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Abstract

Universal hash functions based on univariate polynomials are well known, e.g. Poly1305 and
GHASH. Using Horner’s rule to evaluate such hash functions require ` − 1 field multiplications for
hashing a message consisting of ` blocks where each block is one field element. A faster method is
based on the class of Bernstein-Rabin-Winograd (BRW) polynomials which require b`/2c multipli-
cations and blg `c squarings for ` ≥ 3 blocks. Though this is significantly smaller than Horner’s rule
based hashing, implementation of BRW polynomials for variable length messages present significant
difficulties. In this work, we propose a two-level hash function where BRW polynomial based hashing
is done at the lower level and Horner’s rule based hashing is done at the higher level. The BRW
polynomial based hashing is applied to a fixed number of blocks and hence the difficulties in handling
variable length messages is avoided. Even though the hash function has two levels, we show that it
is sufficient to use a single field element as the hash key. The basic idea is instantiated to propose
two new hash functions, one which hashes a single binary string and the other can hash a vector
of binary strings. We describe two actual implementations, one over F2128 and the other over F2256

both using the pclmulqdq instruction available in modern Intel processors. On both the Haswell and
Skylake processors, the implementation over F2128 is faster than the highly optimised implementation
of GHASH by Gueron. We further show that the Fast Fourier Transform based field multiplication
over F2256 proposed by Bernstein and Chou can be used to evaluate the new hash function at a cost
of about at most 46 bit operations per bit of digest, but, unlike the Bernstein-Chou analysis, there is
no hidden cost of generating the hash key. More generally, the new idea of building a two-level hash
function having a single field element as the hash key can be applied to other finite fields to build
new hash functions.
Keywords: universal hash function, Horner’s rule, BRW polynomials, two-level hash function, MAC
schemes.

1 Introduction

An important primitive in cryptography is a hash function family with provably low collision and differ-
ential probabilities. Hash functions with provably low collision probability are called almost universal
(AU) and those with provably low differential probability are called almost XOR universal (AXU).
Starting from the work of Carter and Wegman [6], such hash functions have been used to construct
message authentication code (MAC) schemes. They have also been suggested for the construction of
disk encryption and authenticated encryption.

A well known approach to the construction of an AU hash function is the multilinear map [8].
This requires ` field multiplications to obtain the digest when the message consists of ` field elements.
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The computation can be reduced to about `/2 field multiplication by using the pseudo-dot product
construction [25]. One problematic issue for both the multi-linear hash and the pseudo-dot product is
that the key for the hash function is as long as the message.

The problem of long hash keys can be avoided by using another well known approach. In this
approach, the digest is obtained by evaluating a univariate polynomial over a finite field. The coefficients
of the polynomial are the message blocks and the point at which the polynomial is evaluated is the hash
key. As a result, the hash key consists of a single field element. Using Horner’s rule, a univariate
polynomial of degree ` can be evaluated using ` − 1 field multiplications. This cost is about the same
as that required for multilinear map based hash function.

Bernstein [3] built on a previous work by Rabin and Winograd [18] to propose a hash function
using a class of univariate polynomials called the BRW polynomials [19]. The hash key is still a single
element of the field. The main advantage of BRW polynomial based hashing is that the number of
multiplications required for hashing a message consisting of ` ≥ 3 blocks is b`/2c with an additional
blg `c squarings. In fact, what the pseudo-dot product is to the multilinear hash, the BRW polynomials
is to the Horner based hash.

There is, however, an obstacle in efficient implementation of BRW polynomials. The definition
of BRW polynomial is inherently recursive and the computation for an `-block message requires two
recursive calls on messages consisting of smaller number of blocks. In principle, the recursion can be
simulated in a bottom-up fashion. The major problematic issue is that even the first recursive call
cannot be made unless the length of the whole message is available. The whole message has to be
buffered before even the first message block can be processed. A second problem is that at each point
of the computation, it is quite complicated to figure out the operands that are to be multiplied. Again,
in principle this can be done, but, actually determining the operands requires additional time. Possibly
due to these issues, till date there has been no software efficient implementation of BRW based hash
function. On the other hand, hardware implementations for fixed length inputs are known [7].

Our Contributions

We investigate the possibility of harnessing the speed of BRW polynomial based hashing without the
associated difficulties in implementation. To this end, our first observation is that if the number of
blocks in a message is a small fixed number, then the above mentioned difficulties disappear. Making
effective use of this observation leads us to consider a two-level hash design. Suppose BRW is to be
applied when the number of blocks is η. Let us call an η-block message to be a super-block. The input
message blocks are divided into super-blocks and BRW is applied to each super-block. The outputs of
these BRW calls are then combined using a Horner based hashing.

The number of multiplications required for a message consisting of ` super-blocks is about `η/2 +
` − 1 (the precise count is provided later). Applying Horner to such a message will require `η − 1
multiplications while BRW will require `η/2 multiplications. By choosing a suitable value of η, the
number of multiplications required by the new hash function can be made quite close to that of BRW.
Such a two-level strategy has the advantage that it avoids the difficulties associated with implementing
BRW on variable length messages.

The idea of two-level (or, multi-level) hashing is not new and has been proposed in the literature [22,
17, 20]. Two-level hashing in general requires independent keys for each level. So, applied directly, the
hash key will consist of two field elements. For many applications, it is desirable to have only a single
field element as the overall hash key.

An important aspect of our construction is the fact that the hash key consists of a single field
element. Suppose the hash key for the BRW layer is τ . We show that it is possible to use a suitable
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power of τ as the key to the Horner layer. Moreover, if η is one less than some power of two, then the
required power of τ can be computed using only one extra squaring over and above the computations
required by BRW.

The underlying field for the new hash function can be any field. In particular, this field can be a
suitable binary field or, it can be a field of large characteristic such as F2130−5, the field which has been
used in Poly1305.

To make the ideas concrete, we instantiate the two-level hash construction for the binary fields F2128

and F2256 . For implementing the new hash functions, the basic requirement is efficient implementation
of multiplication over F2n for n equal to either 128 or 256. Being a binary field, it is possible to utilise
the instruction pclmulqdq available in modern Intel processors for field multiplication. The instruction
pclmulqdq multiplies two 64-bit polynomials and returns the 128-bit polynomial as the product. Our
implementations for both F2128 and F2256 are based on the pclmulqdq instruction.

A field multiplication in F2n consists of a polynomial multiplication followed by a reduction modulo
the irreducible polynomial representing the field. Late, or, delayed reduction is a well known technique
for speeding up a group of field multiplications. Essentially, the idea is to perform several polynomial
multiplications, add the results and then perform a single reduction for the entire group of multiplication.
This technique cannot always be applied. We carefully analyse the structure of BRW and identify the
groups of multiplications for which a single reduction suffices. Our implementations of the hash function
for n = 128 and n = 256 make use of delayed reduction to achieve efficiency improvement.

Several other concrete efficiency issues for BRW have been identified and implemented. One of these
is to perform independent multiplications together so that all the pclmulqdq instructions for these mul-
tiplications can be placed together. This permits possible utilisation of instruction level pipelining. For
n = 128, the implementation of the new hash function is faster than the highly optimised implemen-
tation of GHASH by Gueron [9]; on the Haswell processor of Intel, we obtain speed improvements of
about 15% to 19%, while on the Skylake processor, the speed improvements are about 10% to 15%.

The work by Bernstein and Chou [4] reports the implementation of a pseudo-dot product based
hash function over F2256 . This implementation does not use the pclmulqdq instruction and is instead
based on the Fast Fourier Transform (FFT) algorithm. The work shows that the hash function can be
computed at the cost of 29 bit operations per bit of the digest. There is, however, a considerable hidden
cost of generating the hash key which is as long as the message. This cost is not accounted for in the
29 bit operations per bit measure given in [4].

The FFT based multiplication algorithm can also be used with the new hash construction that we
propose. The code for the multiplication algorithm described in [4] is not publicly available and so
we could not carry out a concrete implementation. Instead, we used the operation counts for direct
and inverse FFT, pointwise multiplication and the reduction algorithm reported in [4], to derive an
expression for the number of bit operations per bit for the new hash function. For η = 31, this cost
is at most about 46, while for η = 63 or 127, the cost is lower. The cost of 46 bit operations per bit
is higher than the cost of 29 bit operations per bit reported in [4]. On the other hand, unlike [4], in
our case there is no hidden cost of generating the hash key. Securely generating a long hash key will
have a significant cost and if this cost is taken into account, then we expect the total cost in [4] to be
significantly more than the 46 bit operations per bit that we obtain.

Previous Works

Universal hash functions were introduced by Carter and Wegman [6]. The multilinear hash function was
proposed by Gilbert, MacWilliams and Sloane [8] while the pseudo-dot product appears in the work
of Winograd [25]. Examples of Horner’s rule based polynomial hashing are Poly1305 [1], PolyR [12]
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and GHASH [15]. Gueron and Kounavis [10] described an efficient method for reduction over binary
fields. The most recent implementation of GHASH by Gueron [9] uses delayed reduction through the
use of a pre-computed table. BRW polynomials were introduced in [3] and hardware implementation
was reported in [7]. Well known constructions of hash functions based on the pseudo-dot product are
UMAC and VMAC. As mentioned earlier, the construction in [4] is a more recent such construction over
F2256 . Nandi [16] has shown a lower bound on the number of multiplications required for secure hashing
which shows that the pseudo-dot and BRW based hashing essentially require an optimal number of
field multiplications. Brief surveys on various constructions of universal hash functions can be found
in [3, 21].

2 Preliminaries

Let D and G be finite non-empty sets. Let {Hτ}τ∈T be an indexed family of functions such that for
each τ , Hτ : D → G. The index set T is considered to be the set of all keys and a particular τ from T
is considered to be the key for Hτ . We define two kinds of probabilities associated with such a function
family.

Collision probability: For distinct x, x′ ∈ D, the collision probability of {Hτ}τ∈T for the pair (x, x′)
is defined to be Prτ [Hτ (x) = Hτ (x′)].

Differential probability: Suppose G is an additively written group. For distinct x, x′ ∈ D and any
y ∈ G, the differential probability of {Hτ}τ∈T for the triplet (x, x′, y) is defined to be Prτ [Hτ (x)−
Hτ (x′) = y].

In the above, the probabilities are taken over uniform random choices of τ from T.
The family {Hτ} is said to be ε-almost universal (ε-AU) if for all distinct x, x′ in D, the collision

probability for the pair (x, x′) is at most ε. The family {Hτ} is said to be ε-almost XOR universal
(ε-AXU) if for all distinct x, x′ in D and any y ∈ G, the differential probability for the triplet (x, x′, y)
is at most ε.

In the following, F will denote a finite field. The group G will be instantiated as the additive group of
F. The two standard operations over F are multiplication and addition. For x, y ∈ F, the product (resp.
sum) of x and y will be denoted as xy (resp. x + y) as is conventional. If F is a field of characteristic
two, then the sum of x and y will be denoted as x⊕ y.

2.1 Polynomial Hashing

For ` ≥ 0, the polynomial Hornerτ (m1,m2, · · · ,m`) in the variable τ with m1, . . . ,m` ∈ F is defined as
follows:

If ` = 0, then Hornerτ () = 0; and for ` > 0,

Hornerτ (m1,m2, · · · ,m`)
= m1τ

`−1 +m2τ
`−2 + · · ·+m`−1τ +m`

= (((m1τ +m2)τ +m3)τ + · · ·+m`−1)τ +m`.

 (1)

Note that computing Horner on ` field elements requires `− 1 additions and `− 1 multiplications.
It is well known that {Hornerτ}τ∈F, is ((` − 1)/#F)-AU. Further, the hash function {τHornerτ}τ∈F

is (`/#F)-AXU.
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2.2 BRW Hashing

In [3], Bernstein defined a family of polynomials based on previous work by Rabin and Winograd [18],
later called the BRW polynomials in [19]. For l ≥ 0, BRWτ (m1,m2, · · · ,ml) with m1, . . . ,ml ∈ F is a
polynomial in the variable τ and is defined as follows:

• BRWτ () = 0;
• BRWτ (m1) = m1;
• BRWτ (m1,m2) = m1τ +m2;
• BRWτ (m1,m2,m3) = (τ +m1)(τ

2 +m2) +m3;
• BRWτ (m1,m2, · · · ,ml)

= BRWτ (m1, · · · ,mt−1)(τ
t +mt) + BRWτ (mt+1, · · · ,ml);

if t ∈ {4, 8, 16, 32, · · · } and t ≤ l < 2t.

Suppose l ≥ 3. Following [3], it can be shown that BRWτ (m1, . . . ,ml) can be computed using bl/2c
multiplications and blg lc additional squarings to compute τ2, τ4, . . ..

Let d(l) denote the degree of BRWτ (m1, . . . ,ml). Then d(l) = 2blg lc+1 − 1 [3] and so d(l) ≤ 2l − 1
where the bound is achieved if and only if l = 2r for some r ≥ 2 and d(l) = l if and only if l = 2r+1 − 1
for some r ≥ 1.

It has been proved in [3] that the map from Fl to F[τ ] given by

(m1, . . . ,ml) 7−→ BRWτ (m1, . . . ,ml)

is injective. As a consequence, the hash function {BRWτ}τ∈F, BRWτ : (m1, . . . ,ml) 7→ BRWτ (m1, . . . ,ml)
is (d(l)/#F)-AU.

3 Combining BRW with Horner

Both {Hornerτ} and {BRWτ} use a single key τ ∈ F. The number of multiplications in F required to
evaluate the two functions, though, are different. For a message consisting of ` field elements, Horner
can be evaluated using ` − 1 multiplications, while for ` ≥ 3, BRW requires b`/2c multiplications plus
blog2 `c squarings. In theory, this difference makes BRW much faster than Horner.

The problem, however, is that the definition of BRW is recursive. It is possible to have a recursive
implementation of BRW. The overhead of such an implementation will nullify the benefit of lesser
number of multiplications. On the other hand, if ` is a fixed integer, then it is possible to have a very
fast non-recursive implementation of BRW.

Horner on the other hand can handle arbitrary values of ` quite easily. So, it makes sense to try and
combine BRW and Horner so that the benefits of both the approaches can be obtained. One top-level
strategy for doing this is the following. Suppose the message is a bit string which is formatted into a
sequence of blocks where each block is an element of the field F. Divide the sequence of field elements
into groups of η blocks (assuming that η divides the number of blocks in the message). Each such group
will be called a super-block.

We fix the value of η. The function BRW is used to process each super-block. Each invocation of
BRW on a superblock produces a field element. These field elements are processed using Horner. So,
there are two levels of the hash function. At the lower level, the message is formatted into super-blocks
and BRW is used to process the super-blocks, while at the upper level, Horner is used to process the
outputs of the BRW invocations. Since the number of blocks in a super-block is fixed, a fast non-
recursive implementation of BRW can be used to process the super-blocks. A fast implementation of
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Horner can be used to combine the outputs of BRW calls. The number of multiplications required by
this approach is a little greater than that of BRW and is significantly smaller than that of Horner.

An important issue that needs to be properly tackled is the size of the key for the hash function.
Generic approaches to multi-level hash [22, 17, 20] require the key to have independent components for
each level of the hash. For a two-level hash, this would normally require two independent field elements
as the key. It is, however, desirable to use a single field element as the key. We show how this can be
done.

Proposition 1. Let η, ` be positive integers. For M ∈ Fη` write M = (M1, . . . ,M`) where each Mi ∈ Fη.
We define Gτ (M1, . . . ,M`) to be a polynomial in τ in the following manner.

Gτ (M1, . . . ,M`)

= Hornerτd(η)+1 (BRWτ (M1), . . . ,BRWτ (M`))

= τ (d(η)+1)(`−1)BRWτ (M1) + τ (d(η)+1)(`−2)BRWτ (M2) +

· · ·+ τ (d(η)+1)BRWτ (M`−1) + BRWτ (M`). (2)

The following hold for the function G given by (2).

1. The degree of G in τ is `d(η) + `− 1.

2. G injectively maps Fη` to F[τ ].

Consequently, the hash family {Gτ}τ∈F is ((`d(η) + ` − 1)/#F)-AU and the hash family {τ Gτ}τ∈F is
((`d(η) + `)/#F)-AXU.

Proof. Since each Mi ∈ Fη, the degree of BRWτ (Mi) is d(η) and so the degree of the polynomial G is
(d(η) + 1)(`− 1) + d(η) = `d(η) + `− 1. This proves the first point.

Each Mi ∈ Fη and so for all i, BRWτ (Mi) has degree d(η). Let

BRWτ (Mi) = τd(η)ci,d(η) + τd(η)−1ci,d(η)−1 + · · ·+ τci,1 + ci,0

for some ci,d(η), . . . , ci,1, ci,0 ∈ F which depend on Mi. Using this, we write

Gτ (M1, . . . ,M`)

= τ (d(η)+1)(`−1)+d(η)c1,d(η) + · · ·+ τ (d(η)+1)(`−1)+1c1,1 + τ (d(η)+1)(`−1)c1,0

+τ (d(η)+1)(`−2)+d(η)c2,d(η) + · · ·+ τ (d(η)+1)(`−2)+1c2,1 + τ (d(η)+1)(`−2)c2,0

+ · · ·+
+τ (d(η)+1)(`−i)+d(η)ci,d(η) + · · ·+ τ (d(η)+1)(`−i)+1ci,1 + τ (d(η)+1)(`−i)ci,0

+ · · ·+
+τ2d(η)+1c`−1,d(η) + · · ·+ τd(η)+2c`−1,1 + τd(η)+1c`−1,0

+τd(η)c`,d(η) + · · ·+ τc`,1 + c`,0.

Considered as a polynomial in τ , the coefficients of Gτ (M1, . . . ,M`) are ci,j with 1 ≤ i ≤ ` and
0 ≤ j ≤ d(η). Due to the choice of the key for Horner to be τd(η)+1, each ci,j is associated with a unique
power of τ .

Let M,M ′ ∈ Fη` with M 6= M ′. Write M ′ = (M ′1, . . . ,M
′
`) with each M ′i ∈ Fη. Let c′i,j be the

coefficients of the polynomial Gτ (M ′1, . . . ,M
′
`). Since M 6= M ′, there is an i such that Mi 6= M ′i .
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Table 1: Summary of the features of the basic scheme, Horner and BRW for hashing η` blocks with
η = 2r+1 − 1 for some r ≥ 1.

scheme # sqr # mult AU bound

Horner – η`− 1 (η`− 1)/#F
BRW blg η`c bη`/2c d(η`)/#F
Gτ r + 1 `(η + 1)/2− 1 (η`+ `− 1)/#F

From the injectivity property of BRW, it follows that BRWτ (Mi) 6= BRWτ (M ′i) and so there is a
j ∈ {0, 1, . . . , d(η)} such that ci,j 6= c′i,j . From this it follows that Gτ (M1, . . . ,M`) 6= Gτ (M ′1, . . . ,M

′
`).

This shows the second point.
Since for distinct M and M ′, Gτ (M1, . . . ,M`) and Gτ (M ′1, . . . ,M

′
`) are distinct and have the same

degree, it follows that Gτ (M1, . . . ,M`) − Gτ (M ′1, . . . ,M
′
`) is a non-zero polynomial of degree at most

`d(η) + ` − 1. Consequently, the probability that Gτ (M1, . . . ,M`) is equal to Gτ (M ′1, . . . ,M
′
`) is the

probability that τ is a root of the non-zero polynomial Gτ (M1, . . . ,M`)−Gτ (M ′1, . . . ,M
′
`). The number

of distinct roots of a non-zero polynomial over a field is at most its degree from which it follows that
the required probability is at most (`d(η) + `− 1)/#F. This shows the AU property.

For the AXU property, we note that the degree of τ Gτ (M1, . . . ,M`) is `d(η) + `. The rest of the
argument is similar to that of the AU propery.

A crucial point in the above construction and the proof is the choice of the appropriate power of τ
as the key for Horner so that the injectivity of Gτ follows directly from the injectivity of BRWτ . The
key for BRWτ is τ and the degree of BRWτ in τ is d(η). Based on this, the key for Horner is chosen
to be τd(η)+1. This ensures that during the computation of Horner, the BRW polynomials arising from
distinct super-blocks do not “overlap”.

For η ≥ 3 suppose r ≥ 1 is such that 2r ≤ η < 2r+1. Then d(η) = 2r+1 − 1. The number of
multiplications required in evaluating (2) is given by the number of multiplications required to evaluate
all the BRW invocations and the number of multiplications required to evaluate the single Horner
invocation. Each BRW requires bη/2c multiplications and Horner requires ` − 1 multiplications for a
total of `bη/2c + ` − 1 multiplications. Additionally, blg ηc = r squarings are required to compute the
powers τ2, . . . , τ2

r
which are used for evaluating BRW; an additional squaring is required to compute

the power τd(η)+1 = τ2
r+1

which is used as a key to Horner. So a total of blg ηc+1 squarings are required
to compute all the required powers of τ .

For η = 2r+1 − 1 with r ≥ 1, Table 1 compares the efficiency and security of Gτ with that of
Horner and BRW. The ratio of the number of multiplications required by Gτ to that required by Horner
is (`(η + 1) − 2)/(2(`η − 1)) and the ratio of the number of multiplications required by BRW to that
required by Gτ is 2bη`/2c/(`(η+1)−2). Suppose η = 31: the first ratio is (16`−1)/(31`−1) which equals
1/2 for ` = 1 and has the limiting upper bound of 16/31 ≈ 0.52; the second ratio is b31`/2c/(16`− 1)
which equals 1 for ` = 1 and decreases to about 0.97 as ` increases. So, for η = 31, the number of
multiplications required by Gτ is about 50% to 52% of that required by Horner while the number of
multiplications required by BRW is about 97% to 100% of that required by Gτ .

For η = 31, the AU bound for Horner is (31` − 1)/#F; the AU bound for Gτ is (32` − 1)/#F; and
the AU bound for BRW is d(31`)/#F = (2blg(31`)c+1 − 1)/#F. The AU bound for BRW is in general
higher than the AU bound for Gτ . The two bounds can be equal, e.g. for ` = 1, 2, 4, 8, . . .. On the other
hand, the AU bound for BRW can be about twice as large as the AU bound for Gτ , e.g. for ` = 9, the
bound for Gτ is 287/#F and the bound for BRW is 511/#F.
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Overall, Gτ allows a range of efficiency/security trade-offs between BRW and Horner. By choosing
an appropriate value for η, it is possible to attain speed nearly equal to that of BRW with AU bound
not too larger than Horner.

Multi-level hashing: The idea of using BRW at the lower level and Horner at the upper level can be
extended to more than one level. The critical issue is to choose an appropriate power of τ as the key for
each level. While this can be done, extending to more than two levels results in a rather complicated
construction which would mainly be of theoretical, rather than any practical, interest. So, we did not
pursue the idea of multi-level hashing.

4 Two-Level Hash Function

For practical applications, it is required to handle variable length strings. We show how to modify the
construction in Proposition 1 to be able to do this. For concreteness, in the rest of the paper we will fix
the finite field F to be F2n for some positive integer n. The ideas, on the other hand, are quite general
and can be adapted to work with other finite fields.

The following notation will be used.

• Given a binary string S, let len(S) denote the length of S, i.e., len(S) is the number of bits in S.

• Given an integer i with 0 ≤ i ≤ 2k − 1, let bink(i) denote the k-bit binary representation of i.

• Given a positive integer n and a binary string S, let padn(S) denote S||0i where i is the minimum
non-negative integer such that len(S) + i is divisible by n.

Let

D =
2n−1⋃
i=0

{0, 1}i. (3)

The reason for the bound 2n − 1 on the length of the strings in D is that we require the binary
representation of the length of any string in D to fit into an n-bit string. For M ∈ D, we define a
function superBlksn,η(M) as follows. Consider padn(M) to be formatted into a sequence of n-bit blocks.
Let ` be such that

len(padn(M))

n
= η(`− 1) + λ (4)

for some λ ∈ {1, . . . , η}. Then padn(M) consists of ` − 1 full super-blocks and one possibly partial
super-block. Let superBlksn,η(M) denote these super-blocks and we write

superBlksn,η(M) = (M1, . . . ,M`)

where M1, . . . ,M`−1 are full super-blocks (consisting of exactly η n-bit blocks each) and M` is a possibly
partial superblock (consisting of at most η n-bit blocks).

Theorem 1. Let D be as given in (3). Define a hash family {Hash2Lτ}τ∈F2n
where Hash2Lτ : D →

{0, 1}n such that for M ∈ D,

Hash2Lτ (M)

= τ2Hornerτd(η)+1(BRWτ (M1), . . . ,BRWτ (M`))⊕ τbinn(len(M)) (5)
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where (M1, . . . ,M`) = superBlksn,η(M).
Let M and M ′ be distinct elements of D with len(M) ≥ len(M ′). For a uniform random τ ∈ F2n

and any β ∈ F2n

Pr
τ

[
Hash2Lτ (M)⊕ Hash2Lτ (M ′) = β

]
≤ `(d(η) + 1) + 1

2n
(6)

where ` is the number of super-blocks in M .

Proof. The proof follows if we can show that Hash2Lτ (M)⊕Hash2Lτ (M ′)⊕ β is a non-zero polynomial
in τ of degree at most `(d(η) + 1) + 1. The maximum degree of Hash2Lτ (M) as a polynomial in τ is
`d(η) + `− 1 + 2 = `(d(η) + 1) + 1. So, we only need to argue that P = Hash2Lτ (M)⊕Hash2Lτ (M ′)⊕β
is a non-zero polynomial.

First suppose that len(M) 6= len(M ′). The coefficient of τ in Hash2Lτ (M) is binn(len(M)) and the
coefficient of τ in Hash2Lτ (M ′) is binn(len(M ′)) 6= binn(len(M)). So, P is a non-zero polynomial in τ .

So, suppose that len(M) = len(M ′). Then ` = `′ and an argument similar to that provided for
Proposition 1 shows that P is a non-zero polynomial in τ . The only difference with the argument in
Proposition 1 is that the last super-blocks M` and M ′` may be partial. This, however, does not affect
the argument, since the property that M` 6= M ′` implies BRWτ (M`) 6= BRWτ (M ′`) is preserved.

Remark: The manner in which Hash2Lτ (M) has been defined ensures the AXU property. If only the
AU property is desired, then one can define Hash2Lτ (M) to be

τHornerτd(η)+1(BRWτ (M1), . . . ,BRWτ (M`))⊕ binn(len(M)).

This requires one less multiplication.

4.1 Hashing a Vector of Strings

The hash family Hash2L handles a single binary string. We show how to extend it to handle a vector
where each component is a binary string.

The parameters n and η are defined as in the case of Hash2L. We define the hash family

{vecHash2Lτ}τ∈F2n
such that vecHash2Lτ : VD → F2n . (7)

The domain VD consists of variable length vectors of binary strings. Formally,

VD =
255⋃
k=0

{
(M1, . . . ,Mk) : 0 ≤ len(Mi) ≤ 2n−16 − 1

}
. (8)

The reason for the bound k ≤ 255 is that we require the binary representation of k to fit into a byte.
Similarly, the reason for the bound len(Mi) ≤ 2n−16 − 1 is that we require the binary representation of
the length of any Mi to fit into n − 16 bits. If k = 0, then the input is the empty list. Note that this
input is different from the input where k = 1 and M1 is the empty string.

The computation of the output of vecHash2Lτ is shown in Table 2.

Theorem 2. Let k ≥ k′ ≥ 0; M = (M1, . . . ,Mk) and M′ = (M ′1, . . . ,M
′
k′) be two distinct vectors in

VD. For a uniform random τ ∈ F2n and for any β ∈ F2n,

Pr
τ

[
vecHash2Lτ (M)⊕ vecHash2Lτ (M′) = β

]
≤ max (k + (d(η) + 1)Λ, k′ + (d(η) + 1)Λ′)

2n
(9)

where Λ =
∑k

i=1 `i and Λ′ =
∑k′

i=1 `
′
i.

9



Table 2: Computation of vecHash2L.
vecHash2Lτ (M1, . . . ,Mk)

if k == 0 return 1nτ ;
digest = 0n;
for i = 1, . . . , k − 1 do

(Mi,1, . . . ,Mi,`i) = superBlksn,η(Mi);

Li = binn(len(Mi));
for j = 1, . . . , `i do

digest = τd(η)+1digest⊕ BRWτ (Mi,j);
end for;
digest = τdigest⊕ Li;

end for;
(Mk,1, . . . ,Mk,`k) = superBlksn,η(Mk);

Lk = bin8(k)||08||binn−16(len(Mk));
for j = 1, . . . , `k do

digest = τd(η)+1digest⊕ BRWτ (Mk,j);
end for;
digest = τdigest⊕ Lk;
digest = τdigest;
return digest.

Proof. Quantities corresponding to M ′ will have the superscript ′.
For i = 1, . . . , k and 1 ≤ j ≤ `i, the degree of BRWτ (Mi,j) is d(η) for 1 ≤ j < `i and it is at most

d(η) for j = `i. Write
BRWτ (Mi,j) = ci,j,0 ⊕ ci,j,1τ ⊕ · · · ⊕ ci,j,d(η)τd(η)

where the c’s depend on the Mi’s. So, each Mi contributes at most `i(d(η) + 1) + 1 coefficients

ci,1,0, . . . , ci,1,d(η), . . . , ci,`i,0, . . . , ci,`i,d(η), Li

to vecHash2Lτ (M). The total number of coefficients is at most k + (d(η) + 1)Λ. The last step in the
digest computation increases the degree by one and so the maximum degree of vecHash2Lτ (M) is equal
to the maximum number of coefficients in vecHash2Lτ (M). The degree of

P = vecHash2Lτ (M)⊕ vecHash2Lτ (M′)⊕ β

is max (k + (d(η) + 1)Λ, k′ + (d(η) + 1)Λ′). The result follows if we can show that P is a non-zero
polynomial in τ . The detailed proof is divided into several cases.

Case k′ = 0: Since M 6= M′, it follows that k > 0. vecHash2Lτ (M ′) equals 1nτ . Since k > 0,
vecHash2Lτ (M) is of the form Lkτ ⊕ τ2(· · · ) where

Lk = bin8(k)||08||binn−16(len(Mk)) 6= 1n.

So, P is a non-zero polynomial.
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Case k > k′ > 0: In this case, vecHash2Lτ (M) is of the form Lkτ ⊕ τ2(· · · ) and vecHash2Lτ (M ′) is of
the form L′k′τ ⊕ τ2(· · · ) where

Lk = bin8(k)||08||binn−16(len(Mk)) 6= bin8(k
′)||08||binn−16(len(M ′k′)) = L′k′ .

So, again P is a non-zero polynomial.

Case k = k′ > 0: There are two subcases to consider.

Sub-case (a): There is some i such that len(Mi) 6= len(M ′i). Let i be the maximum such value and
so, len(Mj) = len(M ′j) for j = i + 1, . . . , k. Since len(Mi) 6= len(M ′i), it follows that Li 6= L′i. Let

s = 1 + (k− i) +
∑k

j=i+1 `j(d(η) + 1) = 1 + (k′ − i) +
∑k′

j=i+1 `
′
j(d(η) + 1). Then the coefficient of τ s in

P is Li ⊕ L′i 6= 0. So, again P is a non-zero polynomial.

Sub-case (b): In this case, len(Mi) = len(M ′i) for i = 1, . . . , k. As a result, in this case the number
of components and the length of all the components in M and M′ are equal. Since M 6= M′, it follows
that there must be some s such that Ms 6= M ′s.

Since len(Ms) = len(M ′s), it follows that the number of superblocks of Ms and M ′s are equal, i.e.,
`s = `′s. The super-blocks corresponding to Ms are Ms,1, . . . ,Ms,`s while the super-blocks corresponding
to M ′s are M ′s,1, . . . ,M

′
s,`s

. Since Ms 6= M ′s, at least one of the superblocks must be unequal. Let
t ∈ {1, . . . , `s} be such that Ms,t 6= M ′s,t. By the injectivity of BRW, it follows that BRWτ (Ms,t) 6=
BRWτ (M ′s,t) and so there is a k ∈ {0, . . . , d(η)} such that cs,t,k 6= c′s,t,k. As a result, P is a non-zero
polynomial.

This completes all the cases and the proof.

5 Implementations Based on pclmulqdq

Our target platform were the Intel processors which support the pclmulqdq instruction. This instruction
takes as input two degree 64 polynomials over F2 (represented as two 64-bit words) and returns as output
the degree 128 polynomial which is the product of the two input polynomials. The implementation was
done using Intel intrinsics.

We report implementations for n = 128 and n = 256. For n = 128, F2128 was represented using the
irreducible polynomial σ(x) = x128 ⊕ x7 ⊕ x2 ⊕ x⊕ 1 and for n = 256, F2256 was represented using the
irreducible polynomial σ(x) = x256 ⊕ x10 ⊕ x5 ⊕ x2 ⊕ 1. In both cases, σ(x) is of the form xn ⊕ g0(x)
where g0(x) is a polynomial of degree less than n/2 having exactly 4 non-zero coefficients.

We report timings on two different machines. For the timing measurements, we followed the strategy
of [13]. The first timing measurements were taken on a single core of a machine with Intel Core i7-4790
Haswell @ 3.60GHz. The second timing measurements were taken on a single core of a machine with Intel
Core i7-6500U Skylake @ 2.5GHz. In both cases, the operating system was 64-bit Ubuntu-14.04-LTS
and the C code was complied using GCC version 4.8.4. The code is publicly available1.

5.1 Field Multiplication

The multiplication of two 128-bit polynomials using the schoolbook method requires 4 pclmulqdq

calls and using Karatsuba’s algorithm requires 3 pclmulqdq calls. The multiplication of two 256-bit

1https://github.com/sebatighosh/HASH2L.git
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polynomials using the schoolbook method requires 16 pclmulqdq calls and using Karatsuba’s algorithm
requires 9 pclmulqdq calls. The reduction step can also be computed using pclmulqdq calls. From the
work of Gueron and Kounavis [10] one obtains that for n = 128, 2 pclmulqdq calls are sufficient for the
reduction while for n = 256, 4 pclmulqdq calls are sufficient. Details are provided in Section 5.2 below.

Batch multiplications: Suppose m independent multiplications are to be computed. The code can
be arranged such that the pclmulqdq instructions for these multiplications can be grouped together.
This may help the instruction scheduler to utilise instruction pipelining to speed up the computation.
We have experimented with values of m ≤ 4 and have found some speed improvements. In theory, the
speed improvement should continue as m increases. In practice, however, this does not always happen.

5.2 Efficient Reduction

Let n be a positive even integer and F2n be represented by an irreducible polynomial σ(x) of degree n
over F2. Elements of F2n are represented using polynomials over F2 of degrees less than n. Let a = a(x)
and b = b(x) be two elements of F2n . The computation of ab = a(x)b(x) mod σ(x) consists of two
steps. In the first step, a(x) and b(x) are multiplied together to obtain a result e(x) of degree less than
2n−1 and then e(x) is reduced modulo σ(x) to obtain the desired result. Let e(x) = a(x)b(x) and write
e(x) = d(x) ⊕ c(x)xn where c(x) and d(x) have degrees less than n. The essential task is to compute
c(x)xn mod σ(x). A method for doing this was described by Gueron and Kounavis [10]. We review
their method and determine the number of pclmulqdq instructions required for the reduction for both
n = 128 and n = 256.

Let q(x) and p(x) be such that c(x)xn = q(x)σ(x) ⊕ p(x) with deg(q),deg(p) ≤ n − 1. The goal is
to find p(x). Write σ(x) = xn ⊕ σ∗(x), where deg(σ∗) ≤ n− 1. The equation c(x)xn = q(x)σ(x)⊕ p(x)
becomes c(x)xn = q(x)xn ⊕ q(x)σ∗(x) ⊕ p(x) and so p(x) = q(x)σ∗(x) mod xn. So, finding q(x) is
sufficient for obtaining p(x).

Let q+(x) and p+(x) be such that x2n = q+(x)σ(x)⊕ p+(x) with deg(p+) ≤ n− 1 and deg(q+) = n.
So,

c(x)x2n = q(x)σ(x)xn ⊕ p(x)xn

⇒ c(x)(q+(x)σ(x)⊕ p+(x)) = q(x)σ(x)xn ⊕ p(x)xn

⇒ c(x)q+(x)σ(x)⊕ c(x)p+(x) = q(x)σ(x)xn ⊕ p(x)xn

⇒
⌊
c(x)q+(x)σ(x)⊕c(x)p+(x)

x2n

⌋
=

⌊
q(x)σ(x)xn⊕p(x)xn

x2n

⌋
⇒

⌊
c(x)q+(x)σ(x)

x2n

⌋
=

⌊
q(x)σ(x)
xn

⌋
.

In the above the following two facts have been used: deg(cp+) ≤ 2n − 2 and deg(p) ≤ n − 1.
Let u(x) be of degree at most n − 1, v1(x) of degree at most 2n − 1 and v2(x) of degree at most
n − 1 such that c(x)q+(x)σ(x) = u(x)x2n ⊕ v1(x) and q(x)σ(x) = u(x)xn ⊕ v2(x). From this we ob-
tain c(x)q+(x)σ(x)/xn = u(x)xn ⊕ v1(x)/xn = q(x)σ(x) ⊕ v2(x) ⊕ v1(x)/xn. This is re-written as
c(x)q+(x)/xn = q(x) ⊕ v2(x)/σ(x) ⊕ v1(x)/σ(x)xn. Since deg(v2) ≤ n − 1, bv2(x)/σ(x)c = 0 and since
deg(v1) ≤ 2n− 1, bv1(x)/(σ(x)xn)c = 0. So, we obtain q(x) = bc(x)q+(x)/xnc .

Further simplifications: Suppose n is even, and σ∗(x) = g0(x) with deg(g0) < n/2. So, σ(x) =
xn ⊕ g0(x). We have xn = σ(x) ⊕ g0(x) and so x2n = σ2(x) ⊕ g0(x

2). Since deg(g0) ≤ n/2 − 1,
deg(g0(x

2)) ≤ n − 2. So, q+(x) = σ(x) and p+(x) = g0(x
2). Write c(x) = c1(x)xn/2 ⊕ c0(x) where
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deg(c1),deg(c0) < n/2. Consider the product

c(x)q+(x) = c(x)σ(x) = c(x)(xn ⊕ g0(x)) = c(x)xn ⊕ c(x)g0(x)

= c(x)xn ⊕ (c1(x)xn/2 ⊕ c0(x))g0(x) = c(x)xn ⊕ xn/2c1(x)g0(x)⊕ c0(x)g0(x).

Since deg(c0g0) ≤ n− 2, b(c0g0)/xnc = 0 and we have

q(x) =

⌊
c(x)q+(x)

xn

⌋
= c(x)⊕

⌊
xn/2c1(x)g0(x)

xn

⌋
= c(x)⊕

⌊
c1(x)g0(x)

xn/2

⌋
.

Write q(x) = q1(x)xn/2 ⊕ q0(x) with deg(q1),deg(q0) < n/2. Since deg(c1),deg(g0) < n/2, it follows
that deg(c1g0) < n − 1 and so b(c1(x)g0(x))/xn/2c is a polynomial of degree less than n/2. So, we
have q(x) = c1(x)xn/2 ⊕ c0(x) ⊕

⌊
(c1(x)g0(x))/xn/2

⌋
. In effect, q1(x) = c1(x) and q0(x) = c0(x) ⊕

b(c1(x)g0(x))/xn/2c. Computing q(x) requires computing c1(x)g0(x) which accounts for one n/2-bit
polynomial multiplication.

Given q(x), p(x) is obtained as p(x) = q(x)σ∗(x) mod xn = q(x)g0(x) mod xn = q1(x)g0(x)xn/2 ⊕
q0(x)g0(x) mod xn = c1(x)g0(x)xn/2 ⊕ q0(x)g0(x) mod xn. The product c1(x)g0(x) has already been
computed. So, computing p(x) requires another additional n/2-bit polynomial multiplication, namely
q0(x)g0(x). So, the entire reduction can be carried out using 2 n/2-bit polynomial multiplications. For
n = 128, n/2 = 64 and the two n/2-bit polynomial multiplications can be computed using 2 pclmulqdq

calls. The entire reduction e(x) mod σ(x) requires a total of 7 instructions. For n = 256, n/2 = 128 and
an n/2-bit polynomial multiplication is a 128-bit polynomial multiplication. We choose g0(x) to have
degree less than 64. Since c1(x) is a polynomial of degree less than 128, the product c1(x)g0(x) can
be computed using 2 pclmulqdq instructions. Similarly, the product q0(x)g0(x) can also be computed
using 2 pclmulqdq instructions. So, 4 pclmulqdq instructions are sufficient for the reduction and the
code for computing e(x) mod σ(x) requires a total of 14 instructions.

5.3 Arithmetic Operations for Computing BRW

Let η = 2r+1−1 ≥ 3. SupposeAr+1 is the number of field additions required to evaluate BRWτ (m1, . . . ,mη).
Then Ar+1 = 2 + 2Ar, r ≥ 2 and using A2 = 3, we have Ar+1 = 5 · 2r−1 − 2 for r ≥ 1.

The number of multiplications for computing BRWτ (m1, . . . ,mη) is bη/2c = 2r − 1. Two field
elements β and γ are represented using polynomials over F2 of degrees less than n. Let us denote these
polynomials as β(x) and γ(x). As described above, the computation of βγ is done in two steps, namely
a polynomial multiplication followed by a reduction.

For computing BRW, it is possible to reduce the number of reductions. We describe this with respect
to F2n , but, the general idea also applies to other fields. While computing BRWτ (m1, . . . ,mη) with η =
2r+1−1 ≥ 3, the product of BRWτ (m1, . . . ,m2r−1) and (τ2

r
+m2r) is added to BRWτ (m2r+1, . . . ,m2r+1−1).

This involves a reduction step in the computation of the product BRWτ (m1, . . . ,m2r−1)(τ
2r +m2r) and

a reduction step in the computation of the output of BRWτ (m2r+1, . . . ,m2r+1−1). These two reductions
can be combined into a single reduction in the following manner. Perform the polynomial multiplica-
tion of BRWτ (m1, . . . ,m2r−1) and (τ2

r
+ m2r); compute BRWτ (m2r+1, . . . ,m2r+1−1) without the final

reduction; add the two polynomials; then perform a reduction on the resulting polynomial.
For η = 2r+1−1 ≥ 3, let Rr+1 be the number of reductions required to compute BRWτ (m1, . . . ,mη)

with R2 = 1. The computation of BRWτ (m1, . . . ,m2r−1) requires Rr reductions; the computation of
BRWτ (m2r+1, . . . ,m2r+1−1) without the final reduction requires Rr − 1 reductions; and there is a final
reduction. So, Rr+1 = Rr + (Rr − 1) + 1 = 2Rr for r ≥ 2, R2 = 1 and we obtain Rr+1 = 2r−1.
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# sqr # n-bit XORs # poly mult # red AU bnd

r 14 · 2r−2 − 4 2r − 1 2r−1 η/2n

Table 3: Efficiency and AU bound for BRWτ (m1, . . . ,mη) over F2n with η = 2r+1 − 1 ≥ 3.

A field addition in F2n is XOR of two n-bit strings. In trying to reduce the number of reductions,
the number of n-bit XORs go up. Unreduced quantities are 2n-bit polynomials and adding together two
such polynomials require 2 n-bit XORs. Further, the cross product terms of the different multiplications
are first added together and then shifted. This requires an extra n-bit XOR per delayed reduction. Let
Nr+1 be the number of n-bit XORs required to evaluate BRWτ (m1, . . . ,mη) with η = 2r+1 − 1 ≥ 3.
Then Nr+1 = 2Nr + 4 for r ≥ 2 with N2 = 3 so that Nr+1 = 14 · 2r−2 − 4.

The relevant parameters for computing BRWτ (m1, . . . ,mη) along with the AU bound are summarised
in Table 3.

5.4 Computing BRW Polynomials

For the actual implementation, for both n = 128 and n = 256, we set η = 31, i.e., the number of n-bit
blocks in a super-block is 31. For the two-level hash function, the last super-block can be partial. So,
we did separate implementations of BRW for handling number of blocks from 1 to 31. Below we provide
the details for the BRW implementation for 31-block inputs.

On a 31-block input, BRW requires a total of 15 n-bit multiplications. There is some amount of
parallelism in these multiplications. A convenient way to bring out this parallelism is to represent the
BRW computation using a tree as has been done in [7]. Such a tree depicts the dependencies among
the multiplications required for BRW computation. We omit the details of how the tree is constructed
as these details are not directly relevant to the present work.

The relevant part of a 31-block BRW tree is shown in Figure 1. Each node is marked by an even
number between 2 and 30 corresponding to the 15 multiplications that are required. (For the reason
why the node labels are 2 to 30 instead of 1 to 15, we refer to [7].) If there is an edge from a lower
marked node to a higher marked node, then the multiplication corresponding to the lower marked node
has to be computed before the multiplication corresponding to the higher marked node. So, for example,
the multiplication corresponding to node 2 has to be computed before the multiplication corresponding
to node 4 can be computed and the multiplications corresponding to nodes 8, 12 and 14 have to be
computed before the multiplication corresponding to node 16 can be computed.

Nodes which are not connected by an edge are independent and can be computed in parallel. For
example, the eight multiplications at the lowest level are independent; the four multiplications at the
next level are independent; and so on. There are, however, other ways to group the independent
multiplications. Such groupings allow using batch multiplications to speed up the computations. Using
batch size 3 as given below is particularly nice since the 15 multiplications can be cleanly grouped into
5 batches of 3 multiplications each.
Batch size 3: {2, 6, 10}, {14, 18, 22}, {26, 30, 4}, {20, 12, 8}, {28, 24, 16}.

In conjunction with the above, we also implemented the delayed reduction strategy described in
Section 5.3. From Table 3, for η = 31, 15 multiplications of n-bit polynomials, 8 reductions and 52
n-bit XORs are required.
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Figure 1: The 31-block BRW tree.
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5.5 Decimated Horner

Given a sequence of n-bit blocks m1, . . . ,m` and a positive integer d ≥ 1, Hornerτ (m1, . . . ,m`) can be
computed as

Hornerτ (m1, . . . ,m`) = τρ−1Hornerτd(m1,md+1,m2d+1, . . .)

⊕ · · ·
⊕ τρ−ρHornerτd(mρ,md+ρ,m2d+ρ, . . .)

⊕ τd−1Hornerτd(mρ+1,md+ρ+1,m2d+ρ+1, . . .)

⊕ · · ·
⊕ τd−(d−ρ)Hornerτd(md,m2d,m3d, . . .) (10)

where ρ = ` mod d. We call this d-decimated Horner computation. In (10), the d calls to Horner
are independent leading to d independent multiplications at each step with the boundary conditions
appropriately handled. These d independent multiplications can be computed as a batch multiplication.
After the individual Horner calls are completed, the outputs are multiplied by τρ−1, . . . , 1, τd−1, . . . , τρ

which can be done as a batch multiplication with batch size d− 1 (since one multiplication is by 1).

5.6 Implementation of Hash2L

During implementation, there is a choice of batch size for BRW. For n = 128, we have found that
choosing the batch size to be 3 provides slightly better speed compared to choosing the batch size to
be 1. So, for n = 128, we implemented BRW using batch size 3 and 3-decimated Horner. For n = 256,
however, there does not seem to be any noticeable improvement in speed by choosing the batch size to
be greater than 1. So, in this case, we implemented both BRW and Horner using batch size 1.
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128-bit 256-bit
length of message in bytes length of message in bytes

512 1024 4096 8192 512 1024 4096 8192

GHASH [9] 1.09 0.81 0.602 0.567 – – – –

Hash2L 0.88 0.687 0.498 0.463 1.4 0.95 0.718 0.67
(19.27%) (15.19%) (17.28 %) (18.3%) – – – –

Table 4: Cycles per byte for computing Hash2L and GHASH on Haswell. For both n = 128 and n = 256,
Karatsuba gave better performance compared to the schoolbook method.

128-bit 256-bit
length of message in bytes length of message in bytes

512 1024 4096 8192 512 1024 4096 8192

GHASH [9] 0.79 0.55 0.369 0.339 – – – –

Hash2L 0.667 0.468 0.33 0.301 1.11 0.758 0.562 0.525
(15.57%) (14.9%) (10.57%) (11.2%) – – – –

Table 5: Cycles per byte for computing Hash2L and GHASH on Skylake. For n = 128, schoolbook was
faster than Karatsuba, while for n = 256, Karatsuba was faster.

Timing results on the Haswell and the Skylake processors are presented in Tables 4 and 5 respectively.
The percentage figures indicate the percentage of speed improvement obtained by our implementation
of Hash2L over GHASH. The implementation of GHASH is by Gueron and has been taken from [9].
The implementation uses a delayed reduction strategy whereby a single reduction is done per eight
polynomial multiplications. This strategy requires pre-computing a table consisting of 8 consecutive
powers of the hash key. The code in [9] has been very carefully optimised. Both intrinsics and assembly
codes are provided and it is mentioned that the performance of both the codes are similar. Since,
we have implemented in intrinsics, we chose to compare to the intrinsics implementation in [9]. We
measured the time required by the intrisics implementation of GHASH in [9] on the same machines
where we measured the time required by Hash2L.

For timing both Hash2L and GHASH, the hash key was updated in each iteration. This ensured that
the timing measurements included the time for pre-computing the powers of τ in case of Hash2L and
the pre-computed table in Gueron’s implementation of GHASH.

From the results in Tables 4 and 5 we find that Hash2L is about 15% to 19% faster than GHASH
on the Haswell processor and is about 10% to 15% on the Skylake processor. In theory, the number
of multiplications required by Hash2L is slightly more than half the number of multiplications required
by GHASH. This does not directly turn into a roughly two times speed improvement for the following
reasons.

First, the strategy of delayed reduction for GHASH used by Gueron to some extent mitigates the
effect of requiring about two times as many multiplications. Second, the code for GHASH is simpler
and smaller than that for Hash2L and this could have an effect on the overall speed. Third and perhaps
the most important reason is that the code using the delayed reduction strategy in [9] is very carefully
optimised. The ordering of instructions seem to have been carefully chosen to obtain the best possible
speed. In this context, we note that [9] also provides an intrinsics implementation of GHASH without
using delayed reduction. This code runs at over 2 cycles per byte for both Haswell and Skylake. The
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speed improvement obtained using the pre-computed table cannot be just explained by the algorithmic
improvement of delayed reduction. It shows a very deep understanding of how the Intel processor
executes the instructions.

To summarise, the speed improvements that we are able to achieve are indicative of the algorithmic
superiority of Hash2L over GHASH. We do not claim that our code provides the fastest possible timing
for Hash2L. Experts on intrinsics and assembly programming should be able to tune the code to achieve
even higher speeds. Further, we have considered only η = 31 for implementation. It would be interesting
to explore the speed achievable using other values of η. We leave these as interesting work for the future.

6 Implementation Strategy Without Using pclmulqdq

For n = 256, Bernstein and Chou [4] have provided a description of how to implement binary field arith-
metic using the Fast Fourier Transform (FFT) algorithm. The method does not require the pclmulqdq

instruction. The following counts of number of bit operations are provided in [4]. Forward Fourier trans-
form: 4068 − 656 = 3412 bit operations without radix conversions; pointwise multiplications: 64 · 110
bit operations; inverse Fourier transform: 5996 bit operations; reduction: 992 bit operations.

In the FFT based polynomial multiplication, the inverse Fourier transform is applied to the pointwise
product. As pointed out in [4], to compute an expression of the type a1a2 + b1b2, it is equivalent to
compute the pointwise multiplications for a1, a2 and b1, b2; add the vectors; and then perform a single
inverse Fourier transform. So, whenever a sum of products of polynomials is to be computed, a single
inverse Fourier transform suffices. In the present context, this means that the number of inverse Fourier
transforms to be computed is equal to the number of reductions.

We consider the use of this strategy for computing Hash2L. The polynomial multiplication and
reduction procedures used in [4] can be directly considered in the present context.

Suppose η = 2r+1−1 ≥ 3. From Table 3, computing BRWτ (m1, . . . ,mη) requires 14 ·2r−2−4 256-bit
XORs; 2(2r−1) forward Fourier transforms (each polynomial multiplication requires two forward Fourier
transforms); 2r−1 pointwise multiplications; 2r−1 inverse Fourier transforms; and 2r−1 reductions. The
total number of bit operations for computing BRWτ (m1, . . . ,mη) comes to

256(14 · 2r−2 − 4) + 2 · 3412 · (2r − 1) + (64 · 110)(2r − 1) + 5996 · 2r−1 + 992 · 2r−1

= 18254 · 2r − 14888. (11)

The number of bits in (m1, . . . ,mη) is 256η = 256 · (2r+1 − 1) and so the number of bit operations per
bit for computing BRWτ (m1, . . . ,mη) is

Br+1 =
18254 · 2r − 14888

256 · (2r+1 − 1)
.

We have B2 ≈ 28.2, B3 ≈ 32.4, B4 ≈ 34.2, B5 ≈ 34.9, B6 ≈ 35.3, B7 ≈ 35.5.
For Hash2L having η` 256-bit blocks, there are ` super-blocks consisting of η 256-bit blocks each.

Processing these super-blocks require Br+1 bit operations per block. Additionally, the ` blocks which
are produced as the output of the ` BRW invocations are processed using Horner. For achieving AXU,
this requires ` field multiplications. In the multiplications of Horner computation, one of the operands
is always τ2

r+1
and so the number of forward Fourier transforms is ` + 1 (one transform for each of

the ` blocks, plus a transform for τd(η)+1) instead of 2`. In addition to these, there are ` pointwise
multiplications; ` inverse Fourier transforms; ` reductions; and ` 256-bit XORs. Plugging in the number
of bit operations for each of the aforementioned operations shows that a total of 17696` + 3412 bit
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operations are required for evaluating Horner. Since there are a total of η` 256-bit blocks, the number
of bit operations per bit for evaluating Horner is (17696` + 3412)/(256 · η`) = 69.125/(2r+1 − 1) +
13.22/(`(2r+1 − 1)).

There is an additional cost for computing the powers τ2, τ4, . . . , τ2
r+1

. Each of these is a squaring and
requires 17440 bit operations for a total of 17440 ·r bit operations to compute all the powers. Amortised
over the entire computation, the cost per bit for computing the powers is (17440 · r)/(256 · η`).

So, the total number of bit operations per bit for computing Hash2L on η` 256-bit blocks with
η = 2r+1 − 1 is

Cr+1 = Br+1 + 69.125/(2r+1 − 1) + (68.125 · r + 13.22)/(`(2r+1 − 1)).

We have C2 ≈ 51.2+27.1/`, C3 ≈ 42.3+21.4/`, C4 ≈ 38.8+14.5/`, C5 ≈ 37.2+9.2/`, C6 ≈ 36.4+5.6/`,
C7 ≈ 36.0 + 3.3/`.

Choosing η = 31 = 25 − 1 shows that the number of bit operations per bit for computing Hash2L is
37.2+9.2/` ≤ 46.4 By choosing η = 63 or 127, it is possible to lower the number of bit operations per bit
though this is still greater than the 29 bit operations per bit required for the pseudo-dot product [4]. The
main reason behind the cost of Hash2L being higher than that of the pseudo-dot product is that in the
later case, there is a single inverse Fourier transform and a single reduction for the entire computation.
The problem with the pseudo-dot product, however, is that the hash key is as long as the message. The
cost of securely generating this key will be significant and has not been considered in [4].

Remark: The complete Hash2L requires an additional multiplication to process the block containing
the message length. The above cost measure does not include this multiplication. The reason is that
a complete hash function based on the pseudo-dot product will also require such a multiplication and
this is not covered by the figure of 29 bit operations per bit reported in [4].

7 Message Authentication Code

A well known method for constructing a nonce-based MAC scheme from a hash function is the follow-
ing [24]. Let F : K×N → {0, 1}n be a mapping and {Hτ}τ∈T with Hτ :M→ {0, 1}n be a hash family.
The key space for the MAC scheme is K×T, the nonce space is N and the message space isM. Given
a nonce N and a message M , the output of the MAC scheme under a key (K, τ) is

(N,M)
(K,τ)−→ FK(N)⊕Hτ (M). (12)

It is possible to instantiate the hash function H using Hash2L. In this case, the message M is a binary
string. More generally, it is possible to instantiate H using vecHash2L in which case the message M is
a vector where each component is a binary string. The function FK can be either a block cipher or a
stream cipher.

Analysis of this scheme under the assumption that F is either a pseudo-random function (PRF) or
a pseudo-random permutation (PRP) has a long history starting from [24] with the best known bounds
appearing in [2]. If F is instantiated using a stream cipher, then security is based on the assumption that
F is a PRF while if F is instantiated using a block cipher, then security is based on the assumption that
F is a PRP. The overall security bound for the MAC scheme is obtained from the security assumption
on F and the AXU bound on Hτ . These bounds are derived in [2] and so we do not repeat them here.
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Instantiation at the 128-bit security level: It is possible to use a 128-bit block cipher such as
AES to instantiate FK . The size of K could be any of the options allowed for AES and the size of N
will be 128 bits. It is also possible to instantiate F using a stream cipher whose key size is at least 128
bits.

Instantiation at the 256-bit security level: A 128-bit block cipher such as AES cannot be directly
used to instantiate F at the 256-bit security level. Instead, a stream cipher supporting a 256-bit key
can be directly used to instantiate F .

8 Comparison to Some Previous Works

We consider some of the important universal hash functions and corresponding MAC schemes that have
been proposed. The discussion is divided into two parts. In the first part, we consider schemes for
which the keys to the hash function are long and in the second part, we consider schemes for which the
keys to the hash functions are short.

8.1 Comparison to Schemes Using Long Hash Keys

UMAC [5] and VMAC [11]: The core of the MAC scheme UMAC is the hash function NHT which is
based on integer arithmetic. This hash function processes an `-block message with each block being
w-bit long to produce a digest of size 2tw for some parameter t ≥ 1. The construction is essentially
the pseudo-dot product. The collision probability is 2−tw. The hash key consists of ` + 2(t − 1) w-bit
blocks. So, the length of the hash key is longer than the length of the message to be hashed. The core of
VMAC is the hash function VHASH which is also based on integer arithmetic and requires a key which
is longer than the message.
Auth256 [4]: The core of Auth256 is the hash function Hash256. This hash function uses arithmetic over
GF (2256) to compute a pseudo-dot product. The key is as long as the message which results in collision
probability being at most 2−256 and differential probability being at most 2−255. The work [4] reports
an implementation of Hash256 using a tower field representation and a new FFT-based algorithm for
field multiplication. It does not use the pclmulqdq instruction on Intel processors.

A more recent proposal of a hash function which uses a long key is [14]. The idea of this construction
is based on that of VHASH, except that the computation is over F264 . The hash function produces 64-
bit outputs. We note that more than 10 years ago, Bernstein had commented [23] that a 64-bit digest
provides inadequate security.

For hash functions using long keys, in practice, the key has to be generated using either a stream
cipher or a block cipher mode of operation. This leads to both efficiency and security issues as mentioned
below.

Efficiency: Generation of the key can be either done on the fly, or, it could be pre-computed and
stored. Both the approaches have problems. Generating the key on the fly requires significant
additional time which should be included in the total time for hashing. However, the above
mentioned schemes do not report this time. On the other hand, pre-computing and storing a
large key has its own problems. To quote Bernstein [2], the large key “creates a huge speed
penalty: cache misses become much more common and much more expensive.”

Security: The analysis of the scheme given in (12) is well known when K and τ are chosen indepen-
dently and uniformly at random with the best known bounds appearing in [2]. However, if τ is
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generated using a mode of operation of a block or a stream cipher, then there are two issues. If
the key for the mode of operation used to generate τ is the same as that of F , then the indepen-
dence condition is violated. Even if the key for the mode of operation is independent of the key
for F , using a mode of operation to generate τ violates the uniform distribution property of τ .
Consequently, if τ is generated using a mode of operation, the analysis and the bounds provided
in [2] do not direcly apply and a fresh analysis and security bound need to be worked out. In fact,
there has been a lengthy discussion on this issue [23] in the context of UMAC where Bernstein
had strongly argued for the necessity of precise security statement and proof for UMAC. By the
same reasoning, a precise security statement and proof is also required for Auth256 which is not
available in [4].

While the above issues are relevant for hash functions which use long keys, we note below two issues
which are particularly relevant to Hash256 and Auth256.

1. Hash256 avoids using pclmulqdq under the rationale that not all processors provide this instruc-
tion. Consider this issue in conjunction with the requirement of generating the hash key using
AES in counter mode. Processors which do not provide an instruction similar to pclmulqdq are
unlikely to provide support in the instruction set for AES. So, on such processors, the generation
of the hash key will take significantly more time than the actual hashing. This time is neither
reported nor considered in [4].

2. The digest size of Hash256 is 256 bits and so the goal of Auth256 is the 256-bit security level. It
is suggested in [4] that the hash key can be generated using counter-mode AES. Since AES is a
128-bit block cipher, a direct use of counter-mode AES will not provide security at the 256-bit
level. So, a combination of Hash256 with counter-mode AES is unlikely to provide 256-bit security.
A further issue is that of instantiating F in (12) using AES. The output of F is required to be 256
bits long and since AES is a 128-bit cipher, it cannot be directly used to instantiate F . Since [4]
does not provide a clear description of how the hash key for Hash256 is to be generated and how
F is to be instantiated, the acutal security claim of Auth256 at the 256-bit level is unclear.

In terms of efficiency, [4] reports a cost of 29 bit operations per bit for computing Hash256 along with a
hidded cost of generating the hash key. Any secure method for generating the long hash key will have
a significant cost. In Section 6, we have shown that choosing η = 31 leads to a cost of at most 46.4 bit
operations per bit. There is, however, no associated hidden cost of generating the hash key. The cost
can be made lower by choosing a higher value of η. While the comparison in terms of bit operation
counts is indicative, it would have been better to obtain the actual speed measurements. Since the code
for Hash256 is not (yet) publicly available, we were unable to do this.

8.2 Comparison to Schemes Using Short Hash Keys

Poly1305 [1]: This is a usual univariate polynomial hashing using Horner. The arithmetic is over the
prime field Fp with p = 2130 − 5. Clever use of floating point techniques are made to provide efficient
implementation. For Haswell, the best reported speed we could find is 0.65 cycles/byte using 64-bit
AVX2 instructions2. For Skylake, we were unable to locate a speed report.
GHASH [15]: This is also a usual univariate polynomial hashing using Horner. In this case, the arithmetic
is over the field F2128 . Since this hash function forms a part of the NIST standard there has been much
research in efficient implementation of this function. In fact, one of the reasons for Intel to include the

2https://www.openssl.org/blog/blog/2016/02/15/poly1305-revised/
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pclmulqdq instruction is to be able to efficiently implement GHASH. The best known highly optimised
implementation of GHASH using pclmulqdq is by Gueron [9].

Both Poly1305 and GHASH are usual Horner evaluations and hence, require `− 1 multiplications for
evaluating an `-block message. The design approach proposed here, on the other hand, requires a little
more than `/2 multiplications. So, inherently this approach is faster than GHASH or Poly1305. We
have instantiated this approach over binary fields to develop Hash2L. On the other hand, if one wishes
to work over prime fields, it is equally possible to instantiate the approach over any appropriate field
such as F2130−5.

The hash key for Poly1305, GHASH and also Hash2L is a single field element. So, in terms of key
agility, there is no difference between these three algorithms. The collision probabilities for Poly1305
and GHASH are those obtained from the usual Horner style hash and hence are only slightly lower than
that of Hash2L. See Table 1 for more details.

Both Poly1305 and GHASH are designed for the 128-bit security level. The instantiation of Hash2L
at the 128-bit security level turns out to be faster than both these functions on Haswell processor of
Intel; it is faster than GHASH on Skylake; and we were unable to locate a speed report for Poly1305 on
Skylake. We expect the 128-bit version of Hash2L to be faster than GHASH on any platform and to be
faster than Poly1305 on any processor which supports the pclmulqdq instruction. The comparison of
Hash2L to Poly1305 on processors which do not provide support for pclmulqdq cannot be determined
without getting into the details of a particular processor.

9 Conclusion

In this work, we have shown how to combine the BRW family of polynomials with the Horner based poly-
nomial evaluation to design a new hash function. The number of multiplications required for computing
the digest is a little more than that for BRW polynomials. The advantage is that the implementation
difficulties of BRW polynomials for variable length messages are eliminated. The combination is a two-
level hash with BRW at the lower level and Horner at the higher level. The hash key is a single field
element and has been appropriately used to work for both the levels. Concrete instantiations of the
hash function over binary fields have been reported. The idea, on the other hand, is quite general and
applies to other fields as well. A possible future work is to explore this idea to build concrete hash
functions over other finite fields.
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