
Certificateless Public Key Encryption with Equality Test

Xi-Jun Lin ∗, Zhen Yan †, Qi Zhang ‡and Haipeng Qu §

December 2, 2016

Abstract

In this paper, we propose the concept of certificateless public key encryption with equality test
(CL-PKEET) to solve the key escrow problem in IBEET. More in details, we first give the definition
of CL-PKEET and define the security model. Finally, we propose a concrete CL-PKEET scheme
based on the Decision Bilinear Diffie-Hellman (DBDH) assumption and prove its security.

KeyWords: certificateless public key encryption; public key encryption; equality test; authorition

1 Introduction

In the cloud era, plenty of cloud services offer a broad set of global compute, storage, database, analytics,
application, and deployment services that help organizations move faster, lower IT costs, and scale
applications. Considering the potential privacy risks, cryptosystems can be used to encrypt the private
data, which are stored in the cloud server. Meanwhile, in order to maintain the database, we need a
solution to support computations on the encrypted data. Public key encryption with keyword search
(PEKS) [2, 5] is a well-known solution, which supports keyword searching over ciphertexts without
retrieving messages by using the corresponding trapdoors [4]. However, the ciphertexts in PEKS are
encrypted under the same public key, it does not apply to many computations on cloud.

Yang et al. proposed the public key encryption with equality test (PKEET) [15], which can be
performed on ciphertexts with different public keys. Equality test can be defined like that: Let C,
C ′ be two ciphertexts encrypted under two different public keys, where C = Encrypt(M,PK) and
C ′ = Encrypt(M ′, PK ′), this algorithm checks whether or not M = M ′ holds. If it is the case, it returns
1, and 0 otherwise. In a certain sense, PKEET, which trivially supports the traditional functionality of
PEKS, is an extension of PEKS. However, the adversary is able to check the equality of ciphertexts without
any authorization, which violates the data owners’ privacy. Hence, several primitives with authorization
mechanism were proposed.

1.1 Related Work

The concept of public key encryption with equality test (PKEET) [15] was first proposed by Yang et
al. and their cryptosystem can be used to check whether two ciphertexts are encryptions of the same
message in outsourced database.

Tang integrated a fine-grained authorization policy enforcement mechanism into PKEET and proposed
an enhanced primitive, called FG-PKEET [13]. Tang proposed AoN-PKEET [12], which introduces an
authorization mechanism for users to specify who can independently perform a plaintext equality test
from their ciphertexts. To mitigate the inherent offline message recovery attacks, Tang extended FG-
PKEET to a two-proxy setting [14], where two proxies need to collaborate in order to perform an equality
test.

∗X.J.Lin is with the Department of Computer Science and Technology, Ocean University of China. Qingdao 266100,
P.R.China.
†Z.Yan is with the Department of Computer Science and Technology, Ocean University of China. Qingdao 266100,

P.R.China.
‡Q.Zhang is with the Department of Computer Science and Technology, Ocean University of China. Qingdao 266100,

P.R.China.
§H.Qu, corresponding author, is with the Department of Computer Science and Technology, Ocean University of China.

Qingdao 266100, P.R.China.

1

Ma et al. introduced the notion of public key encryption with delegated equality test (PKE-DET) [8],
which requires only the delegated party to deal with the work in a practical multi-user setting. Huang et
al. proposed public key encryption scheme with authorized equality test(PKE-AET) [6] which provides
two kinds of warrants that are referred to as receiver’s warrants and cipher-warrants. And in order to
strengthen the privacy protection, Ma et al. proposed a new primitive, called public key encryption with
equality test supporting flexible authorization (PKEET-FA) [10] which supports four different types of
authorization.

1.2 Our Contribution

Recently, Ma proposed identity-based encryption with equality test (IBEET) [9] by combining the
concepts of public key encryption with equality test and identity-based public key cryptography (ID-
PKC) [11].

ID-PKC eliminates the need for certificates and some of the problems associated with them, but its
dependence on the private key generator(PKG) introduces key escrow problem for using a master key to
generate private keys. Obviously, IBEET suffers the key escrow problem as well. Fortunately, Al-Riyami
et al. [1] proposed certificateless public key cryptography (CL-PKC), which does not require the use of
certificates and yet does not have the key escrow problem in ID-PKC.

We believe that a primitive which has the features of CL-PKC and PKEET could enjoy both con-
venience and security since the certificate management problem and the key escrow problem could be
solved simultaneously. Motivated by this, we propose a new primitive, called certificateless public key
encryption with equality test (CL-PKEET). Our contribution can be summarized as follows.

1. We propose the concept of CL-PKEET and define the security models where four different types
of adversaries are considered.

2. We propose a concrete CL-PKEET scheme based on the Decisional Bilinear Diffie-Hellman (DBDH)
assumption, and then prove its security.

1.3 Organization

The rest of this paper is organized as follows. In Section 2, we recall the definition of asymmetric
bilinear group and decisional bilinear Diffie-Hellman (DBDH) assumption. In Section 3, we introduce
the definition of CL-PKEET scheme and its security models. Then we present a concrete CL-PKEET
scheme in Section 4 and its security is proven in Section 5. In Section 6, we conclude our work.

2 Preliminaries

2.1 Asymmetric Bilinear Groups

Let G1,G2,GT be multiplicative cyclic groups of prime order q with the security parameter λ. Let g1, g2
be generators of G1, G2 respectively. The asymmetric bilinear map e:G1 × G2 → GT has the following
properties:

• Bilinearity: ∀u ∈ G1, ∀v ∈ G2 and ∀a, b ∈ Z∗q , e(ua, vb) = e(u, v)ab

• Non-degeneracy: ∃g1 ∈ G1,g2 ∈ G2 such that e(g1, g2) has order q, that is, e(g1, g2) is a generator
of GT .

• Computability:∀(u, v) ∈ G1 ×G2, e(u, v) is efficiently computable.

We say that G1,G2,GT are bilinear groups with no efficiently computable isomorphisms if the group
operations in G1,G2 and GT as well as the bilinear map e are all efficiently computable, but there are no
effiently computable isomorphisms between G1 and G2 [3, 7].

2

2.2 Decisional Bilinear Diffie-Hellman (DBDH) Assumption

Let (q,G1,G2,GT , e) be a description of the asymmetric bilinear groups of prime order q with the security
parameter λ defined above. Let g1,g2 be generators of G1, G2 respectively. The assumption is that if the
challenge values

D = ((q,G1,G2,GT , e), g1, ga1 , gc1, g2, ga2 , gb2)

and h are given, no polynomial time algorithm A can distinguish e(g1, g2)abc from h ∈ GT with more
than a negligible advantage. The advantage of A is defined as

AdvADBDH(λ) = |Pr[A(D, e(g1, g2)abc) = 1]− Pr[A(D,h) = 1]|

where the probability is taken over the random choice of a, b, c ∈ Z∗q and h ∈ GT [3].

3 Definition of CL-PKEET

In this section, we first provide the framework of CL-PKEET, and then present the formal definition and
the security models.

Figure 1: CL-PKEET system model

As illustrated in Figure 1, CL-PKEET consists of four types of entitles: users, the key generation
center (KGC), the cloud server and the public key server. All ciphertexts sent to the users are stored in
the cloud server. If the users (e.g. Alice and Bob) want to compare their ciphertexts, they can generate
and send the corresponding trapdoors to the cloud server. As a result, the cloud server can compare two
ciphertexts with the trapdoors. Note that the KGC’s task is to generate and distribute partial private
keys for the users secretly. The cloud server’s task is to store and compare the ciphertexts. The public
key server’s task is to store the public keys of the users. More in details, the work flow of our proposal
is presented as follow:

1. The KGC generates the partial private key with respect to the user’s identity and sends it to the
user secretly.

3

2. Upon receiving the partial private key from the KGC, the user generates its (full) private key and
keeps it by itself. Moreover, the user generates its public key and stores it into the public key server.

3. To compare its ciphertexts with the other users’ ciphertexts, the user (e.g. Alice or Bob) generates
the trapdoor with its private key which is sent to the cloud server.

4. With the trapdoors from the users, the cloud server can check whether two ciphertexts are generated
on the same message.

We stress here that it is assumed that the KGC and the servers are honest but may be curious.
Moreover, the KGC and the servers do not collude with each other.

3.1 Definition

Let M be the message space and C be the ciphertext space. The definition of the CL-PKEET scheme is
as follows:

• Setup(λ): This algorithm,run by the KGC, takes a security parameter λ as input, and outputs the
system public parameter PP and master key msk.

• Partial Private Key Extract(PP,msk, ID): This algorithm, run by the KGC, takes the public
parameter PP , the master key msk and a user’s identity ID ∈ {0, 1}∗as input. It returns the user’s
partial private key D.

• Set Secret Value(PP): This algorithm, run by a user, takes the public parameter PP as input, and
outputs the user’s secret value x.

• Set Private Key(PP,D, x): This algorithm, run by a user, takes the public parameter PP , the
user’s partial private key D and secret value x as input. It returns the user’s full private key SK.

• Set Public Key(PP, x): This algorithm, run by a user, takes public parameter PP and the user’s
secret value x as input, and outputs the user’s public key PK .

• Encryption(PP,M,PK, ID): This algorithm, run by a message sender, takes the public parameter
PP , a message M ∈ M, a user’s public key PK and identity ID as input. It returns either a
ciphertext C ∈ C or a null symbol ⊥ indicating an encryption failure.

• Decryption(PP,C, SK): This algorithm, run by a user, takes the public parameter PP , a ciphertext
C ∈ C and the user’s private key SK as input. It returns the corresponding message M ∈ M or a
null symbol ⊥ indicating a decryption failure.

• Authorization(PP, SK): This algorithm, run by a user, takes the public parameter PP and the
user’s private key SK as input, and returns the user’s trapdoor td.

• Test(PP,CA, tdA, CB , tdB): Let CA and tdA be the user A’s ciphertext and trapdoor, and CB and
tdB be the user B’s ciphertext and trapdoor. This algorithm, run by the cloud server, takes the
public parameter PP , a ciphertext CA ∈ C, a trapdoor tdA, a ciphertext CB ∈ C and a trapdoor
tdB as input, and returns 1 if CA and CB contain the same message; or 0 otherwise.

For the consistency property, these algorithms must satisfy the following conditions:

1. M = Decryption(PP,Encryption(PP,M,PK, ID), SK), where SK and PK are private key and
public key with respect to the identity ID respectively.

2. Let CA = Encryption(PP,M,PKA, IDA), CB = Encryption(PP,M,PKB , IDB), tdA = Authorization
(PP, SKA) and tdB = Authorization(PP, SKB), where SKA and PKA are private key and public
key with respect to the identity IDA, SKB and PKB are private key and public key with respect to
the identity IDB . IfMA = MB , Test(CA, tdA, CB , tdB) = 1; otherwise, Pr[Test(CA, tdA, CB , tdB) =
1] is negligible.

4

3.2 Security Models

By the security models of PKEET and CL-PKE, there are four types of adversaries defined for the
security of CL-PKEET:

• Type-1 adversary: This type of adversary does not have access to the master key, but may replace
public keys with values of its choice. Moreover, without the trapdoor, it cannot decide whether
the challenge ciphertext is the encryption of which message. With respect to such an adversary, we
define the notion of IND-CCA security.

• Type-2 adversary: This type of adversary does have access to the master key, but may not replace
the public key of any user. Moreover, without the trapdoor, it cannot decide whether the challenge
ciphertext is the encryption of which message. With respect to such an adversary, we define the
notion of IND-CCA security.

• Type-3 adversary: This type of adversary does not have access to the master key, but may replace
public keys with values of its choice. Moreover, with the trapdoor, it cannot retrieve the message
from the challenge ciphertext. With respect to such an adversary, we define the notion of OW-CCA
security.

• Type-4 adversary: This type of adversary does have access to the master key, but may not replace
the public key of any user. Moreover, with the trapdoor, it cannot retrieve the message from the
challenge ciphertext. With respect to such an adversary, we define the notion of OW-CCA security.

3.2.1 IND-CCA Security for Type-1 Adversary

The formal definition of IND-CCA security for authorization against Type-1 adversary is defined below:

Game 1 Let A1 be a Type-1 adversary. The game between the challenger C and A1 is as follows:

1. Setup: C runs the algorithm Setup to generate the public parameter PP and the master key msk,
and then PP are given to A1, meanwhile, msk is kept by C itself.

2. Phase 1: The following queries can be issued by A1 for polynomially many times, and restricted by
the rule of adversary behavior.

• Partial private key query(IDi): Upon receiving a user’s identity IDi, C responds with the
corresponding partial private key Di.

• Private key query(IDi): Upon receiving a user’s identity IDi, C responds with the correspond-
ing private key SKi.

• Public key query(IDi): Upon receiving a user’s identity IDi, C responds with the corresponding
public key PKi.

• Replace public key(IDi,PK
′
i): Upon receiving a user’s identity IDi and a public key PK ′i, C

replaces the corresponding public key of the user with PK ′i.

• Decryption query(IDi,C): Upon receiving a user’s identity IDi and a ciphertext C, C responds
with the output of the algorithm Decryption(PP,C, SKi), where SKi is the private key with
respect to the identity IDi.

• Authorization query(IDi): Upon receiving a user’s identity IDi, C responds with the corre-
sponding trapdoor tdi.

3. Challenge: A1 submits two equal-length messages M∗0 ,M∗1 and an identity ID∗. C picks ρ ∈ {0, 1}
randomly, and then computes the challenge ciphertext C∗ = Encryption(PP,M∗ρ , PK

∗, ID∗),
where PK∗ is the current public key with respect to the identity ID∗. If the encryption outputs ⊥
, A1 immediately loses the game. Otherwise, C returns C∗ to A1.

4. Phase 2: A1 issues queries as done in Phase 1.

5. Guess: A1 outputs ρ′ ∈ {0, 1}, and wins the game if ρ = ρ′. The advantage of A1 is defined as

AdvIND−CCA,Type−1CL−PKEET,A1
(λ) = |Pr[ρ = ρ′]− 1

2 |, where λ is the security parameter.

5

There are some constraints on A1 as follows:

• ID∗ does not appear in the Private key query at any point.

• If ID∗’s public key has been replaced, ID∗ does not appear in the Partial private key query.

• If a user’s public key has been replaced, the corresponding identity ID does not appear in the
Private key query.

• (ID∗, C∗) does not appear in the Decryption query.

• ID∗ does not appear in the Authorization query.

Definition 1 We say that CL-PKEET has IND-CCA security for authorization if for any PPT adver-
saries A1, its advantage AdvIND−CCA,Type−1CL−PKEET,A1

(λ) is negligible in the security parameter λ.

3.2.2 IND-CCA Security for Type-2 Adversary

The formal definition of IND-CCA security for authorization against Type-2 adversary is defined below:

Game 2 Let A2 be a Type-2 adversary. The game between the challenger C and A2 is as follows:

1. Setup: C runs the algorithm Setup to generate the public parameter PP and the master key msk
which are given to A2.

2. Phase 1: The following queries can be issued by A2 for polynomially many times, and restricted by
the rule of adversary behavior.

• Private key query(IDi): Upon receiving a user’s identity IDi, C responds with the correspond-
ing private key SKi.

• Public key query(IDi): Upon receiving a user’s identity IDi, C responds with the corresponding
public key PKi.

• Decryption query(IDi,C): Upon receiving a user’s identity IDi and a ciphertext C, C responds
with the output of the algorithm Decryption(PP,C, SKi), where SKi is the private key with
respect to the identity IDi.

• Authorization query(IDi): Upon receiving a user’s identity IDi, C responds with the corre-
sponding trapdoor tdi.

3. Challenge: A2 submits two equal-length messages M∗0 ,M∗1 and an identity ID∗. C randomly picks
ρ ∈ {0, 1}, and then returns the challenge ciphertext C∗ = Encryption(PP,M∗ρ , PK

∗, ID∗), where
PK∗ is the public key with respect to the identity ID∗.If the encryption outputs ⊥ , A2 immediately
loses the game. Otherwise, C returns C∗ to A2.

4. Phase 2: A2 issues queries as done in Phase 1.

5. Guess: A2 outputs ρ′ ∈ {0, 1}, and wins the game if ρ = ρ′. The advantage of A2 is defined as

AdvIND−CCA,Type−2CL−PKEET,A2
(λ) = |Pr[ρ = ρ′]− 1

2 |, where λ is the security parameter.

There are some constraints on A2 as follows:

• ID∗ does not appear in the Private key query at any point.

• (ID∗, C∗) does not appear in the Decryption query.

• ID∗ does not appear in the Authorization query.

Definition 2 We say that CL-PKEET has IND-CCA security for authorization if for any PPT adver-
saries A2, its advantage AdvIND−CCA,Type−2CL−PKEET,A2

(λ) is negligible in the security parameter λ.

6

3.2.3 OW-CCA Security for Type-3 Adversary

The formal definition of OW-CCA security for authorization against Type-3 adversary is defined below:

Game 3 Let A3 be a Type-3 adversary. The game between the challenger C and A3 is as follows:

1. Setup: C runs the algorithm Setup to generate the public parameter PP and the master key msk,
and then PP are given to A3, meanwhile, msk is kept by C itself.

2. Phase 1: The following queries can be issued by A3 for polynomially many times, and restricted by
the rule of adversary behavior.

• Partial private key query(IDi): Upon receiving a user’s identity IDi, C responds with the
corresponding partial private key Di.

• Private key query(IDi): Upon receiving a user’s identity IDi, C responds with the correspond-
ing private key SKi.

• Public key query(IDi): Upon receiving a user’s identity IDi, C responds with the corresponding
public key PKi.

• Replace public key(IDi,PK
′
i): Upon receiving a user’s identity IDi and a public key PK ′i, C

replaces the corresponding public key of the user with PK ′i.

• Decryption query(IDi,C): Upon receiving a user’s identity IDi and a ciphertext C, C responds
with the output of the algorithm Decryption(PP,C, SKi), where SKi is the private key with
respect to the identity IDi.

• Authorization query(IDi): Upon receiving a user’s identity IDi, C responds with the corre-
sponding trapdoor tdi.

3. Challenge: C picks a message M∗ and an identity ID∗ randomly, and then returns the challenge
ciphertext C∗ = Encryption(PP,M∗, PK∗, ID∗), where PK∗ is the current public key with respect
to the identity ID∗.

4. Phase 2: A3 issues queries as done in Phase 1.

5. Guess: A3 outputs M
′
, and wins the game if M∗ = M

′
. The advantage of A3 is defined as

AdvOW−CCA,Type−3CL−PKEET,A3
(λ) = Pr[M∗ = M

′
], where λ is the security parameter.

There are some constraints on A3 as follows:

• ID∗ does not appear in the Private key query at any point.

• If ID∗’s public key has been replaced, ID∗ does not appear in the Partial private key query.

• If a user’s public key has been replaced, the corresponding identity ID does not appear in the
Private key query.

• (ID∗, C∗) does not appear in the Decryption query.

Definition 3 We say that CL-PKEET has OW-CCA security for authorization if for any PPT adver-
saries A3, its advantage AdvOW−CCA,Type−3CL−PKEET,A3

(λ) is negligible in the security parameter λ.

3.2.4 OW-CCA Security for Type-4 Adversary

The formal definition of OW-CCA security for authorization against Type-4 adversary is defined below:

Game 4 Let A4 be a Type-4 adversary. The game between the challenger C and A4 is as follows:

1. Setup: C runs the algorithm Setup to generate the public parameter PP and the master key msk
which are given to A4.

2. Phase 1: The following queries can be issued by A4 for polynomially many times, and restricted by
the rule of adversary behavior.

7

• Private key query(IDi): Upon receiving a user’s identity IDi, C responds with the correspond-
ing private key SKi.

• Public key query(IDi): Upon receiving a user’s identity IDi, C responds with the corresponding
public key PKi.

• Decryption query(IDi,C): Upon receiving a user’s identity IDi and a ciphertext C, C responds
with the output of the algorithm Decryption(PP,C, SKi), where SKi is the private key with
respect to the identity IDi.

• Authorization query(IDi): Upon receiving a user’s identity IDi, C responds with the corre-
sponding trapdoor tdi.

3. Challenge: C picks a message M∗ and an identity ID∗ randomly, and then returns the challenge
ciphertext C∗ = Encryption(PP,M∗, PK∗, ID∗), where PK∗ is the public key with respect to the
identity ID∗.

4. Phase 2: A4 issues queries as done in Phase 1.

5. Guess: A4 outputs M
′
, and wins the game if M∗ = M

′
. The advantage of A4 is defined as

AdvOW−CCA,Type−4CL−PKEET,A4
(λ) = Pr[M∗ = M

′
], where λ is the security parameter.

There are some constraints on A4 as follows:

• ID∗ does not appear in the Private key query at any point.

• (ID∗, C∗) does not appear in the Decryption query.

Definition 4 We say that CL-PKEET has OW-CCA security for authorization if for any PPT adver-
saries A4, its advantage AdvOW−CCA,Type−4CL−PKEET,A4

(λ) is negligible in the security parameter λ.

4 The Proposed CL-PKEET Scheme

In this section, we propose a concrete CL-PKEET scheme, which consists of the following algorithms:

• Setup(λ): This algorithm performs as follows:

1. Generate a asymmetric bilinear group G := (q,G1,G2,GT , e) .

2. Pick a random generator g1 ∈ G1, a random generator g2 ∈ G2, and a random master key
s ∈ Z∗q .

3. Let ĝ1 = gs1 and ĝ2 = gs2 .

4. Select cryptographic secure hash functions: H1 : {0, 1}∗ → G1, H2 : {0, 1}∗ → G2, H3 :
GT ×G2

1 ×G2 → {0, 1}n+l, H4 : {0, 1}n → G2, H5 : {0, 1}n+l → Z∗q and H6 : GT → G2.

5. Output the public parameter

PP = (G, g1, g2, ĝ1, ĝ2, H1, H2, H3, H4, H5, H6)

• Partial Private Key Extract (PP, s, ID): This algorithm returns the user’s partial private key
D = (D1, D2), where D1 = H1(ID)

s
and D2 = H2(ID)

s
.

• Set Secret Value(PP): This algorithm outputs a random number x ∈ Z∗q as the secret value.

• Set Private Key(PP,D, x): Let D = (D1, D2). This algorithm returns the user’s private key
SK = (S1, S2), where S1 = D1

x and S2 = D2
x.

• Set Public Key(PP, x): This algorithm outputs the user’s public key PK = (X,Y), where X = ĝ2
x

and Y = ĝ1
x.

• Encryption(PP,M,PK, ID): Let M ∈ {0, 1}n and PK = (X,Y). This algorithm generates a
ciphertext C = (C1, C2, C3, C4, C5) as follows:

1. Pick three random numbers α, β ∈ Z∗q and k ∈ {0, 1}l, then compute R = H5(M,k).

8

2. Compute the ciphertext C = (C1, C2, C3, C4, C5) as follows

C1 = gR1 ,

C2 = gα1 ,

C3 = gβ2 ,

C4 = H3(e(Y α, Q2), C1, C2, C3)⊕ (M ‖ k),

C5 = H4(M)R ·H6(e(Q1, X
β)),

where Q1 = H1(ID) and Q2 = H2(ID).

• Decryption(PP,C, SK): Let C = (C1, C2, C3, C4, C5) and SK = (S1, S2). This algorithm performs
as follows:

1. Recover M ′ ‖ k′ by computing C4 ⊕H3(e(C2, S2), C1, C2, C3).

2. Recover R′ by computing H5(M ′, k′).

3. If C1 = gR
′

1 and C5

H4(M ′)R
′ = H6(e(S1, C3)) both hold, output M ′; otherwise, output ⊥.

• Authorization(PP, SK): Let SK = (S1, S2). This algorithm outputs the trapdoor td = S1.

• Test(PP,CA, tdA, CB , tdB): Let CA = (CA,1, CA,2, CA,3, CA,4, CA,5) and CB = (CB,1, CB,2, CB,3, CB,4, CB,5).
This algorithm computes

KA =
CA,5

H6(e(tdA, CA,3))

KB =
CB,5

H6(e(tdB , CB,3))

and then checks whether e(CA,1,KB) = e(CB,1,KA) holds. If it is the case, it returns 1; or 0
otherwise.

The above CL-PKEET scheme satisfies the consistency property which is proven as follows:

1. As to the first condition, it is straightforward to be verified:

C4 ⊕H3(e(C2, S2), C1, C2, C3)
= H3(e(Y α, Q2), C1, C2, C3)⊕ (M ‖ k)⊕H3(e(C2, S2), C1, C2, C3)
= H3(e(ĝ1

x, Q2)α, C1, C2, C3)⊕ (M ‖ k)⊕H3(e(gα1 , D
x
2), C1, C2, C3)

= H3(e(gsx1 , Q2)α, C1, C2, C3)⊕ (M ‖ k)⊕H3(e(gα1 , Q
sx
2), C1, C2, C3)

= M ‖ k

2. As to the second condition, assuming the ciphertexts are well-formed for IDA and IDB

KA =
CA,5

H6(e(tdA,CA,3))
=

H4(MA)RA ·H6(e(H1(IDA),X
βA
A))

H6(e(tdA,CA,3))
=

H4(MA)RA ·H6(e(H1(IDA),g
sxAβA
2))

H6(e(H1(IDA)sxA ,g
βA
2))

= H4(MA)RA

KB =
CB,5

H6(e(tdB ,CB,3))
=

H4(MB)RB ·H6(e(H1(IDB),X
βB
B))

H6(e(tdB ,CB,3))
=

H4(MB)RB ·H6(e(H1(IDB),g
sxBβB
2))

H6(e(H1(IDB)sxB ,g
βB
2))

= H4(MB)RB

e(CA,1,KB) = e(gRA1 , H4(MB)RB) = e(g1, H4(MB)RARB)

e(CB,1,KA) = e(gRB1 , H4(MA)RA) = e(g1, H4(MA)RARB)

If MA = MB , then e(CA,1,KB) = e(CB,1,KA) holds, so Test(CA, tdA, CB , tdB) outputs 1; or 0
otherwise.

5 Security Analysis

Theorem 1 Our proposed CL-PKEET scheme is IND-CCA secure for the authorization against Type-1
adversary (c.f. Definition 1) based on DBDH assumption in the random oracle model.

Proof: Assume thatA1 (a Type-1 adversary) can break our proposal, then we can construct a probabilistic
polynomial-time algorithm B to solve the DBDH problem. Let (g1, g

a
1 , g

c
1, g2, g

a
2 , g

b
2, h) be an instance of

the DBDH problem, B’s task is to decide whether or not e(g1, g2)abc = h holds. B and A1 play the
following game.

9

1. Setup: B generates the public parameter PP = (G, g1, g2, ĝ1, ĝ2, H1, H2, H3, H4, H5, H6), where
ĝ1 = ga1 and ĝ2 = ga2 . Then B sends PP to A1, and picks an index I(1 ≤ I ≤ qH2) randomly as
the target identity index, where qH2

≥ 0 is the numbers of distinct H2-query made by A1. Lists
H1-list, H2-list, H3-list, H4-list, H5-list and H6-list, which are initial empty, are maintained by
B to answer the random oracle queries. If the same input is asked multiple times, the same answer
will be returned.

2. Phase 1: B responds to the queries made by A1 in the following ways:

• H1-query(IDi): B picks ui ∈ Z∗q randomly, stores a new item [IDi, ui] into H1-list, and returns
gui1 as the answer.

• H2-query(IDi): B picks vi ∈ Z∗q randomly, stores a new item [IDi, vi] into H2-list, and returns

gvi2 as the answer. Note that if IDi is the I-th distinct H2-query made by A1, B returns gb2 as
the answer.

• H3-query(σ,C1, C2, C3): B picks θ ∈ {0, 1}n+l randomly, stores a new item [σ,C1, C2, C3, θ]
into H3-list, and returns θ as the answer.

• H4-query(M): B picks h4 ∈ G2 randomly, stores a new item [M,h4] into H4-list, and returns
h4 as the answer.

• H5-query(M,k): B picks R ∈ Z∗q randomly, stores a new item [M,k,R] into H5-list, and
returns R as the answer.

• H6-query(η): B picks h6 ∈ G2 randomly, stores a new item [η, h6] into H6-list, and returns h6
as the answer.

• Partial private key query(IDi): If i 6= I, B retrieves ui and vi from H1-list and H2-list by
making H1-query(IDi) and H2-query(IDi) respectively, computes Di,1 = ĝ1

ui and Di,2 =
ĝ2
vi , and then returns Di = (Di,1, Di,2) as the answer; otherwise, B aborts with failure.

• Private key query(IDi): If i 6= I, B computes the corresponding secret value xi by running
Set secret value(PP), computes Di = (Di,1, Di,2) by running the algorithm Partical private
key extract (PP, s, IDi), computes Si = (Si,1, Si,2) = (Dxi

i,1, D
xi
i,2), and sends Si to A1; other-

wise, B aborts with failure.

• Public key query(IDi): B computes the corresponding secret value xi by running Set secret
value(PP), computes Xi = ĝ2

xi and Yi = ĝ1
xi , and then sends PKi = (Xi, Yi) to A1 as the

answer.

• Replace public key(IDi,PK
′
i): B replaces the current public key with respect to IDi with PK ′i.

• Decryption query(IDi, C): Let C = (C1, C2, C3, C4, C5).

(a) If i 6= I, B returns the output of the algorithm Decryption(PP,C, SKi) to A1 as the
answer, where SKi is the private key with respect to the identity IDi.

(b) Else, for each item [σ,C1, C2, C3, θ] in H3-list, B performs as follows.

i. Compute M ′ ‖ k′ = C4 ⊕ θ.
ii. Compute R′ = H5(M ′, k′).

iii. Retrieve uI from H1-list by making H1-query(IDI), compute the corresponding secret
value xI by running Set secret value(PP), compute SI,1 = gauIxI1 , if C1 = gR

′

1 and
C5

H4(M ′)R
′ = H6(e(SI,1, C3)) both hold, return M ′ to A1 as the answer.

If there is no such item, return ⊥ to A1.

• Authorization query(IDi): If i 6= I, B computes the corresponding secret value xi by running
Set secret value(PP), retrieves ui from H1-list by making H1-query(IDi), computes Si,1 =
gauixi1 , and then it returns Si,1 as the answer; otherwise, B aborts with failure.

3. Challenge: Upon receiving two equal-length messages M∗0 ,M∗1 ∈ {0, 1}n and the target identity
ID∗, B performs as follows:

(a) If ID∗ 6= IDI , abort with failure.

10

(b) Else, pick a random bit ρ ∈ {0, 1} and two random numbers k ∈ {0, 1}l, β ∈ Z∗q , and then
compute C∗ = (C∗1 , C

∗
2 , C

∗
3 , C

∗
4 , C

∗
5) as follows:

C∗1 = gR1 ,
C∗2 = gc1,

C∗3 = gβ2 ,

C∗4 = (M∗ρ ‖ k)⊕H3(hx
∗
, C1, C2, C3),

C∗5 = H4(M∗ρ)R ·H6(e(Q∗1, X
∗β)),

where R = H5(M∗ρ , k), Q∗1 = H1(ID∗), x∗ is the corresponding secret value computed by
running Set secret value(PP) and PK∗ = (X∗, Y ∗) is current public key with respect to
ID∗.

Finally, it sends C∗ to A1 as the challenge ciphertext.

4. Phase 2: A1 issues as done in Phase 1. The constraints are that

• ID∗ does not appear in the Private key query;

• If ID∗’s public key has been replaced, ID∗ does not appear in the Partial private key query;

• If a user’s public key has been replaced, the corresponding identity ID does not appear in the
Private key query;

• (ID∗, C∗) does not appear in the Decryption query;

• ID∗ does not appear in the Authorization query.

5. Guess: A1 outputs a bit ρ′ ∈ {0, 1}. If ρ = ρ′, B outputs 1 for the challenge instance of the DBDH
problem or 0 otherwise. �

Theorem 2 Our proposed CL-PKEET scheme is IND-CCA secure for the authorization against Type-2
adversary (c.f. Definition 2) based on DBDH assumption in the random oracle model.

Proof: Assume thatA2 (a Type-2 adversary) can break our proposal, then we can construct a probabilistic
polynomial-time algorithm B to solve the DBDH problem. Let (g1, g

a
1 , g

c
1, g2, g

a
2 , g

b
2, h) be an instance of

the DBDH problem, B’s task is to decide whether or not e(g1, g2)abc = h holds. B and A2 play the
following game.

1. Setup: B generates the public parameter PP = (G, g1, g2, ĝ1, ĝ2, H1, H2, H3, H4, H5, H6) and the
master key s, where s ∈ Z∗q is picked randomly and ĝ1 = gs1, ĝ2 = gs2. Then B sends PP and s to
A2, and picks an index I(1 ≤ I ≤ qH2

) randomly as the target identity index, where qH2
≥ 0 is

the numbers of distinct H2-query made by A2. Lists H1-list, H2-list, H3-list, H4-list, H5-list and
H6-list, which are initial empty, are maintained by B to answer the random oracle queries. If the
same input is asked multiple times, the same answer will be returned.

2. Phase 1: B responds to the queries made by A2 in the following ways:

• H1-query, H2-query, H3-query, H4-query, H5-query and H6-query: B performs as done in the
proof of Theorem 1.

• Public key query(IDi): If i 6= I, B computes the corresponding secret value xi by running
Set secret value(PP), computes Xi = ĝ2

xi and Yi = ĝ1
xi , and then sends PKi = (Xi, Yi) to

A2 as the answer. Otherwise, B returns PKI = (XI , YI) as the answer, where XI = gas2 and
YI = gas1 .

• Private key query(IDi): If i 6= I, B computes the corresponding secret value xi by running
Set secret value(PP), computes Di = (Di,1, Di,2) by running the algorithm Partical private
key extract (PP, s, IDi), computes Si = (Si,1, Si,2) = (Dxi

i,1, D
xi
i,2), and sends Si to A2; other-

wise, B aborts with failure.

• Decryption query(IDi, C): Let C = (C1, C2, C3, C4, C5).

(a) If i 6= I, B returns the output of the algorithm Decryption(PP,C, SKi) to A1 as the
answer, where SKi is the private key with respect to the identity IDi.

(b) Else, for each item [σ,C1, C2, C3, θ] in H3-list, B performs as follows.

11

i. Compute M ′ ‖ k′ = C4 ⊕ θ.
ii. Compute R′ = H5(M ′, k′).

iii. Retrieve uI from H1-list by making H1-query(IDI), compute SI,1 = gsuIa1 , if C1 = gR
′

1

and C5

H4(M ′)R
′ = H6(e(SI,1, C3)) both hold, return M ′ to A2 as the answer.

If there is no such item, return ⊥ to A2.

• Authorization query(IDi): If i 6= I, B computes the corresponding secret value xi by running
Set secret value(PP), retrieves ui from H1-list by making H1-query(IDi), computes Si,1 =
gsuixi1 , and then it returns Si,1 as the answer; otherwise, B aborts with failure.

3. Challenge: Upon receiving two equal-length messages M∗0 ,M∗1 ∈ {0, 1}n and the target identity
ID∗, B performs as follows:

(a) If ID∗ 6= IDI , abort with failure.

(b) Else, pick a random bit ρ ∈ {0, 1} and two random numbers k ∈ {0, 1}l, β ∈ Z∗q , and then
compute C∗ = (C∗1 , C

∗
2 , C

∗
3 , C

∗
4 , C

∗
5) as follows:

C∗1 = gR1 ,
C∗2 = gc1,

C∗3 = gβ2 ,
C∗4 = (M∗ρ ‖ k)⊕H3(hs, C1, C2, C3),

C∗5 = H4(M∗ρ)R ·H6(e(Q∗1, X
∗β)),

where R = H5(M∗ρ , k), Q∗1 = H1(ID∗), PK∗ = (X∗, Y ∗) is current public key with respect to
ID∗.

Finally, it sends C∗ to A2 as the challenge ciphertext.

4. Phase 2: A2 issues as done in Phase 1. The constraints are that

• ID∗ does not appear in the Private key query;

• (ID∗, C∗) does not appear in the Decryption query;

• ID∗ does not appear in the Authorization query.

5. Guess: A2 outputs a bit ρ′ ∈ {0, 1}. If ρ = ρ′, B outputs 1 for the challenge instance of the DBDH
problem or 0 otherwise. �

Theorem 3 Our proposed CL-PKEET scheme is OW-CCA secure for the authorization against Type-3
adversary (c.f. Definition 3) based on DBDH assumption in the random oracle model.

Proof: Assume thatA3 (a Type-3 adversary) can break our proposal, then we can construct a probabilistic
polynomial-time algorithm B to solve the DBDH problem. Let (g1, g

a
1 , g

c
1, g2, g

a
2 , g

b
2, h) be an instance of

the DBDH problem, B’s task is to decide whether or not e(g1, g2)abc = h holds. B and A3 play the
following game.

1. Setup: B generates the public parameter PP = (G, g1, g2, ĝ1, ĝ2, H1, H2, H3, H4, H5, H6), where
ĝ1 = ga1 and ĝ2 = ga2 . Then B sends PP to A3, and picks an index I(1 ≤ I ≤ qH2

) randomly as
the target identity index, where qH2

≥ 0 is the numbers of distinct H2-query made by A3. Lists
H1-list, H2-list, H3-list, H4-list, H5-list and H6-list, which are initial empty, are maintained by
B to answer the random oracle queries. If the same input is asked multiple times, the same answer
will be returned.

2. Phase 1: B responds to the queries made by A3 in the following ways:

• H1-query, H2-query, H3-query, H4-query, H5-query and H6-query: B performs as done in the
proof of Theorem 1.

• Partial private key query(IDi): If i 6= I, B retrieves ui and vi from H1-list and H2-list by
making H1-query(IDi) and H2-query(IDi) respectively, computes Di,1 = ĝ1

ui and Di,2 =
ĝ2
vi , and then returns Di = (Di,1, Di,2) as the answer; otherwise, B aborts with failure.

12

• Private key query(IDi): If i 6= I, B computes the corresponding secret value xi by running
Set secret value(PP), computes Di = (Di,1, Di,2) by running the algorithm Partical private
key extract (PP, s, IDi), computes Si = (Si,1, Si,2) = (Dxi

i,1, D
xi
i,2), and sends Si to A3; other-

wise, B aborts with failure.

• Public key query(IDi): B computes the corresponding secret value xi by running Set secret
value(PP), computes Xi = ĝ2

xi and Yi = ĝ1
xi , and then sends PKi = (Xi, Yi) to A3 as the

answer.

• Replace public key(IDi,PK
′
i): B replaces the current public key with respect to IDi with PK ′i.

• Decryption query(IDi, C): Let C = (C1, C2, C3, C4, C5).

(a) If i 6= I, B returns the output of the algorithm Decryption(PP,C, SKi) to A3 as the
answer, where SKi is the private key with respect to the identity IDi.

(b) Else, for each item [σ,C1, C2, C3, θ] in H3-list, B performs as follows.

i. Compute M ′ ‖ k′ = C4 ⊕ θ.
ii. Compute R′ = H5(M ′, k′).

iii. Compute the corresponding trapdoor SI,1 by running Authorization(IDI), if C1 =

gR
′

1 and C5

H4(M ′)R
′ = H6(e(SI,1, C3)) both hold, return M ′ to A3 as the answer.

If there is no such item, return ⊥ to A3.

• Authorization query(IDi): B computes the corresponding secret value xi by running Set secret
value(PP), retrieves ui from H1-list by making H1-query(IDi), computes Si,1 = gauixi1 , and
then it returns Si,1 as the answer.

3. Challenge: B picks a message M∗ and two numbers k ∈ {0, 1}l, β ∈ Z∗q randomly, and then
computes C∗ = (C∗1 , C

∗
2 , C

∗
3 , C

∗
4 , C

∗
5) with the target identity IDI as follows:

C∗1 = gR1 ,
C∗2 = gc1,

C∗3 = gβ2 ,
C∗4 = (M∗ ‖ k)⊕H3(hxI , C1, C2, C3),

C∗5 = H4(M∗)R ·H6(e(Q∗1, XI
β)),

where R = H5(M∗, k), Q∗1 = H1(IDI), xI is the corresponding secret value computed by running
Set secret value(PP) and PKI = (XI , YI) is current public key with respect to IDI .

Finally, it sends C∗ to A3 as the challenge ciphertext.

4. Phase 2: A3 issues as done in Phase 1. The constraints are that

• ID∗ does not appear in the Private key query;

• If ID∗’s public key has been replaced, ID∗ does not appear in the Partial private key query;

• If a user’s public key has been replaced, the corresponding identity ID does not appear in the
Private key query;

• (ID∗, C∗) does not appear in the Decryption query.

5. Guess: A3 outputs M
′
. If M∗ = M

′
, B outputs 1 for the challenge instance of the DBDH problem

or 0 otherwise. �

Theorem 4 Our proposed CL-PKEET scheme is OW-CCA secure for the authorization against Type-4
adversary (c.f. Definition 4) based on DBDH assumption in the random oracle model.

Proof: Assume thatA4 (a Type-4 adversary) can break our proposal, then we can construct a probabilistic
polynomial-time algorithm B to solve the DBDH problem. Let (g1, g

a
1 , g

c
1, g2, g

a
2 , g

b
2, h) be an instance of

the DBDH problem, B’s task is to decide whether or not e(g1, g2)abc = h holds. B and A4 play the
following game.

1. Setup: B generates the public parameter PP = (G, g1, g2, ĝ1, ĝ2, H1, H2, H3, H4, H5, H6) and the
master key s, where s ∈ Z∗q is picked randomly and ĝ1 = gs1, ĝ2 = gs2. Then B sends PP and s to
A4, and picks an index I(1 ≤ I ≤ qH2) randomly as the target identity index, where qH2 ≥ 0 is
the numbers of distinct H2-query made by A4. Lists H1-list, H2-list, H3-list, H4-list, H5-list and
H6-list, which are initial empty, are maintained by B to answer the random oracle queries. If the
same input is asked multiple times, the same answer will be returned.

13

2. Phase 1: B responds to the queries made by A4 in the following ways:

• H1-query, H2-query, H3-query, H4-query, H5-query and H6-query: B performs as done in the
proof of Theorem 1.

• Public key query(IDi): If i 6= I, B computes the corresponding secret value xi by running
Set secret value(PP), computes Xi = ĝ2

xi and Yi = ĝ1
xi , and then sends PKi = (Xi, Yi) to

A4 as the answer; otherwise, B returns PKI = (XI , YI) as the answer, where XI = gas2 and
YI = gas1 .

• Private key query(IDi): If i 6= I, B computes the corresponding secret value xi by running
Set secret value(PP), computes Di = (Di,1, Di,2) by running the algorithm Partical private
key extract (PP, s, IDi), computes Si = (Si,1, Si,2) = (Dxi

i,1, D
xi
i,2), and sends Si to A4; other-

wise, B aborts with failure.

• Decryption query(IDi, C): Let C = (C1, C2, C3, C4, C5).

(a) If i 6= I, B returns the output of the algorithm Decryption(PP,C, SKi) to A4 as the
answer, where SKi is the private key with respect to the identity IDi.

(b) Else, for each item [σ,C1, C2, C3, θ] in H3-list, B performs as follows.

i. Compute M ′ ‖ k′ = C4 ⊕ θ.
ii. Compute R′ = H5(M ′, k′).

iii. Compute the corresponding trapdoor SI,1 by running Authorization(IDI), if C1 =

gR
′

1 and C5

H4(M ′)R
′ = H6(e(SI,1, C3)) both hold, return M ′ to A4 as the answer.

If there is no such item, return ⊥ to A4.

• Authorization query(IDi): B retrieves ui from H1-list by making H1-query(IDi). If i 6= I, B
computes the corresponding secret value xi by running Set secret value(PP), and computes
Si,1 = gsuixi1 ; otherwise, B computes Si,1 = gauis1 . Then, it returns Si,1 to A4 as the answer.

3. Challenge: B picks a message M∗ and two numbers k ∈ {0, 1}l, β ∈ Zq∗ randomly, and then
computes C∗ = (C∗1 , C

∗
2 , C

∗
3 , C

∗
4 , C

∗
5) with the target identity IDI as follows:

C∗1 = gR1 ,
C∗2 = gc1,

C∗3 = gβ2 ,
C∗4 = (M∗ ‖ k)⊕H3(hs, C1, C2, C3),

C∗5 = H4(M∗)R ·H6(e(Q∗1, XI
β)),

where R = H5(M∗, k), Q∗1 = H1(IDI), PKI = (XI , YI) is current public key with respect to IDI .

Finally, it sends C∗ to A4 as the challenge ciphertext.

4. Phase 2: A4 issues as done in Phase 1. The constraints are that

• ID∗ does not appear in the Private key query;

• (ID∗, C∗) does not appear in the Decryption query;

5. Guess: A4 outputs M
′
. If M∗ = M

′
, B outputs 1 for the challenge instance of the DBDH problem

or 0 otherwise. �

6 Conclusion

In this paper, we propose the concept of certificateless public key encryption with equality test (CL-
PKEET) to solve the key escrow problem in IBEET. More in details, we first give the definition of
CL-PKEET and define the security model. Finally, we propose a concrete CL-PKEET scheme based on
the DBDH assumption and prove its security.

14

References

[1] S. S. Al-Riyami and K. G. Paterson. Certificateless public key cryptography. Lecture Notes in
Computer Science, 2894(2):452–473, 2003.

[2] J. Baek, R. Safavinaini, and W. Susilo. Public key encryption with keyword search revisited. In
International Conference on Computational Science and Its Applications, 2008.

[3] S. Chatterjee and A. Menezes. On cryptographic protocols employing asymmetric pairings-the role
of revisited. Discrete Applied Mathematics, 159(13):1311–1322, 2011.

[4] B. Dan, G. D. Crescenzo, R. Ostrovsky, and G. Persiano. Public Key Encryption with Keyword
Search. Springer Berlin Heidelberg, 2004.

[5] S. T. Hsu, C. C. Yang, and M. S. Hwang. A study of public key encryption with keyword search.
International Journal of Network Security, 15(2):71–79, 2013.

[6] K. Huang, R. Tso, Y. C. Chen, S. M. M. Rahman, A. Almogren, and A. Alamri. Pke-aet: Public
key encryption with authorized equality test. The Computer Journal, 58(10), 2015.

[7] K. Lee, J. H. Park, and H. L. Dong. Anonymous hibe with short ciphertexts: full security in prime
order groups. Designs, Codes and Cryptography, 74(2):395–425, 2015.

[8] S. Ma. Public key encryption with delegated equality test in a multi-user setting. Computer Journal,
58(4), 2015.

[9] S. Ma. Identity-based encryption with outsourced equality test in cloud computing. Information
Sciences An International Journal, 328(C):389–402, 2016.

[10] S. Ma, Q. Huang, M. Zhang, and B. Yang. Efficient public key encryption with equality test support-
ing flexible authorization. IEEE Transactions on Information Forensics & Security, 10(3):458–470,
2015.

[11] A. Shamir. Identity-based cryptosystems and signature schemes. Lecture Notes in Computer Science,
21(2):47–53, 1995.

[12] Q. Tang. Public key encryption supporting plaintext equality test and user-specified authorization.
Security & Communication Networks, 5(12):1351–1362, 2011.

[13] Q. Tang. Towards public key encryption scheme supporting equality test with fine-grained autho-
rization. In Australasian Conference on Information Security and Privacy, pages 389–406, 2011.

[14] Q. Tang. Public key encryption schemes supporting equality test with authorisation of different
granularity. International Journal of Applied Cryptography, 2(4):304–321, 2012.

[15] G. Yang, C. H. Tan, Q. Huang, and D. S. Wong. Probabilistic public key encryption with equality
test. In International Conference on Topics in Cryptology, pages 119–131, 2010.

15

