
Leak Me If You Can: Does TVLA Reveal
Success Rate?

Abstract. Test Vector Leakage Assessment Methodology (TVLA) has
emerged as a popular side-channel testing methodology as it can detect the
presence of side-channel information in leakage measurements. However,
in its current form, TVLA results cannot be used to quantify side-channel
vulnerability. In this paper, we extend the TVLA testing beyond its
current scope. Precisely, we derive concrete relationship between TVLA
and signal to noise ratio (SNR). The linking of the two metrics, allows
direct computation of success rate (SR) from TVLA, and thus unify
these popular side channel detection and evaluation metrics. This, to our
knowledge, is the first work in this direction. An end-to-end methodology
is proposed, which can be easily automated, to derive attack SR starting
from TVLA testing. The proposed methodology can take leakage model
as a input and report attack SR which is validated on simulated and
practical measurements. Not to surprise, the methodology performs better
when the leakage model is accurately profiled. The methodology, although
still limited to first-order leakage, is also further extended to (first order)
multivariate setting.

1 Introduction

Since the seminal work by Kocher et al. [1], side channels have emerged as a
serious threat to implementations of cryptographic algorithms in the past two
decades, with the ability to render even mathematically robust cryptographic
algorithms vulnerable. A side-channel adversary observes the physical properties
of a cryptographic implementation, such as timing, power or electromagnetic
emanations, and tries to infer the secret key by modelling a sensitive intermediate
state of the design which then depends on these physical properties. Cryptographic
designs must therefore provide security guarantees against such threats. In
this context, efficient validation and evaluation methodology for testing side
channel vulnerability has gathered significant interest in the research community.
In particular, there exist today, two popular security certification programs -
Common Criteria (CC) [2] and FIPS [3] that recommend crypto-implementations
to be secure against side channel attacks. Each of these programs follows two
distinct testing methodologies, namely evaluation-style testing and conformance-
style testing.

Evaluation-Style Testing. The Common Criteria (CC) certification is a
prime example of evaluation-style testing. CC is essentially a set of security
guidelines (ISO-15408) that define a common framework for evaluating crypto-
implementations using a standard set of pre-defined evaluation assurance levels.
From the point of view of detecting side channel vulnerabilities, it recommends
evaluating the system against all state-of-the-art attack strategies, with the
knowledge of the threat model. An ever-increasing list of attack strategies, to-
gether with a large number of models characterizing different leakage profiles of
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the device, often renders such a testing methodology cumbersome, costly and
limited by the testing expertise available at hand. Additionally, the success of
evaluation-style testing methodologies depends strongly on appropriate choices
of the leakage models, and an error of judgement in this regard could cause a
potentially vulnerable crypto-implementation to pass the test. This makes evalu-
ation style testing mechanisms less favourable for testing crypto-implementations
against side channel vulnerability.

Conformance-Style Testing. Unlike CC, FIPS [3] certification is an example
of conformance-style testing that uses a cryptographic module validation program
(CMVP) to validate a design in terms of whether it meets the necessary security
levels or not, rather than an exact evaluation of its vulnerability. With respect to
side channels, it employs a simplified approach of merely detecting the presence
of any leakage, independent of attack methodologies and leakage models. This
makes it possible to have structured conformance-style testing methodologies
that are cost-effective and consistent across different testing labs with varied
testing expertise. Fortifications with precise security specifications and test plan
coverage have the potential to make this style of testing against side-channel
vulnerabilities highly efficient and suitable for wide-scale use.

Test Vector Leakage Assessment (TVLA) [4] which was proposed at NIST spon-
sored NIAT workshop 2011, is one of such conformance style testing mechanism
which has gained popularity among the researchers and specially the practitioners
due to its robustness, applicability to different crypto-implementations and easy
integrability with the exiting testing methodologies. Multiple research papers
on side channel attacks have used this tool to show the effectiveness of their
proposed attacks and countermeasures. TVLA uses well known Welch’s t-test.
It was proposed as a PASS/FAIL test, which checks if t-value crosses the pre-
defined threshold (proposed as ±4.5 [4]). If the t-value crosses the threshold, the
measurement are considered to carry data dependant information, which could
be potentially exploited.

TVLA can be classified into: non-specific and specific [4]. Non-specific TVLA
partitions traces on basis of public inputs. Specific TVLA partitions based on
intermediate key-dependent variables and thus can provide intuitions on source
of leakage. It has been shown in [5] that non-specific TVLA outperforms specific
TVLA as the number of false positives will be less in case of non-specific TVLA.
Both methods are discussed in details in section 2.

One demerit of TVLA methodology is that, failed t-test may or may not
lead to successful key extraction. It may happen that key extraction procedure
fails due to wrong assumption of or high complexity of the hypothetical power
model in-spite of having high TVLA leakage [6]. Moreover TVLA does not
quantifies the side channel vulnerability. In some cases, it would be useful to
know how unsafe the design is, which demands the need of quantification of
side channel vulnerability. However, in current form, TVLA fails to report side-
channel vulnerabilities and evaluation based testing are too costly and expertise
dependent to be deployed for this objective.
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1.1 Motivation

Conformance based testing based on TVLA is gaining popularity due to its
simplicity and ease of computation. Although TVLA itself is not sufficient for a
comprehensive security evaluation, it is often considered as a first test to guide
further evaluations. However, in its current form it is mostly used for detecting
presence of leakage and sometimes to derive the order of implementation security.
In this work, we attempt to develop a hybrid methodology to extract more
information from the initial TVLA testing. The information extraction is oriented
towards expressing the TVLA results in terms of other metrics commonly used
in evaluation-based testing. More precisely, we derive relationships and develop
methodologies to utilize information from the TVLA test for computation of
signal-to-noise ratio (SNR) and attack success rate (SR).

1.2 Context

Countermeasures against side-channel attack are advancing every year [7]. Along
side there are comprehensive evaluation methodologies which are also devel-
oped [8]. Such evaluations are all the more important when basic T-test can be
misleading. A recent work [9] shows the limitations of T-test in security evaluation
of a higher-order masking scheme. However, conducting a comprehensive and
detailed security evaluation can be a time-taking task. Time is a limiting factor
for evaluation process and for the same reason CC evaluations contain time
spend for evaluation as a metric. Some work deal with further simplifying the
evaluation process [10].

Most, if not all, real implementation are currently considering basic counter-
measures due to the cost of security attached. This scenario might change in the
future. Thus, evaluation laboratories are still often dealing with unprotected or
low-order protected cryptographic implementations, which might also suffer from
accidental first order leakage. In such scenarios, a simple testing methodology
like TVLA can be a good start.

In this paper, we develop a methodology that starts with specific TVLA
testing to get some information on leaking variables. Thereafter, by plugging in a
leakage model, the evaluator can reuse the TVLA results to compute attack SR.
This computation first converts TVLA results to SNR. Next, it applies previously
developed techniques like [11,12,13], to compute SR from SNR and the leakage
model.

A further extension of this proposed technique to multivariate setting is also
discussed. In its present form the developed methodology is limited to unprotected
targets or protected targets with accidental first order leakage.

1.3 Related Work

A unified framework to evaluate side-channel attack was proposed by Standaert
et al. [14]. It put forwards two key metrics success rate (SR) and guessing entropy
(GE ) as main attack metrics. Success rate of a specific side channel attack is
defined as the probability of successful secret key retrieval. In simple mathematical
notation, success rate (SR) of a side channel attack (𝐴) is presented as follows:

𝑆𝑅 = 𝑃𝑟[𝐴(𝐸𝑘0 , 𝐿) = 𝑘0] (1)
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where 𝑘0 is the correct key used in the encryption process 𝐸𝑘0 , 𝐿 is the leakage
obtained from side channel traces. In CHES 2012, Fei et al. [11] introduce the
notion of confusion coefficient which can be used to compute theoretical success
rate of a mono-bit differential power analysis (i.e. difference of mean) given the
SNR. This work was further improved and extended to correlation power analysis
by Thillard et al. [12]. Fei et al. [13] also extended the initial work on success
rate estimation for monobit DPA to CPA and beyond.

On the other hand, to simplify the evaluation process, simple and model-
agnostic techniques were also developed in parallel. The main technique of this
class being the previously mentioned TVLA [4] was proposed as a FIPS 140-3
candidate. Another simple method to detect point of leakage in a univariate first-
order setting was proposed in [15], termed as Normalized Inter Class Variance
(NICV). Authors show that NICV is an estimate of SNR and approaches (squared)
Pearson’s correlation coefficient in absence of noise. NICV is actually output
of statistical F-test (also known as ANOVA (ANalysis Of VAriance)). Owing
to its relationship to SNR, NICV was also used to derive SR for monobit DPA
using formulation from [11]. In this work, we work on connecting the individual
techniques to develop the whole chain. The main missing link in the above
techniques is the relationship between TVLA and SNR. By developing that link,
we are able to develop a methodology that can be automated end to end to
estimate attack SR right from computation of TVLA.

1.4 Contribution

The main contributions of this paper are as follows:

– SNR of side-channel measurement and TVLA are independently developed
metrics. We derive the relationship between SNR and TVLA. We formally
show that the two metrics are equivalent and one can be easily computed
from the other.

– Next, we devise a methodology to estimate the theoretical bounds for success
rate of an attack from the TVLA results. This, to our knowledge, is the first
attempt to extend TVLA results for quantification of side channel vulnerabil-
ity through SR. The methodology uses theoretical success rate formulation for
CPA by Fei et al. [13]. In other words, the developed methodology attempts
to bridge the gap between conformance and evaluation based testing by
setting the following chain: 𝑇𝑉 𝐿𝐴 → 𝑆𝑁𝑅 → 𝑆𝑅.

– We also show that non-specific TVLA actually captures only a fraction of
the total SNR. On the other hand, from specificTVLA, we can compute the
total SNR from TVLA.

– The developed methodology is extended to multivariate setting under first-
order leakage setting.

The rest of the paper is organized as follows: section 2 briefly describes the
mathematics behind different metrics for validation and evaluation of side channel
vulnerabilities. Next, section 3, derives the relationship between Welch’s t-test
based TVLA and ANOVA based NICV (and SNR). The derived relationship is
experimentally validated in section 4 followed by application to AES in section 5.
The extension of the proposed methodology to multivariate setting is discussed
in section 6 followed by final conclusions in section 7.
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2 Preliminaries

In this section we will introduce our notations and provide a brief description of
TVLA, NICV, SNR. Finally, the previously proposed relationship between SR
and SNR is discussed.

We denote 𝑋, 𝑘 as the plaintext and key bytes. Let 𝐿 = 𝑙(𝑋, 𝑘) denote the
normalized leakage model with E(𝐿) = 0 and Var(𝐿) = E(𝐿2) = 1 and let 𝑌
denote the leakage measurements such that

𝑌 = 𝜖𝐿 + 𝑁 (2)

where 𝜖 is the scaling coefficient and 𝑁 ∼ 𝒩 (0, 𝜎2) is the noise, which is inde-
pendent of 𝑋. A common example for 𝑙(𝑋, 𝑘) is the Hamming weight leakage
model on 𝑛 bits:

𝑙(𝑋, 𝑘) =
2√
𝑛

(︁
𝐻𝑊 (𝑋 ⊕ 𝑘) − 𝑛

2

)︁
.

Definition 1. SNR [16, S 4.3.2, page 73] The Signal-to-Noise Ratio (SNR) is
defined as:

SNR =
Var(E(𝑌 |𝑋))

E(Var(𝑌 |𝑋))
.

Lemma 1 (SNR in the case of leakage model (2)).

SNR =
𝜖2

𝜎2
.

Proof. Let 𝑥 a plaintext, and 𝑙 = 𝑙(𝑥, 𝑘). Then E(𝑌 |𝑋 = 𝑥) = E(𝜖𝐿 + 𝑁 |𝐿 =
𝑙) = 𝜖𝑙, by expression of the model (2) and noise independence from the 𝐿.
Therefore, Var(E(𝑌 |𝑋)) = Var(𝜖𝐿) = 𝜖2. Besides, E(Var(𝑌 |𝑋)) = E(𝜎2) = 𝜎2.

Hence, SNR = Var(E(𝑌 |𝑋))
E(Var(𝑌 |𝑋)) = 𝜖2

𝜎2 .

2.1 Normalized Inter Class Variance

Normalized Inter-Class Variance (NICV ) is a technique which was designed to
detect relevant point of interest (PoI) in an SCA trace [15]. It has application in
side channel trace compression and dimensionality reduction. NICV is based on
ANOVA (ANalysis Of VAriance) or F-test [17]. The main advantage of NICV is
that, it is leakage model agniostic and can be applied with the knowledge of only
plain-text or cipher-text and does not require knowledge of target implementation
or secret key.

Definition 2 (NICV [15, Eqn. (4) of Sec. 3.1] or [18, Eqn. (4) of
Sec. 3.1]). The Normalized Inter-Class Variance (NICV) is defined as:

NICV =
Var(E(𝑌 |𝑋))

Var(𝑌 )
(3)
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Lemma 2 (NICV in the case of leakage model (2)).

NICV =
1

1 + 𝜎2

𝜖2

.

In particular, 0 ≤ NICV ≤ 1.

Proof. The numerator has already been proven to be equal to 𝜖2. Besides,
Var(𝑌 ) = Var(𝜖𝐿) + Var(𝑁) = 𝜖2 + 𝜎2, by independence of 𝑋 and 𝑁 . Hence

NICV = Var(E(𝑌 |𝑋))
Var(𝑌 ) = 𝜖2

𝜖2+𝜎2 = 1

1+𝜎2

𝜖2

.

Proposition 1 (Link between NICV and SNR, [15, Eqn. (5) of Sec. 3.1]
or [18, Eqn. (5) of Sec. 3.1]). We have:

NICV =
1

1
SNR + 1

and, conversely, SNR =
1

1
NICV − 1

. (4)

Proof. Direct application of Lemmas 1 and 2.

2.2 Test Vector Leakage Assessment (TVLA)

Test Vector Leakage Assessment (TVLA) [4] is direct application of Welch’s
t-test on side channel traces for validation of side channel vulnerabilities. TVLA
methodology can be classified in to two different categories: non-specific TVLA
and specific TVLA. For both the cases, one must acquire two sets of traces. In
case of non-specific TVLA, one set corresponds to a fixed key and fixed plaintext
as input to the cryptographic IP, the second set collects traces corresponding to
same fixed key and random plaintext. The captured side channel traces are then
partitioned into two different sets: 𝑌 𝑓 (fixed plaintext as input) and 𝑌 𝑟 (random
plaintext as input). Thereafter a hypothesis testing performed by assuming a null
hypothesis that the these two sets of traces have identical means and variance.
If the null hypothesis is accepted, it signifies that the traces carry no sensitive
information. On the other hand, a rejected null hypothesis indicates presence of
exploitable leakage. This can be expressed as:

TVLA =
𝜇𝑟 − 𝜇𝑓√︂
𝜎2
𝑟

𝑛𝑟
+

𝜎2
𝑓

𝑛𝑓

, (5)

where 𝑛𝑟, 𝑛𝑓 signifies the number of traces in set 𝑌 𝑟, 𝑌 𝑓 respectively. The mean
and standard deviation of set 𝑌𝑟 is denoted by 𝜇𝑟 and 𝜎𝑟. Similarly, 𝜇𝑓 and 𝜎𝑓

refer to mean and standard deviation of 𝑌 𝑓 . The testing also commonly known as
fixed vs random (FVR) test. The null hypothesis of two equal means is rejected
when the TVLA exceeds a threshold of ±4.5, which ensures with degrees of
freedom > 1000, 𝑃 [|𝑇𝑉 𝐿𝐴| > 4.5] < 0.00001, this threshold leads to a confidence
of 0.99999. Thus, if the TVLA value is within ±4.5, the traces are considered to
not contain data-dependant leakage. Otherwise, it reject the null hypothesis and
declare the crypto-implementation to leak exploitable side-channel information.

Now, connecting TVLA with previous derivations we have:
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Definition 3 (TVLA [4, page 7]). The non-specific TVLA is defined for 𝑄
queries as:

T̂VLA𝑥 = (︂
1∑︀

𝑞/𝑥𝑞=𝑥 1

∑︀
𝑞/𝑥𝑞=𝑥 𝑦𝑞

)︂
−
(︁

1∑︀
𝑞 1

∑︀
𝑞 𝑦𝑞

)︁
⎯⎸⎸⎷ 1∑︀

𝑞/𝑥𝑞=𝑥 1

(︃
1∑︀

𝑞/𝑥𝑞=𝑥 1𝑦
2
𝑞 −

(︂
1∑︀

𝑞/𝑥𝑞=𝑥 1𝑦𝑞

)︂2
)︃

+ 1∑︀
𝑞 1

(︂
1∑︀
𝑞 1𝑦

2
𝑞 −

(︁
1∑︀
𝑞 1𝑦𝑞

)︁2)︂ ,

where we used
∑︀

𝑞 for
∑︀𝑄

𝑞=1 and
∑︀

𝑞/𝑡𝑞=𝑡 for
∑︀

1≤𝑞≤𝑄,
s.t. 𝑡𝑞=𝑡

.

We notice that this test is consistent, in that, asymptotically,

T̂VLA𝑥 −−−−−→
𝑄→+∞

{︃
+∞ if E(𝑌 |𝑋 = 𝑥) ̸= E(𝑌 ),

0 otherwise.

More precisely, according to the law of large numbers (LLN), we have that:

T̂VLA𝑥 ≈
𝑄→+∞

√︀
𝑄

E(𝑌 |𝑋 = 𝑥) − E(𝑌 )√︀
Var(E(𝑌 |𝑋 = 𝑥)) + Var(E(𝑌 ))

.

We therefore define the asymptotic constant lim𝑄→+∞
1√
𝑄
T̂VLA𝑥 = TVLA𝑥 as:

Definition 4. Asymptotic constant for Test Vector Leakage Assessment (TVLA)
for Fixed versus Random is:

TVLA𝑥 =
E(𝑌 |𝑋 = 𝑥) − E(𝑌 )√︀

Var(E(𝑌 |𝑋 = 𝑥)) + Var(E(𝑌 ))
,

where the fixed plaintext is 𝑥. In this definition, the test is non-specific, since one
does not need to know the key.

Lemma 3 (TVLA in the case of leakage model (2)).

TVLA𝑥 =
𝜖𝑙(𝑥, 𝑘)

𝜎
.

Proof. Indeed, we have E(𝑌 ) = 0, hence the result follows.

For specific TVLA, knowledge of secret key is required as in this case the
traces are partitioned depending upon the value of some intermediate data of
crypto-execution [4]. Depending upon the choice of intermediate data, there
could be multiple way to do this partitioning. In [5], the superiority of non-
specific TVLA over specific TVLA is established. TVLA is compared with mutual
information based analysis techniques in [19] and comparative analysis between
them is presented. In [20], authors have focussed on applicability of TVLA. They
have extended application of TVLA to higher order attacks. Moreover, they
have presented efficient algorithms for on-line computation of TVLA. A modified
paired T-test based TVLA methodology is presented in [21].
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2.3 SNR and SR

A closed-form expression for DPA and CPA has been derived in [11,12,13] that
depends on three factors: number of measurements 𝑄, SNR, confusion coefficient
vector 𝜅, and confusion matrices 𝐾,𝐾**.

Definition 5 (Confusion vector and matrices for CPA [13]1). Let 𝑘𝑐
denote the secret key and 𝑘𝑔𝑖 with 1 ≤ 𝑖 ≤ 2𝑛−1 a key guess where 𝑘𝑔𝑖 ̸= 𝑘𝑐, then
the confusion vector 𝜅 and the confusion matrices 𝐾,𝐾** are defined as

𝜅 = (𝜅(𝑘𝑐, 𝑘𝑔1), . . . , 𝜅(𝑘𝑐, 𝑘𝑔2𝑛−1 )𝑇

𝐾 =

⎛⎜⎝ 𝜅(𝑘𝑐, 𝑘𝑔1 , 𝑘𝑔1) 𝜅(𝑘𝑐, 𝑘𝑔1 , 𝑘𝑔2) · · · 𝜅(𝑘𝑐, 𝑘𝑔1 , 𝑘𝑔2𝑛−1
)

...
...

. . .
...

𝜅(𝑘𝑐, 𝑘𝑔2𝑛−1
, 𝑘𝑔1) 𝜅(𝑘𝑐, 𝑘𝑔2𝑛−1

, 𝑘𝑔2) · · · 𝜅(𝑘𝑐, 𝑘𝑔2𝑛−1
, 𝑘𝑔2𝑛−1

)

⎞⎟⎠
𝐾** =

⎛⎜⎝ 𝜅**(𝑘𝑐, 𝑘𝑔1 , 𝑘𝑔1) 𝜅**(𝑘𝑐, 𝑘𝑔1 , 𝑘𝑔2) · · · 𝜅**(𝑘𝑐, 𝑘𝑔1 , 𝑘𝑔2𝑛−1
)

...
...

. . .
...

𝜅**(𝑘𝑐, 𝑘𝑔2𝑛−1
, 𝑘𝑔1) 𝜅**(𝑘𝑐, 𝑘𝑔2𝑛−1

, 𝑘𝑔2) · · · 𝜅**(𝑘𝑐, 𝑘𝑔2𝑛−1
, 𝑘𝑔2𝑛−1

)

⎞⎟⎠
with

𝜅(𝑘𝑐, 𝑘𝑔) = 𝐸((𝑙(𝑋, 𝑘𝑐) − 𝑙(𝑋, 𝑘𝑔))2)

𝜅(𝑘𝑐, 𝑘𝑔𝑖 , 𝑘𝑔𝑗 ) = 𝐸((𝑙(𝑋, 𝑘𝑐) − 𝑙(𝑋, 𝑘𝑔𝑖)(𝑙(𝑋, 𝑘𝑐) − 𝑙(𝑋, 𝑘𝑔𝑗 ))

𝜅**(𝑘𝑐, 𝑘𝑔𝑖 , 𝑘𝑔𝑗 ) = 4𝐸((𝑙(𝑋, 𝑘𝑐) − 𝐸(𝑙(𝑋, 𝑘𝑐)))
2

(𝑙(𝑋, 𝑘𝑐) − 𝑙(𝑋, 𝑘𝑔𝑖))(𝑙(𝑋, 𝑘𝑐) − 𝑙(𝑋, 𝑘𝑔𝑗 ))).

Note that, in case of no-weak keys 𝜅,𝐾,𝐾** are not key dependent and thus
can be determined without knowing the correct key by setting w.l.o.g 𝑘𝑐 = 0.
Now, considering a leakage model as in Eq. (2), the theoretical success rate is
given by

SR = 𝛷[𝐾+( 𝜖
2𝜎 )2(𝐾**−𝜅𝜅𝑇 )](

√︀
𝑄

𝜖

2𝜎
𝜅) (6)

where 𝛷[𝐶](𝜇) is the cumulative distributive function of the multivariate normal

distribution with mean vector 𝜇 and covariance 𝐶. Now as SNR = 𝜖2

𝜎2 a direct
relation between SNR and SR is given by

SR = 𝛷[𝐾+( 1
4 )SNR(𝐾

**−𝜅𝜅𝑇 )](
√︀
𝑄

1

2

√
SNR𝜅). (7)

Note that, Eqs. (6) and (7) hold for Eq. (2) and thus assume that 𝑙(𝑋, 𝑘) is
known. However, which has not been mentioned in previous works, is that in a prac-
tical scenario one may use an approximation of 𝑙(𝑋, 𝑘) (e.g., 𝐻𝑊 (𝑆𝑏𝑜𝑥−1(𝑋⊕𝑘)).

1 Note that, the formula for the theoretical success rate in [12] should yield equivalent
results.
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This approximation may influence the goodness of the estimation of the theoreti-
cal SR in two different ways. First, it may influence the values of 𝜅,𝐾,𝐾** as
the approximation may not have the same (less or more) “distinguishing ability”
as 𝑙(𝑋, 𝑘). Second, the error made in the approximation of 𝑙(𝑋, 𝑘) introduces
additional noise (epistemic noise from the leakage model) which is not captured
when estimating the SNR on the traces. From previous experiments we observed
that the second aspect is more crucial than the first one.

To take a global look on the previous work, NICV is shown directly related
with the SNR, which in turn is a key input for computing the minimum number
of side channel traces required for performing successful CPA. However, no such
formulation exist in case of TVLA. In the subsequent section, we will establish
the relationship between TVLA and SNR so that we can extend the testing
mechanism of TVLA based conformance standards.

3 Equivalence of TVLA and NICV

The objective of this section is to establish relationship between TVLA and
NICV, which will be the first step in connecting TVLA with SNR. We follow
the same methodology as TVLA i.e. dividing data into two groups followed by
application of NICV (and SNR) to it.

Let us assume that an adversary has collected 𝑛 side channel traces. The
entire set of side channel traces is designated as 𝑌 and individual side channel
trace is denoted as 𝑌𝑖, where 𝑖 ∈ [1, 𝑛] is the index of the corresponding side
channel trace. Next following the TVLA approach, the traces are partitioned
into two groups: 𝑌 𝐺1 and 𝑌 𝐺2, having cardinality 𝑛1 and 𝑛2 (𝑛 = 𝑛1 + 𝑛2)
respectively. Mean and variance of group 𝑌 𝐺1 and group 𝑌 𝐺2 are denoted by
𝜇1, 𝜎2

1 and 𝜇2, 𝜎2
2 respectively. Moreover, mean and variance of the entire set

𝑌 are denoted as 𝜇 and 𝜎2. The objective is to derive the relationship between
TVLA and NICV metric. Since, we are dealing with only two groups in this case,
the corresponding two group NICV is denoted as 𝑁𝐼𝐶𝑉2. This 𝑁𝐼𝐶𝑉2 will be
generalized in the following subsection.

Theorem 1. Consider two group of side channel traces 𝑌1 and 𝑌2 with cardi-
nality 𝑛1 and 𝑛2. The computation of TVLA and NICV2 on these two groups are
related by the following formula

NICV2 =
1

𝑛

TVLA2 +
𝑛

𝐶
(𝜎2

1 − 𝜎2
2)

(︃
1

𝑛2
−

1

𝑛1

)︃
+ 1

(8)

where 𝐶 =
(︀
𝜇2
1 − 𝜇2

2

)︀2
Proof. The derivation is provided in appendix A
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Corollary 1. If both the group have same number of side channel traces (𝑛1 =
𝑛2 = 𝑛

2 ), Eqn. (8) transforms into

NICV2 =
1

𝑛

TVLA2 + 1

. (9)

Remark 1. It must be noticed that TVLA needs to be evaluated for a finite
number of traces (n), otherwise it diverges to +∞. However, TVLA2/𝑛 tends to
a finite value when 𝑛 tends to +∞, which bounds the value of NICV ∈ [0, 1].

3.1 Generalizing the NICV Computation

The relationship between TVLA and NICV2 (2-class NICV ) was derived previ-
ously. However, the general application of NICV (or SNR) is not restricted to
two classes. In this section, the relation between TVLA is extented from NICV2

to a generic k-class NICV (NICV𝑘).
Let us now assume that 𝑛 number of side channel traces can be partitioned

into 𝑘 number of groups where 𝑖𝑡ℎ group contains 𝑛𝑖 number of traces. A generic
example in case of ciphers like AES, where byte-wise computation is performed
and the desired value 𝑘 is 256. NICV𝑘 can be directly computed from NICV2 by
following an iterative approach. For the derived 𝑘 groups, pairwise computation
of (𝑘 − 1) different NICV2 is performed and the results are combined as follows:

– ∀𝑖 ∈ Z𝑘, create two groups: the first group contains the side channel traces
with particular byte of the plain-text equal to 𝑖, the other group will contain
the side channel traces with that particular byte value not equal to 𝑖. The
mean of these two groups are denoted as 𝜇𝑖 and 𝜇𝑖 respectively.

– Compute NICV2 for each of these two groups. We denote this as NICV𝑖
2.

Theorem 2. The computation of NICV𝑘 and NICV𝑖
2 are related by the following

formula if all 𝑘 groups have same number of side channel traces

NICV𝑘 =
𝑘 − 1

𝑘

𝑘∑︁
𝑖=1

NICV𝑖
2. (10)

Proof. The derivation is provided in appendix B

3.2 Extension to Non-Specific TVLA

In this part, we establish the relationship between SNR and non-specific TVLA.
A first hint of link between SNR and TVLA was qualitatively discussed in [18].
The formal relationship is derived as follows.

Proposition 2 (Link between SNR and TVLA). The SNR is the variance
of the TVLA values in the Fixed versus Random (or non-specific) setup, the
variance being computed over all possible fixed values:

SNR = Var(TVLA𝑋).
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Algorithm 1: Computing SNR and SR from TVLA
Input: Side channel traces and corresponding intermediate state
Output: SNR, SR for chosen sub-key

1 for 𝑖 = 0 to 𝑘 do
2 Partition the side channel traces into two groups: 𝐺1 and 𝐺2

3 𝐺1: Side channel traces where 𝑗𝑡ℎ byte of the intermediate data = 𝑖

4 𝐺2: Side channel traces where 𝑗𝑡ℎ byte of the intermediate data ̸= 𝑖
5 Apply TVLA on groups 𝐺1 and 𝐺2

6 Compute NICV𝑖
2 from the TVLA value by using Eqn. (8)

7 Compute NICV𝑘 = 𝑘−1
𝑘

𝑘∑︀
𝑖=1

NICV𝑖
2

8 Compute SNR = 1
1

NICV𝑘
−1

9 Compute SR = 𝛷
[𝐾+( 1

4
)SNR(𝐾**−𝜅𝜅𝑇 )]

(
√
𝑄 1

2

√
SNR𝜅)

10 Return SNR, SR

Proof. As TVLA𝑋 = 𝜖𝑙(𝑋,𝑘)
𝜎 , we have: Var(TVLA𝑋) = 𝜖2

𝜎2Var(𝐿) = 𝜖2

𝜎2 = SNR.

For non-specific TVLA, the traces are partitioned depending upon the entire
plaintext value, where one group contains traces with fixed plaintext and other
contains traces with random plaintext. If we want to extend our approach to
non-specific TVLA to compute SNR, we need to compute TVLA for each plaintext
value, which is computationally infeasible. Thus, in the following, we stick to
specific TVLA only.

3.3 Extending TVLA flow to Side-Channel Analysis

Side channel analysis works using divide and conquer approach. For instance,
SPN cipher where each 𝑏× 𝑏 S-box handle 𝑏 bits of the entire key bits, the attack
focuses on each of these 𝑏 bit groups separately. In case of AES-128, 𝑏 = 8 which
means that the attack is applied on 8-bits or one byte of the secret key, also
known as sub-key. The attack is repeated 16 times to recover all the key bytes
in AES-128. This reduces the complexity of the attack significantly. The same
applies to SNR and NICV. One can compute SNR or NICV byte-wise to zero
down the leakage zone of each key byte and apply the attack.

Now we present the methodology to extend the TVLA computation to recover
SNR and there after compute success rate with a given attack model. From
TVLA, NICV2 can be computed by Eqn. (8), which further leads to NICV𝑘 by
Eq. (10). NICV𝑘 (or just NICV ) can directly provide the SNR by Eq. (4). Finally,
SNR leads to SR by Eq. (7). The methodology is presented in Algorithm 1. The
algorithm is repeated for each sub-key to recover the whole secret key.

It must be noted that partitioning the side channel traces, depending upon a
particular byte value of the intermediate state was deployed for specific TVLA
also. Steps 1 and 2 of algorithm 1 are actually application of specific TVLA.
Thus using the formalization approach presented in this and previous sections,
we can compute SNR of the crypto-system from specific TVLA computation. As
stated above, the methodology cannot be applied to non-specific TVLA due to
computational infeasibility.
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Fig. 1: Equivalence of TVLA and NICV2

4 Experimental Verification of Derived TVLA and NICV
Relation

The derived relation between specific TVLA and SNR (or NICV ) is experimentally
validated in this section on an AES-128 implementation (without side-channel
countermeasures) running on an ATMEGA8515 smart-card.

4.1 Experimental Setup

The AES design is implemented on a SAKURA-GW platform [22]. SAKURA-GW
platform consists of two boards: SAKURA-G and SAKURA-W. SAKURA-G
board contains a SPARTAN-6 FPGA which controls the communication and
SAKURA-W board contains the smart-card containing implementation of AES-
128. The power measurements are taken using a Tektronix MSO4034B mixed
signal oscilloscope with sampling frequency 500 𝑀𝐻𝑧. Being an unprotected
implementation, it is obvious that the AES implementation must have exploitable
leakage and its TVLA value should be more than the threshold of 4.5.

4.2 Validation of TVLA and NICV2 Relationship

The relationship between TVLA and NICV2 was established in Eq. (8). It is
verified on the collected power measurement for AES on ATMEGA-8515 smart-
card. We start with partitioning the traces based on the first byte value (𝑘 = 256)
of the round 9 output as intermediate state, following step 1 of Algo. 1. Next
we compute TVLA and NICV2 from the partitions again following Algo. 1. The
results are shown in Fig. 1. An example of specific TVLA trace is shown in Fig. 1
(a). Next the TVLA trace in Fig. 1 (a) is used to compute NICV2 using Eq. (8)
and shown in Fig. 1 (b). We also compute 𝑁𝐼𝐶𝑉2 from power measurement as
shown in Fig. 1 (c). The error between predicted and computed 𝑁𝐼𝐶𝑉2 is in the
order of 10−15 i.e. negligible (Fig. 1 (d)), which confirms Eq. (8).

4.3 Validation of NICV𝑘 and NICV2 relationship

Similar validation is also done for Eq. (10) that relates NICV2 and NICV𝑘. Using
the same set of traces and no. of partitions (𝑘 = 256), we compute NICV𝑘 from
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Fig. 2: Prediction of NICV𝑘

the traces and predict it from previously computed NICV2. The results are shown
in Fig. 2. As the computed NICV𝑘(Fig. 2 (a)) follows closely the predicted NICV𝑘

(Fig. 2 (b)), the prediction error (Fig. 2 (c)) also stays in the range of 10−15.

5 Case Study: Application to AES

The equivalence of TVLA and SNR was theoretically derived and experimentally
verified in the previous sections. The step by step procedure to compute SNR
(and SR) from the specific TVLA value was presented in Algo. 1. In this section,
we focus on the application of these relations towards testing an unprotected
AES-128 design. First results are shown on simulated power traces, followed by
application of the evaluation methodology on actual power traces acquired from
AES implementation running on an ATMEGA-8515 smart-card.

5.1 Under Simulated Setting

Simulated traces are generated for an 8 bit micro-controller, assuming perfect
Hamming weight leakage and added zero mean Gaussian noise (𝒩 (0, 𝜎)), where
𝜎 denotes the standard deviation of the noise distribution. The side channel
trace can be represented as 𝑌 = 𝐻𝑊 (𝑣) +𝒩 , where 𝑣 is the chosen intermediate
value, which in this case is first 8-bits of round 9 output. We have generated side
channel traces for different SNR values ranging from 0.03 to 2.

Next, we directly apply Algo. 1 to first derive SNR and then compute the
theoretical success rate SR. A practical CPA attack is also performed on the set
of the traces to compare practical success rate with the theoretical estimation.
The corresponding result is shown in Fig. 3, where we compare the practical SR
computation with the computation of theoretical SR. It can be observed that
under perfect HW model assumption, the estimated theoretical estimation and
practical computation of SR fits quite closely. A minor overshoot for practical
SR is seen for high SNR (> 0.5). This overshoot is a approximation glitch in the
theoretical formulation under central limit theorem and law of large numbers,
which needs few dozen traces to converge. Otherwise, the approximation overshoot
remains constant even for extremely high SNR (tested up to SNR=20 ). The
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Fig. 3: Comparison Between Theoretical SR and Practical SR for different SNRs

overshoot can be seen in real traces as well for high SNR scenarios in the next
subsection.

5.2 On Real Power Traces

The experimental setup for the acquisition of power traces is equivalent to the
one described in section 4.1. Further white Gaussian noise is added to experiment
in low-SNR scenarios. The experiments were performed with 20,000 traces. For
practical SR, a CPA was mounted on a randomly chosen set of 300 traces,
repeated 50 times. Following Algo. 1 and assuming that the ATMEGA-8515
smart-card leaks in HW model, we generate plots for estimated theoretical success
rate. The results are shown in Fig. 4 for two distinct points on the trace.

Finding a device with perfect HW is a very strong assumption. The two
distinct points chosen are as such that one point has leakage very close to HW
model while the other deviates from the model. An closer estimation to the actual
model is computed using profiling based on Stochastic modelling [23] of leakage
into 9 dimensions as 𝛴8

𝑖=1𝛽𝑖𝑣𝑖. The 𝛽 weights of different points are shown in
Fig. 5. While Fig. 5(a) shows a point where the leakage model deviates from
HW model, Fig. 5(b) stays close to HW model. Referring back to Fig. 4, when
the SNR is high, the practical SR for both near perfect and imperfect model
closely matches the theoretical prediction. However, as the SNR reduces, the
deviation between theoretical and practical SR increases. This deviation is even
worse when the model is imperfect (see Fig. 4 (b)).

We repeat the experiments by taking the actual model into the account and
rerunning Algo. 1. Precisely it is only the last step of Algo. 1 which is affected
by the leakage model as stated in Eq. (7). The results are shown in Fig. 6. Again
under high SNR, the practical attack results matches the theoretical estimation.
However, by taking the correct leakage model into the account, the theoretical
estimation and practical also matches closely for leakage sample with imperfect
HW as well as near perfect HW leakage sample. The matching is a result of two
fold impact: firstly, the theoretical estimation of SR becomes less optimistic than
perfect HW and the practical SR is more realistic than perfect HW assumption.
This experiment confirms the importance of leakage modelling in a side-channel
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Fig. 5: Sample points with perfect and imperfect HW leakage model

attack. From the methodology aspect, it shows that the better profiled the model
is, the more realistic prediction of SR can be made from the TVLA results.

6 Multivariate Analysis

In its current form, TVLA metric can not be applied in multivariate analysis
without modifying its formulation. Recently in [9], the limitations of TVLA in
detection of multivariate side channel vulnerabilities was addressed in details
for higher order analysis. In [20], the authors have focussed on extending TVLA
methodology to higher order leakage detection. Consequently, a strategy for
applying d-th order d-variate TVLA test is given. A typical application for such
analysis can be a software implementation of 𝑑𝑡ℎ order masking, where shares are
executed sequentially. Our approach in this section is different from them as we
focus on 1st order d-variate TVLA test where 𝑑 denotes the dimension of a single
side channel trace. We investigate the extension of proposed methodology for
unprotected implementation in multivariate setting for side-channel vulnerability
quantification. Therefore, the weaknesses pointed out in [9], do not apply to
our setting. Moreover, in this section we try to extend applicability of TVLA
from univariate to multivariate settings to address one of the shortcoming of
traditional TVLA [9].

6.1 Proposed Formulation

To obtain SR for multivariate side channel analysis, we can follow two different
approaches. We can either compute TVLA on each sample and then combine
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those values to get the corresponding SR in multivariate settings, or combine the
different sample points using an optimal dimensionality reduction formulation to
convert the multivariate side channel traces into a single point. For latter, we
use the framework of [24]. In particular, the traces 𝑌 arise from a single leakage
model 𝐿, which depend on the correct key 𝑘 = 𝑘*, and which is taken standard
(i.e., E(𝐿) = 0, Var(𝐿) = 1), through the relationship:

𝑌𝑑 = 𝛼𝑑𝐿(𝑘*) + 𝑁𝑑,

where 𝑑 is the dimensionality (1 ≤ 𝑑 ≤ 𝐷).

Remark 2. This equation implies E(𝑌 ) = 0. When computing a t-test, using
non-specific or specific, the evaluator also has to evaluate E(𝑌 |𝑋 = 𝑥0) for a given
plaintext (or a given byte value of the plaintext) 𝑥0. Let’s assume that E(𝑌 |𝑋 =
𝑥0) = 𝑐 ̸= 0. The condition ̸= 0 is here to avoid having E(𝑌 ) = E(𝑌 |𝑋 = 𝑥0), in
which case the attacker would conclude the device is secure whereas in practice
it is not (e.g. for a different value of 𝑥′

0, we would have E(𝑌 ) ̸= E(𝑌 |𝑋 = 𝑥′
0)).

In matrix form, for 𝑄 number of side channel traces, we can write the above
equation as below:

𝑌 𝐷,𝑄 = 𝛼𝐷𝐿𝑄(𝑘*) + 𝑁𝐷,

Here 𝛼𝐷 is a non-zero vector of length 𝐷, and can be calculated as follows [24]:

𝛼𝐷 =
𝑌 𝐷(𝐿𝑄(𝑘*))𝑇

𝐿𝑄(𝑘*)𝐿𝑄(𝑘*)𝑇
. (11)

We assume that the noise 𝑁𝐷 is multivariate normal, and we denote by 𝛴 its
𝐷 ×𝐷 covariance matrix. The value of 𝛴 can be computed as below [24]:

𝛴 =
1

𝑄− 1
(𝑌 𝐷,𝑄 − 𝛼𝐷𝐿𝑄(𝑘*))(𝑌 𝐷,𝑄 − 𝛼𝐷𝐿𝑄(𝑘*))𝑇 . (12)

With the knowledge of 𝛼𝐷 and 𝛴, we can now calculate the optimal reduction

formulation as the optimal dimensionality reduction is (𝛼𝐷)𝑇 𝛴−1𝑌 𝐷,𝑄

(𝛼𝐷)𝑇 𝛴−1𝛼𝐷 [24].
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SNR and TVLA in multivariate settings To compute the SNR and TVLA
in multivariate settings, we propose following pre-processing steps. Here by
𝑏𝑜𝑙𝑑𝑓𝑎𝑐𝑒 we denote multivariate trace of dimension 𝐷.

– Step 1: Compute 𝛴 ,
– Step 2: Standardize the measurements, that is: 𝑌 becomes 𝑌 ′ = 𝛴−1/2𝑌 .

Notice that 𝑌 ′ = (𝛴−1/2𝛼)𝐿+𝑁 ′, where 𝑁 ′ is now an isotropic standard noise
(all 𝐷 samples of noise are i.i.d., of mean 0 and variance 1). Indeed,

E(𝑁 ′(𝑁 ′)T) = E(𝛴−1/2𝑁𝑁T𝛴−1/2) = 𝛴−1/2E(𝑁𝑁T)𝛴−1/2 = 𝐼, (13)

where 𝐼 is the 𝐷 ×𝐷 identity matrix.
On step 2, we can now re-estimate 𝜇′

1, as E(𝑌 ′). For the sake of clarity, we
drop index 1 and 2 in 𝜇 (when it is clear given the context). We see that the
optimal dimensionality reduction is (theorem 1 of [24])

(𝜇′)T𝑌 ′

(𝜇′)T𝜇′ = ‖𝜇′‖−2
(𝜇′)T𝑌 ′. (14)

Consequently, we can define multivariate SNR and multivariate TVLA as follow:

SNR = (𝜇′)T𝜇′ =

𝐷∑︁
𝑑=1

(𝜇′
𝑑)2. (15) TVLA2 =

𝐷∑︁
𝑑=1

(𝜇′
1,𝑑 − 𝜇′

2,𝑑)2

1
𝑛1

+ 1
𝑛2

(16)

because 𝜎′
1,𝑑 = 𝜎′

2,𝑑 = 1 (by (13)).

Remark 3. This is equal to (up to an irrelevant 1
4 proportionality factor) the

Hotelling’s T-Square [25]). Indeed, let us consider that 𝑛1 = 𝑛2 = 𝑛/2. We have:

TVLA2 =

𝐷∑︁
𝑑=1

(𝜇′
1,𝑑 − 𝜇′

2,𝑑)2

1
𝑛1

+ 1
𝑛2

=
1

4
𝑛(𝜇1 − 𝜇2)T𝛴−1(𝜇1 − 𝜇2). (17)

The definition of multivariate SNR (15) and multivariate TVLA (16) remains
consistent with the dimensionality reduction (14). Namely we have:

Proposition 3. The application of univariate SNR (resp TVLA) of reduced
trace (14) yield multivariate SNR (15) (resp. multivariate TVLA (16))

Proof. The derivation is provided in appendix C

6.2 Analysis

Multivariate setting of the proposed methodology is now experimentally validated.
We first apply optimal dimension reduction technique on the acquired traces to
convert them to univariate traces from multivariate one. As shown in proposition 3
that multivariate SNR computed on the multivariate traces is equivalent to the
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univariate SNR computed on the dimension reduced traces. Hence, we can use
our proposed methodology for univariate traces on the dimension reduced traces
and can compute the theoretical SR and practical SR (see Fig. 7). The theoretical
predictions are compared with practical attacks on reduced dimension traces.
Fig. 7 shows that the proposed formulation for computation of theoretical SR
follows practical SR which successfully validates our proposed methodology for
computation of SR in first order multivariate settings. It must be noted that the
SNR shown in Fig. 7 is computed after applying dimension reduction.
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Fig. 7: Comparison Between Theoretical SR and Practical SR for different SNRs
in multivariate settings

7 Conclusion

Though TVLA based testing methodology is becoming popular due to its sim-
plicity and integrability with standard testing mechanism, it does not give much
information about the side-channel resistance of the target. In this paper, we
make a first attempt to extend the TVLA based testing methodology beyond
its current scope. Analytic relationship between TVLA and SNR derived, which
allows to directly compute SR from TVLA test. By connecting TVLA with
SR, an attempt is made to bridge the gap between conformance based testing
and evaluation based testing, addressing both side channel leakage detection
and side channel leakage quantification. The methodology is successfully verified
on an unprotected AES smart-card implementation in a simulated setting as
well as practical measurements. The theoretical and practical results are show
to match, specially under a well profiled model. The proposed methodology
is further extended to address unprotected implementation with multivariate
leakage, with supporting results. Further extension of this approach to protected
implementation, specially using the formulation of [20] would be an interesting
direction.
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7. Jean-Sébastien Coron, Aurélien Greuet, Emmanuel Prouff, and Rina Zeitoun.
Faster evaluation of sboxes via common shares. In International Conference on
Cryptographic Hardware and Embedded Systems, pages 498–514. Springer, 2016.

8. François Durvaux, François-Xavier Standaert, and Nicolas Veyrat-Charvillon. How
to certify the leakage of a chip? In Annual International Conference on the Theory
and Applications of Cryptographic Techniques, pages 459–476. Springer, 2014.

9. Franois-Xavier Standaert. How (not) to use welch’s t-test in side-channel security
evaluations. Cryptology ePrint Archive, Report 2017/138, 2017. http://eprint.
iacr.org/2017/138.

10. François Durvaux, François-Xavier Standaert, and Santos Merino Del Pozo. Towards
easy leakage certification. In International Conference on Cryptographic Hardware
and Embedded Systems, pages 40–60. Springer, 2016.

11. Yunsi Fei, Qiasi Luo, and A. Adam Ding. A statistical model for DPA with novel
algorithmic confusion analysis. In Cryptographic Hardware and Embedded Systems
- CHES 2012 - 14th International Workshop, Leuven, Belgium, September 9-12,
2012. Proceedings, pages 233–250, 2012.

12. Adrian Thillard, Emmanuel Prouff, and Thomas Roche. Success through confidence:
Evaluating the effectiveness of a side-channel attack. IACR Cryptology ePrint
Archive, 2015:402, 2015.

13. Yunsi Fei, A. Adam Ding, Jian Lao, and Liwei Zhang. A statistics-based success
rate model for DPA and CPA. J. Cryptographic Engineering, 5(4):227–243, 2015.

14. François-Xavier Standaert, Tal G Malkin, and Moti Yung. A unified framework
for the analysis of side-channel key recovery attacks. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques, pages
443–461. Springer, 2009.

15. Shivam Bhasin, Jean-Luc Danger, Sylvain Guilley, and Zakaria Najm. Side-channel
leakage and trace compression using normalized inter-class variance. IACR Cryp-
tology ePrint Archive, 2014:1020, 2014.

16. Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power Analysis Attacks:
Revealing the Secrets of Smart Cards. Springer, December 2006. ISBN 0-387-30857-1,
http://www.dpabook.org/.
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device leak information? an a priori statistical power analysis of leakage detection
tests. In Advances in Cryptology - ASIACRYPT 2013 - 19th International Con-
ference on the Theory and Application of Cryptology and Information Security,
Bengaluru, India, December 1-5, 2013, Proceedings, Part I, pages 486–505, 2013.

20. Tobias Schneider and Amir Moradi. Leakage assessment methodology - extended
version. J. Cryptographic Engineering, 6(2):85–99, 2016.

21. A. Adam Ding, Cong Chen, and Thomas Eisenbarth. Simpler, faster, and more
robust t-test based leakage detection. Cryptology ePrint Archive, Report 2015/1215,
2015. http://eprint.iacr.org/2015/1215.

22. SASEBO-GII. satoh.cs.uec.ac.jp/SAKURA/hardware/SASEBO-GII.html. Ac-
cessed: 2016-09-25.

23. Werner Schindler, Kerstin Lemke, and Christof Paar. A stochastic model for
differential side channel cryptanalysis. In International Workshop on Cryptographic
Hardware and Embedded Systems, pages 30–46. Springer, 2005.

24. Nicolas Bruneau, Sylvain Guilley, Annelie Heuser, Damien Marion, and Olivier
Rioul. Less is More - Dimensionality Reduction from a Theoretical Perspective. In
Cryptographic Hardware and Embedded Systems - CHES 2015 - 17th International
Workshop, Saint-Malo, France, September 13-16, 2015, Proceedings, pages 22–41,
2015.

25. Harold Hotelling. The generalization of student’s ratio. Ann. Math. Statist.,
2(3):360–378, 08 1931.

A Proof of Theorem 1

Proof. From Eqn. (3) we can write NICV2 as below:

NICV2 =

1
𝑛

2∑︀
𝑖=1

𝑛𝑖(𝜇𝑖 − 𝜇)2

1
𝑛

2∑︀
𝑖=1

∑︀𝑛𝑖

𝑗=1(𝑌𝑖,𝑗 − 𝜇)2

=

1
𝑛

2∑︀
𝑖=1

𝑛𝑖(𝜇𝑖 − 𝜇)2

1
𝑛

𝑛∑︀
𝑗=1

(𝑌𝑗 − 𝜇)2
(18)

From Eqn. (5) we can write TVLA as follows:

TVLA =
𝜇1 − 𝜇2√︁
𝜎2
1

𝑛1
+

𝜎2
2

𝑛2

TVLA2 =
(𝜇1 − 𝜇2)2

𝜎2
1

𝑛1
+

𝜎2
2

𝑛2

http://eprint.iacr.org/2015/1215
satoh.cs.uec.ac.jp/SAKURA/hardware/SASEBO-GII.html
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=
𝐶

𝜎2
1

𝑛1
+

𝜎2
2

𝑛2

(19)

where 𝐶 = (𝜇1 − 𝜇2)2. Now we will consider only the numerator part of the
NICV2 formulation which is

1

𝑛

2∑︁
𝑖=1

𝑛𝑖 (𝜇𝑖 − 𝜇)
2

=
1

𝑛

(︃
𝑛1

(︂
𝜇1 −

𝑛1𝜇1 + 𝑛2𝜇2

𝑛

)︂2

+ 𝑛2

(︂
𝜇2 −

𝑛1𝜇1 + 𝑛2𝜇2

𝑛

)︂2
)︃

=
1

𝑛

(︂
𝑛1𝑛

2
2

𝑛2
(𝜇1 − 𝜇2)

2
+

𝑛2
1𝑛2

𝑛2
(𝜇1 − 𝜇2)

2

)︂
=

𝑛1𝑛2(𝑛1 + 𝑛2)

𝑛3
𝐶

=
𝑛1𝑛2

𝑛2
𝐶 (20)

Next we will consider the denominator part of the NICV computation which is as
follows:

1

𝑛

𝑛∑︁
𝑖=1

(𝑌𝑖 − 𝜇)
2

=
1

𝑛

𝑛∑︁
𝑖=1

(︃
𝑌 2
𝑖 − 2𝑌𝑖 (𝑛1𝜇1 + 𝑛2𝜇2)

𝑛
+

(𝑛1𝜇1 + 𝑛2𝜇2)
2

𝑛2

)︃

=
1

𝑛

∑︁
𝑌𝑖∈𝑌 𝐺1

(︂
𝑌 2
𝑖 − 2𝑌𝑖 (𝑛1𝜇1 + 𝑛2𝜇2)

𝑛

)︂
+

1

𝑛

∑︁
𝑌𝑖∈𝑌 𝐺2

(︂
𝑌 2
𝑖 − 2𝑌𝑖 (𝑛1𝜇1 + 𝑛2𝜇2)

𝑛

)︂
+

(𝑛1𝜇1 + 𝑛2𝜇2)
2

𝑛2

=
1

𝑛

∑︁
𝑌𝑖∈𝑌 𝐺1

(︂
𝑌 2
𝑖 − 2𝑌𝑖𝜇1 + 𝜇2

1 +

(︂
2𝑌𝑖𝑛2 (𝜇1 − 𝜇2)

𝑛
− 𝜇2

1

)︂)︂

+
1

𝑛

∑︁
𝑌𝑖∈𝑌 𝐺2

(︂
𝑌 2
𝑖 − 2𝑌𝑖𝜇2 + 𝜇2

2 +

(︂
2𝑌𝑖𝑛1 (𝜇2 − 𝜇1)

𝑛
− 𝜇2

1

)︂)︂
+

(𝑛1𝜇1 + 𝑛2𝜇2)
2

𝑛2

=
𝑛1

𝑛
𝜎2
1 +

𝑛2

𝑛
𝜎2
2 +

𝑛1𝑛2

𝑛
𝐶 (21)

We can now combine Eqn. (18), (19), (20) and (21) to achieve the desired
formulation

NICV2 =
𝑛1𝑛2

𝑛2 𝐶
𝑛1

𝑛 𝜎2
1 + 𝑛2

𝑛 𝜎2
2 + 𝑛1𝑛2

𝑛2 𝐶

=
𝐶

𝑛
(︁

𝜎2
1

𝑛1
+

𝜎2
2

𝑛2
+ 𝜎2

1

(︁
1
𝑛2

− 1
𝑛1

)︁
+ 𝜎2

2

(︁
1
𝑛1

− 1
𝑛2

)︁)︁
+ 𝐶
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=
1

𝑛

𝜎2
1

𝑛1
+

𝜎2
2

𝑛2

𝐶
+

𝑛

𝐶
(𝜎2

1 − 𝜎2
2)

(︃
1

𝑛2
−

1

𝑛1

)︃
+ 1

Thus we can write NICV2 as

NICV2 =
1

𝑛

TVLA2 +
𝑛

𝐶
(𝜎2

1 − 𝜎2
2)

(︃
1

𝑛2
−

1

𝑛1

)︃
+ 1

.

B Proof of Theorem 2

Proof. From Eqn. (18), we can compute NICV𝑖
2 as below

NICV𝑖
2 =

1
𝑛

(︁
𝑛𝑖 (𝜇𝑖 − 𝜇)

2
+ (𝑛− 𝑛𝑖) (𝜇𝑖 − 𝜇)

2
)︁

1
𝑛

𝑛∑︀
𝑗=1

(𝑌𝑗 − 𝜇)2

=

1
𝑛

⎛⎜⎝𝑛𝑖 (𝜇𝑖 − 𝜇)
2

+ 1
𝑛−𝑛𝑖

⎛⎜⎝𝑛𝑖

𝑗=𝑘∑︀
𝑗=1

𝑛𝑗𝜇𝑗−𝑛𝑛𝑖𝜇𝑖

𝑛

⎞⎟⎠
2⎞⎟⎠

1
𝑛

𝑛∑︀
𝑗=1

(𝑌𝑗 − 𝜇)2

=
𝑛𝑖

𝑛𝑖
(𝜇𝑖 − 𝜇)

2

1
𝑛

𝑛∑︀
𝑗=1

(𝑌𝑗 − 𝜇)2
, 𝑤ℎ𝑒𝑟𝑒 𝑛𝑖 = 𝑛− 𝑛𝑖 (22)

Now if we add each NICV𝑖
2, we will get the following relationship

𝑘∑︁
𝑖=1

NICV𝑖
2 =

𝑘∑︀
𝑖=1

𝑛𝑖

𝑛𝑖
(𝜇𝑖 − 𝜇)2

1
𝑛

𝑛∑︀
𝑗=1

(𝑌𝑗 − 𝜇)2

=

𝑘∑︀
𝑖=1

𝑛
𝑛𝑖

𝑛𝑖

𝑛 (𝜇𝑖 − 𝜇)2

1
𝑛

𝑛∑︀
𝑗=1

(𝑌𝑗 − 𝜇)2
=

𝑘∑︀
𝑖=1

(1 + 𝑛𝑖

𝑛𝑖
)𝑛𝑖

𝑛 (𝜇𝑖 − 𝜇)2

1
𝑛

𝑛∑︀
𝑗=1

(𝑌𝑗 − 𝜇)2

=

𝑘∑︀
𝑖=1

𝑛𝑖

𝑛 (𝜇𝑖 − 𝜇)2

1
𝑛

𝑛∑︀
𝑗=1

(𝑌𝑗 − 𝜇)2
+

𝑘∑︀
𝑖=1

𝑛2
𝑖

𝑛𝑛𝑖
(𝜇𝑖 − 𝜇)2

1
𝑛

𝑛∑︀
𝑗=1

(𝑌𝑗 − 𝜇)2
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(23)

From Eqn. (18), we can write NICV𝑘 as follows

NICV𝑘 =

𝑘∑︀
𝑖=1

𝑛𝑖

𝑛 (𝜇𝑖 − 𝜇)2

1
𝑛

𝑛∑︀
𝑗=1

(𝑌𝑗 − 𝜇)2

(24)

Combining Eqn. (23) and (24), we arrive at the following relation

𝑘∑︁
𝑖=1

NICV𝑖
2 = NICV𝑘 +

𝑘∑︀
𝑖=1

𝑛2
𝑖

𝑛𝑛𝑖
(𝜇𝑖 − 𝜇)2

1
𝑛

𝑛∑︀
𝑗=1

(𝑌𝑗 − 𝜇)2

(25)

Using the assumption of uniform setting, we presume that each group has same
number of side channel traces. Then, Eqn. (23) becomes

𝑘∑︁
𝑖=1

NICV𝑖
2 =

1
𝑘

𝑘∑︀
𝑖=1

(𝜇𝑖 − 𝜇)2 + 1
𝑘(𝑘−1)

𝑘∑︀
𝑖=1

(𝜇𝑖 − 𝜇)2

1
𝑛

𝑛∑︀
𝑗=1

(𝑌𝑗 − 𝜇)2

=

𝑘
𝑘−1

1
𝑘

𝑘∑︀
𝑖=1

(𝜇𝑖 − 𝜇)2

1
𝑛

𝑛∑︀
𝑗=1

(𝑌𝑗 − 𝜇)2
=

𝑘

𝑘 − 1
NICV𝑘 (26)

Thus we arrive at the desired formulation

𝑁𝐼𝐶𝑉𝑘 =
𝑘 − 1

𝑘

𝑘∑︁
𝑖=1

𝑁𝐼𝐶𝑉 𝑖
2 .

It must be noted that NICV𝑘 is actually the generalized NICV which was
introduced in [15].

C Proof of Proposition 3

Proof. After dimensionality reduction, we get:

𝑌 ′′ = 𝐿 +
1

𝜇𝑇𝛴−1𝜇
𝜇′𝑇𝑁 ′

For the SNR, we thus have:
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– signal: Var(𝐿) = 1;
– noise:

1

(𝜇𝑇𝛴−1𝜇)2
Var(𝜇′𝑇𝑁 ′) =

1

𝜇𝑇𝛴−1𝜇
(27)

Hence SNR is 𝜇𝑇𝛴−1𝜇, which is is equal to (15).
Regarding TVLA, we will assume that E(𝑌 ) = 𝜇1 = 0, and E(𝑌 |𝑋 = 𝑥0) =

𝜇2 = 𝑐𝜇. Hence, after dimensionality reduction (14), one gets

– reduced average for random plaintext: 0,
– reduced average for fixed plaintext = 𝑥0: 𝑐,
– reduced noise has variance (27).

Hence the univariate (squared) TVLA on reduced traces is

𝑐2(𝜇𝑇𝛴−1𝜇).

Now, the multivariate (squared) TVLA (16) is (using Hotteling formula (17):

1

4
𝑛(0− 𝑐𝜇)𝑇𝛴−1(0− 𝑐𝜇),

which also match with the TVLA expression obtained after dimensionality
reduction. It must be noted that this formulation is applicable to both specific
and non-specific TVLA test.
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