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Abstract

In this paper, we present a new post-quantum digital signature algorithm that
derives its security entirely from assumptions about symmetric-key primitives, which
are very well studied and believed to be quantum-secure (with increased parameter
sizes). We present our new scheme with a complete post-quantum security analysis,
and benchmark results from a prototype implementation.

Our construction is an efficient instantiation of the following design: the public key
is y = f(x) for preimage-resistant function f , and x is the private key. A signature is
a non-interactive zero-knowledge proof of x, that incorporates a message to be signed.
Our security analysis uses recent results of Unruh (EUROCRYPT’12,’15,’16) that show
how to securely convert an interactive sigma protocol to a non-interactive one in the
quantum random oracle model (QROM). The Unruh construction is generic, and does
not immediately yield compact proofs. However, when we specialize the construction

to our application, we can reduce the size overhead of the QROM-secure construc-
tion to 1.6x, when compared to the Fiat-Shamir transform, which does not have a
rigorous post-quantum security analysis. Our implementation results compare both
instantiations, with multiple choices of f for comparison. Our signature scheme pro-
posal uses the block cipher LowMC for f , as it gives the shortest signatures.

In addition to reducing the size of signatures with Unruh’s construction, we also
improve the size of proofs in the underlying sigma protocol (of Giacomelli et al.,
USENIX’16) by a factor of two. This is of independent interest as it yields more
compact proofs for arbitrary choices of f in the classical case as well. Further, this
reduction in size comes at no additional computational cost.

1 Introduction

At a high level, our signature scheme uses a non-interactive zero-knowledge (NIZK) proof-
of-knowledge as a signature scheme. The zero-knowledge proof is made non-interactive
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with a generic transform similar to the well-known Fiat-Shamir (FS) transform [9]. As the
basis of our scheme, we use the recently proposed ZKB proof system [10], which allows for
proving statements of the form, “I know x such that f(x) = y”, where f can be an arbitrary
function such as SHA-256. Our key generation algorithm will make use of a function f that
is assumed to be preimage resistant against a quantum adversary. That is, for a uniformly
distributed x, given y = f(x), it is difficult to find an x′ such that f(x′) = y. The signature
will then be a non-interactive a proof-of-knowledge of x, that incorporates the message to
be signed (as in the FS transform). This way of designing a signature scheme is similar to
one described by Bellare and Goldwasser [2], but differs in the way the message is bound
to the proof. In our scheme the message may be hashed when computing the challenge in
the proof.

Using a NIZK proof of a preimage for an arbitrary function f is appealing, since public
and private keys are short, key generation is simple, and the security of f is well understood
(or commonly assumed). The two main challenges to make this practical are (1) efficiently
realizing the NIZK proof and (2) post-quantum security analysis NIZK.

ZKB builds on the MPC-in-the-head paradigm of Ishai et al. [12], that we describe
informally here. The multiparty computation protocol (MPC) will implement f , and the
input is the witness x. For example, the MPC could compute y = SHA-256(x) where
parties each have a share of x and y is public. The idea is to have the prover simulate a
multiparty computation protocol “in his head”, commit to the state and transcripts of all
players, then have the verifier “corrupt” a random subset of the simulated players by seeing
their complete state. The verifier then checks that the computation was done correctly from
the perspective of the corrupted players, and if so, he has some assurance that the output
is correct. Iterating this for many rounds then gives the verifier high assurance.

In terms of practicality, each round is very computationally efficient, as it requires no
number theoretic computations. The results of [10] have shown that computational costs
are practical, even with an unoptimized implementation. The main challenge is signature
size. Each round of the ZKB protocol outputs a transcript of the MPC protocol, and a
large number of rounds are required for soundness. For example, for 80-bits of security
against a classical attacker, ZKB proof of a SHA-256 preimage requires 137 rounds and is
835KB.

We made many improvements to ZKB, that taken together reduces the proof size by a
factor of two when compared to [10]. We reduce the amount of randomness needed for each
round of the protocol. In the original protocol, there were three independent sources of
randomness: (1) the randomness to compute a secret sharing of the witness for the relation
being proved, (2) a random seed for a PRG, and (3) randomness for the commitments. we
show how it is sufficient (without making any additional hardness assumptions) to use a
single source of randomness; the seed for the PRG.

Then we modify the verification algorithm by having the verifier re-compute parts of
the MPC transcript, instead of including it in the proof. Since the verifier must recompute
these values to check that they are correct anyway, this does not increase computational
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cost. The comparison happens indirectly, when the hash of the recomputed transcripts are
compared to the hash provided in the proof.

Moving to quantum safe parameters requires more that 137 rounds however, 438 by our
analysis, so it is clear that proofs of SHA-256 preimages are too large. There is much flexi-
bility in the choice of f , and we chose a block cipher optimized for MPC called LowMC [1].
LowMC is designed to minimize the number of non-linear operations (multiplication gates),
to reduce the amount of communication required by MPC protocols. Choosing f as an
instance of LowMC reduces signature sizes dramatically. Our most efficient quantum safe
parameter set at the 128-bit security level has 150KB signatures.

The second main challenge is the security analysis of the NIZK. It is not difficult
to show that the interactive ZKB protocol is secure against a quantum adversary (with
suitable parameters to account for generic advantage based on Grover’s algorithm). The
difficulty is when transforming ZKB to a non-interactive proof. The Fiat-Shamir transform
is simple and efficient, however, it lacks a proof in the quantum random oracle model
(QROM). There are no known quantum attacks on the transform either, and many papers
assume post-quantum security of FS signatures, if the primitives of the sigma protocol are
quantum safe. See [4, 7] for more details.

In a series of papers [14, 15, 16], Unruh studies this problem, and presents a generic
transform for turning a sigma protocol into a signature scheme with a security proof in the
QROM. However, the ZKB protocol doesn’t completely match the properties that Unruh’s
analysis requires. We show how to modify Unruh’s security proof to apply to ZKB.

We also give concrete parameters and an implementation for both the Unruh and FS
transforms and ZKB, and measure the overhead of Unruh’s transform over regular Fiat-
Shamir. The Unruh construction is generic, and does not immediately yield compact proofs.
However, when we specialize the construction to our application, we find the overhead was
surprisingly low, as a generic application of Unruh’s transform incurs a 4x increase in cost
when compared to FS. For our LowMC parameter set targeting 128-bits of post-quantum
security, the signature size overhead is about 1.6x (150KB for Unruh vs. 91KB for FS).
In our current implementation the CPU overhead is roughly a factor of 1.2x. This shows
that choosing a transform with a strong post-quantum security analysis can be practical.

2 Preliminaries and Definitions

Our definition of sigma protocols follows [6]. For a more formal definition, see [7].

Sigma protocol A sigma protocol (equivalently denoted Σ-protocol) is a three flow pro-
tocol between a prover P and verifier V where transcripts have the form (r, c, s) where r
and s are computed by P and c is a challenge chosen by V . Let f be a relation such that
f(x) = y, where y is common input and x is a witness known only to P . V accepts if
φ(y, r, c, s) = 1 for an efficiently computable predicate φ. Given two accepting transcripts
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(r, c, s) and (r, c′, s′) where c 6= c′, there is an efficient algorithm to extract a witness x′ such
that f(x′) = y. There also exists an efficient simulator, given y and a randomly chosen c,
outputs a transcript (r, c, s) for y that is indistinguishable from a real run of the protocol
for x, y.

n-special soundness The sigma protocol described in the previous paragraph is 2-
special sound, since two transcripts with different challenges are sufficient to extract a
witness. A sigma protocol has n-special soundness if n transcripts (r, c1, s1), . . . (r, cn, sn)
with distinct ci guarantee that a witness may be efficiently extracted.

The following definition of a pseudorandom function (PRF) is specialized to this work;
it uses a common parameter for the key, input and output length. The notation DFn means
that D is given oracle access to Fn.

Definition 1 (Pseudorandom Function) Let F : {0, 1}n×{0, 1}n → {0, 1}n be an effi-
ciently computable, length-preserving keyed function. We say that F is a pseudorandom
function (PRF), if for all probabilistic polynomial time distinguishers D,

|Pr[DFk(1n) = 1]− Pr[Dfn(1n) = 1]|

is negligible where k ← {0, 1}n is chosen uniformly at random and fn is chosen uniformly
at random from the set of functions mapping n-bit strings to n-bit strings.

We now define a weaker notion of a pseudorandom function in which we put an upper
bound on the number of queries that the distinguisher can make to its oracle.

Definition 2 (q-Pseudorandom Function) Let Fk and fn be as defined in Definition
1, and let q be a positive integer constant. We say that F is a q-pseudorandom function
(q-PRF) if for all probabilistic polynomial time distinguishers D that make at most q queries
to their oracle,

|Pr[DFk(1n) = 1]− Pr[Dfn(1n) = 1]|

is negligible.

Clearly, a pseudorandom function is also a q-pseudorandom function for any constant q.
When considering concrete security of PRFs against quantum attacks, we assume that an
n-bit function provides n/2 bits of security. In particular we make this assumption about
the LowMC block cipher with the parameters chose in Section 5.

This paper requires a simple type of PRG a stateless function that expands a seed to
a random string.

Definition 3 (Pseudorandom Generator) An (n, `) pseudorandom generator (PRG)
is a function P : {0, 1}n → {0, 1}` that expands an n-bit seed to an `-bit random string.
Informally, the PRG is said to be secure if for randomly chosen seeds, the output is indis-
tinguishable from the uniform distribution on {0, 1}`.
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Concretely, we assume that AES-256 in counter mode provides 128 bits of PRG security,
when used to expand 256-bit seeds to outputs less than 1KB in length.

Definition 4 (Preimage Resistance) Let H : {0, 1}∗ → {0, 1}n be a cryptographic hash
function. H is said to be preimage-resistant if, given y ∈ {0, 1}n, finding an x ∈ {0, 1}∗
such that H(x) = y is is computationally intractable, i.e., costs at least O(2n/2) operations.

In the classical case it is common to assume O(2n) operations for standard hash functions.
When considering quantum algorithms, Grover’s algorithm can find preimages withO(2n/2)
operations.

Definition 5 (Collision Resistance) Let H : {0, 1}∗ → {0, 1}n be a cryptographic hash
function. H is said to be collision-resistant if finding a pair (x, x′) such that x 6= x′ is
computationally intractable, i.e., costs at least 2n/2 operations.

When considering quantum algorithms, in theory it may be possible to find collisions using
a generic algorithm of Brassard et al. [5] with cost O(2n/3). A detailed analysis of the costs
of the algorithm in [5] by Bernstein [3] found that in practice the quantum algorithm is
unlikely to outperform the O(2n/2) classical algorithm. Multiple cryptosystems have since
made the assumption that standard hash functions with n-bit digests provide n/2 bits of
collision resistance against quantum attacks (for examples, see papers citing [3]). We make
this assumption as well, and in particular, that SHA-256 provides 128 bits of PQ security.

A computationally secure commitment scheme allows a sender to commit to a message
such that given the transcript of the commitment phase the receiver, a computationally
bound receiver cannot guess the committed message with probability non-negligibly better
than at random. The sender is computationally bound to the committed message, i.e.
cannot open to another message with greater than negligible probability.

Definition 6 (Commitment Scheme) Formally a (non-interactive) commitment scheme
consists of three algorithms KG, Com, Ver with the following properties:

• KG is the key generation algorithm, on input the security parameter it outputs a public
key pk.

• Com is the commitment algorithm. On input of a message M it outputs [C(M), D(M)] =
Com(pk,M,R) where R are the coin tosses. C(M) is the commitment string, while
D(M) is the decommitment string which is kept secret until opening time.

• Ver is the verification algorithm. On input C,D, it either outputs a message M or
⊥.

We note that if the sender refuses to open a commitment we can set D = ⊥ and Ver(pk,C,⊥) =
⊥. Computationally secure commitments must satisfy the following properties
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Correctness If [C(M), D(M)] = Com(M,R) then Ver(pk, C(M), D(M)) = M .

Secure hiding For every message pair M,M ′ the probability ensembles {C(M)}n∈N and
{C(M ′)}n∈N are computationally indistinguishable for security parameter n.

Secure Binding We say that an adversary A wins if it outputs C,D,D′ such that Ver(C,D) =
M , Ver(C,D′) = M ′ and M 6= M ′. We require that for all efficient algorithms A,
the probability that A wins is negligible in the security parameter.

To simplify our notation, we will often not explicitly write the public key pk when
we make use of commitments. Our implementation uses hash-based commitments, which
requires modeling the hash function as a random oracle in our security analysis. Note also
that randomizing the Com function may not be necessary if M has high entropy.

3 ZKB++

ZKB is a new proof system for zero-knowledge proofs on arbitrary circuits described in
[10]. We describe the protocol here, but also present ZKB++, a much improved version of
ZKB which enables proofs that are less than half the size of ZKB1.

3.1 ZKB

We now present the details of of the ZKB protocol. While ZKB is presented with various
possible parameter options, we present only the final version with the best parameters.
Moreover, while ZKB presents both interactive and non-interactive protocol versions, we
present only the non-interactive version since our main goal is building a signature scheme
for which we need the non-interactive version. In ZKB, the non-interactive version is not
fully specified, so we refer to the accompanying implementation to fill in details where
necessary.

Overview

ZKB builds on the MPC-in-the-head paradigm of Ishai et al. [12], that we describe only
informally here. The multiparty computation protocol (MPC) will implement the relation,
and the input is the witness. For example, the MPC could compute y = SHA-256(x) where
players each have a share of x and y is public. The idea is to have the prover simulate a
multiparty computation protocol “in his head”, commit to the state and transcripts of all
players, then have the verifier “corrupt” a random subset of the simulated players by seeing
their complete state. The verifier then checks that the computation was done correctly from
the perspective of the corrupted players, and if so, he has some assurance that the output
is correct. Iterating this for many rounds then gives the verifier high assurance.

1In [10] the protocol is named “ZKBoo”, which abbreviate as ZKB here.
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ZKB implements the idea of [12] as follows. In order to prove knowledge of a witness
for a relation r := {(x, y), φ(x) = y}, we begin with a circuit that computes φ, and then the
circuit is first decomposed into three parts. Intuitively, the decomposition is a three player
MPC – it contains a share function that splits the input into three shares, three functions
outputi∈{1,2,3} that take as input all of the input shares and some randomness and produce
an output share for each of the parties, and a function reconstruct that takes as input
the three output shares and reconstructs the circuit’s final output. The decomposition
is correct, and has 2-privacy which intuitively means that revealing the views of any two
players does not leak information about the witness x.

With this decomposition, ZKB then uses the MPC-in-the-head technique to prove
knowledge of x. The prover simulates n independent runs of the three player MPC protocol
and commits to the views – 3 views per run. The 3-party MPC protocol has a 2-privacy
property, which informally means that if for each run, two players are corrupted and the
adversary learns their view, x still remains private. Then, using the Fiat-Shamir heuristic,
the prover sends the commitments and output shares from each view to the random oracle
computes a challenge – the challenge tells the prover which two of the three views to open
for each of the n runs. Because of the two-privacy property, opening two views for each
run does not leak information about the witness. The number of runs, n, is chosen to
achieve negligible soundness error – i.e. intuitively it would be infeasible for the prover
cheat without getting caught in at least one of the runs. The verifier checks that (1) the
output of the each of the three views reconstructs to y, (2) each of the two open views were
computed correctly, and (3) the challenge was computed correctly.

We now give a detailed description of the non-interactive ZKB protocol. Throughout
this paper, when we do arithmetic on the indices of the players, there’s an implicit mod3
that omit to simplify the notation.

Definition 7 ((2,3)-decomposition) Let f(·) be a function that is computed by an n-
gate circuit φ such that f(x) = φ(x) = y. Let k1, k2, and k3 be tapes of length κ chosen
uniformly at random from {0, 1}κ corresponding to players P1, P2 and P3, respectively.
Consider the following set of functions, D:

(view
(0)
1 , view

(0)
2 , view

(0)
3 )←Share(x, k1, k2, k3)

view
(j+1)
i ←Update(view

(j)
i , view

(j)
i+1, ki, ki+1)

yi ←Output(Viewi)

y ←Reconstruct(y1, y2, y3)

such that Share is a potentially randomized invertible function that takes x as input and out-

puts the initial view for each player containing the secret share of xi of x - i.e. view
(0)
i = xi.
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The function Update computed the MPC for the next gate and updates the view accord-

ingly. The function Outputi takes as input the final view, Viewi ≡ view
(n)
i after all gates

have been computed and outputs player Pi’s output share, yi.

We define the following experiment EXP
(φ,x)
decomp which runs the decomposition over a

circuit φ on input x:

EXP
(φ,x)
decomp:

1. First run the Share function on x: view
(0)
1 , view

(0)
2 , view

(0)
3 ← Share(x, k1, k2, k3)

2. For each of the three views, call the update function successively for every gate in

the circuit: view
(j)
i = Update(view

(j−1)
i , view

(j−1)
i+1 , ki, ki+1) for i ∈ [1, 3], j ∈ [1, n]

3. From the final views, compute the output share of each view: yi ← output(Viewi)

We say that D is a (2, 3)-decomposition of φ if the following two properties hold when

running EXP
(φ,x)
decomp:

(Correctness) For all circuits φ, for all inputs x and for the yi’s produced by , for all
circuits φ, for all inputs x,

Pr[φ(x) = Reconstruct(y1, y2, y3)] = 1

(2-Privacy) Let D be correct. Then for all e ∈ {1, 2, 3} there exists a PPT simulator
Se such that for any probabilistic polynomial-time (PPT) algorithm A, for all circuits φ,

for all inputs x, and for the distribution of views and ki’s produced by EXP
(φ,x)
decomp,

Pr[A(x, y, ke,Viewe, ke+1,Viewe+1, ye+2) = 1]− Pr[A(x, y,Se(φ, y)) = 1]

is negligible.

3.1.1 The linear decomposition of a circuit

ZKB uses an explicit (2,3)-decomposition, which we recall here. Let R be an arbitrary
finite ring and φ a function such that φ : Rm → R` can be expressed by an n-gate
arithmetic circuit over the ring using addition by constant, multiplication by constant,
binary addition and binary multiplication gates. A (2, 3)−decomposition of φ is given by
the following functions. In the notation below, arithmetic operations are done in Rs where
the operands are elements of Rs):

• (x1, x2, x3) ← share(x, k1, k2, k3) samples random x1, x2, x3 ∈ Rm such that x1 +
x2 + x3 = x.
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• view
(j+1)
i ← update

(j)
i (view

(j)
i , view

(j)
i+1, ki, ki+1) computes Pi’s view of the output wire

of gate gj and appends it to the view. Notice that it takes as input the views and
random tapes of both party Pi as well as party Pi+1. We use wk to refer to the k-th

wire, and we use w
(i)
k to refer to the value of wk in party Pi’s view. The update

operation depends on the type of gate gj , and are defined as follows:

– case 1: addition by constant (wb = wa + k).

w
(i)
b =

{
w

(i)
a + k, if i = 1

w
(i)
a , otherwise

– case 2: multiplication by constant (wb = wa × k).

w
(i)
b = k × w(i)

a

– case 3: binary addition (wc = wa + wb).

w(i)
c = w(i)

a + w
(i)
b

– case 4: binary multiplication (wc = wa × wb).

w(i)
c =w(i)

a × w(i)
b +

w(i+1)
a × w(i)

b +

w(i)
a × w(i+1)

b +

Ri(c)−Ri+1(c)

where Ri(c) is the c-the output of a pseudorandom generator seeded with ki.

Note that with the exception of case 1, the gates are symmetric for all players.
Also note that Pi can compute all gate types locally with the exception of binary
multiplication gates as this requires inputs from Pi+1. In other words, for every
operation except binary multiplication, the update function does not use the inputs

from the second party, i.e., view
(j)
i+1 and ki+1.

• yi ← outputi(view
(n)
i ) selects the ` output wires of the circuit as stored in the view

view
(n)
i .

• y ← reconstruct(y1, y2, y3) = y1 + y2 + y3

While we don’t give the details here, [10] shows that this decomposition meets the
correctness and 2-privacy requirements of Definition 7. We will see this in more detail in
Section 4.1 when we give our post-quantum security analysis of ZKB++.
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3.1.2 Choice of R

The functions that we work with in this paper are mostly specified on the bit-level, and
therefore a natural choice for the ring is Z2. For a boolean circuit then, bitwise AND
operations (i.e. binary multiplication) require communication among parties, but XOR
and INV gates can be computed locally.

3.1.3 ZKB Complete Protocol

Given a (2, 3)-decomposition D for a function φ, the ZKB protocol is a zero knowledge
proof system for relations of the form R := {(y, x) : y = φ(x)}. We recall the details of
ZKB in Figure 3.1.3.

The ZKB non-interactive proof system

For public φ and y ∈ Lφ, the prover has x : y = φ(x). Com(·) is a secure commitment
scheme. The prover and verifier have access to a hash function H(·). The integer t is
the number of parallel iterations.

p← Prove(x):

1. For each iteration ri, i ∈ [1, t]:

(a) Sample random tapes k
(i)
1 , k

(i)
2 , k

(i)
3

(b) Simulate the MPC protocol “in the head” to get an output view View
(i)
j

and output share y
(i)
j for each player . In particular, for each player Pj :

i. (x
(i)
1 , x

(i)
2 , x

(i)
3 ) = Share(x, k

(i)
1 , k

(i)
2 , k

(i)
3 )

ii. View
(i)
j = Update(Update(· · · Update(x

(i)
j , x

(i)
j+1, k

(i)
j , k

(i)
j+1) . . .) . . .) . . .)

iii. y
(i)
j = Output(View

(i)
j )

iv. Commit: [C
(i)
j , D

(i)
j ] = Com(k

(i)
j ,View

(i)
j )

(c) Denote a(i) = (y
(i)
1 , y

(i)
2 , y

(i)
3 , C

(i)
1 , C

(i)
2 , C

(i)
3 )

2. Compute the challenge: e = H(a(1), a(2), · · · , a(t)). Interpret the challenge such
that for i ∈ [1, t], e(i) ∈ {1, 2, 3}

3. For each iteration ri, i ∈ [1, t], Denote z(i) = (D
(i)
e , D

(i)
e+1)

4. Output p = [(a(1), z(1)), (a(2), z(2)), · · · , (a(t), z(t))]

b← Verify(y, p):
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1. Compute the challenge: e′ = H(a1, a2, · · · , at). Interpret the challenge such that
for i ∈ [1, t], e′(i) ∈ {1, 2, 3}

2. For each iteration ri, i ∈ [1, t]:

(a) If ∃j ∈ {e′(i), e′(i) + 1} s.t. Ver(C
(i)
j , D

(i)
j ) = ⊥,

output Reject

(b) Else, ∀j ∈ {e′(i), e′(i) + 1},

{k(i)j ,View
(i)
j } = Ver(C

(i)
j , D

(i)
j )

(c) If Reconstruct(y
(i)
1 , y

(i)
2 , y

(i)
3 ) 6= y, output Reject

(d) If ∃j ∈ {e′(i), e′(i) + 1} s.t. y
(i)
j 6= Output(View

(i)
j ), output Reject

(e) For each wire value w
(e)
j ∈ Viewe, if

w
(e)
j 6= update(view(j−1)

e , view
(j−1)
e+1 , ke, ke+1)

output Reject

3. output Accept

3.1.4 Serializing the views: ZKB approach

In the decomposition as described in Definition 7, the view is updated with the output
wire value for each gate. While conceptually a player’s view includes the values that they
computed locally, when the view is serialized, it is sufficient to include only the wire values
of the gates that require non-local computations (i.e., the binary multiplication gates).
The verifier can recompute the parts of the view due to local computations, and they don’t
need to be serialized. Giving the verifier locally computed values does not even save any
computation as the verifier will still need to recompute the values in order to check them.

In the ZKB paper, the serialized view included the following:

• input share

• output wire values for binary multiplication gates

• output share

The size of a view depends on the circuit as well as the ring that it is computed over.
Let φ : (Z2`)

m → (Z2`)
n be the circuit being computed over Z2` such that there are m

input wires, n output wires, and each wire can be expressed with ` bits. Moreover, assume
that the circuit has b binary-multiplication gates. The size of a view in bits is thus given
by:
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|Viewi| = `(m+ n+ b)

3.1.5 ZKB proof size

Continuing with the above notation, we can now calculate the size of the ZKB proofs.
Indeed the sizes that we give correspond to the sizes that were output by the ZKB reference
code and reported in their paper. Recall from Figure 3.1.3 that for each iteration, a proof
includes

1. a = (y1, y2, y3, C1, C2, C3), where yi is the output share of party Pi and ci is the
commitment to Viewi

2. z = (De, De+1), where e ∈ {1, 2, 3} is the challenge.

Assume that the random tapes are of size κ, and the commitments are of size c bits.
In the hash based commitment scheme used by ZKB, the openings D of the commitments
contain the value being committed to as well as the randomness used for the commitments.
Let s denote the size of the randomness in bits used for each commitment. The size of the
output share yi is the same as the output size of the circuit, (` × n). Assume that there
are r iterations.The total proof size is thus given by

|p| = r × [|a|+ |z|]
= r × [3× (|yi|+ |ci|) + 2× (|Viewi|+ |ki|+ s)]

= r × [3× (`n+ c) + 2× (`× (m+ n+ b+ s) + κ)]

= r × [3c+ 2κ+ 2s+ `× (5n+ 2m+ 2b)]

3.1.6 Commitment scheme used by ZKB

3.2 ZKB++

We now present ZKB++, a modification of ZKB. While the protocol follows along the
same lines, we have several observations that allow us to reduce the proof size to less than
half of the size in the original ZKB protocol. Moreover, our benchmarks show that this
size reduction comes at no extra computational cost.

3.2.1 Modification 1: A modification of the decomposition

The ZKB paper omits the details of how the Share function samples from the three input
tapes that it is given. Moreover, when we examined the accompanying source code, we
found that the random tapes are not actually used in the Share function, but are instead
sampled using independent randomness.
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We therefore specify sampling as follows:
(x1, x2, x3)← Share(x, k1, k2, k3) =:

x1 = R1(0)

x2 = R2(0)

x3 = x− x1 − x2

As before, Ri is a pseudorandom generator seeded with ki.
We note that sampling in this manner preserves the 2-privacy of the decomposition. In

particular, given only two of {(k1, x1), (k2, x2), (k3, x3)}, x remains uniformly distributed
over the choice of the third unopened (ki, xi).

We specify the Share function in this manner as it will lead to more compact zero-
knowledge proofs. Moving now to the ZKB protocol, for each round, the prover is required
to “open” two views. In order to verify the proof, the verifier must be given both the
random tape and the input share for each opened view. If these values are generated
independently of one another, then the prover will have to explicitly include both of them
in the proof. However, with our sampling method, in View1 and View2, the prover only
needs to include ki as xi can be deterministically computed by the verifier.

The exact savings depends on which views the prover must open, and thus depends
on the challenge. The expected reduction in proof size resulting from using the ZKB++
sampling technique instead of the technique used in ZKB is

r × 4

3
× |x| bits

Given a (2, 3)-decomposition D for a function φ, the ZKB++ protocol is a zero knowl-
edge proof system for relations of the form R := {(y, x) : y = φ(x)}. We recall the details
of ZKB++ in Figure 3.2.1.

The ZKB++ non-interactive proof system

For public φ and y ∈ Lφ, the prover has x : y = φ(x). The prover and verifier have
access to a Random Oracle H(·).t is the number of parallel iterations.

p← Prove(x):

1. For each iteration ri, i ∈ [1, t]:

(a) Sample random tapes k
(i)
1 , k

(i)
2 , k

(i)
3

(b) Simulate the MPC protocol “in the head” to get an output view View
(i)
j

and output share y
(i)
j for each player. In particular, for each player Pj :
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i.

(x
(i)
1 , x

(i)
2 , x

(i)
3 )← Share(x, k

(i)
1 , k

(i)
2 , k

(i)
3 )

= (G(k
(i)
1 ), G(k

(i)
2 ), x⊕G(k

(i)
1 )⊕G(k

(i)
2 ))

ii. View
(i)
j = Update(Update(· · · Update(x

(i)
j , x

(i)
j+1, k

(i)
j , k

(i)
j+1) . . .) . . .) . . .)

iii. y
(i)
j = Output(View

(i)
j )

iv. Commit: [C
(i)
j , D

(i)
j ] = [H(k

(i)
j ,View

(i)
j ), k

(i)
j ||View

(i)
j ]

(c) Denote a(i) = (y
(i)
1 , y

(i)
2 , y

(i)
3 , C

(i)
1 , C

(i)
2 , C

(i)
3 )

2. Compute the challenge: e = H(a(1), a(2), · · · , a(t)). Interpret the challenge such
that for i ∈ [1, t], e(i) ∈ {1, 2, 3}

3. For each iteration ri, i ∈ [1, t],

(a) Denote b(i) = (y
(i)

e(i)+2
, C

(i)

e(i)+2
)

(b) Denote z(i) =


if e(i) = 1, (View

(i)
2 , k

(i)
1 , k

(i)
2 )

if e(i) = 2, (View
(i)
3 , k

(i)
2 , k

(i)
3 , x

(i)
3 )

if e(i) = 3, (View
(i)
1 , k

(i)
3 , k

(i)
1 , x

(i)
3 )

4. Output p = [e, (b(1), z(1)), (b(2), z(2)), · · · , (b(t), z(t))]

b← Verify(y, p):

1. For each iteration ri, i ∈ [1, t]:

(a) Run the MPC protocol to reconstruct the views, input and output
shares that were not explicitly given as part of the proof p. In particular:

i. x
(i)

e(i)
=


if e(i) = 1, G(k

(i)
1 )

if e(i) = 2, G(k
(i)
2 )

if e(i) = 3, x
(i)
3 which was explicitly given as part of z(i)

ii. x
(i)

e(i)+1
=


if e(i) = 1, G(k

(i)
2 )

if e(i) = 2, x
(i)
3 which was explicitly given as part of z(i)

if e(i) = 3, G(k
(i)
1 )

iii. View
(i)
e = Update(Update(· · · Update(x

(i)
e , x

(i)
e+1, k

(i)
e , k

(i)
e+1) . . .) . . .) . . .)
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iv. y
(i)

e(i)
= Output(View

(i)

e(i)
)

v. y
(i)

e(i)+1
= Output(View

(i)

e(i)+1
) // Note that View

(i)

e(i)+1
was explicitly

given as part of z(i)

vi. y
(i)

e(i)+2
= y ⊕ y(i)

e(i)
⊕ y(i)

e(i)+1

(b) Compute the commitments for views View
(i)

e(i)
and View

(i)

e(i)
. In particu-

lar, for j ∈ {e(i), e(i) + 1}:
Commit: [C

(i)
j , D

(i)
j ] = [H(k

(i)
j ,View

(i)
j ), k

(i)
j ||View

(i)
j ]

(c) Denote a′(i) = (y
(i)
1 , y

(i)
2 , y

(i)
3 , C

(i)
1 , C

(i)
2 , C

(i)
3 ) // Note that y

(i)

e(i)+2
and

C
(i)

e(i)+2
were explicitly given as part of z(i)

2. Compute the challenge: e′ = H(a′(1), a′(2), · · · , a′(t)). If, e′ = e, output Accept.
Else, output Reject.

3.2.2 Modification 2: Not including input shares

Recall from Section 3.2.1 that we changed the way the input shares are generated. In
particular, for two of the three views, the input share xi is generated from the seed ki.
Therefore, when we open either of those two views, we do not need to include the input
share as the verifier can recompute it.

The exact savings of this modification depends on the challenge, e. If the e = 1, then
for both of the opened views we can derive the input share from the seed and do not need
to send it explicitly. However, if e = 2 or e = 3, we still need to send one input share
for the third view for which the input share cannot be derived from the seed. Since the
challenge is generated uniformly at random from {1, 2, 3}, the expected number of input
shares that we’ll need to include for a single iteration is 2

3 .

3.2.3 Modification 3: Not including commitments

In the ZKB proofs, the commitments of all three views are sent to the verifier. However,
this is unnecessary since for the two views that are opened, the verifier can recompute the
commitment itself. Only for the third view that the verifier is not given does the prover
need to explicitly send the commitment.

We stress that there is no lost security here as even when the prover sends the com-
mitments, the verifier must check that the prover has sent the correct commitments by
hashing the commitments to recompute the challenge. Here too, the verifier checks that
the commitments that it computed are the same ones that were used by the prover by
hashing them as part of the input to recompute the challenge.
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There is also no extra computational cost in this approach – whereas the verifier now
must recompute the commitments, in the original ZKB protocol, the verifier needed to ver-
ify the commitments in step 2a (see Figure 3.1.3). For the hash-based commitment scheme
used by ZKB, the function to verify the commitment first recomputes the commitment and
thus there is no extra computation.

3.2.4 Modification 4: No additional randomness for commitments

Since the first input to the commitment is the seed value ki for the random tape, the proto-
col input to the commitment doubles as a randomization value, ensuring that commitments
are hiding. Further, each view included in the commitment must be well randomized for
the security of the MPC protocol. Clearly, commitments without an extra randomizing
value are computationally indistinguishable from those that have and explicit randomizing
value.

3.2.5 Modification 5: Not including the output shares

In the ZKB proofs, as part of a, the output shares yi are included in the proof. Moreover,
for the two views that are opened, those output shares are included a second time.

First, we don’t need to send two of the output shares twice. However, we actually do
not need to send any output shares at all as they can be deterministically computed from
the rest of the proof as follows:

For the two views that are sent as part of the proof, the output share can be recomputed
from the remaining parts of the view. In particular, the output share is just the value on
the output wires. However, given the random tapes together with the communicated bits
from the binary multiplication gates, the verifier can recompute all wires for both views.

For the third view, recall that the Reconstruct function simply XORs the three output
shares to obtain y. But the verifier is given y, and can thus instead recompute the third
output share. In particular, given yi, yi+1 and y, the verifier can compute:

yi+2 = y + yi + yi+1

Computational trade-off. While we would expect some computational cost from recomput-
ing rather than sending the output shares, our benchmarks show that there is no additional
computational cost incurred by this modification, perhaps because it is a small part of the
overall verification. For the challenge view, Viewe, the verifier anyway needs to recompute
all of the wire values in order to do the verification, so there is no added cost.

For the second view, as well Viewe+1, the verifier must recompute the wire values as
well since the verifier will need to compute the bits that are “communicated” in the MPC,
so there is effectively no cost.∗

∗We note that the reason that in the ZKB proofs we need to recompute the second view as well is
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Finally, for the third view, the extra computational cost of recomputing the out-
put share is just two additions in the ring, which is exactly the cost of a single call to
Reconstruct.

However, in step 2a of the ZKB verification, the verifier had to call Reconstruct in
order to verify that the three output shares given were correct (see Figure 3.1.3). But in
our modification, the verifier no longer needs to perform this check as the derivation of the
third share guarantees that it will reconstruct correctly. Thus, the verifier is adding one
Reconstruct but saving one, and thus no cost is incurred.

We note that the outputs will be checked as the yi’s are hashed with H to determine the
challenge. The verifier recomputes the challenge and if the yi values used by the verifier
do not match those used by the prover, the challenge will be different (by the collision
resistance property of H), and the proof will fail.

3.2.6 Modification 6: Not including Viewe

In step 2a of the proof, the verifier recomputes every wire in Viewe and checks as he goes
that the received values are correct. However we note that this is not necessary.

The verifier can recompute Viewe given just the random tapes ke, ke+1 and the wire
values of Viewe+1. But the verifier does not need to explicitly check that each wire value
in Viewe is computed correctly. Instead, the verifier will recompute the view, and check
the commitments using the recomputed view. By the binding property of the commitment
scheme, the commitments will only verify if the verifier has correctly recomputed every
value stored in the view.

Notice that this modification reduces the computational time as the verifier does not
need to perform step 2c, i.e, there is no need to check every wire as checking the commitment
will check these wires for us. But more crucially, this modification reduces the proof size
significantly. There is no need to send the AND wire values for Viewe as we can recompute
them and check their correctness. Indeed, for this view, the prover only needs to send the
input wire value and nothing else.

because the values that we are storing in the view are not the values that are actually communicated. The
bits that are communicated are the input wires to binary multiplication gates. While ZKB could have
stored those directly, the cost would be two values per multiplication gates.

Instead, we send the output values of the binary multiplication gates. These values alone allow the
verifier to recompute the values on all wires, and thus they can recompute the input wire values that are
communicated. Doing it this way is more efficient space-wise as we only need to send 1 value per binary
multiplication gate instead of 2. Yet it comes at the computational trade-off as the verifier now needs to
recompute the second view to recover the communicated bits.

However ZKB was already making this trade-off (indeed they don’t even discuss the reasoning or the
alternative that we presented). Thus considering that they already were doing this, our modification comes
at no cost as the re-computation of the view was being done regardless.
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3.2.7 Putting it all together: ZKB++

We have proposed a series of modifications to the ZKB protocol, and present our new
protocol in Figure 3.2.1.

Notice that in the new protocol, the prover explicitly sends the challenge e to the
verifier. In the original ZKB protocol, the verifier was explicitly given all of the inputs to
the challenge random oracle, so it could compute the challenge right away, and then check
the proofs. However, in our protocol, the verifier is no longer explicitly given these inputs.
Thus our verifier must first run the proof system, recompute the commitments, and then
compute the challenge.

But this leads to a problem. There is no way for the verifier to know which order to has
the commitments. The verifier knows the relative ordering of the commitments relative to
the challenge (i.e., which is e, e + 1, and e + 2), but in order to check that the challenge
was generated correctly it needs to be given e, and we therefore include e explicitly.

There are 3 possible challenges for each iteration, so the cost of sending e for an r
iteration proof is

r × log2(3)

Readers familiar with Schnorr proofs of knowledge of a discrete logarithm will note this
is analogous to the choice in that protocol of sending (c, s) or (r, s) (where (r, c, s) is a
Σ-protocol transcript as defined in Section 2). When r is larger than c, as is the case when
when working in a finite field, this reduces the proof size.

3.2.8 ZKB++ proof size

Our notation is as before. The expected size of our new proofs is given by

|p| = r × [|ci|+ 2|ki|+
2

3
|xi|+ b|wi|+ |ei|]

= r × [c+ 2κ+
2

3
`m+ b`+ log2(3)]

= r × [c+ 2κ+ log2(3) + `× (
2

3
×m+ b)]

3.2.9 Concrete Size Savings

In order to give some intuition as to how much smaller our proofs are in practice, we give
a concrete example. In the ZKB paper, SHA-2 is used as an example. with r = 137
rounds∗. The ring is R = Z2, so ` = 1. The circuit used to evaluate SHA-2 had 23,296

∗Our numbers are slightly higher than those reported in [10]. While the authors stated that that they
used 137 rounds, their benchmarking code actually only ran 136 rounds.
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binary multiplications (corresponding to 728 32-bit ANDs/ADDs).Thus b = 23, 296. For
commitments, SHA-256 was also used, so c = 256, and commitments were randomized
with a 32-bit random value s ∗. SHA-256 has a 256-bit output, so n = 256,and in [10] it
is computed it with input size m = 256. Finally, the seeds for the random tapes were 128
bits long, so κ = 128.

The size of the ZKB proof for these parameters is:

|p| = r × [3c+ 2κ+ 2s+ `× (5n+ 2m+ 2b)]

= 137× [3(256) + 2(128) + 2(32)1× (5(256) + 2(512) + 2(23296))

= 6, 847, 808 bits

= 855.976 kilobytes

With our modifications, the expected proof size for the same function and security
parameters becomes:

|p| = r × [c+ 2κ+ log2(3) + `× (
2

3
×m+ b)]

= 137× [256 + 2(128) + log2(3) + 1× (
2

3
× 256 + 23, 296)]

= 3, 285, 295 bits

= 410.662 kilobytes

Notice that we have cut the proof size by more than half. In truth, we can even make
the proof smaller. ZKB uses 256-bit commitments and 128-bit random tapes. Yet, the
proof was only targeting 80-bit security, and so the 256 and 128 could be reduced to 80
and 160, respectively. For the sake of a fair comparison though, we used the original ZKB
parameter choices and still showed that our modifications reduce the proof size significantly.

4 Non-Interactive Transforms and PQ Security

In this section we describe the Fiat-Shamir and Unruh constructions for transforming
an interactive sigma protocol to a non-interactive one, and consider the security against
quantum adversaries.

∗We do not agree with the use of 32-bits for s. We believe that if a random nonce was needed for the
commitments, 32-bits does not suffice, and as we showed, we don’t believe that a random nonce is actually
needed at all. We use |s| = 32 here simply to get an accurate comparison of the savings of our modifications
with the exact parameters from [10].
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4.1 Post-quantum security of ZKB++

In order to transform an interactive sigma protocol with the Fiat-Shamir transformation,
we require that it has the special soundness property and is honest-verifier zero-knowledge
(HVKZ). The ZKB paper [10] shows that both of these properties hold for the ZKB pro-
tocol, and they hold for ZKB++ as well by the same arguments.

The HVZK property reduces to:

1. The 2-privacy property (i.e. the existence of the 2-privacy simulator) of the underly-
ing MPC scheme, which is information theoretic.

2. The hiding property of the commitment scheme (with which you are also committing
to the third “garbage” view that will not be opened).

The 2-privacy property of the MPC scheme, in turn, relies on indistinguishability of a
uniformly distributed value and a value of the form φe(c) = Z−Ri+1(c), where Z depends
on the gate. Were Ri+1(c) uniformly distributed, these would be identical, but in practice
it is pseudorandomly generated. Thus, for the 2-privacy property to hold, we rely on the
security of the pseudorandom generator.

Thus, the two properties that we need to show that ZKB++ is HVZK in the presence
of a quantum adversary is the quantum security of the commitments and the security of
the pseudorandom generator.

The special soundness property reduces to

1. Security of the underlying MPC

2. The binding property of the commitment scheme.

4.1.1 Post-quantum commitments

For the Unruh transform, we will have to assume that H, our hash function is a quantum
random oracle. Although we can construct secure post-quantum commitments without
random oracles (see [16]), since we must assume that H is a random oracle anyway, we
use the result of [15] (Lemma 25) which shows that the canonical hash-based commit-
ment scheme is collapse-binding – i.e., it is a secure commitment scheme against quantum
adversaries (with security as defined in [15]).

To instantiate the random oracle, we use SHA-256 (recall our discussion of collision
resistance in Section 2).

4.2 Fiat-Shamir

The Fiat-Shamir transform [9] is an approach for converting a sigma protocol into a non-
interactive zero knowledge proof of knowledge. A sigma protocol consists of a transcript
(r, c, s) as defined in Section 2. The corresponding non-interactive proof (r′, c′, s′) would
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generate c′ and s′ as in the interactive case, but generate e′ = H(c′), instead of receiving it
from the verifier. This is known to be a secure NIZK in the random oracle model against
standard (non-quantum) adversaries [9].

One simple approach to arguing post-quantum security is to assume that the Fiat-
Shamir heuristic also works against quantum adversaries, as long as the underlying sigma
protocol and the hash function used to instantiate the random oracle are quantum-secure.
The paper [7] cites lattice-based signature schemes that make this assumption, sometimes
implicitly. Given the general uncertainty of the capabilities of quantum attackers, we prefer
to avoid this assumption, provided there is an efficient alternative.

4.2.1 ZKB++ number of rounds with Fiat-Shamir

To get soundness of 2−σ, ZKB++, like ZKB, requires

t = σ(log2 3− 1)−1

iterations.
This, however, is for classical security. For post-quantum security, we will need to

double the number of rounds required to protect against Grover’s algorithm.
To see why this is so, we can formulate an attacker trying to forge a proof as a generic

search problem. In particular, if an attacker can find a permutation of a set of transcripts
that hash to a challenge chosen in advance, he can forge a proof.

Consider a t round protocol. Then there are 3t possible challenges that can come from
hashing those N transcripts (since there are 3 challenges).

Now consider an attacker who constructs invalid ZKB++ “proofs” such that for each
ZKB++ iteration, he can give a valid response to two of the challenges but not the third.
If we model the hash function as a random oracle, the probability of getting a challenge
for which he can respond is (23)t, and thus we expect that if the attacker searches a space
of (32)t candidates (i.e., permutations of transcripts that are constructed in this manner)
he can find one.

Grover’s algorithm therefore applies and allows the attacker to search the space in time
(32)t/2.

To get soundness of 2−σ then, which corresponds to a search time of 2σ, we solve for t
such that 2σ = (32)t/2 and we find

t = 2 · σ(log2 3− 1)−1

This is exactly double the number of rounds required for a classical adversary. In order
achieve 128-bit quantum security, we will need 438 iterations.
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4.3 Unruh’s transform

Unruh [14] presents an alternative to the Fiat-Shamir transform that is provably secure in
the QROM. Indeed, Unruh even explicitly presents a construction for a signature scheme
and proves its security. We use his approach to argue that with a few modifications, our
signature scheme is also provably secure in this model. One interesting aspect is that, while
on first observation Unruh’s transform seems much more expensive than the standard Fiat-
Shamir transform, we show how to make use of the structure of ZKB++ to reduce the cost
significantly.

4.3.1 Unruh’s transform: overview

At a high level, Unruh’s transform works as follows: Given a sigma protocol with challenge
space C an integer t, a statement x and a random permutation G, the prover will

1. Run the first phase of the sigma protocol t times to produce r1, . . . , rt.

2. For each i ∈ {1, . . . , t}, and for each j ∈ C, compute the response sij for ri and
challenge j. Compute gij = G(sij).

3. Compute H(x, r1, . . . , rt, g11, . . . , gt|C|) to obtain a set of indices J1, . . . , Jt.

4. Output π = (r1, . . . , rt, s1J1 , . . . , stJt , g11, . . . , gt|C|).

Similarly, the verifier will verify the hash, verify that the given siJi values match the
corresponding giJi values, and that the siJi values are valid responses for the corresponding
ri values.

At a very high level, in Unruh’s security analysis, zero knowledge follows from HVZK
of the underlying sigma protocol - the simulator will just generate t transcripts and then
program the random oracle to get the appropriate challenges. The proof of knowledge
property is more complex, but very roughly, the argument is that any adversary who has
non-trivial probability of producing an accepting proof will also have to output some gij
for j 6= Ji which is a correct response for a different challenge - then the extractor can
invert G and get the second response, which by special soundness allows it to produce a
witness.

To instantiate the protocol, Unruh shows that one does not need a random oracle that
is actually a permutation. Instead, as long as the domain and range of the random function
are the same, it can be used in place of a permutation, since it is indistinguishable from a
random permutation.

4.3.2 Applying the Unruh transform to ZKB++: the direct approach

We could apply Unruh to ZKB++ in a relatively straightforward manner by modifying our
protocol. Although ZKB++ has 3-special soundness, whereas Unruh’s transform is only
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proven for sigma protocols with 2-special soundness, the proof is easily modified to three
special soundness.

Since ZKB++ has three special soundness, we would need at least three responses
for each iteration. Moreover, since there only are three possible challenges in ZKB++,
we would run Unruh’s transform with C = {1, 2, 3} – i.e. every possible challenge and
response. We would then proceed as follows

Let G : {0, 1}|sij | → {0, 1}|sij | be a hash function modelled as a random oracle.∗ Non-
interactive ZKB++ proofs would then proceed as follows (using the notation of Section
4.3.1):

1. Run the first phase of ZKB++ t times to produce r1, . . . , rt.

2. For each i ∈ {1, . . . , t}, and for each j ∈ 1, 2, 3, compute the response sij for ri and
challenge j. Compute gij = G(sij).

3. Compute H(x, r1, . . . , rt, g11, . . . , gt3) to obtain a set of indices J1, . . . , Jt.

4. Output π = (r1, . . . , rt, s1J1 , . . . , stJt , g11, . . . , gt3).

While this works, it comes as a significant overhead in the size of the proof. Recall
from Section 3.2.8 that the proof size for ZKB++ is:

|p| = t× [|ci|+ 2|ki|+
2

3
|xi|+ b|wi|+ |ei|]

= t× [c+ 2κ+
2

3
`m+ b`+ log2(3)]

= t× [c+ 2κ+ log2(3) + `× (
2

3
×m+ b)]

where t is the number of rounds, ci are commitments which are of size c, ki are random
tapes of length κ, the x values are the input shares which consist of m wires, the e values
are the challenge bits, b is the number of binary-multiplication gates in the circuit, and
each wire wi can be expressed with ` bits.

For the Unruh transform, we’d have to additionally include g11, . . . , gt3. Each gij is a
permutation of an output share and there are 3t such values, so in particular the extra
overhead would incur the cost of

∗Actually, the size of the response changes depending on what the challenge is. If the challenge is 0,
the response is slightly smaller as it doesn’t need to include the extra input share. So more precisely, this
is actually two hash functions, G0 used for the 0-challenge response and G1,2 used for the other two.
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3t× |sij| = 3t× [2|ki|+
2

3
|xi|+ b|wi|]

= 3t× [2κ+
2

3
`m+ b`]

= 3t× [2κ+ `× (
2

3
×m+ b)]

And the total cost of an Unruh-ZKB++ proof would then be

t× [c+ 2κ+ log2(3) + `× (
2

3
×m+ b)] + 3t× [2κ+ `× (

2

3
×m+ b)]

= t× [c+ 8κ+ log2(3) + `× (
8

3
m+ 4b)]

Since for most functions, the size of the proof is dominated by t × `b, this proof is
roughly four times as large as the Fiat-Shamir version.

4.3.3 Modification 1: making use of overlapping responses

We can make use of the structure of the ZKB++ proofs to achieve a very significant
reduction in the proof size. Although we refer to three separate challenges, in the case
of the ZKB++ protocol, there is a large overlap between the contents of the responses
corresponding to these challenges. In particular, there are only three distinct views in the
ZKB++ protocol, two of which are opened for a given challenge.

Instead of computing a permutation of each response, sij , we can compute a permu-
tation of each view, vij . For each i ∈ {1, . . . , t}, and for each j ∈ {1, 2, 3}, the prover
computes gij = G(vij).

The verifier checks the permuted value for each of the two views in the response. In
particular, for challenge i ∈ {1, 2, 3}, the verifier will need to check that gij = G(vij) and
gi(j+1) = G(vi(j+1)).

4.3.4 Modification 2: omit re-computable values

Moreover, since G is a public function, we do not need to include G(vij) in the transcript
if we have included vij in the response. Thus for the two views (corresponding to a single
challenge) that the prover sends as part of the proof, we do not need to include the permu-
tations of those views. We only need to include G(vi(j+2)), where vi(j+2) is the view that
the prover does not open for the given challenge.
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4.3.5 Putting it together: new proof size

The combination of these two modifications yields a major reduction in proof size. For
each of the t iterations of ZKB++, we include just a single extra G(v) than we would in
the Fiat-Shamir transform.

AsG is a permutation, the per-iteration overhead of ZKB++/Unruh over ZKB++/Fiat-
Shamir is the size of a single view. This overhead is less that one-third of the overhead
that would be incurred from the naive application of Unruh as described in Section 4.3.2.
In particular, the overhead of our optimized version is

t× |vij | = t× [|ki|+
1

3
|xi|+ b|wi|]

= t× [κ+
1

3
`m+ b`]

= t× [κ+ `× (
1

3
×m+ b)]

Notice the term 1
3 |xi|. Here xi is the third input share that is not derivable from its

random tape. When considering views, there is a 1
3 chance that it will be included (as

opposed to the 2
3 probability when considering responses as each response contains two

views.
And the total size of a ZKB++/Unruh proof would then be

t× [c+ 2κ+ log2(3) + `× (
2

3
×m+ b)] + t× [κ+ `× (

1

3
×m+ b)]

= t× [c+ 3κ+ log2(3) + `× (m+ 2b)]

The overhead varies per function. For the functions we examined in Section 5, the
overhead ranges from 1.6 to 2x compared to the equivalent ZKB++/Fiat-Shamir proof.

4.3.6 Security argument of the modified Unruh transform

To argue zero knowledge, we can take the same approach as in Unruh: to simulate the proof
we choose the set of challenges J1, . . . , Jt, run the MPC simulator to obtain views for each
pair of dishonest parties Ji, Ji+1, honestly generate giJi and giJi+1 and the commitments
to those views, and choose gJi+2 and the corresponding commitment at random. Then
we program the random oracle to output J1, . . . , Jt on the resulting tuple. The analysis
follows exactly as in Unruh[15].

For the soundness argument, our protocol has two main differences from Unruh’s general
version: 1) the underlying protocol we use only has 3-special soundness, rather than the
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normal 2-special soundness, and 2) we have one commitment for each view, and one G(v)
for each view, rather than having a separate G(viewi, viewi+1) for each i.

As mentioned above, the core of Unruh’s argument, which appears in Lemma 17 in
[15], says that the probability that the adversary can find a proof such that the extractor
cannot extract but the proof still verifies is negligible.

For our case, we can make that analysis as follows: For a given tuple of commitments
r1 . . . rt, and G-values g11, gt|C| that is queried to the random oracle either one of the
following is true: 1) There is some i for which (G−1(gi1), G

−1(gi2)), (G−1(gi2), G
−1(gi3)),

(G−1(gi3), G
−1(gi1)), are valid responses for challenges 1, 2, 3 respectively∗, or 2) For all

i at least one of these pairs is not a valid response. In particular that means that if that
challenge is produced by the hash function, A will not be able to produce an accepting
response. From that, we can argue that if the extractor cannot extract from a given tuple,
then the probability (over the choose of a random RO) that there exists an accepting
response for A to output is at most (2/3)t. Then, we can rely on Unruh’s Lemma 7, which
tells us that given qH queries, the probability that A produces a tuple from which we
cannot extract but A can produce an accepting response is at most 2(qH + 1)(2/3)t.

The rest of our argument can proceed exactly as in Unruh’s proof.

4.3.7 Unruh’s Transform with Constant Overhead?

We conjecture that we may be able to further reduce the overhead of Unruh to a fixed size
that does not depend on the circuit being used. We leave this as a conjecture for now as
it does not follow from Unruh’s proof, and we have not yet proved it.

If we were to include just the hash using G of the seeds (and the third input share
that is not derivable from its seed), it seems that this would be enough for the extractor
to produce a witness.

Combining this with the previous optimizations, we only need to explicitly give the
extractor a permutation of the input share of the third view. For the first two views,
the views are communicated in the open, and the extractor can compute the permutation
himself.

This would reduce the overhead when compared to FS from about 1.5x to 1.16x.

5 Our Signature Scheme

We now combine ZKB++ with the Fiat-Shamir and Unruh transforms to build a post-
quantum signature scheme. Our construction uses a block cipher to define the relation
between private and public keys (i.e., use ZKB++ to prove knowledge of a key used to create
a public ciphertext). This is because practical block cipher constructions generally have

∗In fact G is not exactly a permutation, but we ignore that here. We can make this formal exactly as
in Unruh’s proof, by considering the set of preimages.
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much lower circuit-complexity than hash functions, and will therefore lead to significantly
smaller signatures. We considered using a hash function as well. While the security of this
option is straightforward (given a wide enough output), the resulting signatures would be
much larger.

Let fk be a pseudorandom permutation with key k, key size of n bits and block size of
n bits, where n is large enough to be secure against a quantum adversary (n = 256 in our
implementation).

(pk, sk)← Key-Gen(1n)

1. Choose k ∈R {0, 1}n.

2. Choose r ∈R {0, 1}n.

3. Compute y = fk(r).

4. Output (y, r), k, where (y, r) is the public key and k is the private key.

σ ← Signk(m)

1. Construct a ZKB++ proof of knowledge of k, where m is included when computing
the challenge: π ← ZK-Prove(k, y, r).

2. Output proof π.

b← Verifypk(π)

1. Run ZKB++ verification: ZK-Verify(pk, π), again m included when computing the
challenge.

2. Output ’valid’ iff ZK-Verify outputs ’valid’, and output ’invalid’ otherwise.

Note: the rationale for using a random block r as input to fk when creating the key
pair is to improve security against multi-user key recovery attacks and generic time-memory
trade-off attacks like [11].

For many block ciphers, the input key is first expanded to multiple round keys, and key
expansion can be a non-trivial part of the total encryption cost. One might consider proving
knowledge of the expanded key, however, this is insecure. Taking AES as an example, the
attacker chooses all but the last round key at random, encrypts r with these keys, then
finds the last round key that maps the intermediate ciphertext to y (which is possible since
a single round of AES provides very little security). Therefore, it is important that we
prove knowledge of the input key, rather than an expanded key.
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5.0.8 Security of Key Generation

In this section, we show that a block cipher in which the block size and key size are
equal, and in particular equal to the security parameter n can serve as our hard instance
generator to generate keys for our signature scheme. While it is clear that a quantum
preimage-resistant hash function has this property, we show that a block cipher has this
property as well.

Definition 8 (Hard Instance Generators [see Definition 20 in [14]]) We call an al-
gorithm G a hard instance generator for a relation R iff

1. Pr[(p, s) ∈ R : (p, s)← G()]is overwhelming and

2. for any polynomial-time algorithm A, Pr[(p, s′) ∈ R : (p, s) ← G, s′ ← A(p)] is
negligible.

Definition 9 (Pseudorandom permutation) Let F : {0, 1}k × {0, 1}b → {0, 1}n be a
an efficiently computable keyed permutation. We say that F is a pseudorandom per-
mutation if for all probabilistic polynomial time distinguishers D,

|Pr[DFk,F
−1
k (1|k|) = 1]− Pr[Dfn,f

−1
n (1|k|) = 1]|

is negligible where k ← K is chosen uniformly at random and fn is chosen uniformly at
random from the set of permutations of n-bit strings.

Construction 1 Let F : K ×M→M be a pseudorandom permutation.

1. Choose a value r ∈M uniformly at random.

2. Choose a key k ← K uniformly at random.

3. Compute y = Fk(x).

4. Output (y, r, k) ((y, r) is the instance and k is the witness).

Theorem 1 Construction 1 is a hard instance generator for relation R := {(y, r, k) :
Fk(x) = y} if F is a pseudorandom permutation with |M| ≥ |K|.

Proof. The first condition of Definition 8 clearly holds as a triple (y, r, k) output by Con-
struction 1 will always be in R. Thus, we need only show that the second condition holds.
In particular, we need to show that the following probability is negligible for any PPT
algorithm A:

P1 := Pr[(y, r, k′ = k) ∈ R : (y, r, k)← G, k′ ← A(y)]

28



We denote by keyset(y) the set of keys B such that for all k ∈ B, Fk(r) = y. If there is
no such satisfying key, keyset(y) returns the empty set. For an algorithm A, denote by ty
the probability that A will output a key k′ on input y such that Fk′(r) = y. Then, using
this notation we can rewrite P1 as

P1 :=
∑
y

|keyset(y)|
|K|

· ty

and we need to show that P1 is negligible for any A.
First, we define, probability P2, which is the probability that A will output the “correct

key”, by which we mean the same key that was chosen to generate y. Since the key was
chosen uniformly at random, information-theoretically, there is no way for A to distinguish
between the “correct key” and any other valid key (i.e. any k′ for which Fk′(r) = y). Thus,
the only strategy that A has is to output any valid key and with probability 1

keyset(y) , the
key that it outputs will be the “correct key”. Thus, we have:

P2 : = Pr[k = k′ : (y, r, k)← G, k′ ← A(y)]

=
∑
y

|keyset(y)|
|K|

· ty ·
1

|keyset(y)|

=
1

|K|
∑
y

ty

We now show that P2 is negligible. Assume that there exists an A for which P2 is equal
to non-negligible ε. Then we can build a distinguisher D that distinguishes between F and
a random permutation as follows:

DO(1|k|)

1. y′ ← O(r). Queries the oracle on r and receive response y′.

2. Invoke A on input y′.

(a) if ⊥ ← A(y′), output 0.

(b) if k∗ ← A(y′), check that this is the “correct key” as follows

i. First check that Fk∗(r) = y. If not, output 0. Else, continue

ii. Next, choose a value q ←M uniformly at random and query on that value
– i.e. query for z ← O(q).

iii. Check that z = Fk∗(q). If it does not, output 0. If it does, output 1.
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Now, let’s analyze the output of D. Whenever A outputs the “correct key”, D will
output 1. Moreover, A will output the correct key with probability ε. Thus, if D’s oracle
is a pseudorandom function – i.e. if O = F , then with probability at least ε, D will output
1. To see that this is true notice that when O = F , the key for F is chosen from the same
distribution as it is in Construction 1, and thus A’s success probability on outputting the
“correct key” will be exactly ε.∗

If, however, O is a random permutation – i.e. O = fn, then D will only output 1 in
the event that fn(q) = Fk∗(q). In step (iii), once we have chosen a key k∗, the probability
of the random function agreeing with Fk∗ on q is δ = 1

|M|−1 , which is negligible in |k| since

|M| ≥ |K| = 2|k|.
Thus, we have built a good distinguisher since:

|Pr[DFk,F
−1
k (1|k|) = 1]− Pr[Dfn,f

−1
n (1|k|) = 1]| ≥ ε− δ = non− negligible

This contradicts our assumption that F is a pseudorandom permutation, and we there-
fore conclude that P2 is negligible.

We now show that |P1−P2| is negligible. Once again, consider an algorithm A that on
input y outputs a key k′ such that Fk′(r) = ywith probability ty. Consider the following
two games.
Game 1. A key k ← K is chosen uniformly at random and y = Fk(r) is given to the
adversary. The adversary wins if it can produce a key K ′ such that FK′(r) = y. The
probability of A succeeding at this game is exactly P1:∑

y

|keyset(y)|
|K|

· ty

Game 2. y ←M is chosen uniformly at random and given to the adversary. The adversary
wins if it can output a key k′ such that Fk′(r) = y. The difference between this game and
the previous one is that now we choose y uniformly irrespective of the keys. Thus all y’s
will be chosen with equal probability no matter how many keys (if any) map r to y. The
success probability of A in this game is

P3 :=
1

|M|
∑
y

ty

Now if you could distinguish between Game 1 and Game 2, you could build an algorithm
D that distinguishes F from a random permutation. D simply queries its oracle at r, and
send the response y to A. If the oracle is a pseudorandom permutation, then the success

∗It is possible that when O = F , D will output 1 with probability greater than ε –i.e. if A outputs
the wrong key that happens to agree with the “correct key” on the queried values, but for the sake of our
argument it suffices to show that it outputs 1 with probability at least ε.
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probability will be exactly the same as Game 1, namely P1. If it is a random function, the
success probability is exactly the same as Game 2, namely P3. Thus, by Definition 9, we
know that |P1 − P3| is negligible.

Since |K| ≤ |M|, then P2 ≤ P3, and in particular, when |K| = |M|, P2 = P3. We
thus have that |P1−P2| is negligible. Since we have shown that both P2 and |P1−P2| are
negligible, it follows that P1 is negligible as well.�

|Pr[DFk,F
−1
k (1|k|) = 1]− Pr[Dfn,f

−1
n (1|k|) = 1]| ≥ ε− δ = non− negligible

This contradicts our assumption that F is a pseudorandom permutation, and we there-
fore conclude that P2 is negligible.

We now show that |P1−P2| is negligible. Once again, consider an algorithm A that on
input y outputs a key k′ such that Fk′(r) = ywith probability ty. Consider the following
two games.
Game 1. A key k ← K is chosen uniformly at random from and y = Fk(r) is given to
the adversary. The adversary wins if it can produce a key K ′ such that FK?(r) = y. The
probability of A succeeding at this game is exactly P1:∑

y

|keyset(y)|
|K|

· ty

Game 2. y ←M is chosen uniformly at random and given to the adversary. The adversary
wins if it can output a key k′ such that Fk′(r) = y. The difference between this game and
the previous one is that now we choose y uniformly irrespective of the keys. Thus all y’s
will be chosen with equal probability no matter how many keys (if any) map r to y. The
success probability of A in this game is

P3 :=
1

|M|
∑
y

ty

Now if you could distinguish between Game 1 and Game 2, you could build an algorithm
D that distinguishes F from a random permutation. D simply queries its oracle at x, and
send the response y to A. If the oracle is a pseudorandom permutation, then the success
probability will be exactly the same as Game 1, namely P1. If it is a random function, the
success probability is exactly the same as Game 2, namely P3. Thus, by Definition 9, we
know that |P1 − P3| is negligible.

Since |K| ≤ |M|, then P2 ≤ P3, and in particular, when |K| = |M|, P2 = P3. We
thus have that |P1−P2| is negligible. Since we have shown that both P2 and |P1−P2| are
negligible, it follows that P1 is negligible as well.�
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NIZK # iter. Security Proof size Prover Verifier Total

ZKB 137 80-bit classical 855,976 73,178,518 70,572,692 143,751,210

ZKB++ 137 80-bit classical 413,379 72,530,004 37,229,857 109,759,861

ZKB 219 128-bit classical 1,368,312 117,037,363 103,751,608 220,788,971

ZKB++ 219 128-bit classical 660,503 116,012,659 59,410,728 175,423,387

ZKB 438 256-bit classical 2,736,624 238,248,747 203,683,630 441,932,377

ZKB++ 438 256-bit classical 1,321,966 233,322,809 119,235,511 352,558,320

Table 1: Comparison of ZKB and ZKB++ proving knowledge of a SHA-256 preimage. The
proof size is given in bytes, and the running times are given in CPU cycles. The running
times are averages taken over 500 runs. The last two rows also target 128-bit PQ security.
Only the Fiat-Shamir transform was used in this table.

5.1 Implementation and Benchmarks

We benchmarked ZKB++ and compared it to ZKB, and used it with LowMC to implement
our signature scheme.

All of our code is written in C, and our benchmarks are taken on a desktop with a 4-core
Intel Core i7-6700 3.40GHz CPU running Ubuntu 14.04. For the running time comparison,
we compiled with GCC using the -O3 and -March=native flags for optimization. We give
all of our running time benchmarks in units of CPU cycles.

The current benchmarks focus on signature size, since CPU cost is expected to be
practical. In any case, neither our implementation, nor the one of Giacomelli et al. [10]
is highly optimized. We plan to create a highly optimized implementation for one of our
LowMC parameter sets. These optimizations should be independent of the FS or Unruh
transform, since they will concentrate on the MPC component of ZKB++.

5.1.1 ZKB vs. ZKB++

In Table 1 we benchmark both the size and running times of ZKB++ and compare it to
ZKB. Our proof size are more than a factor of 2 smaller, and we also saw increased running
times – particularly for the verifier.

5.1.2 Signature scheme implementation

As the first implementation of our scheme, we wanted to build a tool that would most easily
allow us to test our scheme with different block-ciphers and hash functions. We therefore
built a fully modular circuit-based implementation. As input, our implementation took a
boolean-circuit text file that followed the standard format used in [13]. Our implementation
then runs the signature scheme using the function specified in the circuit file. To verify a
signature, our code similarly takes a circuit file and runs the verification algorithm using
the given function. By decoupling the underlying symmetric function from MPC aspects of
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the signature scheme, our implementation allows one to “plug-in” any function they want
without writing any code.

We benchmarked our implementation for AES and two configurations of LowMC. For
the circuit files, we obtained an AES-circuit from [13].

In order to run our code with LowMC, we needed to obtain a binary circuit for it. As
part of the ABY framework [8], circuit code was made available for LowMC. We began
with that code and modified it to obtain compact circuits for the LowMC parameters that
we benchmarked.

While the circuit-based implementation allows us to easily experiment with different
functions for which we have circuit files, it suffers in efficiency since we are doing all of our
operations as bitwise operations. We therefore created faster implementations for specific
candidates, and we have benchmarked those here as well.∗

For each candidate, we show the results both using plain Fiat-Shamir, as well as using
Unruh’s transformation. Note that, as expected, our modified Unruh scheme adds a fixed
number of bytes that does not depend on the number of AND gates in the underlying
symmetric function.

5.1.3 Parameters

For our post quantum choices, we targeted 128-bit post quantum security, and therefore
chose our primitives to achieve 256-classical security. Based on Theorem 1, it was sufficient
to have a block cipher with both a block size and a key size of 256. Moreover, for the base
ZKB protocol, we need 256-bit classical soundness, and thus require 438 rounds based on
our analysis in Section 4.2.1.

For LowMC, we require 256 bit blocks and cipher size. LowMC has two more parameters
as well: data complexity and number of s-boxes. Given these parameters, we used the
python script provided with the LowMC paper to determine the number of LowMC rounds
required for security.

The data complexity parameter refers to the number of input/output pairs that an
attacker will be given access to for a single key. In our signature scheme, the attacker
only ever sees one such pair. However, in the simulation in the proof of Theorem 1, the
attacker sees one more pair. Thus, the total data complexity is 2 pairs. In ZKB, the data
complexity parameter is given as the base-2 logarithm of the number of pairs, and thus
our data complexity is 1.

We were still free to choose the number of s-boxes. There is a signature size/efficiency
trade-off since as we increase the number of s-boxes, the number of ANDs in the circuit
increases, but the overall circuit size decreases. Thus, for our signature scheme, as we
increase the number of s-boxes, the size of the signature will increase, but the time to sign
and verify will decrease.

∗Runtime benchmarks for the LowMC candidates are in preparation and will be added to a revision of
this paper. For now our focus is signature size.
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Table 2: Signature size comparison

Transform Primitive ZKB iter. Security Signature size

Fiat-Shamir LowMC-256-256-1-243 438 128-bit PQ 91,670
Unruh LowMC-256-256-1-243 438 128-bit PQ 150,490
Fiat-Shamir LowMC-256-256-60-9 438 128-bit PQ 140,832
Unruh LowMC-356-256-60-9 438 128-bit PQ 247,914

Fiat-Shamir SHA-256 438 128-bit PQ 1,331,632
Unruh SHA-256 438 128-bit PQ 2,630,414
Fiat-Shamir AES-128 438 comparison only∗ 419,226
Unruh AES-128 438 comparison only 805,602

Table 3: Comparison of signature size (in bytes) for various parameter choices, at the 128-
bit PQ security level. The AES and SHA primitives are included for comparison only; for
SHA the resulting signatures would be too large for practical use, and AES-128 does not
provide sufficient security. The column “ZKB iter” is the number of parallel rounds for the
ZKB protocol at the security level, see Section 4.2.1 for details.

We benchmark the endpoints of this trade-off here: the smallest signatures will result
from choosing a single s-box and requires 243 rounds for security (we call this configuration
LowMC-256-256-1-243). The smallest circuit will result from choosing 60 s-boxes as this
requires only 9 rounds (LowMC-256-256-60-9). One may also choose 30 or 40 s-boxes as
these are points that offer a tradeoff between these two extremes.

5.1.4 Signature size comparison

In Table 2, we compare the sizes for signatures using different underlying functions, and
both the Fiat-Shamir and Unruh transforms are included.
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