)
}
l∈[L]

if d < D{
dSKγ,l

$← dIPE.KeyGen(dMSKl, X̃
D
γ,l)
}
l∈[L]

if d = D

where the vectors X̃d
γ,l are set as follows.

X̃D
γ,l = µDγ,l||νDγ,l︸ ︷︷ ︸ µDγ,l||νDγ,l︸ ︷︷ ︸ · · · µDγ,l||νDγ,l︸ ︷︷ ︸


〈
µ̃Dρ||γ,l,1

〉
in H0

ρ〈
ν̃Dρ||γ,l,1

〉
in H1

ρ︸ ︷︷ ︸
slot 1 slot 2 · · · slot D − 1 slot D

X̃d
γ,l = µdγ,l||νdγ,l︸ ︷︷ ︸ · · · µdγ,l||νdγ,l︸ ︷︷ ︸


0 || ν̃dρ≤d−1||γ,l if γ < ρd

µ̃dρ≤d−1||γ,l || 0 if γ > ρd

0 || 0 if γ = ρd︸ ︷︷ ︸


0 if γ < ρd

0 if γ > ρd

1 if γ = ρd︸ ︷︷ ︸
slot 1 · · · slot d− 1 slot d slot > d

• For every γ ∈ [Γ], generate hSKγ = sSKγ
$← sIPE.KeyGen(sMSK,uD+1

γ ,vD+1
γ).

Output
{
hSKγ , hCT

1
γ , · · · , hCT

D+1
γ

}
γ∈[Γ]

Figure 4: Hybrid Hb
ρ(λ) for ρ ∈ [Γ]D−1

We show that for every ρ ∈ [Γ]D−1, moving from H0
ρ to H1

ρ is indistinguishable.

Lemma 6. For every ρ ∈ [Γ]D−1, the ensembles {H0
ρ (λ)}λ and {H1

ρ (λ)}λ are indistinguishable.

At a high-level, the only difference between these two hybrids lies in the values in slot D of
vectors {X̃D

γ,l}. By definition of the vectors µ̃’s and ν̃’s, the values in slot D satisfy that,{[〈
µ̃Dρ||γ,l, 1

〉]
D

}
l

=
{[〈

u≤Dρ||γ || w
D
ρ||γ , c

(k1)
l

〉]
D

}
l

= sIPE.PEnc(1 ,k1,u
≤D
ρ||γ ; wD

ρ||γ){[〈
ν̃Dρ||γ,l, 1

〉]
D

}
l

=
{[〈

v≤Dρ||γ || w
D
ρ||γ , c̃

(k2)
l

〉]
D

}
l

= sIPE.PEnc(2 ,k2,v
≤D
ρ||γ ; wD

ρ||γ)

The former are hardwired inH0
ρ , and correspond to sIPE ciphertexts encrypting {u≤Dρ||γ ||null}γ ,

whereas the latter are hardwired inH1
ρ and correspond to ciphertexts encrypting {null||v≤Dρ||γ}γ

in the second slot. Importantly, all these ciphertexts are generated using fresh and random el-
ements wD

ρ||γ . Moreover, since in Hb
ρ the secret keys encode {(uD+1

γ ,vD+1
γ)} in the first and

58

second slot respectively, the inner products are identical.〈
u≤Dρ||γ ||null, u

D+1
γ ,vD+1

γ

〉
=
〈
null||u≤Dρ||γ , u

D+1
γ ,vD+1

γ

〉
Then, we show that by the strong IND-security of sIPE, hybrid H0

ρ and H1
ρ are indistin-

guishable. The strong IND-security guarantees that sIPE remains IND-secure even when
k′1,k

′
2 and [s]D are revealed (as long as the shared key s is hidden). Using k′1,k

′
2, [s]D, we

can emulate the distributionsH0
ρ orH1

ρ from the sIPE challenge ciphertexts and secret keys,
and hence their indistinguishability follows from the strong IND-security of sIPE. A formal
proof can be found below.

We also show that moving from H1
ρ to H1

ρ+1 are indistinguishable.

Lemma 7. For every ρ ∈ [Γ]D−1 \ {ΓN}, the ensembles {H1
ρ (λ)}λ and {H0

ρ+1(λ)}λ are indistin-
guishable, where ρ + 1 denote the member in [Γ]D−1 following immediately after ρ in increasing
numerical order.

At a high-level, the difference between H1
ρ and H0

ρ+1 lies in the values of {X̃d
γ,l}d,γ,l. These

vectors are encoded in hIPE ciphertexts, which, by construction, consist of ciphertexts and
secret key of different instances of dIPE with different master secret key. It turns out that,
all sIPE ciphertexts derived from these ciphertexts and secret keys encrypt the same vectors
in H1

ρ and H0
ρ+1, but with different randomness. Therefore, one cannot directly apply the

security of dIPE to argue that H1
ρ and H0

ρ+1 are indistinguishable, because the output sIPE
ciphertexts are not identical. Nevertheless, by relying on the SXDH assumption on MMaps,
(and additional hybrids), we can show that H1

ρ and H0
ρ+1 are respectively indistinguishable

to two other hybrid distributions, in which the output ciphertexts are identical and hence
the security of dIPE applies. A formal proof can be found below.

It follows from similar proof that Init and H0
1D−1 are also indistinguishable.

Lemma 8. The ensembles {Init(λ)}λ and {H0
1D−1(λ)}λ are indistinguishable.

Hybrid Mid′(λ) is generated identically as Init except that every ciphertext hCTdγ encode a set
of vectors {X̄d

γ,l}l different from that in Init, where instead of having vectors µ’s in the first
half of slot 1, we have vectors ν’s in the second half of slot 1 (and zeros elsewhere). See
figure 5 for a precise description.

We show that moving from the last hybrid H1
ΓD−1 to Mid′ is indistinguishable.

Lemma 9. The ensembles {H1
ΓD−1(λ)}λ and {Mid′(λ)}λ are indistinguishable.

At a high-level, the proof of this lemma is similar to that of Lemma 7, as the only difference
between H1

ΓD−1 and Mid′ lies in the vectors being encrypted, {X̃d
γ,l} and {X̄d

γ,l} respectively,
and they all produce sIPE ciphertexts of vectors {v≤DI }I , modulo using different random-
ness. Thus again, we use the SXDH assumption to bridge the difference in randomness,
and use the function hiding property of dIPE to argue the indistinguishability of the two
hybrids. A formal proof is provided below.

Hybrid Mid(λ) proceeds identically to Mid′ except that every secret key hSKγ = sSKγ encodes
vector (0,vD+1

γ) as opposed to (uD+1
γ ,vD+1

γ).

59

Hybrid distribution Mid′(λ)

Generate the following

• hMSK
$← hIPE.Setup(1λ, pp); parse hMSK = (sMSK, {dMSKl}l∈[L]) and sMSK = (k1,k2).

• For every γ ∈ [Γ] and d ∈ [D], generate

hCTdγ =


{
dCTdγ,l

$← dIPE.Encd(dMSKl, X̄
d
γ,l)
}
l∈[L]

if d < D{
dSKγ,l

$← dIPE.KeyGen(dMSKl, X̄
D
γ,l)
}
l∈[L]

if d = D

where the vectors X̄d
γ,l are set as follows.

X̄d
γ,l = 0||νdγ,l︸ ︷︷ ︸ 0||0︸︷︷︸ · · · 0||0︸︷︷︸, 0︸︷︷︸

slot 1 slot 2 · · · slot D − 1 slot D

• For every γ ∈ [Γ], generate hSKγ = sSKγ
$← sIPE.KeyGen(sMSK,uD+1

γ ,vD+1
γ).

Output
{
hSKγ , hCT

1
γ , · · · , hCT

D+1
γ

}
γ∈[Γ]

Figure 5: Middle Hybrid Distribution Mid′(λ)

Lemma 10. The ensembles {Mid′(λ)}λ and {Mid(λ)}λ are indistinguishable.

This lemma follows from essentially the same proof as Lemma 5, relying on the partial weak-
function-hiding property of sIPE w.r.t. the first slot.

Proof. The only difference between Mid and Mid′ lies in the first-slot vectors encoded in the
secret keys, 0 in the former and uD+1

γ in the latter. Note that in Mid′ all the vectors {X̄d
γ,l}d,γ,l

encrypted rely only on the second slot key k2 of sIPE (since they depend on vectors {νdγ,l},
which in turn depends only on k2.) Therefore, distribution Mid and Mid′ can be emulated
perfectly given just (k2, {sSKγ}γ) encoding 0 or uD+1

γ in the first slot respectively. Thus, it
follows from the partial weak-function-hiding w.r.t. the first slot of sIPE that Mid and Mid′

are indistinguishable.

Combining Lemma 5 to 10, by a hybrid argument, we have that the honest distribution D0 is
indistinguishable to the middle hybrid distribution Mid. It follows from syntactically identical
proof, by replacing the input vectors u’s with vectors v’s, thatD1 is also indistinguishable to Mid.
Therefore, the honest distributions D0 and D1 are indistinguishable.

We proceed to prove Lemma 6, 7, 8, and 9 in the next sections.

7.3.3 Proof Lemma 6

Proof of Lemma 6. Hybrid H0
ρ and H1

ρ differ only in the values of vectors {X̃d
γ,l}. Fix any b, we

argue that Hb
ρ can be emulated from the following distribution

D̃b =

{{[
X̃D
γ,l

]
D

}
γ,l
,
{
sSKγ

$← sIPE.KeyGen(sMSK,uD+1
γ ,vD+1

γ)
}
γ

}
,

60

where X̃D
γ,l are the vectors encoded in Hb

ρ. It suffices to describe how the ciphertexts {hCTdγ} are
generated. Recall that {hCTDγ } consists of secret keys of dIPE of vectors X̃D

γ,l. By that dIPE has
canonical form, each hCTDγ consists of encodings in GD of values that depend linearly in X̃D

γ,l;
thus, they can be generated from encodings of X̃D

γ,l by internally sampling {dMSKl} and relying
on the linear homomorphism of GD. At other coordinates d < D, ciphertexts {hCTdγ}d<D can
be generated using {dMSKl}, and the input vectors u’s, v’s and internally sampled randomness
{rdγ}d<D,γ , {wd

ρ≤d−1||γ}d<D,γ (which together determine {X̃d
γ,l}d<D). Therefore, it suffices to prove

that distributions D̃0 and D̃1 are indistinguishable.
We further argue that D̃b can be emulated from the following distributions. Recall that sMSK =

(k1,k2) and kβ = (s,k′β) contains a shared key s and a specific key k′β .

D′b =
{
[s]D, (k′0,k

′
1),
{[

element in slot-D of X̃D
γ,l

]
D

}
γ,l
,{

sSKγ
$← sIPE.KeyGen(sMSK,uD+1

γ ,vD+1
γ)

}
γ

}
,

This follows because encodings of X̃D
γ,l consist of encodings of vectors in itsD slots. The vectors in

the first D−1 slots depend linearly in the coefficients {c(k1)
l , c̃

(k2)
l }l, which by the special property

of linearity in shared key of sIPE are linear in s (See Section 6.5.1). Therefore, their encodings in
group GD can be emulated from [s]D and (k′0,k

′
1), with additional knowledge of u’s, v’s, and

internally sampled randomness {rDγ }. Therefore, it suffices to show the indistinguishability of D′0
and D′1.

For every γ, let us analyze the elements in slot-D of {X̃D
γ,l}l in D′0 and D′1. In the former, the

elements equal to the inner products{[〈
µ̃Dρ||γ,l, 1

〉]
D

}
l

=
{[〈

u≤Dρ||γ || w
D
ρ||γ , c

(k1)
l

〉]
D

}
l

= sIPE.PEnc(1,k1,u
≤D
ρ||γ ; wD

ρ||γ)

whereas in the latter, it equals to{[〈
ν̃Dρ||γ,l, 1

〉]
D

}
l

=
{[〈

v≤Dρ||γ || w
D
ρ||γ , c̃

(k2)
l

〉]
D

}
l

= sIPE.PEnc(2,k2,v
≤D
ρ||γ ; wD

ρ||γ)

Therefore, we can re-write distributions D′0 and D′1 as,

D′0 =

{
[s]D, (k′0,k

′
1),
{
sIPE.PEnc(1,k1,u

≤D
ρ||γ ; wγ)

}
γ
,
{
sSKγ

$← sIPE.KeyGen(sMSK,uD+1
γ ,vD+1

γ)
}
γ

}
D′1 =

{
[s]D, (k′0,k

′
1),
{
sIPE.PEnc(2,k2,v

≤D
ρ||γ ; wγ)

}
γ
,
{
sSKγ

$← sIPE.KeyGen(sMSK,uD+1
γ ,vD+1

γ)
}
γ

}

For any combination of ciphertext and secret key, their output inner product are identical in these
two distributions.

∀ γ, γ′,
〈
u≤Dρ||γ , u

D+1
γ′

〉
=
〈
v≤Dρ||γ , v

D+1
γ′

〉
Then, it follows from the fact that sIPE is strong IND-secure (see Lemma 3), that D′0 and D′1 are
indistinguishable and hence so are H0

ρ and H1
ρ .

61

7.3.4 Proofs of Lemma 7, 8 and 9

In order to prove Lemma 7, 8 and 9. We construct additional hybrid distributions Gbρ for pre-
fixes ρ ∈ [Γ]d

?
of any length d? from 1 to D − 1, and use these G hybrids “in between” hybrids

Init, {Hb
ρ},Mid to “glue” them together. To do so, we show the following lemma.

Lemma 11. There exist hybrids {Gbρ(λ)} for b ∈ {0, 1} and ρ ∈ [Γ]d
? where d? ∈ [D − 1], such that, the

following holds.

Rule 1: Ensembles {G0
1(λ)} and {Init(λ)} are indistinguishable.

Rule 2: Ensembles {G1
Γ(λ)} and {Mid′(λ)} are indistinguishable

Rule 3: For every ρ ∈ [Γ]d
? with 1 ≤ d? < D − 1, ensembles {G0

ρ||1(λ)} and {G0
ρ(λ)}, are indistinguish-

able.

Rule 4: For every ρ ∈ [Γ]d
? with 1 ≤ d? < D − 1, ensembles {G1

ρ||Γ(λ)} and {G1
ρ(λ)} are indistinguish-

able.

Rule 5: For every ρ ∈ [Γ]D−1 and every b, ensembles {Gbρ(λ)} and {Hb
ρ(λ)} are indistinguishable.

Rule 6: For every ρ ∈ [Γ]d
? with 1 ≤ d? ≤ D−1, such that, ρd? 6= Γ, ensembles {G1

ρ(λ)} and {G0
ρ+1(λ)}

are identical.

Before describing the G hybrids and proving the above lemma, we first show that Lemma 7, 8
and 9 follow easily from the above lemma.

Proof of Lemma 7. To show that for every ρ ∈ [Γ]D−1, hybrid H1
ρ is indistinguishable from H0

ρ+1, by
Rule 5 (of Lemma 11), it suffices to prove that G1

ρ and G0
ρ+1 are indistinguishable. Consider two

cases:

• Case 1: The last letter of ρ is not Γ, that is, ρD−1 6= Γ, then it follows immediately from Rule 6
that G1

ρ and G0
ρ+1 are indistinguishable.

• Case 2: ρ = ρ≤d? ||Γ · · ·Γ, where the last k letters of ρ are Γ and the k + 1th last letter is not
Γ, ρd? 6= Γ for d? = D − 1 − k. In this case, the member ρ + 1 following ρ must be (ρ≤d? +
1)||1 · · · 1. By iteratively applying Rule 4, G1

ρ is indistinguishable from G1
ρ≤d?

, and similarly
by iteratively applying Rule 3, G0

ρ+1 is indistinguishable from G0
ρ≤d?+1. Finally by Rule 6

G1
ρ≤d?

and G0
ρ≤d?+1 are identical, which concludes that G1

ρ and G0
ρ+1 are indistinguishable.

Proof of Lemma 8. We want to show that the initial hybrid Init and H0
1D−1 are indistinguishable.

First, by Rule 5 (of Lemma 11), H0
1D−1 is indistinguishable to G0

1D−1 . Then, by Rule 3, G0
1D−1 is

indistinguishable to G0
1. Finally, by Rule 1, G0

1 is indistinguishable to Init. This concludes that
Init and H0

1D−1 are indistinguishable.

Proof of Lemma 9. We want to show that the last H hybrid H1
ΓD−1 is indistinguishable from the

middle hybrid Mid′. First, by Rule 5 (of Lemma 11), H1
ΓD−1 is indistinguishable to G1

ΓD−1 . Then,
by Rule 4, G1

ΓD−1 is indistinguishable to G1
Γ. Finally, by Rule 2, G1

Γ is indistinguishable to Mid′.
This concludes that Init and H1

1D−1 are indistinguishable.

62

Proof of Lemma 11. We first formally describe the G hybrid distributions.

Hybrid Gbρ(λ): For d? ∈ [D − 1] and ρ ∈ [Γ]d
?
, distribution Gbρ(λ) is identical to the initial hybrid

distribution Init, except that the ciphertexts {hCTdγ} encode vectors {X̂d
γ,l} different from

that encoded in Init. A formal description is provided in Figure 6.

Hybrid distribution Gbρ(λ) for d? ∈ [D − 1] and ρ ∈ [Γ]d
?

Generate the following:

• hMSK
$← hIPE.Setup(1λ, pp) and parse hMSK = (sMSK, {dMSKl}l∈[L]) and sMSK =

(k1,k2).

• For every γ ∈ [Γ] and d ∈ [D], generate

hCTdγ =


{
dCTdγ,l

$← dIPE.Encd(dMSKl, X̂
d
γ,l)
}
l∈[L]

if d < D{
dSKγ,l

$← dIPE.KeyGen(dMSKl, X̂
D
γ,l)
}
l∈[L]

if d = D

where the vectors X̂d
γ,l are set as follows.

Case 1: d > d?.

X̂d
γ,l = µdγ,l||νdγ,l︸ ︷︷ ︸ µdγ,l||νdγ,l︸ ︷︷ ︸ · · · µdγ,l||νdγ,l︸ ︷︷ ︸ 0︸︷︷︸

slot 1 slot 2 · · · slot d? slot > d?

Case 2: d = d?

X̂d?

γ,l = µd
?

γ,l||νd
?

γ,l︸ ︷︷ ︸ · · · µd
?

γ,l||νd
?

γ,l︸ ︷︷ ︸

0 || ν̃d

?

ρ≤d?−1||γ,l if γ < ρd?

µ̃d
?

ρ≤d?−1||γ,l || 0 if γ > ρd?

0 || ν̃d
?

ρ,l if γ = ρd? and b = 1

µ̃d
?

ρ,l || 0 if γ = ρd? and b = 0︸ ︷︷ ︸
0︸︷︷︸

slot 1 · · · slot d? − 1 slot d? slot > d?

Case 3: d < d?. (In this case X̂d
γ,l = X̃d

γ,l in hybrid Hb
ρ.)

X̂d
γ,l = µdγ,l||νdγ,l︸ ︷︷ ︸ · · · µdγ,l||νdγ,l︸ ︷︷ ︸


0 || ν̃dρ≤d−1||γ,l if γ < ρd

µ̃dρ≤d−1||γ,l || 0 if γ > ρd

0 || 0 if γ = ρd︸ ︷︷ ︸


0 if γ < ρd

0 if γ > ρd

1 if γ = ρd︸ ︷︷ ︸
slot 1 · · · slot d− 1 slot d slot > d

• For every γ ∈ [Γ], generate hSKγ = sSKγ
$← sIPE.KeyGen(sMSK,uD+1

γ ,vD+1
γ).

Output
{
hSKγ , hCT

1
γ , · · · , hCT

D+1
γ

}
γ∈[Γ]

Figure 6: Hybrid Gbρ(λ) for d? ∈ [D − 1] and ρ ∈ [Γ]d
?

63

Next, we prove each of the rules.

Proof of Rule 1: G0
1 ≈ Init. The only difference between these two hybrids are the vectors

encrypted in the ciphertexts and secret keys of dIPE contained in {hCTdγ}. In G0
1 the following

vectors are encrypted:

X̂1
γ,l = µ̃1

γ,l||0︸ ︷︷ ︸
∣∣∣∣∣∣ 0

slot 1

∀d > 1 X̂d
γ,l = µdγ,l||νdγ,l︸ ︷︷ ︸

∣∣∣∣∣∣ 0

slot 1

In Init, the following vectors are encrypted

∀d Xd
γ,l = µdγ,l||0︸ ︷︷ ︸

∣∣∣∣∣∣ 0

slot 1

By definition, µ̃1
γ,l = µ1

γ,l (see Fact 2). Thus, for any combination, the inner products of vector X̂’s
in G0

1 and that of vector X’s in Init are identical. Thus, it follows from the security of dIPE that
G0

1 and Init are indistinguishable.

Proof of Rule 2: G1
Γ ≈Mid′. This follows essentially from the same proof as that for Rule 1. In

G1
Γ, the vectors X̂d

γ,l encrypted are

X̂1
γ,l = 0|| ν̃1

γ,l︸ ︷︷ ︸
∣∣∣∣∣∣ 0

slot 1

∀d > 1 X̂d
γ,l = µdγ,l||νdγ,l︸ ︷︷ ︸

∣∣∣∣∣∣ 0

slot 1

whereas in Mid′, the following vectors are encrypted

∀d Xd
γ,l = 0||νdγ,l︸ ︷︷ ︸

∣∣∣∣∣∣ 0

slot 1

By definition, ν̃1
γ,l = ν1

γ,l (see Fact 2). Thus, for any combination, the inner products of vector X̂’s
in G1

Γ and that of vector X’s in Init are identical. Thus, it follows from the security of dIPE that
G1

Γ and Mid′ are indistinguishable.

Proof of Rule 3: G0
ρ||1 ≈ G

0
ρ, for every ρ ∈ [Γ]d

?
with 1 ≤ d? < D − 1. Fix one such ρ and d?. The

only difference between G0
ρ||1, G

0
ρ lies in the values of X̂d

γ,l for d ≥ d?.
In G0

ρ||1, these vectors have values,

X̂d?

γ,l = µd
?

γ,l||νd
?

γ,l · · · µd
?

γ,l||νd
?

γ,l


0 || ν̃d

?

ρ≤d?−1||γ,l if γ < ρd?

µ̃d
?

ρ≤d?−1||γ,l || 0 if γ > ρd?

0 || 0 if γ = ρd?


0 if γ < ρd?

0 if γ > ρd?

1 if γ = ρd?

X̂d?+1
γ,l = µd

?+1
γ,l ||ν

d?+1
γ,l · · · µd

?+1
γ,l ||ν

d?+1
γ,l µd

?+1
γ,l ||ν

d?+1
γ,l µ̃d

?+1
ρ||γ,l || 0 || 0

X̂d
γ,l = µdγ,l||νdγ,l · · · µdγ,l||νdγ,l µdγ,l||νdγ,l µdγ,l || νdγ,l|| 0

slot 1 · · · slot d? − 1 slot d? slot ≥ d? + 1

64

(where the last line is for d > d?+1.) We first show that it is indistinguishable to switch to value of
the vectors {X̂d?+1

γ,l } to the following vectors (while keeping the rest the same) – call the resulting
distribution G̃0

ρ||1.

X̂d?+1
γ,l = µd

?+1
γ,l ||ν

d?+1
γ,l · · · µd

?+1
γ,l ||ν

d?+1
γ,l µd

?+1
γ,l ||ν

d?+1
γ,l µ̃d

?

ρ,lµ
d?+1
γ,l || 0 || 0

slot 1 · · · slot d? − 1 slot d? slot ≥ d? + 1

Compare the values encoded in slot d? + 1 of vectors {X̂d?+1
γ,l }.

In G0
ρ, µ̃d

?+1
ρ||γ,l =

{
u≤d

?+1
ρ||γ || wd?+1

ρ||γ if d? + 1 < D

(u≤Dρ||γ || w
D
ρ||γ)c

(k1)
l if d? + 1 = D

In G̃0
ρ, µ̃d

?

ρ,lµ
d?+1
γ,l =

{
u≤d

?+1
ρ||γ || wd?

ρ rd
?+1
γ if d? + 1 < D

(u≤Dρ||γ || w
D−1
ρ rd

?+1
γ)c

(k1)
l if d? + 1 = D

The only difference lies in how the random elements are generated. It follows from the facts that
{X̂d?+1

γ,l } are encoded in either ciphertexts (if d? + 1 < D) or secret keys (if d? + 1 = D) of dIPE.
By the fact that dIPE is canonical, its ciphertexts or secret keys contain encodings in group Gd?+1

of elements that depend linearly in X̃d?+1
γ,l . Therefore, G0

ρ||1 and G̃0
ρ||1 can be generated from the

following distributions respectively,{[
wd?

ρ

]
d?+1

,

{[
rd
?+1
γ

]
d?+1

}
γ

,

{[
wd?+1
ρ||γ

]
d?+1

}
γ

}
{[

wd?

ρ

]
d?+1

,

{[
rd
?+1
γ

]
d?+1

}
γ

,

{[
wd?

ρ rd
?+1
γ

]
d?+1

}
γ

}

This is because, from the above encodings, one can generate the encodings of X̂d?+1
γ,l with knowl-

edge of values of u’s, v’s, k1, k2, and from encodings of X̂d?+1
γ,l , one can emulate G0

ρ+1 or G̃0
ρ with

additional knowledge of {dMSKl}.
Finally, the indistinguishability of the above two distributions follow directly from the SXDH

assumption on group Gd?+1, which concludes the indistinguishability of G0
ρ||1 and G̃0

ρ||1.

It remains to show that G̃0
ρ||1 is indistinguishable fromG0

ρ, which encrypts the following vectors

(the difference from the vectors encrypted in G̃0
ρ||1 is underlined).

X̂d?

γ,l = µd
?

γ,l||νd
?

γ,l · · · µd
?

γ,l||νd
?

γ,l


0 || ν̃d

?

ρ≤d?−1||γ,l if γ < ρd?

µ̃d
?

ρ≤d?−1||γ,l || 0 if γ > ρd?

µ̃d
?

ρ,l || 0 if γ = ρd?

0

X̂d?+1
γ,l = µd

?+1
γ,l ||ν

d?+1
γ,l · · · µd

?+1
γ,l ||ν

d?+1
γ,l µd

?+1
γ,l ||ν

d?+1
γ,l 0

X̂d
γ,l = µdγ,l||νdγ,l · · · µdγ,l||νdγ,l µdγ,l||νdγ,l 0

slot 1 · · · slot d? − 1 slot d? slot ≥ d? + 1

65

Examine the different values of {X̂d
γ,l} for d ≥ d? in G̃0

ρ||1 and G0
ρ, and the values of {X̂d

γ,l} for
d < d? that are the same in these two hybrids as described in Case 3 of Figure 6. They satisfy that
for every combination I ∈ [Γ]D and l, the inner product of {X̂d

Id,l
}d in in G̃0

ρ||1 and G0
ρ is identical.

Therefore, it follows from the function hiding of dIPE that these two hybrids are indistinguish-
able.

Proof of Rule 4: G1
ρ||Γ ≈ G1

ρ, for every ρ ∈ [Γ]d
?

with 1 ≤ d? < D − 1. Fix one such ρ and d?.
This rule follows from syntactically the same proof for Rule 3. We sketch the proof below. Hybrid
G1
ρ||Γ and G1

ρ encrypt the same set of vectors {X̂d
γ,l} for d < d?, but different vectors for d ≥ d?.

In G1
ρ||Γ, these vectors have values (the difference from the vectors encrypted in G0

ρ||1 in Rule 3 is
underlined).

X̂d?

γ,l = µd
?

γ,l||νd
?

γ,l · · · µd
?

γ,l||νd
?

γ,l


0 || ν̃d

?

ρ≤d?−1||γ,l if γ < ρd?

µ̃d
?

ρ≤d?−1||γ,l || 0 if γ > ρd?

0 || 0 if γ = ρd?


0 if γ < ρd?

0 if γ > ρd?

1 if γ = ρd?

X̂d?+1
γ,l = µd

?+1
γ,l ||ν

d?+1
γ,l · · · µd

?+1
γ,l ||ν

d?+1
γ,l µd

?+1
γ,l ||ν

d?+1
γ,l 0 || ν̃d

?+1
ρ||γ,l || 0

X̂d
γ,l = µdγ,l||νdγ,l · · · µdγ,l||νdγ,l µdγ,l||νdγ,l µdγ,l || νdγ,l|| 0

slot 1 · · · slot d? − 1 slot d? slot ≥ d? + 1

We first rely on the SXDH assumption w.r.t. group Gd?+1 to show that G1
ρ||Γ is indistinguishable

from G̃1
ρ||Γ, where the vectors {X̂d?+1

γ,l } are replaced with

X̂d?+1
γ,l = µd

?+1
γ,l ||ν

d?+1
γ,l · · · µd

?+1
γ,l ||ν

d?+1
γ,l µd

?+1
γ,l ||ν

d?+1
γ,l 0 || ν̃d

?

ρ,lν
d?+1
γ,l || 0

slot 1 · · · slot d? − 1 slot d? slot ≥ d? + 1

Finally, the vectors encoded in G1
ρ are

X̂d?

γ,l = µd
?

γ,l||νd
?

γ,l · · · µd
?

γ,l||νd
?

γ,l


0 || ν̃d

?

ρ≤d?−1||γ,l if γ < ρd?

µ̃d
?

ρ≤d?−1||γ,l || 0 if γ > ρd?

0|| ν̃d
?

ρ,l if γ = ρd?

0

X̂d?+1
γ,l = µd

?+1
γ,l ||ν

d?+1
γ,l · · · µd

?+1
γ,l ||ν

d?+1
γ,l µd

?+1
γ,l ||ν

d?+1
γ,l 0

X̂d
γ,l = µdγ,l||νdγ,l · · · µdγ,l||νdγ,l µdγ,l||νdγ,l 0

slot 1 · · · slot d? − 1 slot d? slot ≥ d? + 1

It holds that inner products of all combination of vectors X̂’s in G̃1
ρ||Γ and G1

ρ are identical. Thus,
it follows from the function hiding of dIPE that these two hybrids are indistinguishable.

66

Proof of Rule 5: Gbρ ≈ Hb
ρ, for every ρ ∈ [Γ]D−1 and every b. Fix one such ρ. The proof of this

rule is again very similar to that of Rule 3 and 4. We here sketch the proof. The only difference
between Gbρ and Hb

ρ lies in the values of vectors {X̂d
γ,l} and {X̃d

γ,l} for d = D − 1 and D.
In hybrid Hb

ρ, these vectors have values.

X̃D−1
γ,l = µD−1

γ,l ||ν
D−1
γ,l · · · µD−1

γ,l ||ν
D−1
γ,l


0 || ν̃D−1

ρ≤D−2||γ,l if γ < ρD−1

µ̃D−1
ρ≤D−2||γ,l || 0 if γ > ρD−1

0 || 0 if γ = ρD−1

0

X̃D
γ,l = µDγ,l||νDγ,l · · · µDγ,l||νDγ,l µDγ,l||νDγ,l


〈
µ̃Dρ||γ,l,1

〉
if b = 0〈

ν̃Dρ||γ,l,1
〉

in b = 1

slot 1 · · · slot D − 2 slot D − 1 slot D

It follows from the SXDH assumption w.r.t. group GD that Hb
ρ is indistinguishable to H̃b

ρ, where
the vectors {X̃D

γ,l} are replaced with

X̃D
γ,l = µDγ,l||νDγ,l · · · µDγ,l||νDγ,l µDγ,l||νDγ,l


〈
µ̃D−1
ρ,l µDγ,l,1

〉
if b = 0〈

ν̃D−1
ρ,l νDγ,l,1

〉
in b = 1

slot 1 · · · slot D − 2 slot D − 1 slot D

It now remains to show that H̃b
ρ is indistinguishable to Gbρ, which encrypts the following vectors

{X̂D−1
l,n , X̂D

l,n}n.

X̂D−1
γ,l = µD−1

γ,l ||ν
D−1
γ,l · · · µD−1

γ,l ||ν
D−1
γ,l


0 || ν̃D−1

ρ≤D−2||γ,l if γ < ρD−1

µ̃D−1
ρ≤D−2||γ,l || 0 if γ > ρD−1

0 || ν̃D−1
ρ,l if γ = ρD−1 and b = 1

µ̃D−1
ρ,l || 0 if γ = ρD−1 and b = 0

0

X̂D
γ,l = µDγ,l||νDγ,l · · · µDγ,l||νDγ,l µDγ,l||νDγ,l 0

slot 1 · · · slot D − 2 slot D − 1 slot D

For all other coordinates d < D − 1, X̂d
l,n = X̃d

l,n in H̃b
ρ. Observe that the inner products of all

combination of vectors X̃’s in H̃b
ρ and X̂’s in Gbρ are identical. Thus, it follows from the security of

dIPE that these two hybrids are indistinguishable.

Proof of Rule 6: G1
ρ = G0

ρ+1 for every ρ ∈ [Γ]d
?

with 1 ≤ d? ≤ D− 1, such that, ρd? 6= Γ. Fix such
a ρ and d?. Since ρd? 6= Γ, ρ + 1 has form ρ<d? ||(ρd? + 1), where ρd? + 1 is the letter that follows
immediately after ρd? in the alphabet [Γ]. Thus the vectors {X̂d

γ,l} for d 6= d? are set identically
in these two hybrids. For d = d?, {X̂d

γ,l} are again set identically for all γ 6= ρd? and 6= ρd? + 1.
For d = d? and γ = ρd? , in G1

ρ, {X̂d?

γ,l}l are set according to the third line in Case 2 of Figure 6,

67

whereas in G0
ρ+1, they are set according to the first line in Case 2; but, the values of the vectors are

still identical. For d = d? and γ = ρd? + 1, {X̂d?

γ,l}l are set according to the second line in Case 2 of
Figure 6, whereas in G0

ρ+1, they are set according to the fourth line in Case 2; again, the values of
the vectors are still identical.

Since all other random variables are sampled identically inG0
ρ andG1

ρ. These two distributions
are identical.

8 FE for Degree-D Polynomials from Degree-D MMaps

In this section, we construct FE schemes {FED,N} for degree D polynomials inR, from the SXDH
assumption over degree-D MMaps inR. Importantly, our FE scheme has linear efficiency, that is,
encrypting a length-N input vector takes time N poly(λ). An overview of the scheme is presented
in Section 2; below, we present the formal construction.

8.1 Construction

Fix any polynomial N . We construct a secret key FE scheme FE = FED,N for computing degree
D polynomials over inputs of length N over ringR, using the following building blocks:

• The canonical degree-DHIPE scheme dIPE = hIPED,M = (dIPE.Setup, dIPE.Enc, dIPE.KeyGen,
dIPE.Dec) from SXDH on degree-D MMaps in Section 7, for a specific constant input length
M = O(D) specified below.

• The ABCP public-key IPE scheme IPE = IPEL = (IPE.Setup, IPE.Enc, IPE.KeyGen, IPE.Dec)
from DDH groups by [ABCP15] (reviewed in Section 6.2), for inputs of length L = O(ND)
specified below.

• The canonical degree-2 IPE scheme tIPE = tIPE2 = (tIPE.Setup, tIPE.Enc, tIPE.KeyGen, tIPE.Dec)
for inputs of length 2 from SXDH on bilinear maps in Section 6.4.

• Degree-D multilinear pairing groups described by pp = (p,G1, · · · , GD, GD+1,pair).

Below, we will use ⊗s≤d to denote the tensor product of d vectors s1, · · · , sd, and for any index
I = (I1, · · · , Id), we denote the I th elements in the tensor product as s≤dI .

⊗s≤d = s1 ⊗ · · · ⊗ sd ⊗s≤dI = s≤dI =
∏
i≤d

siIi

For notational convenience, we overload the notations ⊗x≤d and x≤dI to also mean the tensor
product of the same vector x for d times and the I th element in the tensor product.

⊗x≤d = x⊗ · · · ⊗ x︸ ︷︷ ︸
d times

⊗x≤dI = x≤dI =
∏
i≤d

xIi

Whether the notations denote the former or latter depends on whether there exist different vectors
s1, · · · , sd or only a single vector x, which is clear in the context below.

Our FE scheme FE = (FE.Setup,FE.Enc,FE.KeyGen,FE.Dec) proceeds as follows. We inline
analysis of correctness in italic font in the description of the construction below.

68

• FE.Setup(1λ, pp) does the following

– Sample D vectors s1, · · · sD $← RN .
Note: The tensor product of the vectors ⊗s≤D serves as the secret key iMSK = ⊗s≤D of IPE.

– Sample a master secret key of tIPE2, tMSK
$← tIPE.Setup(1λ, (p,GD−1, GD, null, null))

with source group GD−1 and GD. (Since tIPE2 has canonical form, its setup algorithm
does not depend on the target group, nor the pairing function, which can be set to null.)

Output msk = (s1, · · · , sD, tMSK, pp).

• FE.KeyGen(msk, c) on input the length-ND vector c listing the coefficients of a degree D
polynomial fc(x) =

〈
c,⊗x≤d

〉
, samples the following:

– Generates a secret key of IPE for vector c, using ⊗s≤D as the secret key,

iSK =
(〈
⊗s≤D, c

〉
, c
)

= IPE.KeyGen
(
⊗s≤D, c

)
.

– Generates a secret key of tIPE for vector
〈
⊗s≤D, c

〉
||0,

tSK
$← tIPE.KeyGen

(
tMSK,

(〈
⊗s≤D, c

〉
||0
))

.

Output secret key SK = (c, tSK).

Note: SK is almost the same as the IPE secret key of c, except that
〈
⊗s≤D, c

〉
is not revealed in the

plaintext, but encoded in a secret key of tIPE.

• FE.Enc(msk,x) samples the following

– Sample a random element r $← R.
Note: r serves as the randomness for IPE encryption.

– Encrypt −r||0 using tIPE, tCT $← tIPE.Enc(tMSK, (−r||0)).

– Generate a master secret key of dIPE, dMSK
$← dIPE.Setup(1λ, pp).

– Prepare the following vectors {χdn}d∈[D],n∈[N]

χdn =

{
xn || sdn if d < D

xn || rsDn if d = D

– Pad the above vectors with zeros to get {Xd
n}d∈[D],n∈[N],

Xd
n = χ || 0 where M = |Xd

n| = 2(D − 1)|χdl |+ 1 = 4D − 3 = Θ(D) .

– Generate the following dIPE ciphertexts and secret keys.{
dCTdn

$← dIPE.Enc(dMSK,Xd
n)
}
d<D,n∈[N]{

dSKn
$← dIPE.KeyGen(dMSK,XD

n)
}
n∈[N]

69

Output CT = (tCT, {dCTdn}d<D,n∈[N], {dSKn}n∈[N]).

Note: The ciphertext CT implicitly encodes an IPE ciphertext iCT of the monomials ⊗x≤d under
secret key ⊗s≤D and public key

[
⊗s≤D

]
D+1

. Such a ciphertext looks as follows,

IPE.Enc(
[
⊗s≤D

]
D+1

,⊗x≤d; r) =
[
− r
]
D+1

,
[
r(⊗s≤D) +⊗x≤d

]
D+1

= iCT .

For convenience, we denote by iCT0 the encoding [r]D+1, and iCTI the encoding of the I th element
ictI = rs≤DI + xDI in the second part.

The random element r encoded in iCT0 is encrypted in the tIPE ciphertext tCT. On the other hand,
iCTI can be computed by decrypting the combination of secret key and ciphertexts (dSKID , dCT

1
I1 , · · · , dCT

D−1
ID−1

)

of dIPE.

dIPE.Dec(dSKID , dCT
1
I1 , · · · , dCT

D−1
ID−1

) =
[〈
X1
I1 , · · · ,X

D
ID

〉]
D+1

=
[〈
χ1
I1 , · · · ,χ

D
ID

〉]
D+1

=
[
rs≤DI + xDI

]
D+1

= iCTI

• FE.Dec(SK,CT) does the following

1. Decrypt tSK, tCT using tIPE to obtain Λ1 = tIPE.Dec(tSK, tCT).
(Note that since tIPE is canonical, its decryption algorithm involves evaluating a quadratic
function over encodings in its secret key and ciphertext in groups GD and GD−1 re-
spectively. Using the degree-D multilinear map and the generators of other groups
G1, · · · , GD−2, one can obtain an encoding of the output of the quadratic function in
the target group GD+1.)

Note: Recall that decrypting an IPE ciphertext iCT = [−r]D+1, {iCTI}I with a secret key
iSK = (

〈
⊗s≤D, y

〉
, y) involves homomorphically evaluating the inner product between the

ciphertext and the secret key. That is,

IPE.Dec(iSK, iCT) = [−r]D+1

〈
⊗s≤D, y

〉
+ 〈y , {iCTI}〉 = Λ1 + Λ2

The above step 1 computes exactly the first term Λ1,

tIPE.Dec(tSK, tCT) =
[〈 〈
⊗s≤D, c

〉
||0 , −r||0

〉]
D+1

=
[
−r
〈
⊗s≤D, c

〉]
D+1

= Λ1

2. For every I ∈ [N]D, decrypt dSKID , dCT
1
I1 , · · · , dCT

D−1
ID−1

using dIPE to obtain iCTI =

dIPE.Dec(dSKID , dCT
1
I1 , · · · , dCT

D−1
ID−1

).

Note: iCTI is the I th element in the IPE ciphertext of ⊗x≤d under secret key ⊗s≤D

dIPE.Dec(dSKID , dCT
1
I1 , · · · , dCT

D−1
ID−1

) =
[〈
X1
I1 , · · · ,X

D
ID

〉]
D+1

=
[
rs≤DI + xDI

]
D+1

= iCTI

Their concatenation can be written as

iCT =
[
r⊗s≤D +⊗x≤d

]
D+1

.

70

3. Homomorphically evaluate 〈iCT, c〉 to obtain encoding Λ2 in GD+1, followed by ho-
momorphically adding Λ1 and Λ2 to obtain [y]D+1. Output 1 iff the output encoding
encodes zero.

Note: The above two steps 2 and 3 correspond to computing the second term Λ2 in the decryption
equation of IPE

〈iCT, c〉 =
[〈(

r⊗s≤D +⊗x≤d
)
, c
〉]

D+1
=
[
r
〈
⊗s≤D, c

〉
+
〈
⊗x≤d, c

〉]
D+1

= Λ2

followed by obtaining an encoding of the output,

Λ1 + Λ2 =
[〈
⊗x≤d, c

〉]
D+1

=
[
fc(x)

]
D+1

.

Therefore the scheme FE is correct.

Efficiency It is easy to see that the key generation FE.KeyGen runs in time ND poly(λ). To
analyze the run time of the encryption and decryption algorithm, recall that both the encryp-
tion dIPE.Enc and key generation dIPE.KeyGen algorithms of the HIPE scheme dIPED,M run
in time TimeD(M) = MD poly(λ) (see Section 7.2.3). Since M = O(D) and D is a constant,
TimeD(M) = poly(λ) is bounded by a fixed polynomial in the security parameter. The encryp-
tion algorithm FE.Enc of FE involves generating one ciphertext of tIPE2 and N ciphertexts of
dIPE at every coordinate in [D− 1] and N secret keys of dIPE. The total time is thus is bounded
by

TimeFE.Enc(λ,D,N) = poly(λ) +DN poly(λ) = N poly(λ)

In other words, encryption time is linear in the input length. On the other hand, the decryption
time of dIPED,M is bounded byMΘ(D2) poly(λ) (see Section 7.2.3), which in turn is again bounded
by a fixed polynomial. The decryption algorithm FE.Dec involves decrypting ND combination of
dIPE secret key and ciphertexts, and decrypting one pair of secret key and ciphertext of tIPE.
Thus, decryption time is bounded by.

TimeFE.Dec(λ,D,N) = ND poly(λ) + poly(λ) = ND poly(λ)

8.2 Security Proof

We prove that FED,N is IND-secure.

Proposition 2. Assume SXDH on degree-D multilinear pairing groups. The scheme FED,N described
above is selectively IND-secure.

Proof. Fix any polynomial L and any ensembles of sets of vectors {{x0
l ,x

1
l , cl}l∈[L(λ)]}λ∈N, such

that, x0
l ,x

1
l ∈ RN(λ), cγ ∈ RN(λ)D and the following holds.

∀ l, j ∈ [L], fcj (x
0
l) =

〈
⊗(x0

l)
≤D, cj

〉
=
〈
⊗(x1

l)
≤D, cj

〉
= fcj (x

1
l)

We need to show the indistinguishability of two ensembles of distributions {D0(λ)}λ and {D1(λ)}λ
defined below.

{Db(λ)}λ =


msk

$← FE.Setup(1λ, pp){
CTl

$← FE.Enc(msk,xbl)
}
l∈[L]{

SKl
$← FE.KeyGen(msk, cl)

}
l∈[L]

: pp, {SKl, CTl}l∈[L]


λ∈N

71

To show the indistinguishability of ciphertexts of {x0
l } from that of {x1

l }, we go through a
sequence of hybrid in which the encrypted vectors are exchanged one by one.

Hybrid Hyb` for 0 ≤ ` ≤ L is generated identically asD0 except that the first ` ciphertexts encrypts
x1
l as opposed to x0

l . Formally,

{Hyb`(λ)}λ =


msk

$← FE.Setup(1λ, pp){
CTl

$← FE.Enc

(
msk,

{
x1
l if l ≤ `

x0
l if l > `

)}
1≤l≤`{

SKl
$← FE.KeyGen(msk, cl)

}
l∈[L]

: pp, {SKl, CTl}l∈[L]


λ∈N

It is easy to see that Hyb0 = D0 and HybL = D1. Then the the proposition follows immediately
from the following lemma.

Lemma 12. For every ` ∈ [L], hybrids Hyb`−1(λ) and Hyb`(λ) are indistinguishable.

Indistinguishability of Hyb`−1 and Hyb`

Proof of Lemma 12. The only difference in Hyb`−1 and Hyb` lies in the vector encrypted in the `th

ciphertext, in the former, it is x0
` and in the latter it is x1

` . For convenience, we will denote the list
of vectors encrypted in Hyb`−1 as u1, · · · ,uL and that encrypted in Hyb` as v1, · · · ,vL.

∀l < `, ul = vl = x1
l , u` = x0

` , v` = x1
` , ∀l > `, ul = vl = x0

l (12)

(Using these notations helps us to “align” parts of this proof with that of the proof of Proposition 2
which share the same arguments.)

We show that both Hyb`−1 and Hyb` are indistinguishable to an intermediate hybrid Mid. To
show the indistinguishability between Hyb0

`−1 and Mid, we construct a sequence of 2ND−1 + 2
hybrid distributions Init, {Hb

ρ}b∈{0,1},ρ∈[N]D−1 ,Mid′, and show that Hyb`−1 is indistinguishable to
Init, Mid′ is indistinguishable to Mid, and all neighboring hybrids are indistinguishable; then
by a hybrid argument, Hyb`−1 is indistinguishable to Mid. Below we describe all the hybrids
and show their indistinguishability. After that, we note that it follows from syntactically the same
proof that Hyb` is also indistinguishable to Mid.

Hybrid Init(λ) is generated identically as Hyb`−1 except that the tIPE ciphertext tCT` contained
in the `th ciphertext CT`, and the tIPE secret keys {tSKl} contained in secret keys {SKl} are
generated differently:

• tCT` encrypts vector (0||1) as opposed to (−r`||0), and

• for every l ∈ [L], tSKl encodes vector (
〈
⊗s≤D , cl

〉
|| − r`

〈
⊗s≤D , cl

〉
) as opposed to

(
〈
⊗s≤D , cl

〉
||0).

See figure 7 for a formal description. (The difference from distribution Hyb`−1 is underlined.)

Lemma 13. The ensembles {Hyb`−1(λ)}λ and {Init(λ)}λ are indistinguishable.

72

Hybrid Distribution Init(λ)

Generate the following

• msk
$← FE.Setup(1λ, pp) and parse msk = (s1, · · · , sD, tMSK, pp).

• For every l ∈ [L], generate CTl
$← FE.Enc(msk,ul).

Let r` be the random element sampled when generating CT`.

Parse CT` = (tCT`, {dCTd`,n}d<D,n∈[N], {dSK`,n}n∈[N]).

Replace tCT` with tCT`
$← tIPE.Enc(tMSK, (0||1)).

• For every j ∈ [L], generate SKj = (cj , tSKj) for coefficient vector cj with

tSKj
$← tIPE.KeyGen

(
tMSK,

〈
⊗s≤D, cj

〉
|| −r`

〈
⊗s≤D, cj

〉)
.

Output {SKl, CTl}l∈[L]

Figure 7: Initial hybrid distribution Init(λ) for proving security of FED,N

Proof. The only difference between Init and Hyb`−1 lies in the `th tIPE ciphertext tCT` and
all tIPE secret keys {tSKl}. But, for every l ∈ [L], the output inner product obtained when
decrypting tCT` with tSKl is identical, namely−r`

〈
⊗s≤D, cl

〉
, in Hyb`−1 and Init. Moreover,

all other tIPE ciphertexts tCTl for l 6= ` encrypt the same vector in both hybrids. Therefore,
by the function hiding property of tIPE, we have that Hyb`−1 and Init are indistinguishable.

Hybrid Hb
ρ(λ) Hybrid Hb

ρ for any ρ ∈ [N]D−1 and b ∈ {0, 1} is identical to Init, except that the set
of vectors {X̃d

l,n}d≤D,n∈[N] encoded in the dIPE ciphertexts and secret keys {dCTdl,n, dSKl,n}d<D,n∈[N]

contained in {CTl}l are different, as well as the vectors {tl}l encoded in the tIPE secret keys
{tSKl}l contained in {SKl}l. Next, we describe how the X̃ and t vectors are set; a formal
description of the hybrid can be found in Figure 8.

SET THE X̃ VECTORS. Recall that in Init (the same as in Hyb`)

Xd
l,n = µdl,n || 0 where µdl,n =

{
ul,n || sdn if d < D

ul,n || rlsDn if d = D

Since Xd has length 4(D− 1) + 1, we can parse it as containing D slots, where the first D− 1
slots can hold 2 vectors of length-2 each, and the last slot can hold a single ring element, that
is,

Xd
l,n = µdl,n||0︸ ︷︷ ︸ 0||0︸︷︷︸ · · · 0||0︸︷︷︸, 0︸︷︷︸

slot 1 slot 2 · · · slot D − 1 slot D

In addition to vectors µdl,n, hybrid Hb
ρ generates vectors νdl,n corresponding to input vectors

vl as follows:

νdl,n =

{
vl,n || sdn if d < D

vl,n || rlsDn if d = D

73

Hybrid Distribution Hb
ρ(λ) for ρ ∈ [N]D−1

Generate the following:

• msk
$← FE.Setup(1λ, pp) and parse msk = (sMSK, {dMSKl}l∈[L]) and sMSK = (k1,k2).

• For every l ∈ [L], sample rl
$← R and dMSKl

$← dIPE.Setup(1λ, pp).

Generate CTl = (tCTl, {dCTdl,n, dSKl,n}d,n) as follows:

tCTl
$← tIPE.Enc

(
tMSK,

{
(−rl||0) if l 6= `

(0||1) if l = `

) {
dCTdl,n

$← dIPE.Enc(dMSKl, X̃
d
l,n)

}
d<D,n∈[N]{

dSKl,n
$← dIPE.KeyGen(dMSKl, X̃

D
l,n)

}
n∈[N]

where the vectors {X̃d
l,n}d∈[D],n∈[N] are set as follows

X̃D
l,n = µDl,n||νDl,n︸ ︷︷ ︸ µDl,n||νDl,n︸ ︷︷ ︸ · · · µDl,n||νDl,n︸ ︷︷ ︸


〈
µ̃Dl,ρ||n,1

〉
in H0

ρ〈
ν̃Dl,ρ||n,1

〉
in H1

ρ︸ ︷︷ ︸
slot 1 slot 2 · · · slot D − 1 slot D

X̃d
l,n = µdl,n||νdl,n︸ ︷︷ ︸ · · · µdl,n||νdl,n︸ ︷︷ ︸


0 || ν̃dl,ρ≤d−1||n if n < ρd

µ̃dl,ρ≤d−1||n || 0 if n > ρd

0 || 0 if n = ρd︸ ︷︷ ︸


0 if n < ρd

0 if n > ρd

1 if n = ρd︸ ︷︷ ︸
slot 1 · · · slot d− 1 slot d slot > d

• For every j ∈ [L], generate SKj = (cj , tSKj) for coefficient vector cj with

tSKj
$← tIPE.KeyGen

(
tMSK,

〈
S(ρ) , cj

〉
|| − r`

〈
S(ρ) , cj

〉
+ ∆b

j(ρ)
)
,

where S(ρ) and ∆b
j(ρ) defined as follows:

– ∀I ∈ [ND], (S(ρ))I = wdρ≤d−1||Ids
d+1
Id+1
· · · sDID if the longest prefix I share with ρ is

ρ≤d−1 (see Equation 13), and

– ∆b
j(ρ) =

{∑
ρ′<ρ δj(ρ

′) in H0
ρ∑

ρ′≤ρ δj(ρ
′) in H1

ρ

with δj(ρ
′) =

∑
I=ρ′||n
n∈[N]

cj,I

(
u≤D`,I − v

≤D
`,I

)
Output {SKl, CTl}l∈[L]

Figure 8: Hybrid Hb
ρ(λ) for ρ ∈ [N]D−1 for proving security of FED,N

74

Hb
ρ also generates vectors µ̃dl,ρ≤d−1||n, ν̃

d
l,ρ≤d−1||n for every prefix of form ρ≤d−1||n of length d

as follows. These vectors are derived from the partial products associated with the prefix
ρ≤d−1||n. Take a partial product of µ’s for example,

µ≤dl,ρ≤d−1||n =

 ∏
i≤d−1

µil,ρi

µdl,n =

u
≤d
l,ρ≤d−1||n

∣∣∣∣∣∣ s≤dρ≤d−1||n if d < D

u≤Dl,ρ||n

∣∣∣∣∣∣ rls≤Dρ||n if d = D

where s≤dI =
∏
i≤d s

i
Ii

and u≤dI =
∏
i≤d uIi . Then, µ̃≤dl,ρ≤d−1||n is derived by replacing the

partial product of key elements s≤dρ≤d−1||n in it, with an independently and randomly sampled

element wdρ≤d−1||n
$← R. Vector ν̃≤dl,ρ≤d−1||n is derived similarly from the ν vectors. More

precisely,

µ̃dl,ρ≤d−1||n =

u
≤d
l,ρ≤d−1||n

∣∣∣∣∣∣ wdρ≤d−1||n if d < D

u≤Dl,ρ||n

∣∣∣∣∣∣ rlwDρ||n if d = D
ν̃dρ≤d−1||n,l =

v
≤d
l,ρ≤d−1||n

∣∣∣∣∣∣ wdρ≤d−1||n if d < D

v≤Dl,ρ||n

∣∣∣∣∣∣ rlwDρ||n if d = D

where for any n ∈ [N], w1
n = s1

n, and wdρ≤d−1||n
$← R for d > 1.

Fact 3. Observe that since w1
n = s1

n, µ̃1
l,n = µl,n, and ν̃1

l,n = νl,n.

Hb
ρ encodes in every ciphertext CTl a set of vectors {X̃d

l,n}d,n depending on {µdl,n,νdl,n}d,n
and {µ̃dl,ρ≤d−1||n, ν̃

d
l,ρ≤d−1||n}d,n, as described in Figure 8.

EVERY CIPHERTEXT CTl IMPLICITLY ENCODES AN IPE CIPHERTEXT iCTl . When the X̃ vec-
tors are set as such, the set of high-degree inner products that can be computed from the
dIPE ciphertexts and secret keys satisfy the following. Recall that for different l, each ci-
phertext CTl samples its own dIPE master secret key; therefore, inner products can be only
be computed among X̃ vectors with the same index l. Consider a fixed l. For every combi-
nation I ∈ [N]D, if the the longest prefix that I share with ρ is ρ≤d−1, that is, I = ρ≤d−1||I≥d,
then,

[〈
X̃1
l,I1 , · · · , X̃

D
l,ID

〉]
D+1

=

rl wdρ≤d−1||Ids
d+1
Id+1
· · · sDID +


v≤Dl,I if d < D and Id < ρd

u≤Dl,I if d < D and Id > ρd

u≤Dl,I if d = D and in H0
ρ

v≤Dl,I if d = D and in H1
ρ


D+1

Define V b
l (ρ) to be the length-ND vector where its I th element is exactly the second term in

addition, and S(ρ) the length-ND vector where (S(ρ))I is the first term, that is,

∀ρ ∈ [N]D−1,

(S(ρ))I = wdρ≤d−1||Ids
d+1
Id+1
· · · sDID if the longest prefix I share with ρ is ρ≤d−1 . (13)

(Recall that w1
n = s1

n, and wdρ≤d−1||n for d > 1 is a random element inR.) Then, we can rewrite
the above encoding as[〈

X̃1
l,I1 , · · · , X̃

D
l,ID

〉]
D+1

=
[

rl (S(ρ))I + (V b
l (ρ))I

]
D+1

= iCTl,I (14)

75

which is exactly the I th encoding in an IPE ciphertext iCTl of vector V b
l (ρ) with master secret

key S(ρ), and random element rl. Notably, in H0
ρ , the encrypted vector V 0

l (ρ) satisfy that
every element indexed by I with a prefix < ρ is the I th monomial of vl, and every element
I with a prefix ≥ ρ is the I th monomial of ul. In H1

ρ , V 1
l (ρ) is the same as V 0

l (ρ) except that
elements indexed with exactly prefix ρ are switched from monomials of ul to monomials of
vl.

Fact 4. By the way vectors ul and vl are set in Equation (12). For every l 6= `, ul = vl. Only
the vector V b

` (ρ) encrypted in CT` changes from H0
ρ to H1

ρ ; more specifically, only the values of N
elements indexed with prefix ρ change. Furthermore, observe that V 1

` (ρ) = V 0
` (ρ+ 1).

SET THE VECTOR ENCODED IN tSKl . For every secret key SKj = (tSKj , cj) with j ∈ [L], we
set the vector encoded in tSKj in the following way

tSKj
$← tIPE.KeyGen

(
tMSK,

(
〈S(ρ) , cj〉

∣∣∣∣∣∣− r` 〈S(ρ) , cj〉+ ∆b
j(ρ)

))
,

where the values of {∆b
j(ρ)} are specified below. Roughly speaking, the first encoded ele-

ment 〈S(ρ) , cj〉 is the first element in an IPE secret key iSK = (〈S(ρ) , cj〉 , cj) for vector cj
under master secret key S(ρ). The second encoded element −r` 〈S(ρ) , cj〉 + ∆b

j(ρ) is there
specially for the `th ciphertext CT`, whose tIPE ciphertext tCT` encodes the unique vector
(0||1) (whereas all other ciphertexts CTl contain tIPE ciphertexts tCTl of (−rl||0).)

To see why they are generated as such, it is best to run through the process of decrypting a
ciphertext CTl with SKj . The first step decrypts tCTl with tSKj to obtain,

Λ1 = tIPE.Dec(tSKj , tCTl) =

[−rl 〈S(ρ) , cj〉]D+1 if l 6= `[
−r` 〈S(ρ) , cj〉+ ∆b

j(ρ)
]
D+1

if l = `

The next step, decrypts the dIPE ciphertexts and secret keys contained in CTl to obtain all
encodings {iCTI}I as described above in Equation (14), it then homomorphically computes
the inner product of {iCTI}I and cj to obtain,

Λ2 = 〈{iCTI}I , cj〉 =
[〈
rl S(ρ) + V b

l (ρ) , cj

〉]
D+1

In the last step, it computes

[yl,j]D+1 = Λ1 + Λ2 =


[〈
V b
l (ρ) , cj

〉]
D+1

if l 6= `[〈
V b
` (ρ) , cj

〉
+ ∆b

j(ρ)
]
D+1

if l = `

Note that, for all hybrids {Hb
ρ} to be indistinguishable to each other, the decryption outputs

{yl,j}l,j in them must be identical. As observed in Fact 4, for all l 6= `, V b
l (ρ) stay the same

in all Hb
ρ and thus so are the outputs {yl,j}l 6=`,j . But, V b

` (ρ) changes with ρ and hence the
additional term ∆b

j(ρ) is needed to ensure that the outputs {y`,j}j stay the same. Since V 0
ρ

and V 1
ρ differ only at the N indexes with prefix ρ, when switching from V 0

ρ to V 1
ρ , the inner

product changes by

δj(ρ) =
∑
I=ρ||n
n∈[N]

cj,I

(
u≤D`,I − v

≤D
`,I

)
.

76

By setting ∆b
j(ρ) to the cumulative sum of δj(ρ′) with ρ′ < ρ if b = 0, and the sum of δj(ρ′)

with ρ′ ≤ ρ if b = 1,

∆0
j (ρ) =

∑
ρ′<ρ

δj(ρ) and ∆1
j (ρ) =

∑
ρ′≤ρ

δj(ρ) ,

we ensure that the outputs {y`,j}j of decrypting CT` with every SKj are identical in all hy-
brids Hb

ρ.

INDISTINGUISHABILITY BETWEEN H0
ρ AND H1

ρ . We show that for every ρ ∈ [N]D−1, moving
from H0

ρ to H1
ρ is indistinguishable.

Lemma 14. For every ρ ∈ [N]D−1, the ensembles {H0
ρ (λ)}λ and {H1

ρ (λ)}λ are indistinguishable.

At a very high-level, the only difference between these two hybrids lies in the values of the
following elements:

• the elements in slot D of vectors {X̃D
`,n}n encoded in {dSK`,n}n (note that for all other

l 6= `, X̃D
l,n stays the same because ul = vl), and

• the second elements of vectors {tj}j encoded in {tSKj}j .

By the fact that dIPE and tIPE are canonical, these vectors X̃D’s and t’s are encoded in
group GD, and H0

ρ and H1
ρ can essentially be emulated from encodings of these elements

in GD. Furthermore, these encodings correspond to an IPE encryption of either vector
x′0 = {u≤D`,ρ||n}n||{∆

0
j (ρ)}j or x′1 = {v≤D`,ρ||n}n||{∆

1
j (ρ)}j (of lengthN+1), under a truly random

master secret key s′ = {wDρ||n}n||{tj}j (for random tj ’s), at the presence of a set of IPE secret
keys for vectors y′j = {cj,ρ||n}n||ej for every j ∈ [L] (ej is the unit vector of length L with
a single 1 at index j). The way that the values of {∆b

j(ρ)}b,j are set ensures that the inner
product of x′0 and y′j is identical to that of x′1 and y′j . Therefore, it follows from the IND-
security of IPE that the two hybrids are indistinguishable. A formal proof can be found
later.

INDISTINGUISHABILITY BETWEEN H1
ρ AND H0

ρ+1. We also show that moving fromH1
ρ toH1

ρ+1

are indistinguishable.

Lemma 15. For every ρ ∈ [N]D−1 \ {nN}, the ensembles {H1
ρ (λ)}λ and {H0

ρ+1(λ)}λ are indis-
tinguishable, where ρ+ 1 denote the member in [N]D−1 following immediately after ρ, in increasing
numerical order.

At a high-level, the difference betweenH1
ρ andH0

ρ+1 lies in the values of {X̃d
l,n}d,n,l, as well as

that of {tj} encoded in {tSKj}. Note that the way that vectors X̃d
l,n are set in different hybrids

Hb
ρ (as well as how vectors µ̃’s and ν̃’s are derived from µ’s and ν’s) are identical to that in

the security proof of the degree-(D+ 1) HIPE scheme in Section 7.3 (Proof of Proposition 2).
There, we already showed in the proof of Lemma 7 that changing the values of X̃’s from
H1
ρ to H0

ρ+1 is indistinguishable, relying on the security of dIPE and the SXDH assumption
on MMaps. Here, the proof is almost the same, except that besides from the difference in
the values of X̃’s, the values of t’s also change, from being generated using S(ρ) in H1

ρ to

77

using S(ρ + 1) in H0
ρ+1. We observe that S(ρ) and S(ρ + 1) can be uniformly derived from

the random elements embedded in X̃’s in H0
ρ and H1

ρ+1 (see equation 13). Thus, it suffices
to slightly modify the proof of Lemma 7, to make sure that whenever the SXDH assumption
is applied to change the random elements in X̃, we change the value of S correspondingly.
With the modified proof, we can show that hybrids H1

ρ and H0
ρ+1 are indistinguishable.

Furthermore, it follows from similar proof that Init and H0
1D−1 are also indistinguishable.

Lemma 16. The ensembles {Init(λ)}λ and {H0
1D−1(λ)}λ are indistinguishable.

Hybrid Mid′(λ) is generated identically as Init except that every ciphertext CTl encode a set of
vectors {X̄d

l,n}l different from that in Init, where instead of having vectors µ’s in the first
half of slot 1, we have vectors ν’s in the second half of slot 1 (and zeros elsewhere). See
figure 9 for a precise description.

Hybrid Distribution Mid′(λ)

Generate the following:

• msk
$← FE.Setup(1λ, pp) and parse msk = (sMSK, {dMSKl}l∈[L]) and sMSK = (k1,k2).

• For every l ∈ [L], sample rl
$← R and dMSKl

$← dIPE.Setup(1λ, pp).

Generate CTl = (tCTl, {dCTdl,n, dSKl,n}d,n) as follows:

tCTl
$← tIPE.Enc

(
tMSK,

{
(−rl||0) if l 6= `

(0||1) if l = `

) {
dCTdl,n

$← dIPE.Enc(dMSKl, X̄
d
l,n)

}
d<D,n∈[N]{

dSKl,n
$← dIPE.KeyGen(dMSKl, X̄

D
l,n)

}
n∈[N]

where the vectors {X̄d
l,n}d∈[D],n∈[N] are set as follows

X̄d
γ,l = 0||νdγ,l︸ ︷︷ ︸ 0||0︸︷︷︸ · · · 0||0︸︷︷︸, 0︸︷︷︸

slot 1 slot 2 · · · slot D − 1 slot D

• For every j ∈ [L], generate SKj = (cj , tSKj) for coefficient vector cj with

tSKj
$← tIPE.KeyGen

(
tMSK,

〈
⊗s≤D, cj

〉
|| − r`

〈
⊗s≤D, cj

〉)
.

Output {SKl, CTl}l∈[L]

Figure 9: Hybrid Mid′(λ) for proving security of FED,N

We show that moving from the last hybrid H1
ND−1 to Mid′ is indistinguishable.

Lemma 17. The ensembles {H1
ND−1(λ)}λ and {Mid′(λ)}λ are indistinguishable.

A fomal proof of this lemma, similar to that of Lemma 15, is provided below.

Hybrid Mid(λ) is generated identically to Mid′ except that every secret key tSKj encodes vec-
tor (

〈
⊗s≤D, cl

〉
||0) as opposed to (

〈
⊗s≤D, cl

〉
|| − r`

〈
⊗s≤D, cl

〉
), and the `th ciphertext CT`

contains tCT` encrypting vector (−r`||0) as opposed to (0||1).

78

As in Lemma 13, it follows directly from the function hiding of tIPE that it is indistinguish-
able to move from Mid′ to Mid.

Lemma 18. The ensembles {Mid′(λ)}λ and {Mid(λ)}λ are indistinguishable.

By a hybrid argument, we have that the honest distribution Hyb` is indistinguishable to the middle
hybrid distribution Mid. It follows syntactically from the same proof (replacing the input vectors
u’s with vectors v’s) that Hyb`+1 is also indistinguishable to Mid. Therefore, Hyb` and Hyb`+1

are indistinguishable, which concludes that D0 and D1 are indistinguishable and hence FED,N is
selectively IND-secure.

8.2.1 Proof of Lemma 14

Proof of Lemma 14. The only difference between these hybrids H0
ρ and H1

ρ lies in the elements in
slot D of vectors {X̃D

`,n}`,n encoded in {dSK`,n}n∈[N] (Note that for all other l 6= `, X̃D
l,n stays the

same because ul = vl), and the second elements of vectors {tj}j encoded in {tSKj}j∈[N].
By definition of the vectors µ̃’s and ν̃’s, the elements in slot D of X̃D

`,n satisfy the following.

in H0
ρ ,

〈
µ̃D`,ρ||n, 1

〉
=
〈
u≤D`,ρ||n

∣∣∣∣∣∣ r`wDρ||n, 〉 = r`w
D
ρ||n + u≤D`,ρ||n

in H1
ρ ,

〈
ν̃D`,ρ||n, 1

〉
=
〈
v≤D`,ρ||n

∣∣∣∣∣∣ r`wDρ||n, 〉 = r`w
D
ρ||n + v≤D`,ρ||n

The second element of the vector tj encoded in tSKj in Hb
ρ is

−r` 〈S(ρ) , cj〉+ ∆b
j(ρ) =

(
−r`

〈
{S(ρ)I}I≤D−1 6=ρ , {cj,I}I≤D−1 6=ρ

〉)
+
(
−r`

〈
{S(ρ)I}I≤D−1=ρ , {cj,I}I≤D−1=ρ

〉
+ ∆b

j(ρ)
)

= term 1 +
(
−r`

〈
{wDρ||n}n∈[N] , {cj,ρ||n}n∈[N]

〉
+ ∆b

j(ρ)
)
,

where variables are sampled as in Hb
ρ. We claim that the hybrid Hb

ρ can be emulated from the
following distribution D̃bρ

D̃0
ρ =

{ {[
wDρ||n

]
D

}
n
,
{[
−r`

〈
{wDρ||n}n∈[N] , {cρ||n}n∈[N]

〉
+ ∆0

j (ρ)
]
D

}
j∈[L]

,{[
r`w

D
ρ||n + u≤D`,ρ||n

]
D

}
n

}
D̃1
ρ =

{ {[
wDρ||n

]
D

}
n
,
{[
−r`

〈
{wDρ||n}n∈[N] ,

{
cj,ρ||n

}
n∈[N]

〉
+ ∆1

j (ρ)
]
D

}
j∈[L]

,{[
r`w

D
ρ||n + v≤D`,ρ||n

]
D

}
n

}
To see this, observe that

• Every secret key SKj can be emulated as follows: From the first two terms in the distribu-
tion, one can emulate encodings of vectors tj in group GD, with knowledge of cj , vectors
{sd}d∈[D], and all the w random elements {wDρ≤d||n}d<D−1,n∈[N] that do not appear in the
above distribution (i.e., except the ones with indexes ρ||n). Since tIPE is canonical, its se-
cret keys tSKj consists of encodings in group GD of values linear in the encoded vector tj .
Therefore, one can emulate tSKj from encodings of tj , with knowledge of tMSK (relying on
the linear homomorphism of group GD).

79

• The ciphertext CT` can be emulated as follows: From the last term in the distribution, one
can emulate encodings of {X̃D

`,n}n in GD, with knowledge of u`,v` and {sd}d∈[D]. Since
tIPE is canonical, from these encodings, one can emulate {dSK`,n}n with knowledge of
dMSK`. Moreover, since vectors {X̃d

`,n}d<D,n at other coordinates d < D depend only on
u`,v`, {sd}d∈[D] and the w random elements {wDρ≤d||n}d<D−1,n∈[N] that do not appear in the

above distribution, one can generate {dCTd`,n}d<D,n honestly. Similarly, one can generate
tCT` encrypting (0||1) honestly.

• The ciphertext CTl for l 6= ` can be emulated as follows: From the first term in the distribu-
tion, one can emulate encodings of {X̃D

l,n}n in GD, with knowledge of ul = vl and {sd}d∈[D],
and rl. Then, like above, from these encodings, one can emulate {dSKl,n}n knowing dMSKl,
and can generate {dCTdl,n}d<D,n and tCTl encrypting (−rl||0) honestly.

Thus, it remains to show that distribution D̃0
ρ and D̃1

ρ are indistinguishable. To show this, we
argue that D̃bρ can be generated from the following distributions.

D̄bρ =
{
pk′ =

[
s′
]
D
,
{
iSK′j =

(〈
s′ , y′j

〉
, y′j

)}
j∈[L]

, iCT′ =
(
[−r`]D,

[
r`s
′ + x′b

]
D

)}
, where

s′ =

({
wDρ||n

}
n

∣∣∣∣∣∣{tj}
j∈[L]

)
, y′j =

({
cj,ρ||n

}
n

∣∣∣∣∣∣ej) , x′b =


{
u≤D`,ρ||n

}
n

∣∣∣∣∣∣ {∆0
j (ρ)

}
j∈[N]

if b = 0{
v≤D`,ρ||n

}
n

∣∣∣∣∣∣ {∆1
j (ρ)

}
j∈[N]

if b = 1
,

tj
$← R, and ej is the unit vector of length L with a single 1 at index j.

In particular, the first term in D̃bρ can be derived from pk′, the second term can be derived by
computing for every j ∈ [L],〈

s′,y′j
〉
[−r`]D +

[
r`tj + ∆b

j(ρ)
]
D

=
[
−r`

〈{
wDρ||n

}
n
,
{
cj,ρ||n

}
n

〉
− r`tj

]
D

+
[
r`tj + ∆b

j(ρ)
]
D

=
[
−r`

〈{
wDρ||n

}
n
,
{
cj,ρ||n

}
n

〉
+ ∆b

j(ρ)
]
D

where the second operand in the left hand side is the N + j + 1th encoding of iCT′, and finally the
last term can be derived from iCT′.

Since for every j ∈ [L],
〈
y′j ,x

′
0

〉
=
〈
y′j ,x

′
1

〉
, it follows directly from the IND-security of IPE

that D̄0
ρ and D̄1

ρ are indistinguishable. Therefore, so are D̃0
ρ and D̃1

ρ, which concludes the indistin-
guishability of H0

ρ and H1
ρ .

8.2.2 Proof of Lemma 15 to 17

The proof for Lemma 15, 16, and 17, is almost identical to the proofs of Lemma 7, 8 and 9, up to
one modification: In every pair of hybrids we want to prove indistinguishability of changing the
values of vectors X’s, and the values of t’s encoded in tSK’s. As discussed above, the changes
in t is “induced” by the changes in the random elements (namely, the s’s and w’s) used in the X
vectors, thus, we simply need to ensure that whenever we apply the SXDH assumption to switch
the random elements, X’s and t’s are changed together accordingly. There is only one technicality
that we need to be careful with. That is, the X vectors encrypted and encoded in dIPE ciphertexts
and secret keys are encoded in different groups {Gd}d, whereas t’s are encoded using tIPE and
always in group GD. Suppose we want to switch, say one random element w to a product sw′ of

80

two random elements, in some vectors Xd
l,n and tj simultaneously. The SXDH assumption does

not hold inGd andGD simultaneously since the two groups can be paired together. To resolve this
issue, we will add an additional hybrid step, to first swap all vectors encrypted at coordinate dwith
vectors encrypted at coordinate D in the lth ciphertext CTl, that is, we encrypt vectors {Xd

l,n}n at
coordinate D, and {XD

l,n}n at coordinate d. By the function hiding property of dIPE, “swapping
coordinates” is indistinguishable since all inner products stay the same. Now, both Xd

l,n and tj are
encoded in group GD, and the SXDH assumption can be applied to switch random element w to
w′s in them simultaneously. Finally, “swap” coordinateD with d again to arrive at the distribution
wanted.

Since most parts of the proofs are identical to that in Section 7.3.4, below we sketch the proofs,
emphasizing on the modification.

As in Section 7.3.4, we construct additional hybrid distributions Gbρ for prefixes ρ ∈ [N]d
?

of
any length d? from 1 to D − 1, and show the following lemma, from which Lemma 15, 16, and 17
follow, using the same arguments as in Section 7.3.4 (i.e., proof of Lemma 7, 8, and 9).

Lemma 19. There exist hybrids {Gbρ(λ)} for b ∈ {0, 1} and ρ ∈ [N]d
? where d? ∈ [D − 1], such that, the

following holds.

Rule 1: Ensembles {G0
1(λ)} and {Init(λ)} are indistinguishable.

Rule 2: Ensembles {G1
N (λ)} and {Mid′(λ)} are indistinguishable

Rule 3: For every ρ ∈ [N]d
? with 1 ≤ d? < D−1, ensembles {G0

ρ||1(λ)} and {G0
ρ(λ)}, are indistinguish-

able.

Rule 4: For every ρ ∈ [N]d
? with 1 ≤ d? < D−1, ensembles {G1

ρ||N (λ)} and {G1
ρ(λ)} are indistinguish-

able.

Rule 5: For every ρ ∈ [N]D−1 and every b, ensembles {Gbρ(λ)} and {Hb
ρ(λ)} are indistinguishable.

Rule 6: For every ρ ∈ [N]d
? with 1 ≤ d? ≤ D − 1, such that, ρd? 6= N , ensembles {G1

ρ(λ)} and
{G0

ρ+1(λ)} are identical.

Proof. We first formally describe the G hybrid distributions.

Hybrid Gbρ(λ): For 1 ≤ d? ≤ D − 1 and ρ ∈ [N]d
?
, distribution Gbρ(λ) is identical to the initial

hybrid distribution Init, except that the ciphertexts {CTl} encode vectors {X̂d
l,n}, and the

secret keys {tSKj} encode vectors {tj} different from that in Init. The values of X̂d
l,n are

described in Figure 6, and vectors tj ’s depend on Ŝ(ρ) defined below

∀ρ ∈ [N]d
?
, d? ∈ [D − 1], I ∈ [N]D, let ρ≤d−1 be the longest prefix that I shares with ρ

(Ŝ(ρ))I =

{
wd

?

ρ s
d?+1
Id?+1

· · · sDID if d− 1 = d?

wdρ≤d−1||Ids
d+1
Id+1
· · · sDID if d− 1 < d? .

(15)

Note that the vector Ŝ is defined similarly as vector S in Hb
ρ, except that it handles prefixes

of any length no longer thanD−1, as opposed to length exactlyD−1. In addition, the value
of (Ŝ(ρ))I for indexes that contain prefix ρ entirely is differently: (S(ρ))I = wDρ||ID , whereas

(Ŝ(ρ))I = wD−1
ρ sDID as defined in the first case above. (This matches the way how X̄d?

l,n are
set.)

81

Hybrid distribution Gbρ(λ) for 1 ≤ d? ≤ D − 1 and ρ ∈ [N]d
?

Generate the following:

• msk
$← FE.Setup(1λ, pp) and parse msk = (sMSK, {dMSKl}l∈[L]) and sMSK = (k1,k2).

• For every l ∈ [L], sample rl
$← R and dMSKl

$← dIPE.Setup(1λ, pp).

Generate CTl = (tCTl, {dCTdl,n, dSKl,n}d,n) as follows:

tCTl
$← tIPE.Enc

(
tMSK,

{
(−rl||0) if l 6= `

(0||1) if l = `

) {
dCTdl,n

$← dIPE.Enc(dMSKl, X̂
d
l,n)

}
d<D,n∈[N]{

dSKl,n
$← dIPE.KeyGen(dMSKl, X̂

D
l,n)

}
n∈[N]

where the vectors {X̂d
l,n}d∈[D],n∈[N] are set as follows

Case 1: d > d?.

X̂d
l,n = µdl,n||νdl,n︸ ︷︷ ︸ µdl,n||νdl,n︸ ︷︷ ︸ · · · µdl,n||νdl,n︸ ︷︷ ︸ 0︸︷︷︸

slot 1 slot 2 · · · slot d? slot > d?

Case 2: d = d?

X̂d?

l,n = µd
?

l,n||νd
?

l,n︸ ︷︷ ︸ · · · µd
?

l,n||νd
?

l,n︸ ︷︷ ︸

0 || ν̃d

?

l,ρ≤d?−1||n if n < ρd?

µ̃d
?

l,ρ≤d?−1||n || 0 if n > ρd?

0 || ν̃d
?

l,ρ if n = ρd? and in G1
ρ

µ̃d
?

l,ρ || 0 if n = ρd? and in G0
ρ︸ ︷︷ ︸

0︸︷︷︸
slot 1 · · · slot d? − 1 slot d? slot > d?

Case 3: d < d?. (In this case X̂d
l,n = X̃d

l,n in hybrid Hb
ρ.)

X̂d
l,n = µdl,n||νdl,n︸ ︷︷ ︸ · · · µdl,n||νdl,n︸ ︷︷ ︸


0 || ν̃dl,ρ≤d−1||n if n < ρd

µ̃dl,ρ≤d−1||n || 0 if n > ρd

0 || 0 if n = ρd︸ ︷︷ ︸


0 if n < ρd

0 if n > ρd

1 if n = ρd︸ ︷︷ ︸
slot 1 · · · slot d− 1 slot d slot > d

• For every j ∈ [L], generate SKj = (cj , tSKj) for coefficient vector cj with

tSKj
$← tIPE.KeyGen

(
tMSK,

〈
Ŝ(ρ) , cj

〉
|| − r`

〈
Ŝ(ρ) , cj

〉
+ ∆b

j(ρ)
)
,

where Ŝ(ρ) is defined in Equation 15 and,

∆b
j(ρ) =

{∑
ρ′<ρ δj(ρ

′) in H0
ρ∑

ρ′≤ρ δj(ρ
′) in H1

ρ

with δj(ρ
′) =

∑
I=ρ′||n
n∈[N]

cj,I

(
u≤D`,I − v

≤D
`,I

)

Output {SKl, CTl}l∈[L]

Figure 10: Hybrid Gbρ(λ) for 1 ≤ d? ≤ D − 1 and ρ ∈ [N]d
?

for proving security of FED,N

82

Observe that when d? = 1 and ρ ∈ [N], (Ŝ(ρ))I = w1
I1
s2
I2
· · · sDID for all I . By Fact 3, w1

n = s1
n,

we have that Ŝ(ρ) = ⊗s≤D, the tensor product of {sd}d.

Next, we prove each of the rules.

Proof of Rule 1: G0
1 ≈ Init. Since ρ = 1 has length 1, as observed above, Ŝ(ρ) = ⊗s≤D. Thus

the vectors {tj} encoded in {tSKj} in G0
1 are identical to that in Init. Therefore, the only differ-

ence between these two hybrids are the vectors encrypted in ciphertexts {CTl}, which consists of
ciphertexts and secret keys of dIPE. In G0

1 the following vectors are encrypted:

X̂1
l,n = µ̃1

l,n||0︸ ︷︷ ︸
∣∣∣∣∣∣ 0

slot 1

∀ d > 1, X̂d
l,n = µdl,n||νdl,n︸ ︷︷ ︸

∣∣∣∣∣∣ 0

slot 1

In Init, the following vectors are encrypted

Xd
l,n = µdl,n||0︸ ︷︷ ︸

∣∣∣∣∣∣ 0

slot 1

By Fact 3, µ̃1
l,n = µ1

l,n. Thus, for every l and every combination I , the inner product of vectors
(X̂1

l,I1
, · · · , X̂D

l,ID
) in G0

1 and that of vectors (X1
l,I1
, · · · ,XD

l,ID
) in Init are identical. Thus, it follows

from the security of dIPE that G0
1 and Init are indistinguishable.

Proof of Rule 2: G1
Γ ≈Mid′. This rule follows syntactically the same proof for Rule 1.

Proof of Rule 3: G0
ρ||1 ≈ G0

ρ, for every ρ ∈ [N]d
?

with 1 ≤ d? < D − 1. Fix one such ρ and d?.

Hybrids G0
ρ||1 and G0

ρ differ in the values of {X̂d
l,n} for d ≥ d?, as well as the Ŝ vector from which

{tj} encoded in {tSKj} are derived form.

In G0
ρ||1, the X̂ vectors have values,

X̂d?

l,n = µd
?

l,n||νd
?

l,n · · · µd
?

l,n||νd
?

l,n


0 || ν̃d

?

l,ρ≤d?−1||n if n < ρd?

µ̃d
?

l,ρ≤d?−1||n || 0 if n > ρd?

0 || 0 if n = ρd?


0 if n < ρd?

0 if n > ρd?

1 if n = ρd?

X̂d?+1
l,n = µd

?+1
l,n ||ν

d?+1
l,n · · · µd

?+1
l,n ||ν

d?+1
l,n µd

?+1
l,n ||ν

d?+1
l,n µ̃d

?+1
l,ρ||n || 0 || 0

X̂d
l,n = µdl,n||νdl,n · · · µdl,n||νdl,n µdl,n||νdl,n µdl,n || νdl,n|| 0

slot 1 · · · slot d? − 1 slot d? slot ≥ d? + 1

where the last line is for d > d? + 1. In addition, Ŝ(ρ||1) is define as

∀ I ∈ [N]D, let d− 1 be the length of the longest prefix that I shares with ρ||1

(Ŝ(ρ||1))I =

{
wd

?+1
ρ||1 sd

?+2
Id?+2

· · · sDID if d− 1 = d? + 1

wdρ≤d−1||Ids
d+1
Id+1
· · · sDID if d− 1 < d? + 1 .

83

Note that the vectors X̂’s and Ŝ depend on different w elements. In particular, the N random
element {wd?+1

ρ||n }n∈[N] appears in (Ŝ(ρ||1))I for every I that starts with ρ, as well as in vectors

{X̄d?+1
l,n }l,n, whose slot d? + 1 contains

µ̃d
?+1
l,ρ||n =

{
u≤d

?+1
ρ||n || wd?+1

ρ||n if d? + 1 < D

u≤Dρ||n || rlw
D
ρ||n if d? + 1 = D

Moving to G̃0
ρ+1 We first show that it is indistinguishable to switch every appearance of the ran-

dom element wd
?+1
ρ||n with the product wd

?

ρ s
d?+1
n (the rest stays the same) – call the resulting distri-

bution G̃0
ρ||1. More precisely, the vectors {X̂d?+1

l,n }l,n now becomes the following

X̂d?+1
l,n = µd

?+1
l,n ||ν

d?+1
l,n · · · µd

?+1
l,n ||ν

d?+1
l,n µd

?+1
l,n ||ν

d?+1
l,n µ̃d

?

l,ρµ
d?+1
l,n || 0 || 0

slot 1 · · · slot d? − 1 slot d? slot ≥ d? + 1

,

where the last slot contains value

µ̃d
?

ρ,lµ
d?+1
l,n =

{
u≤d

?+1
ρ||n || wd?ρ sd

?+1
n if d? + 1 < D

u≤Dρ||n || rlw
D−1
ρ sd

?+1
n if d? + 1 = D

.

Correspondingly, in Ŝ(ρ||1), for every I with prefix ρ, that is, I = ρ||I≥d?+1, the I th element is
replaced with the corresponding element in Ŝ(ρ)I ,

(Ŝ(ρ))I = wd
?

ρ s
d?+1
Id?+1

sd
?+2
Id?+2

· · · sDID

Note that by definition of Ŝ(?), Ŝ(ρ) and Ŝ(ρ||1) differ only at indexes that start with ρ. Therefore,
in G̃bρ||1, the vectors tj ’s encoded in tSKj ’s are derived from Ŝ(ρ) as opposed to Ŝ(ρ||1).

Claim 2. Hybrids G0
ρ||1(λ) and G̃0

ρ||1(λ) are indistinguishable.

Proof. To show the claim, we consider yet another two hybrids, L0
ρ||1 and L̃0

ρ||1, which are identical

to G0
ρ||1(λ) and G̃0

ρ||1(λ) respectively, except that for every l, n, the vector X̂d?+1
l,n is encoded in

dSKl,n contained in CTl, whereas the vector X̂D
l,n is encrypted in dCTd

?+1
l,n in CTl. In short, the

vectors encrypted at coordinate d? + 1 are swapped with the vectors encoded at coordinate D.
Since swapping does not change the set of inner product outputs that can be computed from
{dSKl,n, dCTdl,n}d<D,n for every l (secret keys and ciphertexts with different l indexes cannot be
decrypted together since they are generated using independently sampled master secret keys), by
the security of dIPE, L0

ρ||1 and G0
ρ||1, as well as L̃0

ρ||1 and G̃0
ρ||1 are indistinguishable.

Thus, it remains to show that L0
ρ||1 and L̃0

ρ||1 are indistinguishable. The only difference between

them is that in the former random element {wd?+1
ρ||n }n are used, whereas in the latter, {wd?ρ sd

?+1
n }n

are used. Recall that these elements only appear in the Ŝ and {X̂d?+1
l,n }l,n vectors, encoded in

{tSKj}j and {dSKl,n} respectively. By the fact that tIPE and dIPE are canonical, G0
ρ||1 and G̃0

ρ||1
can be generated from the following distributions respectively,{[

wd
?

ρ

]
D
,
{[
sd
?+1
n

]
D

}
n
,
{[
wd

?+1
ρ||n

]
D

}
n

}
{[
wd

?

ρ

]
D
,
{[
sd
?+1
n

]
D

}
n
,
{[
wd

?

ρ s
d?+1
n

]
D

}
n

}
84

This is because, from the above encodings, one can generate the encodings of X̂d?+1
n,l in GD with

knowledge of values of u’s, v’s, and rl, as well as encodings of Ŝ(ρ||1) or Ŝ(ρ) in GD, with knowl-
edge of all the s and w elements that do not appear in the above distributions. From these encod-
ings, one can emulate every dSKl,n and tSKj with knowledge of dMSKl and tMSKj , and further
hybrids G0

ρ+1 or G̃0
ρ.

Finally, the indistinguishability of the above two distributions follow directly from the SXDH
assumption on group GD, which concludes the indistinguishability of G0

ρ||1 and G̃0
ρ||1.

Moving to G0
ρ It remains to show that G̃0

ρ||1 is indistinguishable from G0
ρ, we have already argued

above that these two hybrids depend on the same Ŝ(ρ) vector. Thus, their only difference lies in
the X̂ vectors. In G0

ρ, the value of these vectors are (the difference from that in G̃0
ρ||1 is underlined).

X̂d?

l,n = µd
?

l,n||νd
?

l,n · · · µd
?

l,n||νd
?

l,n


0 || ν̃d

?

l,ρ≤d?−1||n if n < ρd?

µ̃d
?

l,ρ≤d?−1||n || 0 if n > ρd?

µ̃d
?

l,ρ || 0 if n = ρd?

0

X̂d?+1
l,n = µd

?+1
l,n ||ν

d?+1
l,n · · · µd

?+1
l,n ||ν

d?+1
l,n µd

?+1
l,n ||ν

d?+1
l,n 0

X̂d
l,n = µdl,n||νdl,n · · · µdl,n||νdl,n µdl,n||νdl,n 0

slot 1 · · · slot d? − 1 slot d? slot ≥ d? + 1

Examine the different values of {X̂d
l,n} for d ≥ d? in G̃0

ρ||1 and G0
ρ, and the values of {X̂d

l,n} for
d < d? that are the same in these two hybrids (as described in Case 3 of Figure 10). They satisfy
that for every combination I ∈ [N]D and l, the inner product of {X̂d

Id,l
}d in G̃0

ρ||1 andG0
ρ is identical.

Therefore, by the function hiding of dIPE, these two hybrids are indistinguishable.

Proof of Rule 4: G1
ρ||Γ ≈ G1

ρ, for every ρ ∈ [N]d
?

with 1 ≤ d? < D − 1. This rule follows
syntactically from the same proof for Rule 3.

Proof of Rule 5: Gbρ ≈ Hb
ρ, for every ρ ∈ [N]D−1 and every b. The proof of this rule is again very

similar to that of Rule 3 and 4. We here sketch the proof. The difference between Gbρ and Hb
ρ lies in

the values of vectors {X̂d
l,n} and {X̃d

l,n} for d = D − 1 and D, as well as in the values of Ŝ(ρ)I and
S(ρ)I for these indexes I = ρ||n that start with ρ.

In hybrid Hb
ρ, the vectors {X̃D−1

l,n , X̃D
l,n}n are set to the following.

X̃D−1
l,n = µD−1

l,n ||ν
D−1
l,n · · · µD−1

l,n ||ν
D−1
l,n


0 || ν̃D−1

l,ρ≤D−2||n if n < ρD−1

µ̃D−1
l,ρ≤D−2||n || 0 if n > ρD−1

0 || 0 if n = ρD−1

0

X̃D
l,n = µDl,n||νDl,n · · · µDl,n||νDl,n µDl,n||νDl,n


〈
µ̃Dl,ρ||n,1

〉
if in H0

ρ〈
ν̃Dl,ρ||n,1

〉
if in H1

ρ

slot 1 · · · slot D − 2 slot D − 1 slot D

85

Moreover, for every index I = ρ||n,

(S(ρ))ρ||n = wDρ||n

It follows from the SXDH assumption w.r.t. group GD that Hb
ρ is indistinguishable to H̃b

ρ, where
every random element {wDρ||n}n is replaced with {wD−1

ρ sDn }n. This changes the values of vectors

{X̃D
l,n} to the following

X̃D
l,n = µDl,n||νDl,n · · · µDl,n||νDl,n µDl,n||νDl,n


〈
µ̃D−1
l,ρ µDl,n,1

〉
if in H̃0

ρ〈
ν̃D−1
l,ρ νDl,n,1

〉
if in H̃1

ρ

slot 1 · · · slot D − 2 slot D − 1 slot D

Moreover, it changes the value of the S vector for every index I = ρ||n to

(Ŝ(ρ))ρ||n = wD−1
ρ sDn

Since I = ρ||n are the only indexes where S(ρ) and Ŝ(ρ) differ, we have that H̃b
ρ uses Ŝ(ρ).

It now remains to show that H̃b
ρ is indistinguishable to Gbρ. They both use vector Ŝ(ρ), and their

only difference is that Gbρ encodes the following vectors {X̂D−1
l,n , X̂D

l,n}n.

X̂D−1
l,n = µD−1

l,n ||ν
D−1
l,n · · · µD−1

l,n ||ν
D−1
l,n


0 || ν̃D−1

l,ρ≤D−2||n if n < ρD−1

µ̃D−1
l,ρ≤D−2||n || 0 if n > ρD−1

0 || ν̃D−1
l,ρ if n = ρD−1 and in G1

ρ

µ̃D−1
l,ρ || 0 if n = ρD−1 and in G0

ρ

0

X̂D
l,n = µDl,n||νDl,n · · · µDl,n||νDl,n µDl,n||νDl,n 0

slot 1 · · · slot D − 2 slot D − 1 slot D

For all other coordinates d < D − 1, X̂d
l,n = X̃d

l,n in H̃b
ρ. Observe that the inner products of all

combination of vectors X̃’s in H̃b
ρ and X̂’s in Gbρ are identical. Thus, it follows from the security of

dIPE that these two hybrids are indistinguishable.

Proof of Rule 6: G1
ρ = G0

ρ+1 for every ρ ∈ [N]d
?

with 1 ≤ d? ≤ D − 1, such that, ρd? 6= N .
Fix such a ρ and d?. Since ρd? 6= N , ρ + 1 has form ρ<d? ||(ρd? + 1), where ρd? + 1 is the letter
that follows immediately after ρd? in the alphabet [N]. In this case, vectors {X̂d

l,n}d,l,n are identical
the two hybrids. (See the argument for Rule 6 in proof of Lemma 11). Moreover, observe that by
definition in Equation 15, for ρ and ρ+1 that have the same length and differ only at the last letter,
Ŝ(ρ) = Ŝ(ρ+ 1). Therefore, G0

ρ and G1
ρ are identical.

Acknowledgements. The author thanks Nir Bitansky, Stefano Tessaro, and Vinod Vaikuntanathan
for many helpful discussions and insights, and Benny Applebaum for sharing his expertise.

Huijia Lin was partially supported by NSF grants CNS-1528178 and CNS-1514526.

86

References

[AB15] Benny Applebaum and Zvika Brakerski. Obfuscating circuits via composite-order
graded encoding. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015,
Part II, volume 9015 of LNCS, pages 528–556, Warsaw, Poland, March 23–25, 2015.
Springer, Heidelberg, Germany.

[ABCP15] Michel Abdalla, Florian Bourse, Angelo De Caro, and David Pointcheval. Simple
functional encryption schemes for inner products. In Jonathan Katz, editor, Public-
Key Cryptography - PKC 2015 - 18th IACR International Conference on Practice and Theory
in Public-Key Cryptography, Gaithersburg, MD, USA, March 30 - April 1, 2015, Proceed-
ings, volume 9020 of Lecture Notes in Computer Science, pages 733–751. Springer, 2015.

[AGIS14] Prabhanjan Vijendra Ananth, Divya Gupta, Yuval Ishai, and Amit Sahai. Optimiz-
ing obfuscation: Avoiding Barrington’s theorem. In Gail-Joon Ahn, Moti Yung, and
Ninghui Li, editors, ACM CCS 14, pages 646–658, Scottsdale, AZ, USA, November 3–
7, 2014. ACM Press.

[AIK04] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in nc0. In
FOCS, pages 166–175, 2004.

[AIK06] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Computationally private ran-
domizing polynomials and their applications. Computational Complexity, 15(2):115–
162, 2006.

[AIK08] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. On pseudorandom generators
with linear stretch in nc0. Computational Complexity, 17(1):38–69, 2008.

[AJ15] Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from com-
pact functional encryption. In Rosario Gennaro and Matthew J. B. Robshaw, editors,
CRYPTO 2015, Part I, volume 9215 of LNCS, pages 308–326, Santa Barbara, CA, USA,
August 16–20, 2015. Springer, Heidelberg, Germany.

[AJS15] Prabhanjan Ananth, Abhishek Jain, and Amit Sahai. Achieving compactness gener-
ically: Indistinguishability obfuscation from non-compact functional encryption.
IACR Cryptology ePrint Archive, 2015:730, 2015.

[AL16] Benny Applebaum and Shachar Lovett. Algebraic attacks against random local func-
tions and their countermeasures. In Daniel Wichs and Yishay Mansour, editors, Pro-
ceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2016, Cambridge, MA, USA, June 18-21, 2016, pages 1087–1100. ACM, 2016.

[Ale03] Michael Alekhnovich. More on average case vs approximation complexity. In 44th
Symposium on Foundations of Computer Science (FOCS 2003), 11-14 October 2003, Cam-
bridge, MA, USA, Proceedings, pages 298–307. IEEE Computer Society, 2003.

[App12] Benny Applebaum. Pseudorandom generators with long stretch and low locality
from random local one-way functions. In Howard J. Karloff and Toniann Pitassi,
editors, Proceedings of the 44th Symposium on Theory of Computing Conference, STOC
2012, New York, NY, USA, May 19 - 22, 2012, pages 805–816. ACM, 2012.

87

[BGI+01a] Boaz Barak, Oded Goldreich, Rusell Impagliazzo, Steven Rudich, Amit Sahai, Salil
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In Advances
in Cryptology CRYPTO 2001, pages 1–18. Springer, 2001.

[BGI+01b] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In Joe Kilian,
editor, CRYPTO 2001, volume 2139 of LNCS, pages 1–18, Santa Barbara, CA, USA,
August 19–23, 2001. Springer, Heidelberg, Germany.

[BGJ+16] Nir Bitansky, Shafi Goldwasser, Abhishek Jain, Omer Paneth, Vinod Vaikuntanathan,
and Brent Waters. Time-lock puzzles from randomized encodings. In Madhu Sudan,
editor, Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer
Science, Cambridge, MA, USA, January 14-16, 2016, pages 345–356. ACM, 2016.

[BGK+14] Boaz Barak, Sanjam Garg, Yael Tauman Kalai, Omer Paneth, and Amit Sahai. Protect-
ing obfuscation against algebraic attacks. In Phong Q. Nguyen and Elisabeth Oswald,
editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 221–238, Copenhagen, Den-
mark, May 11–15, 2014. Springer, Heidelberg, Germany.

[BGL+15] Nir Bitansky, Sanjam Garg, Huijia Lin, Rafael Pass, and Sidharth Telang. Succinct
randomized encodings and their applications. In Rocco A. Servedio and Ronitt Ru-
binfeld, editors, Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory
of Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015, pages 439–448. ACM,
2015.

[BJK15] Allison Bishop, Abhishek Jain, and Lucas Kowalczyk. Function-hiding inner prod-
uct encryption. In Tetsu Iwata and Jung Hee Cheon, editors, Advances in Cryptology -
ASIACRYPT 2015 - 21st International Conference on the Theory and Application of Cryp-
tology and Information Security, Auckland, New Zealand, November 29 - December 3, 2015,
Proceedings, Part I, volume 9452 of Lecture Notes in Computer Science, pages 470–491.
Springer, 2015.

[BNPW16] Nir Bitansky, Ryo Nishimaki, Alain Passelègue, and Daniel Wichs. From crypto-
mania to obfustopia through secret-key functional encryption. In Martin Hirt and
Adam D. Smith, editors, Theory of Cryptography - 14th International Conference, TCC
2016-B, Beijing, China, October 31 - November 3, 2016, Proceedings, Part II, volume 9986
of Lecture Notes in Computer Science, pages 391–418, 2016.

[BPR15] Nir Bitansky, Omer Paneth, and Alon Rosen. On the cryptographic hardness of find-
ing a nash equilibrium. In Guruswami [Gur15], pages 1480–1498.

[BPW16] Nir Bitansky, Omer Paneth, and Daniel Wichs. Perfect structure on the edge of chaos
- trapdoor permutations from indistinguishability obfuscation. In Theory of Cryptog-
raphy - 13th International Conference, TCC 2016-A, Tel Aviv, Israel, January 10-13, 2016,
Proceedings, Part I, pages 474–502, 2016.

[BQ12] Andrej Bogdanov and Youming Qiao. On the security of goldreich’s one-way func-
tion. Computational Complexity, 21(1):83–127, 2012.

[BR14] Zvika Brakerski and Guy N. Rothblum. Virtual black-box obfuscation for all circuits
via generic graded encoding. In Yehuda Lindell, editor, TCC 2014, volume 8349 of

88

LNCS, pages 1–25, San Diego, CA, USA, February 24–26, 2014. Springer, Heidelberg,
Germany.

[BS02] Dan Boneh and Alice Silverberg. Applications of multilinear forms to cryptography.
IACR Cryptology ePrint Archive, 2002:80, 2002.

[BSW12] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: a new vision for
public-key cryptography. Commun. ACM, 55(11):56–64, 2012.

[BV15] Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation from func-
tional encryption. In IEEE 56th Annual Symposium on Foundations of Computer Science,
FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, pages 171–190, 2015.

[CEMT09] James Cook, Omid Etesami, Rachel Miller, and Luca Trevisan. Goldreich’s one-way
function candidate and myopic backtracking algorithms. In TCC, pages 521–538,
2009.

[CHJV15] Ran Canetti, Justin Holmgren, Abhishek Jain, and Vinod Vaikuntanathan. Succinct
garbling and indistinguishability obfuscation for RAM programs. In Rocco A. Serve-
dio and Ronitt Rubinfeld, editors, Proceedings of the Forty-Seventh Annual ACM on
Symposium on Theory of Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015,
pages 429–437. ACM, 2015.

[CHN+15] Aloni Cohen, Justin Holmgren, Ryo Nishimaki, Vinod Vaikuntanathan, and Daniel
Wichs. Watermarking cryptographic capabilities. IACR Cryptology ePrint Archive,
2015:1096, 2015. To Appear in ACM STOC 2016.

[CLT13] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Practical multilinear
maps over the integers. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013,
Part I, volume 8042 of LNCS, pages 476–493, Santa Barbara, CA, USA, August 18–22,
2013. Springer, Heidelberg, Germany.

[CLT15] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. New multilinear
maps over the integers. In Rosario Gennaro and Matthew J. B. Robshaw, editors,
CRYPTO 2015, Part I, volume 9215 of LNCS, pages 267–286, Santa Barbara, CA, USA,
August 16–20, 2015. Springer, Heidelberg, Germany.

[CM01] M. Cryan and P. B. Miltersen. On pseudorandom generators in nc0. In Proc. 26th
MFCS, 2001.

[DDM16] Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay. Functional encryption for
inner product with full function privacy. In Chen-Mou Cheng, Kai-Min Chung,
Giuseppe Persiano, and Bo-Yin Yang, editors, Public-Key Cryptography - PKC 2016 -
19th IACR International Conference on Practice and Theory in Public-Key Cryptography,
Taipei, Taiwan, March 6-9, 2016, Proceedings, Part I, volume 9614 of Lecture Notes in
Computer Science, pages 164–195. Springer, 2016.

[DN15] Yevgeniy Dodis and Jesper Buus Nielsen, editors. Theory of Cryptography - 12th Theory
of Cryptography Conference, TCC 2015, Warsaw, Poland, March 23-25, 2015, Proceedings,
Part II, volume 9015 of Lecture Notes in Computer Science. Springer, 2015.

89

[GGG+14] Shafi Goldwasser, S. Dov Gordon, Vipul Goyal, Abhishek Jain, Jonathan Katz, Feng-
Hao Liu, Amit Sahai, Elaine Shi, and Hong-Sheng Zhou. Multi-input functional en-
cryption. In Phong Q. Nguyen and Elisabeth Oswald, editors, Advances in Cryptology
- EUROCRYPT 2014 - 33rd Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques, Copenhagen, Denmark, May 11-15, 2014. Proceedings,
volume 8441 of Lecture Notes in Computer Science, pages 578–602. Springer, 2014.

[GGH13a] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal
lattices. In Thomas Johansson and Phong Q. Nguyen, editors, Advances in Cryptology -
EUROCRYPT 2013, 32nd Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Athens, Greece, May 26-30, 2013. Proceedings, volume 7881
of Lecture Notes in Computer Science, pages 1–17. Springer, 2013.

[GGH+13b] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. In 54th Annual IEEE Symposium on Foundations of Computer Science, FOCS
2013, 26-29 October, 2013, Berkeley, CA, USA, pages 40–49. IEEE Computer Society,
2013.

[GGH15] Craig Gentry, Sergey Gorbunov, and Shai Halevi. Graph-induced multilinear maps
from lattices. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015, Part II,
volume 9015 of LNCS, pages 498–527, Warsaw, Poland, March 23–25, 2015. Springer,
Heidelberg, Germany.

[GGHR14] Sanjam Garg, Craig Gentry, Shai Halevi, and Mariana Raykova. Two-round secure
MPC from indistinguishability obfuscation. In Lindell [Lin14], pages 74–94.

[GGHZ16] Sanjam Garg, Craig Gentry, Shai Halevi, and Mark Zhandry. Functional encryption
without obfuscation. In Eyal Kushilevitz and Tal Malkin, editors, Theory of Cryptog-
raphy - 13th International Conference, TCC 2016-A, Tel Aviv, Israel, January 10-13, 2016,
Proceedings, Part II, volume 9563 of Lecture Notes in Computer Science, pages 480–511.
Springer, 2016.

[GGSW13] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryption and
its applications. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors,
Symposium on Theory of Computing Conference, STOC’13, Palo Alto, CA, USA, June 1-4,
2013, pages 467–476. ACM, 2013.

[GHRW14] Craig Gentry, Shai Halevi, Mariana Raykova, and Daniel Wichs. Outsourcing pri-
vate RAM computation. In 55th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014, pages 404–413. IEEE
Computer Society, 2014.

[GLSW15] Craig Gentry, Allison Bishop Lewko, Amit Sahai, and Brent Waters. Indistinguisha-
bility obfuscation from the multilinear subgroup elimination assumption. In Gu-
ruswami [Gur15], pages 151–170.

[GMS16] Sanjam Garg, Pratyay Mukherjee, and Akshayaram Srinivasan. Obfuscation without
the vulnerabilities of multilinear maps. IACR Cryptology ePrint Archive, 2016:390,
2016.

90

[Gol00] Oded Goldreich. Candidate one-way functions based on expander graphs. Electronic
Colloquium on Computational Complexity (ECCC), 7(90), 2000.

[GP15] Sanjam Garg and Antigoni Polychroniadou. Two-round adaptively secure MPC from
indistinguishability obfuscation. In Dodis and Nielsen [DN15], pages 614–637.

[Gur15] Venkatesan Guruswami, editor. IEEE 56th Annual Symposium on Foundations of Com-
puter Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015. IEEE Computer So-
ciety, 2015.

[IK02] Yuval Ishai and Eyal Kushilevitz. Perfect constant-round secure computation via
perfect randomizing polynomials. In ICALP, pages 244–256, 2002.

[KLW15] Venkata Koppula, Allison Bishop Lewko, and Brent Waters. Indistinguishability
obfuscation for turing machines with unbounded memory. In Rocco A. Servedio
and Ronitt Rubinfeld, editors, 47th ACM STOC, pages 419–428, Portland, OR, USA,
June 14–17, 2015. ACM Press.

[KSW08] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting dis-
junctions, polynomial equations, and inner products. In EUROCRYPT 2008, pages
146–162, 2008.

[Lin14] Yehuda Lindell, editor. Theory of Cryptography - 11th Theory of Cryptography Confer-
ence, TCC 2014, San Diego, CA, USA, February 24-26, 2014. Proceedings, volume 8349 of
Lecture Notes in Computer Science. Springer, 2014.

[Lin16] Huijia Lin. Indistinguishability obfuscation from constant-degree graded encoding
schemes, 2016. To Appear in Eurocrypt’16.

[LOS+10] Allison B. Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and Brent
Waters. Fully secure functional encryption: Attribute-based encryption and (hierar-
chical) inner product encryption. In Henri Gilbert, editor, EUROCRYPT 2010, volume
6110 of LNCS, pages 62–91, French Riviera, May 30 – June 3, 2010. Springer, Heidel-
berg, Germany.

[LSS14] Adeline Langlois, Damien Stehlé, and Ron Steinfeld. Gghlite: More efficient multi-
linear maps from ideal lattices. In Phong Q. Nguyen and Elisabeth Oswald, editors,
Advances in Cryptology - EUROCRYPT 2014 - 33rd Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Copenhagen, Denmark, May 11-
15, 2014. Proceedings, volume 8441 of Lecture Notes in Computer Science, pages 239–256.
Springer, 2014.

[LV16] Huijia Lin and Vinod Vaikuntanathan. Indistinguishability obfuscation from ddh-
like assumptions on constant-degree graded encodings. In IEEE 57th Annual Sym-
posium on Foundations of Computer Science, FOCS 2016, New Brunswick, NJ, USA, 9-11
October, 2016, 2016.

[MST03] Elchanan Mossel, Amir Shpilka, and Luca Trevisan. On e-biased generators in NC0.
In 44th Symposium on Foundations of Computer Science (FOCS 2003), 11-14 October 2003,
Cambridge, MA, USA, Proceedings, pages 136–145, 2003.

91

[MSZ16] Eric Miles, Amit Sahai, and Mark Zhandry. Annihilation attacks for multilinear
maps: Cryptanalysis of indistinguishability obfuscation over GGH13. IACR Cryp-
tology ePrint Archive, 2016:147, 2016.

[O’N10] Adam O’Neill. Definitional issues in functional encryption. Cryptology ePrint
Archive, Report 2010/556, 2010. http://eprint.iacr.org/.

[OW14] Ryan O’Donnell and David Witmer. Goldreich’s PRG: evidence for near-optimal
polynomial stretch. In IEEE 29th Conference on Computational Complexity, CCC 2014,
Vancouver, BC, Canada, June 11-13, 2014, pages 1–12, 2014.

[PST14] Rafael Pass, Karn Seth, and Sidharth Telang. Indistinguishability obfuscation from
semantically-secure multilinear encodings. In Juan A. Garay and Rosario Gennaro,
editors, CRYPTO 2014, Part I, volume 8616 of LNCS, pages 500–517, Santa Barbara,
CA, USA, August 17–21, 2014. Springer, Heidelberg, Germany.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable
encryption, and more. In David B. Shmoys, editor, 46th ACM STOC, pages 475–484,
New York, NY, USA, May 31 – June 3, 2014. ACM Press.

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In
23rd Annual Symposium on Foundations of Computer Science, Chicago, Illinois, USA, 3-5
November 1982, pages 160–164. IEEE Computer Society, 1982.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract).
In FOCS, pages 162–167, 1986.

[Zim15] Joe Zimmerman. How to obfuscate programs directly. In Elisabeth Oswald and Marc
Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 439–467,
Sofia, Bulgaria, April 26–30, 2015. Springer, Heidelberg, Germany.

92

	Introduction
	Our Results
	Local Pseudo-Random Generators
	Concurrent and Independent Work
	Organization

	Technical Overview
	Bootstrapping
	Quadratic Secret-Key FE
	Degree-D Secret-Key FE
	Simple Function Hiding IPE

	Preliminaries
	-Indistinguishability
	Indistinguishability Obfuscation
	Pseudorandom Generator
	Randomized Encodings
	Functional Encryption
	Public-Key Functional Encryption
	Secret Key Functional Encryption
	FE for P/poly, NC 1 and Compactness

	Zero-Testing FE for Arithmetic Functions

	Degree-D Asymmetric Multilinear Maps with SXDH Assumption
	IO from Locality-L PRG and Degree-L FE
	IO from Degree-D PRG and Degree-(3D+2) FE
	IO from Locality-L PRG and Degree-L FE

	Inner Product Encryption
	Definition of Weak Function Hiding
	Review of the ABCP Public Key IPE
	Our New Weakly Function Hiding IPE
	Our New Function Hiding IPE
	Special-Purpose Two-Slot IPE
	Special Properties of Our Two-Slot IPE

	High-Degree IPE
	Definition of HIPE
	Degree-D HIPE from Degree-D MMaps
	Overview of Construction
	Construction — The Induction Step
	Efficiency

	Security Proof
	Overview of Security Proof
	Proof of Proposition 2
	Proof Lemma 6
	Proofs of Lemma 7, 8 and 9

	FE for Degree-D Polynomials from Degree-D MMaps
	Construction
	Security Proof
	Proof of Lemma 14
	Proof of Lemma 15 to 17

