
MILP-Aided Bit-Based Division Property for
ARX-Based Block Cipher

Ling Sun1, Wei Wang1, Ru Liu1, Meiqin Wang?1,2

1 Key Laboratory of Cryptologic Technology and Information Security, Ministry of
Education, Shandong University, Jinan, 250100, China

2 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing, 100878, China
lingsun@mail.sdu.edu.cn; weiwangsdu@sdu.edu.cn; mqwang@sdu.edu.cn

Abstract. The huge time and memory complexities of utilizing bit-
based division property, which was first presented by Todo and Morri at
FSE 2016, bothered cryptographers for quite some time and it had been
solved by Xiang et al. at ASIACRYPT 2016. They applied MILP method
to search integral distinguisher based on division property, and used it
to analyze six lightweight block ciphers. Later on, Sun et al. handled the
feasibility of MILP-aided bit-based division property for primitives with
non-bit-permutation linear layers. Although MILP-aided bit-based divi-
sion property has gave many perfect results since its appearance, there
still are many left problems when we want to develop its further applica-
tions. In this paper, we focus on the feasibility of MILP-aided bit-based
division property for ARX-based primitive. More specifically, we consid-
er the construction of MILP models for some components of ARX-based
structure. Firstly, the Modulo model is proposed by using its iterated
expression and introducing some auxiliary variables. Then, to propagate
the operations of AND and OR with a constant (or a subkey), we prove
that the known-region deduced by the input division property is always
included in the known-region derived from the output division property,
which allows us to ignore these operations. Furthermore, with its help,
we also handle the Modulo operation with a constant (or a subkey). As
a result, these new models are exploited to search integral distinguishers
for some ARX-based block ciphers. For HIGHT and LEA, the lengths
of the distinguishers both are improved by one round. Some 15-round
integral distinguishers for TEA/XTEA are presented. Comparing with
the existing one transformed by utilizing the equivalence between zero-
correlation and integral cryptanalysis, our newly obtained distinguishers
either reduces the data requirement or increases the number of zero-
sum bits. Moreover, the bit-based division properties for KATAN and
KTANTAN families of block ciphers are also provided.

Keywords: MILP-aided bit-based division property, HIGHT, LEA, TEA,
XTEA, KATAN, KTANTAN

? Corresponding Author

1 Introduction

Division property, which was proposed by Todo [12] at EUROCRYPT 2015, is
a generalization of integral property. It could explicitly depict the obscure prop-
erty between the traditional ALL and BALANCE properties, which made it an
effective method to search integral distinguishers even if the internal compo-
nents of the objective primitives had non-bijective, bit-oriented, and low-degree
structures. However, the utilization of the algebraic degree alone did not maxi-
mize the advantage of the division property. At CRYPTO 2015, after analyzing
the Algebraic Normal Form (ANF) of S7 for MISTY1 [7], Todo [11] observed a
vulnerable property consisted in S7, and constructed a 6-round integral distin-
guisher. With this newly proposed distinguisher, he provided the first theoretical
attack for full MISTY1.

By restricting the underlying space to be the direct product of a series of
binary fields, Todo and Morri [13] proposed bit-based division property, which
could be treated as a special case of division property. The bit-based division
property broke the internal states into bits, which allowed it to use not only
the algebraic degree but also the details of the round function’s structure, and
directly traced the division property at the bit-level. It was applied to construct
a 14-round integral distinguisher for SIMON32 [1], which achieved four more
rounds than the one given in [12]. However, the complexity of utilizing bit-
based division property was roughly equal to 2n for an n-bit primitives. On
the one hand, the huge complexity restricted the wide applications of bit-based
division property. On the other hand, whether it could be used to find integral
distinguishers for other block ciphers with S-boxes was not known.

To solve the restriction of the huge complexity, Xiang et al. [17] applied
MILP-method to search integral distinguisher based on bit-based division prop-
erty3, which allowed us to analyze primitives whose block sizes were larger than
32. With the help of MILP-method, bit-based division property was successfully
applied to search integral distinguishers for six lightweight block ciphers. Later
on, the feasibility of MILP-aided bit-based division property for primitives with
non-bit-permutation linear layers, which was an open problem left by Xiang et
al., was settled by Sun et al. [10]. After generalizing the former Copy and XOR

models, they considered the primitive representations of the linear layers and
proposed a new method to construct the model used to propagate bit-based
division property of linear layers by introducing some intermediate variables
according to the primitive representations.

Although MILP-aided bit-based division property has gave many wonderful
results since its appearance, there still are many left problems when we want
to develop its further applications. In this paper, we focus on the feasibility of
MILP-aided bit-based division property for ARX-based primitive. More specif-
ically, we consider the construction of MILP models for some components of
ARX-based structure. ARX, which refers to as Addition/Rotation/XOR, is a

3 We name it MILP-aided bit-based division property in this paper.

2

class of block ciphers that only use the following simple operations4: Modulo,
bitwise rotation and XOR. In contrast to those block ciphers with S-boxes, their
nonlinearities rely on the Modulo operation. ARX designs are simple, efficient
and easy to implement. Given their flexibility and efficiency, it is expected that
ARX designs will continue to be popular. However, the security analysis of this
kind of ciphers has not been extensively studied and any general method for
analyzing them will influence future cipher designs.

1.1 Our Contributions

In this paper, we aim at solving the feasibility of MILP-aided bit-based division
property for ARX-based primitive and expending its application range. The
contributions are summarized as follows.

1. Note that the ANF of the Modulo operation becomes more and more com-
plicated with the increasing of modulus and directly using the ANF to con-
struct MILP model is very hard, we consider an iterated expression of the
Modulo operation. After introducing some auxiliary variables and allocating
these variables according to the iterated expression, the Modulo model is con-
structed by successively invoking Copy, AND, and XOR models. This linear
inequality system can be absorbed into the original MILP model of bit-based
division property to find integral distinguishers for some ARX-based block
ciphers.

2. To propagate the bit-based division property for the operations of AND and
OR with a constant (or a subkey), we prove that the known-region deduced
by input division property is always included in the known-region derived
from the output division property, with which these operations can be ig-
nored during our analysis. Although doing this way may lose some useful
information, sometimes we can not know such constants in advance5. As a
result, dealing with it in this way is reasonable. With its help, we also handle
the Modulo operation with a constant. Up to now, we solve the feasibility of
MILP-aided bit-based division property for ARX-based block cipher.

3. These newly constructed models are applied to search integral distinguish-
ers for some ARX-based block ciphers. HIGHT [6], which was proposed at
CHES 2006, was designed for usage in lightweight applications such as sen-
sor network and RFID tags, and has been adopted as ISO standard. We
construct two 18-round integral distinguishers for HIGHT, and our newly
obtained distinguishers gain one more round comparing with the former t-
wo 17-round distinguishers provided by Zhang et al. at CANS 2009. For

4 Broadly, some ciphers that also involve the AND operation are also included in this
class, such as SIMON and KATAN/KTANTAN. The nonlinearities of these ciphers
are also provided by the AND operation.

5 These constants can be subkeys, like the operations in MISTY1’s FL function. Even
though we know the IR’s of KATAN/KTANTAN in advance, these IR’s are round-
dependent. If we want to find integral distinguishers workable for different starting
rounds, these constants are supposed to be unknown values to some degree.

3

LEA [5], we find a 7-round integral distinguisher with data complexity 296,
which also attains one more round than the one mentioned by the design-
ers. TEA [16] and XTEA [8] being rather popular ciphers, both are imple-
mented in the Linux kernal. Some 15-round integral distinguishers for TEA
and XTEA are presented. Comparing with the 15-round one transformed
from the 15-round zero-correlation linear approximation [3] by utilizing the
equivalence between zero-correlation linear cryptanalysis and integral crypt-
analysis for ARX-based block ciphers proposed by Wen and Wang [15], our
newly obtained distinguishers either reduces the data requirement or increas-
es the number of zero-sum bits. Besides, the bit-based division properties for
KATAN and KTANTAN [4] families of block ciphers are also provided.

Some comparison between our newly obtained integral distinguishers and
some former results can be found in Table 1.

Outline of the Paper. The remainder of this paper is organized as follows. In
Section 2, we briefly review some notations, division property, and MILP-aided
bit-based division property. Section 3 focuses on the construction of MILP mod-
els for some components of ARX-based structure and illustrates how to apply
MILP-aided bit-based division property to ARX-based block ciphers. Section 4
gives the applications of some ARX-based block ciphers. We conclude the pa-
per in Section 5. Some auxiliary materials are supplied in Appendix A and
Appendix B.

2 Priliminary

2.1 Notations

Some notations, which are used throughout this paper, are introduced in this
section.

In order to simplify the representation, a bit-string will be written in hex-
adecimal format and is always written in italic verbatim font. We follow the
notations defined in [12] and [11].

For any a ∈ Fn2 , the i-th element is expressed as a[i], where the bit posi-
tions are labeled in big-ending, and the Hamming weight wt(a) is calculated by

wt(a) =
∑n−1

i=0 a[i].

For any set K, |K| denotes the number of elements in K. Let ∅ be an empty
set.

For any a = (a0, a1, . . . , am−1) ∈ F`02 × F
`1
2 × · · · × F

`m−1

2 , the vectorial
Hamming weight of a is defined as Wt(a) = (wt(a0), wt(a1), . . . , wt(am−1)) ∈
Zm. For any k ∈ Zm and k′ ∈ Zm, we define k � k′ if ki ≥ k′i for all i. Otherwise,
k � k′.

4

Table 1: Summarization of Results.

Cipher
Block

Length
Data

#{Zero-Sum Bits} Ref.
Size Requirement

HIGHT 64

11 28 1
[18]12 216 1

17 256 1
18 263 1 Section 4.1

LEA 128
6 232 1 [5]
6 232 2

Section 4.2
7 296 1

TEA/XTEA 64 15
263 1 [3]†

262 1
Section 4.3

263 2

KATAN

32
90 230 1

Section 4.4
(KTANTAN)

99 231 1

48
77 246 1
83.5 247 1

64
67.3 262 1
72.3 263 1

Length: The length of the resulting distinguisher.
#{Zero-Sum Bits}: The number of zero-sum bits of the distinguisher.

† Note that the 15-round zero-correlation linear approximation in [3] can be
transformed into a 15-round integral distinguisher by applying Proposition 2
in [15].

Definition 1 (Bit Product Function [12]). Assume u ∈ Fn2 and x ∈ Fn2 .
The Bit Product Function πu is defined as

πu(x) =

n−1∏
i=0

x[i]u[i].

For u = (u0, u1, . . . , um−1) ∈ F`02 ×F
`1
2 ×· · ·×F

`m−1

2 , let x = (x0, x1, . . . , xm−1) ∈
F`02 × F

`1
2 × · · · × F

`m−1

2 be the input, the Bit Product Function πu is defined as

πu(x) =

m−1∏
i=0

πui(xi).

The bit product function also appears in the Algebraic Normal Form (ANF)
of a Boolean function. The ANF of a Boolean function f : Fn2 → F2 is represented
as

f(x) =
⊕
u∈Fn

2

afu

(
n∏

i=1

x[i]u[i]

)
=
⊕
u∈Fn

2

afuπu(x),

where afu ∈ F2 is a constant value depending on f and u.

5

2.2 Division Property and Bit-Based Division Property

The division property, which was proposed by Todo [12], was a generalization of
the integral property. It could precisely describe the implicit properties between
the traditional ALL and BALANCE properties, which made division property an
efficient tool to search integral distinguishers for some ciphers with non-bijective,
bit-oriented, or low-degree components. Bit-based division property [13] handled
a special case of division property, where the underlying space was restricted to
be the direct product of a series of binary fields. Comparing with the traditional
division property, bit-based division property could trace the division property
at the bit-level, and showed its power by finding longer integral distinguisher
for SIMON32. In this subsection, we will briefly review division property and
bit-based division property, and summarize some propagation rules for bit-based
division property.

Definition 2 (Division Property [12]). Let X be a multi-set whose elements

take values from F`02 × F
`1
2 × · · · × F

`m−1

2 . When the multi-set X has the division

property D`0,`1,...,`m−1

K , where K denotes a set of m-dimensional vectors whose
i-th element takes a value between 0 and `i−1, it fulfills the following conditions:⊕

x∈X
πu(x) =

{
unknown if there is k ∈ K s.t. Wt(u) � k,
0 otherwise.

Remark 1 If there are k ∈ K and k′ ∈ K satisfying k � k′ in the division

property D`0,`1,...,`m−1

K , k can be removed from K because the vector k is redun-
dant.

Remark 2 (Known-Region & Unknown-Region) In this paper, we call the
region where the parity is equal to 0 the known-region and the region where the
parity becomes unknown is called the unknown-region.

Remark 3 Note that `0, `1, . . ., `m−1 are restricted to 1 when we consider
bit-based division property.

Bit-Based Division Property Propagation Rules for Some Basic Oper-
ations Todo [12] proved some propagation rules for division property and these
rules were summarized into five rules in [11], which were respectively Substitu-
tion, Copy, XOR, Split, and Concatenation. Among the five rules, only Copy
and XOR are necessary for bit-based division property. The two necessary rules
are restated in a bit-based look in the following.

Rule 1 (Copy) Let F be a Copy function, where the input x takes a value of
F2 and the output is calculated as (y0, y1) = (x, x). Let X and Y be the input
multi-set and output multi-set, respectively. Assuming that the multi-set X has
the division property D1

{k}, the division property of the multi-set Y is D1×1
K′ . Then

the propagation only have two possible cases:{
K′ = {(0, 0)}, if k = 0
K′ = {(0, 1), (1, 0)}, if k = 1

6

Rule 2 (XOR) Let F be a function compressed by an XOR, where the input (x0, x1)
takes a value of F2 × F2 and the output is calculated as y = x0 ⊕ x1. Let X and
Y be the input multi-set and output multi-set, respectively. Assuming that the
multi-set X has division property D1×1

{k} , the division property of the multi-set Y
is D1

K′ . Then the propagation only have four possible cases:
K′ = {(0)}, if k = (0, 0)
K′ = {(1)}, if k = (0, 1)
K′ = {(1)}, if k = (1, 0)
K′ = ∅, if k = (1, 1)

For some bit-oriented block ciphers such as SIMON, AND is a necessary non-
linear operation. The propagation for AND is given in [13], and we summarize it
as follows.

Rule 3 (AND) Let F be a function compressed by an AND, where the input (x0, x1)
takes a value of F2 × F2 and the output is calculated as y = x0 ∧ x1. Let X and
Y be the input multi-set and output multi-set, respectively. Assuming that the
multi-set X has division property D1×1

{k} , the division property of the multi-set Y
is D1

K′ . Then the propagation only have four possible cases:
K′ = {(0)}, if k = (0, 0)
K′ = {(1)}, if k = (0, 1)
K′ = {(1)}, if k = (1, 0)
K′ = {(1)}, if k = (1, 1)

We do not introduce the bit-based division property propagation of S-box,
since the objectives of this paper do not involve primitives with S-box.

2.3 MILP-Aided Bit-Based Division Property

Although bit-based division property showed its power by finding longer integral
distinguisher for SIMON32 [13], the time and memory complexities of utilizing
it were roughly 2n for an n-bit block cipher. To handle the huge complexities of
bit-based division property, Xiang et al. [17] integrated MILP method with bit-
based division property. After transforming division property propagation into
a series of linear inequalities6, the integral distinguisher searching problem by
using bit-based division property became solving MILP problem. With the help
of some openly available MILP optimizers such as Gurobi7, the complexities of
calling bit-based division property dramatically decreased. In this subsection,
we will briefly review MILP-aided bit-based division property.

The main technique of MILP-aided bit-based division property is to model
those bit-based division property propagation rules introduced in Section 2.2
with a series of linear inequalities. Again, the construction of MILP model for
S-box is not covered in this paper.

6 We do not distinguish linear equality with linear inequality in this paper, since MILP
model can include linear inequality as well as linear equality.

7 http://www.gurobi.com/

7

http://www.gurobi.com/

Modeling Copy, AND, and XOR Corresponding to three basic operations (Copy,
AND, and XOR), there are three models which are used to depict them. Note that
Sun et al. [10] have generalized the Copy and XOR models proposed by Xiang
et al.. For simplicity, we only list the generalized Copy and XOR models in the
following.

Model 1 (Generalized Copy, [10]) Denote (a)
Copy−−−→ (b0, b1, . . . , bm) a divi-

sion trail of Copy function, the following inequalities are sufficient to describe
the division propagation of Copy.{

a− b0 − b1 − · · · − bm = 0
a, b0, b1, . . . , bm are binaries

Model 2 (Generalized XOR, [10]) Denote (a0, a1, . . . , am)
XOR−−→ (b) a division

trail through XOR function, the following inequalities can describe the division
trail through XOR function.{

a0 + a1 + · · ·+ am − b = 0
a0, a1, . . . , am, b are binaries

Model 3 (AND, [17]) Denote (a0, a1)
AND−−→ (b) a division trail of AND function,

the following linear inequalities are sufficient to describe this propagation.
b− a0 > 0
b− a1 > 0
b− a0 − a1 6 0
a0, a1, b are binaries

Until now, for block ciphers based on the three basic operations, like SI-
MON [1], we are able to construct a set of linear inequalities characterizing one
round division property propagation. Iterating this process r times, we can get
a linear inequality system L describing r rounds division property propagation.
All feasible solutions of L correspond to all r-round division trails, which are
defined below.

Definition 3 (Division Trail [17]). Let fr denote the round function of an
iterated block cipher. Assume that the input multi-set to the block cipher has
initial division property D1n

{k}, and denote the division property after i-round

propagation through fr by D1n

Ki
. Thus we have the following chain of division

property propagations:

{k} , K0
fr−→ K1

fr−→ K2
fr−→ · · · .

Moreover, for any vector k∗i ∈ Ki (i > 1), there must exist an vector k∗i−1 ∈
Ki−1 such that k∗i−1 can propagate to k∗i by division property propagation rules.
Furthermore, for (k0,k1, . . . ,kr) ∈ K0×K1× · · · ×Kr, if ki−1 can propagate to
ki for all i ∈ {1, 2, . . . , r}, we call (k0,k1, . . . ,kr) an r-round division trail.

8

Initial Division Property and Stopping Rule Denote (a00, a
0
1, . . . , a

0
n−1)→

· · · → (ar0, a
r
1, . . . , a

r
n−1) an r-round division trail, L is a linear inequality sys-

tem defined on variables aji (i = 0, 1, · · · , n − 1, j = 0, 1, · · · , r) and some
auxiliary variables. Let D1n

{k} denote the initial input division property with

k = (k0, k1, . . . , kn−1), we need to add a0i = ki (i = 0, 1, . . . , n − 1) into L, and
all feasible solutions of L are division trails which start from vector k. And the
objective function is set as

Obj : Min{ar0 + ar1 + · · ·+ arn−1}.

Let D1n

Ki
denote the output division property after i rounds of encryption and

the input division property is denoted by D1n

K0
. If Kr+1 contains all the n unit

vectors for the first time, the division property propagation should stop and an
r-round distinguisher can be derived from D1n

Kr
.

Note that we only review some key points here. For more details, please refer
to [9–13,17].

3 MILP-Aided Bit-Based Division Property for
ARX-Based Primitive

Even though MILP-aided bit-based division property illustrated by Xiang et
al. [17] handled the huge complexities of bit-based division property, the fea-
sibility of MILP-aided bit-based division property for primitives with non-bit-
permutation linear layers was not considered. By generalizing the former Copy
and XOR models and introducing some intermediate variables among the linear
layer according to the primitive representation of the linear layer, Sun et al. [10]
settled this open problem, and successfully applied MILP-aided bit-based divi-
sion property to search integral distinguishers for various primitives with non-
bit-permutation linear layers.

However, there still are many left problems when we want to develop its
further applications. The feasibility of MILP-aided bit-based division property
for ARX-based primitive is not known. In this section, we focus on this problem,
and consider the construction of MILP model for some components of ARX-
based structure.

3.1 Modelling the Modulo Operation

For some ARX-based block ciphers, Modulo operation is an important constitu-
tion which is used to provide nonlinearity. In this section, we will illustrate how
to model it in MILP-aided bit-based division property.

To model the Modulo operation, an intuitive idea is to deal with its Boolean
functions. But the ANF of the Modulo operation becomes more and more compli-
cated as the modulus increasing. Thus directly handling the ANF of the Modulo

operation is not a wise choice. Note that there is an iterated way to express the
Modulo operation. Suppose that x = (x0, x1, . . . , xn−1), y = (y0, y1, . . . , yn−1),

9

and z = (z0, z1, . . . , zn−1) are n-bit vectors, and z = x � y. Then the Boolean
functions of zi can be expressed with (1).

 zi = xi ⊕ yi ⊕ ci
ci = xi+1yi+1 ⊕ (xi+1 ⊕ yi+1)ci+1, i = n− 2, n− 3, . . . , 0
cn−1 = 0

(1)

With this iterated expression, we can model the Modulo operation step by
step. In the following, we take a 4-bit Modulo operation as an illustration. Firstly,
we represent the 4-bit Modulo operation with the iterated expression, which is
given in (2). 

z3 = x3 ⊕ y3
z2 = x2 ⊕ y2 ⊕ c2, c2 = x3y3
z1 = x1 ⊕ y1 ⊕ c1, c1 = x2y2 ⊕ (x2 ⊕ y2)c2
z0 = x0 ⊕ y0 ⊕ c0, c0 = x1y1 ⊕ (x1 ⊕ y1)c1

(2)

After observation, we find that the input bits xi’s and yi’s are firstly copied a
certain number of times. Then, these copies will combine with each other by
using XOR or AND operation to constitute the final output bits. Since we already
have the models of describing three basic operations (Model 1, Model 2, and
Model 3), we can generate linear inequality system used to depict division
property propagation for the Modulo operation step by step by introducing some
auxiliary variables.

More specifically, intermediate variables t0 ∼ t3, u0 ∼ u12, v0 ∼ v2, m0 ∼ m1,
r0 ∼ r1, g0 ∼ g1, q0 ∼ q1, and w0 ∼ w1 are introduced. The allocation of these
intermediate variables is illustrated in Table 2. The linear inequality system
used to propagate the bit-based division property of the 4-bit Modulo operation
can be found in Table 3, and we do not distinguish between the input bits xi’s,
yi’s (output bits zi’s) and their corresponding input (output) division properties
here. We will give a brief explanation of the linear inequalities in Table 3.

– The linear inequalities used to describe the Copy operations are given in
the first line to the sixth line of Table 3, where ti(0 6 i 6 3) and uj(0 6
j 6 12) are introduced to represent different copies of xk(1 6 i 6 3) and
yl(1 6 l 6 3). Note that the frequencies of occurrences of x0 and y0 in (2)
are equal to 1, so x0 and y0 do not needed to be copied.

– Then, according to the iterated expression of the Modulo operation, the
remaining intermediated variables are called. For example, to depict x3y3 in
the expression of c2, we introduce v0 as an auxiliary variable, and the eighth
line to the tenth line of Table 3 are explained by calling Model 3. It is
noteworthy that the intermediate values c2 and c1 also need to be copied,
and gi’s and ri’s bear this responsibility.

– Successively invoking Model 1, Model 2, and Model 3, we get 31 linear
inequalities to depict the bit-based division property propagation of the 4-bit
Modulo operation, which are listed in Table 3.

10

Table 2: Allocation of Intermediate Variables for 4-bit Modulo.

Bit Variable Allocation Bit Variable Allocation
z3 x3︸︷︷︸

t0

⊕ y3︸︷︷︸
t2

z2 x2︸︷︷︸
u0

⊕ y2︸︷︷︸
u6

⊕ c2︸︷︷︸
g0

c2

v0︷ ︸︸ ︷
x3︸︷︷︸
t1

y3︸︷︷︸
t3

z1 x1︸︷︷︸
u3

⊕ y1︸︷︷︸
u9

⊕ c1︸︷︷︸
g1

c1︸︷︷︸
w0

v1︷ ︸︸ ︷
x2︸︷︷︸
u1

y2︸︷︷︸
u7

⊕

q0︷ ︸︸ ︷
(

m0︷ ︸︸ ︷
x2︸︷︷︸
u2

⊕ y2︸︷︷︸
u8

)

r0︷︸︸︷
c2

z0 x0 ⊕ y0 ⊕ c0 c0︸︷︷︸
w1

v2︷ ︸︸ ︷
x1︸︷︷︸
u4

y1︸︷︷︸
u10

⊕

q1︷ ︸︸ ︷
(

m1︷ ︸︸ ︷
x1︸︷︷︸
u5

⊕ y1︸︷︷︸
u11

)

r1︷︸︸︷
c1

Table 3: Linear Inequality System of 4-Bit Modulo.

Label Linear Inequalities Used to Describe 4-Bit Modulo

1 x3 − t0 − t1 = 0
2 y3 − t2 − t3 = 0
3 x2 − u0 − u1 − u2 = 0
4 x1 − u3 − u4 − u5 = 0
5 y2 − u6 − u7 − u8 = 0
6 y1 − u9 − u10 − u11 = 0
7 t0 + t2 − z3 = 0
8 v0 − t1 > 0
9 v0 − t3 > 0
10 v0 − t1 − t3 6 0
11 v1 − u1 > 0
12 v1 − u7 > 0
13 v1 − u1 − u7 6 0
14 v2 − u4 > 0
15 v2 − u10 > 0
16 v2 − u4 − u10 6 0
17 u2 + u8 −m0 = 0
18 u5 + u11 −m1 = 0
19 g0 + r0 − v0 = 0
20 u0 + u6 + g0 − z2 = 0
21 q0 −m0 > 0
22 q0 − r0 > 0
23 q0 −m0 − r0 6 0

Continued on next page

11

Table 3 – continued from previous page
Label Linear Inequalities Used to Describe 4-Bit Modulo

24 v1 + q0 − w0 = 0
25 g1 + r1 − w0 = 0
26 u3 + u9 + g1 − z1 = 0
27 q1 −m1 > 0
28 q1 − r1 > 0
29 q1 −m1 − r1 6 0
30 v2 + q1 − w1 = 0
31 x0 + y0 + w1 − z0 = 0

To ensure the validity of the model, we do some experiments on a small
variant of SPECK [1], and we call it Small-SPECK. The description of Small-
SPECK and the detailed experimental procedure can be found in Appendix A.
We use MILP-aided bit-based division property to find integral distinguishers for
Small-SPECK, and these distinguishers constitute a set which is called SMILP .
Then we traverse particular parts of the plaintexts, which are determined by the
concrete forms of distinguishers in SMILP , to verify the validity of these already
obtained distinguishers. From the experimental results, we ensure that all zero-
sum bits found by MILP-aided bit-based division property are indeed zero-sum
bits. Thus, the Modulo model proposed in this paper is a valid method, and can
be applied to construct MILP models for ARX-based structures.

3.2 Modelling the Operation of AND/OR with a Constant

After observing various primitives, we find that there are cases where a constant
(or a key) is involved into the cipher by using logical operation AND or XOR. For
example, the FL function of MISTY1 [7] involves the operations of AND and
OR with some subkeys. Besides, the fa functions for all KATAN/KTANTAN [4]
variants import an irregular constant IR by ANDing it with certain internal bit.
And the problem of modelling these operations with MILP models has not been
concerned. In this section, we will show how to deal with these cases.

In the remaining of this subsection, we suppose that x, y, and c are n-
bit vectors and the division properties of the input and output multi-sets are
respectively denoted by X and Y. Then, for the AND and OR operations with a
constant, we have the following two proposition.

Proposition 1. Let y = x ∧ c. Let X and Y be the input multi-set and output
multi-set, respectively. Assuming that the multi-set X has the division property
D1n

KX
, the division property of the multi-set Y is D1n

KY
. Then the known-region

deduced by KY covers the known-region deduced by KX.

Proof: We only need to prove that the vectors located in the known-region of KX
are also involved in the known-region of KY. Suppose that v = (v0, v1, . . . , vn−1)
is a vector located in the known-region of KX. Thus we have

⊕
x∈X πv(x) = 0.

To decide the value of
⊕

y∈Y πv(y) =
⊕

x∈X πv(x ∧ c), two cases need to be
considered:

12

1. If v ∧ c = v, we have⊕
y∈Y

πv(y) =
⊕
x∈X

πv(x ∧ c) =
⊕
x∈X

πv(x) = 0.

2. If v � v ∧ c, we know that there is at least one index i such that vi = 1
and ci = 0. Then we know that πv(y) is always equal to 0 for all y, since
yi = xi ∧ ci = xi ∧ 0 = 0. Thus⊕

y∈Y
πv(y) =

⊕
x∈X

πv(x ∧ c) = 0.

Now we have proved that the known-region of KX is included in the known-region
of KY.

Proposition 2. Let y = x ∨ c. Let X and Y be the input multi-set and output
multi-set, respectively. Assuming that the multi-set X has the division property
D1n

KX
, the division property of the multi-set Y is D1n

KY
. Then the known-region

deduced by KY contains the known-region deduced by KX.

Proof: The only thing we need to prove is that the vectors which are included
in the known-region of KX are also included in the known-region of KY. Suppose
that v is a vector in the known region of KX. Then by using the definition of
division property, we know that

⊕
x∈X πv(x) = 0, and

⊕
x∈X πu(x) = 0 for all

u with v � u. Two cases should be considered.

1. If v ∧ c = 0, we have⊕
y∈Y

πv(y) =
⊕
x∈X

πv(x ∨ c) =
⊕
x∈X

πv(x) = 0.

2. If v ∧ c 6= 0, then there is at least one index i such that vi = 1 and ci = 1,
and

πv(y) = πv(x ∨ c) = πv⊕(v∧c)(x).

Since v � v ⊕ (v ∧ c), we have⊕
y∈Y

πv(y) =
⊕
x∈X

πv(x ∨ c) =
⊕
x∈X

πv⊕(v∧c)(x) = 0.

Thus, we prove that v is also included in the known-region of KY.
From Proposition 1 and Proposition 2, we know that the known-region

deduced by KY always contains the known-region deduced by KX for the opera-
tion AND with a constant as well as the operation OR with a constant. And this
conclusion has nothing to do with the concrete value of the constant c. Thus, we
can just ignore the operation of AND/OR with a constant when we encounter it.
Although doing this may lost some useful information when we propagate the
division property, sometimes we can not know such constants in advance which
may be some subkeys. As a result, dealing with it in this way is reasonable.

13

3.3 Modelling the Operation of Modulo with a Constant

In Section 3.1, we consider the case where the two input branches of the Modulo
operation both are variable. But if we look more closely, we will find that there is
a case where only one input branch of the Modulo operation is variable, while the
other one is constant (or subkey). For example, the round functions of HIGHT [6]
and TEA [16] contain this kind of operation. In this subsection, we will consider
how to build MILP model for this operation.

Again, we will consider the iterated expression of the Modulo operation, and
take a 4-bit Modulo operation as an illustration. Suppose x = (x0, x1, x2, x3)
and k = (k0, k1, k2, k3) are two input branches, where x represent the variable
and k is the constant branch. Let z = (z0, z1, z2, z3) be the output branch. The
iterated expression of this operation is provided in (3).

z3 = x3 ⊕ k3
z2 = x2 ⊕ k2 ⊕ c2, c2 = x3k3
z1 = x1 ⊕ k1 ⊕ c1, c1 = x2k2 ⊕ (x2 ⊕ k2)c2
z0 = x0 ⊕ k0 ⊕ c0, c0 = x1k1 ⊕ (x1 ⊕ k1)c1

(3)

Note that all the operations involving ki’s are XOR and AND. It is already known
to us that XORing with a constant does not influence the division property, and
Proposition 1 indicates that the operation of AND with a constant can be
ignored when we trace the bit-based division property. Thus (3) can be trans-
formed into a much simpler look, which can be found in Table 4. In Table 4,
we wipe all those operations comprising ki’s, and it is sufficient to construct
MILP model for these reduced expressions. Again, some auxiliary variables need
to be involved to describe the propagation of bit-based division property, and
a0 ∼ a7, b0 ∼ b2, f0 ∼ f1, d0 ∼ d1, and e0 ∼ e1 are introduced for this reason.
The allocation of variables for 4-bit Modulo operation with a constant also giv-
en in Table 4. A similar analysis like the one in Section 3.1 gives the linear
inequality system used to describe the bit-based division property propagation
for Modulo operation with a constant, which can be found in Table 5.

Table 4: Allocation of Intermediate Variables for 4-bit Modulo Operation with a
Constant.

Bit Variable Allocation Bit Variable Allocation
z3 x3︸︷︷︸

a0

z2 x2︸︷︷︸
a2

⊕ c2︸︷︷︸
f0

c2︸︷︷︸
b0

x3︸︷︷︸
a1

z1 x1︸︷︷︸
a5

⊕ c1︸︷︷︸
f1

c1︸︷︷︸
b1

x2︸︷︷︸
a3

⊕
e0︷ ︸︸ ︷

x2︸︷︷︸
a4

c2︸︷︷︸
d0

Continued on next page

14

Table 4 – continued from previous page
Bit Variable Allocation Bit Variable Allocation

z0 x0 ⊕ c0 c0︸︷︷︸
b2

x1︸︷︷︸
a6

⊕
e1︷ ︸︸ ︷

x1︸︷︷︸
a7

c1︸︷︷︸
d1

Table 5: Linear Inequality System for 4-bit Modulo Operation with a Constant.

Label Linear Inequalities Used to Describe 4-Bit Modulo

1 x3 − a0 − a1 = 0
2 x2 − a2 − a3 − a4 = 0
3 x1 − a5 − a6 − a7 = 0
4 z3 − a0 = 0
5 b0 − a1 = 0
6 b0 − f0 − d0 = 0
7 z2 − a2 − f0 = 0
8 e0 − a4 > 0
9 e0 − d0 > 0
10 e0 − a4 − d0 6 0
11 b1 − a3 − e0 = 0
12 b1 − f1 − d1 = 0
13 z1 − a5 − f1 = 0
14 e1 − a7 > 0
15 e1 − d1 > 0
16 e1 − a7 − d1 6 0
17 b2 − a6 − e1 = 0
18 z0 − x0 − b2 = 0

Thus, with the methods explained in Section 3.1, Section 3.2 and Sec-
tion 3.3, we are sufficient to construct MILP models for some ARX-based prim-
itives, and these models can help us search integral distinguishers with MILP
optimizer. The applications of MILP-aided bit-based division property are pro-
vided in Section 4.

4 Applications of MILP-Aided Bit-Based Division
Property for Some ARX-Based Block Ciphers

With the methods proposed in Section 3, we are able to construct MILP models
for almost all ARX-based primitives. As an illustration, we apply MILP-aided
bit-based division property to search integral distinguishers for HIGHT, LEA,
TEA/XTEA, and KATAN/KTANTAN in this section.

15

4.1 MILP-Aided Bit-Based Division Property for HIGHT

HIGHT [6] HIGHT is an ARX-based block cipher with 64-bit block length and
128-bit key length. The 64-bit plaintext and ciphertext are considered as concate-
nations of 8 bytes and denote by P = P7‖P6‖ · · · ‖P0 and C = C7‖C6‖ · · · ‖C0,
respectively. The 64-bit intermediate values are analogously represented as Xi =
Xi,7‖Xi,6‖ · · · ‖Xi,0 for i = 0, 1, . . . , 32. The 128-bit master key is considered as
a concatenation of 16 bytes and is denoted by MK = MK15‖MK14‖ · · · ‖MK0.
The key schedule of HIGHT consists of two algorithms, WhiteningKeyGeneration
which generates 8 whitening key bytes WK0,WK1, . . . ,WK7, and the func-
tion called SubkeyGeneration generates 128 subkey bytes SK0, SK1, . . . , SK127.
Each round function uses 4 subkey bytes SK4i, SK4i+1, SK4i+2, SK4i+3. It is
important to note that the distinguishers we found in this paper for HIGHT
does not include the initial transformation and the final transformation which
load the whitening-key into the cipher. The basic structure of one round HIGHT
encryption is depicted in Fig. 1.

1

2

7

3

4

6

1

2

7

3

4

6

,7iX ,6iX ,5iX ,4iX
,3iX ,2iX ,1iX ,0iX

1,7iX  1,6iX  1,5iX  1,4iX  1,3iX  1,2iX  1,1iX  1,0iX 

4 3iSK  4 2iSK  4 1iSK  4iSK

Fig. 1: Round Function of HIGHT.

Former Results The designers [6] showed that there exist 12-round integral
distinguishers with data complexity 28. But Zhang et al. [18] pointed out and
corrected an error in the 12-round distinguishers, and showed that the former 12-
round distinguisher was only a 11-round one. They also proposed some 12-round
and 17-round distinguishers.

Applying MILP-Aided Bit-Based Division Property to HIGHT By
applying the Modulo model introduced in Section 3.1 and the model for the
operation of Modulo with a constant proposed in Section 3.3, we construct
the MILP model used to depict the bit-based division property propagation of
HIGHT. We put different initial division properties into the MILP model and
the results can be found in Table 6. The specific looks of the distinguishers are
provided in Appendix B.1. The 11-round, 12-round, and 17-round distinguish-
ers given in Table 6 are respectively same to those provided by Zhang et al. [18].
Besides, we obtain two 18-round distinguishers with data complexity 263. These
18-round distinguishers achieve one more round than the best ones proposed by
Zhang et al. [18].

16

Table 6: Summarization of Experimental Results for HIGHT.

Division Property Round Obj #{Unit Vector}

D164

{[ff000000,00000000]}
11 1 63
12 1 64

D164

{[00000000,ff000000]}
11 1 63
12 1 64

D164

{[ffff0000,00000000]}
12 1 63
13 1 64

D164

{[00000000,ffff0000]}
12 1 63
13 1 64

D164

{[ffffffff,ffffff00]}
17 1 63
18 1 64

D164

{[ffffff00,ffffffff]}
17 1 63
18 1 64

D164

{[ffffffff,fffffffe]}
18 1 63
19 1 64

D164

{[fffffffe,ffffffff]}
18 1 63
19 1 64

Division Property: The initial division property.
#{Unit Vector}: The number of unit vectors in
the resulting division property.

1

0

iRK 

1

1

iRK 

9

1

2

iRK 

1

3

iRK 

1

4

iRK 

1

5

iRK 

5 3

1

0

iX  1

1

iX  1

2

iX  1

3

iX 

0

iX 1

iX
2

iX 3

iX

Fig. 2: Round Function of LEA.

17

4.2 MILP-Aided Bit-Based Division Property for LEA

LEA [5] LEA is an ARX-based block cipher designed by Hong et al. and pro-
vides a high speed software encryption on general-purpose processors. The block
size is 128 bits and the key size can take 128, 192, or 256 bits. The number of
rounds r is 24 for 128-bit keys, 28 for 192-bit keys, and 32 for 256-bit keys. The
encryption of LEA maps a plaintext of four 32-bit words X0 = (X0

0 , X
0
1 , X

0
2 , X

0
3)

to a ciphertext Xr = (Xr
0 , X

r
1 , X

r
2 , X

r
3). The round function for LEA is illustrat-

ed in Fig. 2, where RKi−1
0 , RKi−1

1 , RKi−1
2 , RKi−1

3 , RKi−1
4 , and RKi−1

5 are
subkeys used in the i-th round.

Since XORing with a constant does not affect the propagation of division
property, we do not consider the operation of XOR with subkeys. The key schedule
is left behind. For more information about LEA, please refer to [5].

Former Results A 6-round integral distinguisher is proposed in [2], whose data
complexity is 232.

Applying MILP-Aided Bit-Based Division Property to LEA We inte-
grate the Modulo model introduced in Section 3.1 into the construction of MILP
model used to depict bit-based division property propagation for LEA. Different
initial division properties are loaded into the MILP model and the experimen-
tal results can be found in Table 7. Table 7 indicates that there is a 7-round
distinguisher with data complexity 296, which attains one more round than the
one provided in [2]. The specific expressions of these newly found distinguishers
are given in Appendix B.2.

Table 7: Summarization of Experimental Results for LEA.

Division Property Round Obj #{Unit Vector}

D1128

{[ffffffff,00000000,00000000,00000000]}
6 1 127
7 1 128

D1128

{[00000000,00000000,00000000,ffffffff]}
6 1 126
7 1 128

D1128

{[00000000,ffffffff,ffffffff,ffffffff]}
7 1 127
8 1 128

Division Property: The initial division property.
#{Unit Vector}: The number of unit vectors in the resulting
division property.

4.3 MILP-Aided Bit-Based Division Property for TEA and XTEA

TEA [16] and XTEA [8] TEA and XTEA both are 64-round Feistel iterated
block ciphers with 64-bit block and 128-bit key which consists of four 32-bit

18

words K[0], K[1], K[2], and K[3]. TEA does not have any key schedule and the
key words are used directly in round functions. For XTEA, the derivation of the
subkey word number is slightly more complex. The round constant is derived
from the constant δ = 9e3779b9 and the round number. Denote the plaintext
by P = (PL, PR), the ciphertext by C = (CL, CR), and the input of the i-th
round by (Li, Ri). The round functions of two contiguous rounds for TEA and
XTEA are illustrated in Fig. 3(a) and Fig. 3(b), respectively.

4

5

iL iR

1iL  1iR 

[0]K

[1]K

i 

4

5

2iL  2iR 

[2]K

[3]K

i 

(a) TEA.

5

4

iL iR

1iL  1iR 

(1) [((1)) &3]i K i     

5

4

2iL  2iR 

[(11) &3]i K i   

(b) XTEA.

Fig. 3: Illustrations of TEA and XTEA.

Former Results At FSE 2012, Bogdanov and Wang [3] proposed a 15-round
zero-correlation linear approximation for TEA/XTEA. By utilizing the equiv-
alence between zero-correlation linear cryptanalysis and integral cryptanalysis
for ARX-based block ciphers proposed by Wen and Wang [15], this approxima-
tion can be equivalently transformed into a 15-round integral distinguisher for
TEA/XTEA with data complexity 263.

Applying MILP-Aided Bit-Based Division Property to TEA and X-
TEA For XTEA, directly applying the Modulo model introduced in Section 3.1,
we obtain the MILP model used to depict its bit-based division property propa-
gation. While for TEA, we note that there are Modulo operations with constants.
In the meanwhile, since some Modulo operations in TEA’s round function will
interact with left shift and right shift operations, the MILP models of these
combinatory operations involving Modulo need to be slightly adjusted.

19

Considering the Combination of Left Shift Operation and Modulo Op-
eration Let the input and the output of Fig. 4(a) be x = (x0, x1, . . . , x31) and
z = (z0, z1, . . . , z31), respectively. Then z = (x� 4)�K. More specifically, we
have

(z0, z1, . . . , z31) = (x0, x1, . . . , x27, 0, . . . , 0︸ ︷︷ ︸
4

)� (K0,K1, . . . ,K31).

Combining the fact with the iterated expression of 32-bit Modulo operation,
we know that the output bits zi’s and the input bits xi’s satisfy the relations
listed in (4). From (4), we find that the output z can be treat as the con-
catenation of two parts, i.e., z = (x′ �K1)‖K2, where x′ = (x0, x1, . . . , x27),
K1 = (K0,K1, . . . ,K27), K2 = (K28,K29,K30,K31), and K = K1‖K2. Thus,
the original structure in TEA’s round function can be equivalently transformed
into the structure illustrated in Fig. 4(b). The functions used in Fig. 4(b) are
explained as follows.

– Truncated is a function and its output is equal to (x0, x1, . . . , x27) if the
input is (x0, x1, . . . , x31).

– Extended is a function taking two branches of inputs, which are respectively
denoted as (x0, x1, . . . , x27) and (k0, k1, k2, k3), and output is equal to

(x0, x1, . . . , x27, k0, k1, k2, k3).

After transformation, the MILP model can be constructed in an general way.

z31 = K31

z30 = K30

z29 = K29

z28 = K28

z27 = x27 ⊕K27

z26 = x26 ⊕K26 ⊕ c5, c5 = x27K27

z25 = x25 ⊕K25 ⊕ c6, c6 = x26K26 ⊕ (x26 ⊕K26)c5
z24 = x24 ⊕K24 ⊕ c7, c7 = x25K25 ⊕ (x25 ⊕K25)c6

· · ·
z1 = x1 ⊕K1 ⊕ c30, c30 = x2K2 ⊕ (x2 ⊕K2)c29
z0 = x0 ⊕K0 ⊕ c31, c31 = x1K1 ⊕ (x1 ⊕K1)c30

(4)

Considering the Combination of Right Shift Operation and Modulo

Operation Let the input and output of Fig. 5(a) be x = (x0, x1, . . . , x31) and
z = (z0, z1, . . . , z31), respectively. Then z = (x� 5)�K, i.e.,

(z0, z1, . . . , z31) = (0, . . . , 0︸ ︷︷ ︸
5

, x0, x1, . . . , x26)� (K0,K1, . . . ,K31).

Iterating these variables into the iterated expression of 32-bit Modulo operation,
we obtain the relations that the input bits xi’s and the output bits zi’s should

20

4
32 bits

K

32 bits

32 bits

(a) The Original Structure.

32 bits

K1

28 bits

28 bits

Truncated
28 bits

Extended

K2

4 bits

32 bits

(b) The Equivalently Transformed Structure.

Fig. 4: Illustrations of Equivalent Transformation for Left Shift.

follow, which are provided in (5).

z31 = x26 ⊕K31

z30 = x25 ⊕K30 ⊕ c1, c1 = x26K31

z29 = x24 ⊕K29 ⊕ c2, c2 = x25K30 ⊕ (x25 ⊕K30)c1
z28 = x23 ⊕K28 ⊕ c3, c3 = x24K29 ⊕ (x24 ⊕K29)c2

· · ·
z5 = x0 ⊕K5 ⊕ c26, c26 = x1K6 ⊕ (x1 ⊕K6)c25
z4 = K4 ⊕ c27, c27 = K5c26
z3 = K3 ⊕ c28, c28 = K4c27
z2 = K2 ⊕ c29, c29 = K3c28
z1 = K1 ⊕ c30, c30 = K2c29
z0 = K0 ⊕ c31, c31 = K1c30

(5)

With (5), we can construct MILP model in the usual fashion. Also note that the
original structure shown in Fig. 5(a) can be changed into an equivalent form,
which can be found in Fig. 5(b). The function named TrunFill operates as
follows.

(0, . . . , 0︸ ︷︷ ︸
5

, x0, x1, . . . , x26) = TrunFill(x0, x1, . . . , x31).

Up to now, we also can build MILP model for TEA and search its integral
distinguishers. We put different initial division properties into the MILP models
of TEA as well as XTEA, and the results are shown in Table 8. The longest
distinguishers for TEA and XTEA all achieve 15 rounds. Comparing with the for-
mer result, the distinguisher with data complexity 262 obtains exactly the same

21

5
32 bits

K

32 bits

32 bits

(a) The Original Structure.

32 bits

K

32 bits

32 bits

TruncFill
32 bits

(b) The Equivalently Transformed Structure.

Fig. 5: Illustrations of Equivalent Transformation for Right Shift.

zero-sum bit while reducing the data complexity by half. At the same time, the
newly obtained distinguisher with data complexity 263 gains one more zero-sum
bit than the previously proposed one. The concrete expressions of these newly
obtained distinguishers can be found in Appendix B.3 and Appendix B.4.

Table 8: Summarization of Experimental Results for TEA and XTEA.

Cipher Division Property Round Obj #{Unit Vector}

TEA/XTEA
D164

{[ffffffff,fffffffc]}
15 1 63
16 1 64

D164

{[ffffffff,fffffffe]}
15 1 62
16 1 64

Division Property: The initial division property.
#{Unit Vector}: The number of unit vectors in the resulting
division property.

4.4 MILP-Aided Bit-Based Division Property for KATAN and
KTANTAN

KATAN and KTANTAN [4] KATAN and KTANTAN are two families of
hardware oriented block ciphers and both have three variants each, of 32-bit,
48-bit, 64-bit block. For all versions of KATAN and KTANTAN ciphers, key
size is 80-bit. The only difference between KATAN and KTANTAN is the key
schedule.

22

The integral structure of KATAN/KTANTAN consists of two LFSR’s, called
L1 and L2, loaded with the plaintext and then transformed by two nonlinear
Boolean functions, fa and fb as follows.

fa(L1) = L1[x1]⊕ L1[x2]⊕ (L1[x3] ∧ L1[x4])⊕ (L1[x5] ∧ IR)⊕ ka
fb(L2) = L2[y1]⊕ L2[y2]⊕ (L2[y3] ∧ L2[y4])⊕ (L2[y5] ∧ L2[y6])⊕ kb

For KATAN/KTANTAN48, in one round of the cipher the functions fa and
fb are applied twice. The first pair of fa and fb is applied, and then after
the update of the registers, they are applied again, using the same subkeys. In
KATAN/KTANTAN64, each round applies fa and fb three times (again, with
the same key bits). IR used in fa represents irregular update rule, i.e., L1[x5] is
XORed in the rounds where the irregular update is used. IR’s are the output of
an LFSR.

Since the subkey is involved in the ciphers by the XOR operation and XORing
with constants does not affect the propagation of division property, we do not
introduce the key schedules of KATAN and KTANTAN here. Note that this fact
also indicates that the integral distinguishers found by using bit-based division
property hold not only for KATAN but also for KTANTAN. Also by the Propo-
sition 1, we can ignore the operation of AND with a constant. So the definition
of IR is also left behind. For more details of KATAN/KTANTAN, please refer
to [4].

Applying MILP-Aided Bit-Based Division Property to KATAN and
KTANTAN We construct the MILP models and analyze the integral properties
for different versions of KATAN/KTANTAN. Different initial division properties
are inserted into the MILP model and the experimental results are listed in
Table 9, which shows that the longest distinguishers for KATAN/KTANTAN32,
48, and 64 are 99-round, 83.5-round, and 72.3-round, respectively. The concrete
forms of these distinguishers are provided in Appendix B.5.

5 Conclusion

In this paper, we focus on the feasibility of MILP-aided bit-based division prop-
erty for ARX-based block cipher. More specifically, we concentrate on the con-
struction of MILP models for some components of ARX-based structure. To
propagate the bit-based division property of the Modulo operation, we use its it-
erated expression. After introducing some auxiliary variables and allocating these
variables according to the iterated expression, the Modulo model is constructed
by successively invoking Copy, AND, and XOR models. Then, the operations of
AND and OR with a constant are considered. For both of these two operations, we
prove that the known-region deduced by the input division property is always
included in the known-region derived from the output division property, with
which these operations can be ignored during our analysis. Furthermore, we al-
so handle the Modulo operation with a constant. With these newly constructed

23

Table 9: Summarization of Experimental Results for KATAN/KTANTAN.

Cipher Division Property Round Obj #{Unit Vector}

KATAN/KTANTAN32

D132

{[3fffffff]}

88

1

29
89 30
90 31
91 32

D132

{[7fffffff]}

97

1

29
98 30
99 31
100 32

KATAN/KTANTAN48†

D148

{[3fffff,ffffff]}

76

1

45
76.5 46
77 47

77.5 48

D148

{[7fffff,ffffff]}

82.5

1

45
83 46

83.5 47
84 48

KATAN/KTANTAN64†

D164

{[3fffffff,ffffffff]}

66.6

1

61
67 62

67.3 63
67.6 64

D164

{[7fffffff,ffffffff]}

71.6

1

61
72 62

72.3 63
72.6 64

Division Property: The initial division property.
#{Unit Vector}: The number of unit vectors in the resulting division prop-
erty.

† Note that one round of KATAN/KTANTAN32 and KATAN/KTANTAN64
apply the functions fa and fb twice and thrice, respectively. 0.5-round for
KATAN/KTANTAN48 indicates that fa and fb are used once. 0.3-round
and 0.6-round for KATAN/KTANTAN64 can be explained similarly.

models, we solve the feasibility of MILP-aided bit-based division property for
ARX-based block cipher. As a result, these methods are applied to search inte-
gral distinguishers for various ARX-based block ciphers. Two 18-round integral
distinguishers for HIGHT are obtained, which achieve one more round than the
previous best result. As to LEA, we find a 7-round integral distinguisher, which
also gains one more round than the one proposed by its designer. Some 15-round
integral distinguishers for TEA and XTEA are presented. Comparing with the
one transformed from the 15-round zero-correlation linear approximation, our
newly obtained distinguishers either reduces the data requirement or increas-
es the number of zero-sum bits. Besides, the bit-based division properties for
KATAN and KTANTAN families of block ciphers are also provided.

24

References

1. Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan Weeks,
and Louis Wingers. The SIMON and SPECK lightweight block ciphers. In Pro-
ceedings of the 52nd Annual Design Automation Conference, San Francisco, CA,
USA, June 7-11, 2015, pages 175:1–175:6, 2015.

2. A. Bogdanov, K. Varici, N. Mouha, V. Velichkov, E. Tischhauser, M. Wang, D. Toz,
Q. Wang, and V. Rijmen. Security evaluation of the block cipher lea. Technical
report, Technical report, July, 2011.

3. Andrey Bogdanov and Meiqin Wang. Zero correlation linear cryptanalysis with
reduced data complexity. In Fast Software Encryption - 19th International Work-
shop, FSE 2012, Washington, DC, USA, March 19-21, 2012. Revised Selected Pa-
pers, pages 29–48, 2012.

4. Christophe De Cannière, Orr Dunkelman, and Miroslav Knezevic. KATAN and
KTANTAN - A family of small and efficient hardware-oriented block ciphers. In
Cryptographic Hardware and Embedded Systems - CHES 2009, 11th International
Workshop, Lausanne, Switzerland, September 6-9, 2009, Proceedings, pages 272–
288, 2009.

5. Deukjo Hong, Jung-Keun Lee, Dong-Chan Kim, Daesung Kwon, Kwon Ho Ryu,
and Donggeon Lee. LEA: A 128-bit block cipher for fast encryption on com-
mon processors. In Information Security Applications - 14th International Work-
shop, WISA 2013, Jeju Island, Korea, August 19-21, 2013, Revised Selected Papers,
pages 3–27, 2013.

6. Deukjo Hong, Jaechul Sung, Seokhie Hong, Jongin Lim, Sangjin Lee, Bonseok
Koo, Changhoon Lee, Donghoon Chang, Jaesang Lee, Kitae Jeong, Hyun Kim,
Jongsung Kim, and Seongtaek Chee. HIGHT: A new block cipher suitable for low-
resource device. In Cryptographic Hardware and Embedded Systems - CHES 2006,
8th International Workshop, Yokohama, Japan, October 10-13, 2006, Proceedings,
pages 46–59, 2006.

7. Mitsuru Matsui. New block encryption algorithm MISTY. In Fast Software En-
cryption, 4th International Workshop, FSE ’97, Haifa, Israel, January 20-22, 1997,
Proceedings, pages 54–68, 1997.

8. Roger M Needham and David J Wheeler. Tea extensions. Report, Cambridge
University, Cambridge, UK (October 1997), 1997.

9. Ling Sun and Meiqin Wang. Towards a further understanding of bit-based division
property. IACR Cryptology ePrint Archive, 2016:392, 2016.

10. Ling Sun, Wei Wang, and Meiqin Wang. Milp-aided bit-based division property
for primitives with non-bit-permutation linear layers. IACR Cryptology ePrint
Archive, 2016:811, 2016.

11. Yosuke Todo. Integral cryptanalysis on full MISTY1. In Advances in Cryptology -
CRYPTO 2015 - 35th Annual Cryptology Conference, Santa Barbara, CA, USA,
August 16-20, 2015, Proceedings, Part I, pages 413–432, 2015.

12. Yosuke Todo. Structural evaluation by generalized integral property. In Advances
in Cryptology - EUROCRYPT 2015 - 34th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria, April
26-30, 2015, Proceedings, Part I, pages 287–314, 2015.

13. Yosuke Todo and Masakatu Morii. Bit-based division property and application
to SIMON family. In Fast Software Encryption - 23rd International Conference,
FSE 2016, Bochum, Germany, March 20-23, 2016, Revised Selected Papers, pages
357–377, 2016.

25

14. Qingju Wang, Zhiqiang Liu, Kerem Varici, Yu Sasaki, Vincent Rijmen, and Yosuke
Todo. Cryptanalysis of reduced-round SIMON32 and SIMON48. In Progress in
Cryptology - INDOCRYPT 2014 - 15th International Conference on Cryptology in
India, New Delhi, India, December 14-17, 2014, Proceedings, pages 143–160, 2014.

15. Long Wen and Meiqin Wang. Integral zero-correlation distinguisher for ARX block
cipher, with application to SHACAL-2. In Information Security and Privacy -
19th Australasian Conference, ACISP 2014, Wollongong, NSW, Australia, July
7-9, 2014. Proceedings, pages 454–461, 2014.

16. David J. Wheeler and Roger M. Needham. Tea, a tiny encryption algorithm. In
Fast Software Encryption: Second International Workshop. Leuven, Belgium, 14-16
December 1994, Proceedings, pages 363–366, 1994.

17. Zejun Xiang, Wentao Zhang, Zhenzhen Bao, and Dongdai Lin. Applying MILP
method to searching integral distinguishers based on division property for 6
lightweight block ciphers. IACR Cryptology ePrint Archive, 2016:857, 2016.

18. Peng Zhang, Bing Sun, and Chao Li. Saturation attack on the block cipher HIGHT.
In Cryptology and Network Security, 8th International Conference, CANS 2009,
Kanazawa, Japan, December 12-14, 2009. Proceedings, pages 76–86, 2009.

A Experiments on Small-SPECK

To verify the validity of our newly proposed model for the Modulo operation.
We do some experiments on a toy example called Small-SPECK.

A.1 A Brief Introduction of Small-SPECK

Small-SPECK is an ARX-based block cipher. The block size of Small-SPECK
is 8-bit. The subkeys used in Small-SPECK are randomly generated. The round
function of Small-SPECK is illustrated in Fig. 6, where (Xi

L, X
i
R) is the input

of the i-th round, ki is the subkey used in the i-th round.

2

1ki

i

LX
i

RX

1i

LX  1i

RX 

Fig. 6: The Round Function of Small-SPECK.

26

A.2 Experimental Procedures and Experimental Results

The experimental procedures are listed below.

1. For different initial division properties, we first use MILP-aided bit-based
division property to find zero-sum bits of each round.

2. We randomly generate 210 subkeys and exhaustively search zero-sum bits
just like what have done for SIMON in [14].

3. By comparison, we check whether the zero-sum bits found by using MILP-
aided bit-based division property are indeed zero-sum bits or not.

The comparison of zero-sum bits found by MILP-aided bit-based division prop-
erty and those found by exhaustively searching under different input multi-sets
is shown in Table 10. From Table 10, we know that the zero-sum bits found
by MILP-aided bit-based division property indeed satisfy zero-sum property.
And the Modulo model proposed in this paper is a valid method to help us to
construct integral distinguishers for ARX-based block ciphers.

B Summarization of Integral Distinguishers

In this section, we will adopt the following symbols to present the newly obtained
integral distinguishers. ‘Ai’ represents an i-bit vector with every bit active. ‘Bi’
denotes an i-bit vector with every bit satisfying zero-sum property. ‘Ci’ indicates
an i-bit vector with every bit being constant. ‘U i’ means an i-bit vector and the
properties of its internal bits are unknown.

B.1 Integral Distinguishers for HIGHT

11-Round Integral Distinguisher with Data Complexity 28

(A8, C8, C8, C8, C8, C8, C8, C8)
11 Rounds−−−−−−→ (U8,U8,U8,U8,U7B1,U8,U8,U8)

11-Round Integral Distinguisher with Data Complexity 28

(C8, C8, C8, C8,A8, C8, C8, C8)
11 Rounds−−−−−−→ (U7B1,U8,U8,U8,U8,U8,U8,U8)

12-Round Integral Distinguisher with Data Complexity 216

(A8,A8, C8, C8, C8, C8, C8, C8)
12 Rounds−−−−−−→ (U8,U8,U8,U8,U7B1,U8,U8,U8)

12-Round Integral Distinguisher with Data Complexity 216

(C8, C8, C8, C8,A8,A8, C8, C8)
12 Rounds−−−−−−→ (U7B1,U8,U8,U8,U8,U8,U8,U8)

17-Round Integral Distinguisher with Data Complexity 256

(A8,A8,A8,A8,A8,A8,A8, C8)
17 Rounds−−−−−−→ (U8,U8,U8,U8,U7B1,U8,U8,U8)

27

Table 10: Comparison of Zero-Sum Bits Found by Using Two Methods for Small-
SPECK

Input Round
MILP-Aided Bit-Based Theory Exhaustively Searching
Obj #{Bits} Bits #{Bits} Bits

D18

{[01111111]}

1 6 8 0 ∼ 7 8 0 ∼ 7
2 3 8 0 ∼ 7 8 0 ∼ 7
3 1 6 1 ∼ 3, 5 ∼ 7 6 1 ∼ 3, 5 ∼ 7
4 1 1 3 1 3
5 1 0 − 0 −

D18

{[11111110]}

1 7 8 0 ∼ 7 8 0 ∼ 7
2 4 8 0 ∼ 7 8 0 ∼ 7
3 1 6 1 ∼ 3, 5 ∼ 7 6 1 ∼ 3, 5 ∼ 7
4 1 1 3 3 2 ∼ 3, 6
5 1 0 − 0 −

D18

{[00001111]}

1 2 8 0 ∼ 7 8 0 ∼ 7
2 1 4 2 ∼ 3, 6 ∼ 7 4 2 ∼ 3, 6 ∼ 7
3 1 0 − 0 −

D18

{[11110000]}

1 4 8 0 ∼ 7 8 0 ∼ 7
2 2 8 0 ∼ 7 8 0 ∼ 7
3 1 2 3, 7 2 3, 7
4 1 0 − 0 −

D18

{[11111000]}

1 5 8 0 ∼ 7 8 0 ∼ 7
2 2 8 0 ∼ 7 8 0 ∼ 7
3 1 4 2 ∼ 3, 6 ∼ 7 4 2 ∼ 3, 6 ∼ 7
4 1 0 − 0 −

D18

{[11111000]}

1 6 8 0 ∼ 7 8 0 ∼ 7
2 3 8 0 ∼ 7 8 0 ∼ 7
3 1 6 1 ∼ 3, 5 ∼ 7 6 1 ∼ 3, 5 ∼ 7
4 1 1 3 1 3
5 1 0 − 0 −

Input: The division property of the input multi-set.
Obj: The value of the objective function.
#{Bits}: The number of zero-sum bits under corresponding setting.
Bits: The bit indices of zero-sum bits.

28

17-Round Integral Distinguisher with Data Complexity 256

(A8,A8,A8, C8,A8,A8,A8,A8)
17 Rounds−−−−−−→ (U7B1,U8,U8,U8,U8,U8,U8,U8)

18-Round Integral Distinguisher with Data Complexity 263

(A8,A8,A8,A8,A8,A8,A8,A7C1)
18 Rounds−−−−−−→ (U8,U8,U8,U8,U7B1,U8,U8,U8)

18-Round Integral Distinguisher with Data Complexity 263

(A8,A8,A8,A7C1,A8,A8,A8,A8)
18 Rounds−−−−−−→ (U7B1,U8,U8,U8,U8,U8,U8,U8)

B.2 Integral Distinguishers for LEA

6-Round Integral Distinguisher with Data Complexity 232

(A32, C32, C32, C32)
6 Rounds−−−−−−→ (U32,U4B1U27,U32,U32)

6-Round Integral Distinguisher with Data Complexity 232

(C32, C32, C32,A32)
6 Rounds−−−−−−→ (U32,U3B2U27,U32,U32)

7-Round Integral Distinguisher with Data Complexity 296

(C32,A32,A32,A32)
7 Rounds−−−−−−→ (U32,U4B1U27,U32,U32)

B.3 Integral Distinguishers for TEA

15-Round Integral Distinguisher with Data Complexity 262

(A32,A30C2)
15 Rounds−−−−−−→ (U31B1,U32)

15-Round Integral Distinguisher with Data Complexity 263

(A32,A31C1)
15 Rounds−−−−−−→ (U30B2,U32)

B.4 Integral Distinguishers for XTEA

15-Round Integral Distinguisher with Data Complexity 262

(A32,A30C2)
15 Rounds−−−−−−→ (U31B1,U32)

15-Round Integral Distinguisher with Data Complexity 263

(A32,A31C1)
15 Rounds−−−−−−→ (U30B2,U32)

29

B.5 Integral Distinguishers for KATAN/KTANTAN Family of
Block Ciphers

Integral Distinguisher for KATAN/KTANTAN32

88-Round Integral Distinguisher with Data Complexity 230

(C2A6,A8,A8,A8)
88 Rounds−−−−−−→ (U8,U8,B3U5,U8)

89-Round Integral Distinguisher with Data Complexity 230

(C2A6,A8,A8,A8)
89 Rounds−−−−−−→ (U8,U8,U1B2U5,U8)

90-Round Integral Distinguisher with Data Complexity 230

(C2A6,A8,A8,A8)
90 Rounds−−−−−−→ (U8,U8,U2B1U5,U8)

97-Round Integral Distinguisher with Data Complexity 231

(C1A7,A8,A8,A8)
97 Rounds−−−−−−→ (U8,U8,B3U5,U8)

98-Round Integral Distinguisher with Data Complexity 231

(C1A7,A8,A8,A8)
98 Rounds−−−−−−→ (U8,U8,U1B2U5,U8)

99-Round Integral Distinguisher with Data Complexity 231

(C1A7,A8,A8,A8)
99 Rounds−−−−−−→ (U8,U8,U2B1U5,U8)

Integral Distinguisher for KATAN/KTANTAN48

76-Round Integral Distinguisher with Data Complexity 246

(C2A10,A12,A12,A12)
76 Rounds−−−−−−→ (U12,U12,U2B3U7,U12)

76.5-Round Integral Distinguisher with Data Complexity 246

(C2A10,A12,A12,A12)
76.5 Rounds−−−−−−−−→ (U12,U12,U3B2U7,U12)

77-Round Integral Distinguisher with Data Complexity 246

(C2A10,A12,A12,A12)
77 Rounds−−−−−−→ (U12,U12,U4B1U7,U12)

77.5-Round Integral Distinguisher with Data Complexity 247

(C1A11,A12,A12,A12)
77.5 Rounds−−−−−−−−→ (U12,U12,U2B3U7,U12)

30

78-Round Integral Distinguisher with Data Complexity 247

(C1A11,A12,A12,A12)
78 Rounds−−−−−−→ (U12,U12,U3B2U7,U12)

78.5-Round Integral Distinguisher with Data Complexity 247

(C1A11,A12,A12,A12)
78.5 Rounds−−−−−−−−→ (U12,U12,U4B1U7,U12)

Integral Distinguisher for KATAN/KTANTAN64

66.6-Round Integral Distinguisher with Data Complexity 262

(C2A14,A16,A16,A16)
66.6 Rounds−−−−−−−−→ (U16,U16,U4B3U9,U16)

67-Round Integral Distinguisher with Data Complexity 262

(C2A14,A16,A16,A16)
67 Rounds−−−−−−→ (U16,U16,U5B2U9,U16)

67.3-Round Integral Distinguisher with Data Complexity 262

(C2A14,A16,A16,A16)
67.3 Rounds−−−−−−−−→ (U16,U16,U6B1U9,U16)

71.6-Round Integral Distinguisher with Data Complexity 263

(C1A15,A16,A16,A16)
71.6 Rounds−−−−−−−−→ (U16,U16,U4B3U9,U16)

72-Round Integral Distinguisher with Data Complexity 263

(C1A15,A16,A16,A16)
72 Rounds−−−−−−→ (U16,U16,U5B2U9,U16)

72.3-Round Integral Distinguisher with Data Complexity 263

(C1A15,A16,A16,A16)
72.3 Rounds−−−−−−−−→ (U16,U16,U6B1U9,U16)

31

	MILP-Aided Bit-Based Division Property for ARX-Based Block Cipher

