
New construction of single-cycle T-function
families

Shiyi Zhang1, Yongjuan Wang2, and Guangpu Gao2

1e-mail: syzhang1352@163.com.cn.

December 5, 2016

Abstract

The single cycle T-function is a particular permutation function with complex
algebraic structures, maximum period and efficient implementation in software
and hardware. In this paper, on the basis of existing methods, we present a new
construction using a class of single cycle T-functions meeting certain conditions to
construct a family of new single cycle T-functions, and we also give the numeration
lower bound for the newly constructed single cycle T-functions.
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1 Introduction
Permutation functions are widely used in cryptography. It can be used for the construc-
tion and analysis of symmetric cryptography such as the stream cipher, block cipher,
hash function and PRNG(Pseudo Random Number Generator). It also has played an
important role in the analysis of public key cryptography and the construction of spe-
cial code in communication system. In 2002, Klimov and Shamir proposed a new
class of particular permutation functions called T-function [1]. As it is able to mix
arithmetic operations (negation, addition, subtraction, multiplication) and boolean op-
erations (not, xor, and, or), it has a naturally complex nonlinear structure. In addition,
T-functions can generate maximum period sequences and have high software and hard-
ware implementation speed. Since T-functions have so many desirable cryptographic
properties, the sequence derived from T-functions is a good type of nonlinear sequence
source for stream cipher design, which has a promising prospect in practice.

T-function, since its introduction, has gained much attention. In [2–6], research-
es on the cycle structure of T-functions were conducted; [7–11] examined configura-
tion of sequences derived from T-functions; while properties of these sequences were
discussed in [12–15]. However, in recent years, with further studies on T-functions,
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new research perspectives have been brought up. Rishakani introduced a family of
T-functions similar to modular multiplication, which is called M-functions[16]; Liu
proposed a fast algorithm for computing walsh spectrum and differential probability
of T-functions[17], and You discussed the 2-adic complexity and the 1-error 2-adic
complexity of single cycle T-functions[18], etc.

Current single cycle T-functions mainly fall into the following several categories.
The first uses parameters. Parameter as an important tool for the research on T-functions
was proposed by Klimov and Shamir [19]. By using parameters, single-word sin-
gle cycle T-functions can be constructed, such as the Klimov-Shamir T-function [1]
and the functions proposed by Yang [20]. The second uses algebraic dynamical sys-
tem. Anashin described a method using current T-functions to construct single cycle
T-functions, which used p-aidc analysis and infinite power series [21]. The method
is also a necessary and sufficient condition to determine whether a T-function has a
single cycle. Practically, however, this method is not easy-to-use. The third is polyno-
mial functions. The necessary and sufficient conditions of a single cycle function is a
polynomial function f(x) =

∑
k≥0 akx

k over Z/(2n) was given [23–25]. The forth
is multiword single cycle T-functions. It was first introduced by Klimov and Shamir in
[25], then more and more multiword single cycle T-functions were proposed and had
wide applications in cipher design. For example, Mir-1 uses the multiword single cy-
cle T-function proposed in [26], while TSC series ciphers are based on the T-function
introduced in [27]. As the characteristics of multiword single cycle T-functions can
also be reflected in single-word single cycle T-functions, and single-word single cycle
T-functions have high algebraic degree, good stability and other excellent properties,
nowadays researches mainly focus on single-word single cycle T-functions.

Klimov and Shamir presented a method to increase the period of single cycle T-
functions[19]. Using its idea of construction, this paper discovered a new construction
of single cycle T-functions. Using several single cycle T-functions which meet certain
conditions, it is able to construct new single cycle T-function families. Meanwhile, we
give the proof by induction and the numeration lower bound for this construction.

2 Notations and Definitions
Definition 1. Let x = (x0, . . . , xm−1)

T ∈ Fmn
2 , y = (y0, . . . , yl−1)

T ∈ Fln
2 , where

xi = (xi,0, . . . , xi,n−1), yi = (yi,0, . . . , yi,n−1). Let f be a mapping from Fmn
2 to Fln

2 ,
that is

f :


x0,0 x0,1 . . . x0,n−1
x1,0 x1,1 . . . x1,n−1

...
... . . .

...
xm−1,0 xm−1,1 . . . xm−1,n−1

 −→


y0,0 y0,1 . . . y0,n−1
y1,0 y1,1 . . . y1,n−1

...
... . . .

...
yl−1,0 yl−1,1 . . . yl−1,n−1

 ,

for 0 ≤ j ≤ n − 1, if the j-th column of the output Rj(y) depends only on the first j
columns of the input: Rj(x), . . . ,R0(x) , then f is called a T-function.

Definition 2. A T-function f(x) : Fn
2 −→ Fn

2 is called invertible if f(x) = f(y)⇐⇒
x = y.
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Definition 3. Let f : Fn
2 −→ Fn

2 be a T-function. Given the initial state x0 =
(x0,n−1, x0,n−2, . . . , x0,0)

T , for i ≥ 0, let xi+1 = f(xi). If the sequence x =
(x0, x1, . . .) has the period of 2n, then f(x) is called a single cycle T-function and
sequence x is called to be generated by the single cycle T-function f(x) and the initial
state x0.

Theorem 1. Let f(x) = (fn−1(x), . . . , f1(x), f0(x)) be an invertible T-function over
Fn
2 , then f(x) is a single cycle T-function if and only if its ANF(Algebraic Norm Form)

has the following form

f(x) = (fn−1(x), . . . , f1(x), f0(x))

= (xn−1 ⊕ x0x1 . . . xn−2 ⊕ ϕn−1(xn−2, . . . , x1, x0), . . . , x1 ⊕ x0 ⊕ ϕ1(x0), x0 ⊕ 1),

where fj(x) = xj ⊕ x0x1 . . . xj−1 ⊕ ϕj(xj−1, . . . , x1, x0), deg(ϕj ≤ j − 1), j ≥ 1.

Theorem 2. Let sequence x = (x0, x1, . . .) generated by single cycle T-function f(x)
and x0 is the initial state, then the j-th coordinate sequence of x, xj(0 ≤ j ≤ n − 1)

has the period of 2j+1. Meanwhile, for 0 ≤ j ≤ n − 1, the two parts of the sequence
xj are complementary, that is xi+2j ,j = xi,j ⊕ 1, i ≥ 0.

In [1], T-functions like f(x) = x+(x2 ∨C)mod 2n were studied, and the authors
presented the equivalency conditions of this type is invertible or has a single cycle.

Lemma 1. The mapping f(x) = x + (x2 ∨ C) mod 2n is invertible if and only if
[C]0 = 1. For n ≥ 3, f(x) is a single cycle T-function if and only if [C]0 = [C]2 = 1,
that is C mod 8 = 5 or 7, where x is a n-bit word and C is some constant.

Before multiword single cycle T-functions were introduced, Klimov and Shamir
presented a method to increase the period of single-word single cycle T-functions [19].
By using m (m is odd) invertible functions over Fn

2 , it can construct sequences of
period m2n.

Consider the sequence {(xi)} defined by iterating

xi+1 = xi + (x2i ∨ Cki)mod 2
n, ki+1 = ki + 1mod m (1)

where for any k = 0, . . . ,m− 1, Ck is some constant.

Lemma 2. For the sequence {(xi)} defined in (1), the sequence of pairs (xi, ki) has the
maximal periodm2n if and only ifm is odd, and for all k, [Ck]0 = 1,⊕m−1

k=0 [Ck]2 = 1.

3 The New Construction
Unlike [19], which used odd invertible functions to increase the period of T-functions,
during our study on the construction of single cycle T-functions, we found that whenm
is an even number, in particular, m = 2l(l ∈ N+), by using m single cycle T-functions
meeting certain conditions of period 2n, we can construct m pairwise different new
single cycle T-functions of period 2n.

Assume F (x) is the corresponding function to the sequence {(xi)} defined by (1),
the component functions are fki

(xi) = xi+1, ki+1 = ki+1modm, k = 0, . . . ,m−1.
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Theorem 3. (New Construction) When m = 2l, if each component function fki(xi)
is a single cycle T-function and the ordered set < Ck > simultaneously satisfies

1) for all k, Ck is congruence modulo 8;
2) for i = 0, 1, . . . ,m − 1, [Cki

]3 ⊕ [Cki+1
]3 = 1, ⊕2r−1−1

j=0 [Cki+j
]r+1 = 0(2 <

r < l), ⊕m−1
i=0 [Cki ]n−2 = 0; then for different input initial state x0 modulo m, F (x)

can generate m pairwise different single cycle T-functions of period 2n, where n ≥ 4,
1 ≤ l ≤ n− 3.

Proof. First we determine the ranges of n and l.
Note that each fki

(xi) is a single cycle T-function and is congruence modulo 8, so
for all k, Ck simultaneously satisfies Ck mod 8 = 5 or 7, thus n ≥ 3. Trivially, l ≥ 1,
that is m ≥ 2. Also, since Ck is different from each other, l ≤ n − 3, n ≥ 4, thus we
have 1 ≤ l ≤ n− 3.

Then, from the iterative relation we have,

xi+1 = xi + (x2i ∨ Cki
)mod 2n,

xi+2 = xi + (x2i ∨ Cki
) + (x2i+1 ∨ Cki+1

)mod 2n,

...

xi+2n−1 = xi + (x2i ∨ Cki
) + (x2i+1 ∨ Cki+1

) + . . .+ (x2i+2n−1−1 ∨ Cki+2n−1−1
)

= xi +

2n−1−1∑
j=0

(x2i+j ∨ Cki+j
)mod 2n,

where i+ j needs modulo m. To prove F (x) is a single cycle T-function, we only need
to prove that xi+2n−1 6= xi mod 2

n. And as the property of the sequence generated by

single cycle T-functions, it’s only necessary to prove that
∑2n−1−1

j=0 (x2i+j ∨ Cki+j
) =

2n−1 mod 2n.
For

∑2n−1−1
j=0 (x2i+j∨Cki+j

) =
∑2n−l−1−1

t=0

∑2l−1
j=0 (x22lt+j∨Ckj

) =
∑2l−1

j=0

∑2n−l−1−1
t=0 (x22lt+j∨

Ckj
)mod 2n, it suffices to show that

∑2n−l−1−1
t=0

∑2l−1
j=0 (x22lt+j∨Ckj

) =
∑2l−1

j=0

∑2n−l−1−1
t=0 (x22lt+j∨

Ckj ) = 2n−1 mod 2n.
1. Firstly we prove that when theorem conditions are met, for any initial state, F (x)

can always generate single cycles. We prove it by dual induction on n and l. Let s and
l denote the value of n and l, respectively.

1) When s = 4, l = 1, we have the conclusion by enumeration.
2) Assume by the induction that the conclusion is true when s = n and r = l, that is∑2n−l−1−1

t=0

∑2l−1
j=0 (x22lt+j∨Ckj

) =
∑2l−1

j=0

∑2n−l−1−1
t=0 (x22lt+j∨Ckj

) = 2n−1mod 2n,
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a) when s = n+ 1, r = l,

2r−1∑
j=0

2s−r−1−1∑
t=0

(x22lt+j ∨ Ckj
) =

2l−1∑
j=0

2n−l−1∑
t=0

(x22lt+j ∨ Ckj
)

=

2l−1∑
j=0

(

2n−l−1−1∑
t=0

(x22lt+j ∨ Ckj
) +

2n−l−1∑
t=2n−l−1

(x22lt+j ∨ Ckj
))

=

2l−1∑
j=0

2n−l−1−1∑
t=0

(x22lt+j ∨ Ckj ) +

2l−1∑
j=0

2n−l−1−1∑
t′=0

(x22lt′+j ∨ Ckj )

= 2n−1 + 2n−1

= 2n mod 2n+1

where xi is modulo 2n+1 and the subscript j ofCkj is modulo 2l. Hence the conclusion
is true for s = n+ 1, r = l.

b) When s = n, r = l + 1,

2s−r−1−1∑
t=0

2r−1∑
j=0

(x22l+1t+j ∨ Ckj ) =

2n−l−2−1∑
t=0

2l+l−1∑
j=0

(x22l+1t+j ∨ Ckj )

=

2n−l−2−1∑
t=0

(

2l−1∑
j=0

(x22l+1t+j ∨ Ckj
) +

2l+1−1∑
j=2l

(x22l+1t+j ∨ Ckj
))

=

2n−l−2−1∑
t=0

2l−1∑
j=0

(x22l+1t+j ∨ Ckj
) +

2n−l−2−1∑
t=0

2l−1∑
j′=0

(x22l+1t+j′+2l ∨ Ck
j′+2l

)mod 2n (2)

where xi is modulo 2n, the subscript j of Ckj is modulo 2l+1.
It should be noted that due to the theorem condition l ≤ n − 3, in this part of the

proof, we require l − 1 ≤ n− 3 . We might as well let l − 1 = n− 3, then for s > n,
we can have the conclusion by induction on n.

From the induction on l, we can separate < Ckj
> and < Ck

j′+2l
> into two

independent constant sets which both meet the suppose, and their values are different
from each other. Therefore, both x2l+1t+j and x2l+1t+j′+2l can traverse all the states
modulo 2n−1, which makes the value of (2) irrelevant to the order of the subscript of
xi. And according to the induction on n, we have

2n−l−2−1∑
t=0

2l−1∑
j=0

(x22l+1t+j∨Ckj
) =

2n−l−2−1∑
t=0

2l−1∑
j′=0

(x22l+1t+j′+2l∨Ck
j′+2l

) = 2n−2mod 2n−1,

thus the left part of (2) equals to 2n−2 +2n−2 +α(2n−1) = 2n−1 +α(2n−1)mod 2n,
where α(2n−1) stands for the carry carried by

∑2n−l−2−1
t=0

∑2l−1
j=0 (x22l+1t+j ∨Ckj

) and∑2n−l−2−1
t=0

∑2l−1
j′=0(x

2
2l+1t+j′+2l ∨Ck

j′+2l
) after 2n−2 iterative additions respectively.

Note that Ck is congruence modulo 8, it is also required to consider that after iterative
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additions whether there will be a carry generated by the 3rd bit to the (n − 2)-th bit.
(Remark the least bit is the 0-th bit)

Apparently, when < Ck > meets the theorem conditions, there won’t be a carry to
the (n − 1)-th bit. Meanwhile, it’s easy to show for any x ∈ Z, the binary expansion
of x2 must have [x2]1 = 0, thus [x2 ∨ C]0 = [x2 ∨ C]2 = 1, [x2 ∨ C]1 = [C]1. At
the same time, different adjacent [Cki ]3 ensures the next state differs from the previous
state.

So when s = n, r = l + 1,

2s−r−1−1∑
t=0

2r−1∑
j=0

(x22l+1t+j ∨ Ckj ) =

2n−l−2−1∑
t=0

2l+1−1∑
j=0

(x22l+1t+j ∨ Ckj ) = 2n−1 mod 2n,

and the conclusion is true for the case s = n, r = l + 1.
Therefore, for any positive integer n and l,

∑2n−1−1
j=0 (x2i+j∨Cki+j

) = 2n−1mod 2n,
thus F (x) is a single cycle T-function for any initial state.

2. Secondly, we give the proof that these m cycles are pairwise different.
Make the residue system {x00, x10, . . . , xm−10 } modulo m initial states, where xi0 =

0, 1, . . . ,m− 1(i = 0, 1, . . . ,m− 1), when i 6= j mod m, xi0 6= xj0 mod m. Consider
F (x) is a single cycle T-function, so all the states modulo m will appear on the cycle
generated by F (x)). We might as well assume these states are in dictionary order, then
the state xi0 will always be the input of the component function fkimodm(xi). Thus
in a single cycle, we can always make an arbitrary state the initial sate, it generates a
single cycle. So, for the same initial states xi0 modulo m, they generate the exactly
same single cycle.

Since each component function is different T-function, we can at least find two
states xi, xj , so that fki(xi) 6= fkj (xi)(i 6= j mod m). Thus for different initial states
xi0, xj0, we are able to find such a state which has different subsequent states on the two
cycles they generated. Therefore, for different initial states xi0 and xj0 modulo m, they
generate totally different single cycles.

In summary, these m single cycles are different from each other. ]

Corollary 1. When < Ck >, k = 0, 1, . . . ,m− 1 is in dictionary order, F (x) gener-
ates m new pairwise different single cycles.

Proof. Apparently, dictionary order satisfies the conditions in Theorem 3, so the con-
clusion is true. ]

According to Theorem 3, we can give a numeration lower bound N for this con-
struction. Easy to know when we construct cycles in dictionary order, the lower bound
is reached.

Theorem 4. Given the same conditions as Theorem 3, sort m in dictionary order, we
can get Cm

2n cases. Consider rotation, we have N ≥ mCm
2n .

Obviously, a large number of single cycle T-functions can be constructed through
this method.
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Corollary 2. When m = 2l, if for all k,
1) each component function fki(xi) is a single cycle T-function,
2) Ck is congruence modulo 2m,
then, for different initial state x0 modulo m, F (x) can generate m pairwise differ-

ent single cycle T-functions of period 2n, where n ≥ 4, 1 ≤ l ≤ n − m. Note here
{Ck} is out-of-order.

Proof. Similar to the proof procedure of Theorem 2, it only needs to consider the
induction part on l. According to the induction hypothesis, if and only if for all k, Ck

is congruence modulo 2m, when we take 2l Cki
in arbitrary order, it won’t carry 2n−1

from the 3rd bit to the (n− 2)-th bit after iterative additions. ]

Through the method proposed in Corollary 2, 2 · 2m−3 · Cm
2n−m = 2m−2Cm

2m−3

new single cycles can be constructed.

Theorem 5. For any m, might as well let m = 2lm′, 0 ≤ l ≤ n−m, where m′ is an
odd number. If each component function fki

(xi) is a single cycle T-function and for all
k, Ck is congruence modulo 2m, then the sequence of pairs {(xi, ki)} has the maximal
period of m′2n. At the same time, for different initial state x0 modulo 2l, there are 2l

pairwise different cycles.

Proof. It’s easy to prove by Lemma 2 and Corollary 2. ]

4 Conclusion
In this paper, we summarize the existing construction methods of single cycle T-functions,
and propose a method using m single cycle T-functions meeting certain conditions of
period 2n to construct m new and distinct pairwise single cycle T-functions of period
2n, where m = 2l(l ∈ N+). The newly constructed single cycle T-functions have pre-
served all the information inherited from the original component functions, it is a kind
of efficient, simple and easy-to-do method, and is provided with a large optional pa-
rameter space. Furthermore, by applying this construction method for other functions,
we may get a lot of new function families.
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A

A.1
Taking m = 2, n = 4 as an example, the construction is given as follows. Select
Ck =< 5, 13 >, then the component functions are

fk0
= x+ (x2 ∨ 5)mod 24, fk1

= x+ (x2 ∨ 13)mod 24.

Sequences generated by fk0 and fk1 are as follows. Figure 1 which has red figures
with black solid circle is generated by fk0

, Figure 2 which has blue figures with black
hollow circle is generated by fk1

. Figures in brackets outside the cycles are the current
states, and figures inside the cycles are the numbers of the states (0 stands for the initial
state).
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When xi+1 = xi + (x2i ∨ Cki
) mod 24, Ck =< 5, 13 >, ki+1 = ki + 1 mod 2

respectively takes (0000) and (0001) as its initial state, it generates cycles as Figure
3 and Figure 4 above. Red figures with black solid circle are output from fk0 , blue
figures with hollow circle are output from fk1 , and figures inside the cycles are numbers
in their original component functions. We can tell that the newly constructed cycles are
recombination of the original component functions’ output.

A.2
Taking m = 4, n = 5 as an example, the construction is given as follows. Select
Ck =< 5, 13, 21, 29 >, then the component functions are

fk0 = x+ (x2 ∨ 5)mod 25, fk1 = x+ (x2 ∨ 13)mod 25,

fk2 = x+ (x2 ∨ 21)mod 25, fk3 = x+ (x2 ∨ 29)mod 25.

Sequences generated by fk0 , fk1 , fk2 and fk3 are as follows. Figure 5 which has
red figures with black solid circle is generated by fk0

, Figure 6 which has blue figures
with black hollow circle is generated by fk1

, Figure 7 which has yellow figures with
grey solid circle is generated by fk2

, Figure 8 which has green figures with green
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hollow circle is generated by fk3 . Figures in brackets outside the cycle are the current
states, and figures inside the cycle are the numbers of the states (0 stands for the initial
state).
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12



When xi+1 = xi+(x2i∨Cki)mod 2
5, Ck =< 5, 13, 21, 29 >, ki+1 = ki+1mod 4

respectively takes (00000), (00001), (00010) and (00011) as its initial state, it generates
cycles as Figure 9 , Figure 10 , Figure 11 and Figure 12 above. Red figures with
black solid circle are output from fk0

, blue figures with hollow circle are output from
fk1

, yellow figures with grey solid circle are output from fk2
, green figures with green

hollow circle are output from fk3 . And figures inside the cycles are numbers in their
original component functions. It is obviously to see that for an ordered < Ck >,
states selected from each component functions are fixed, it is just the combination
order different.
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