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Abstract. We present signature schemes whose security relies on computational assumptions relating to isogeny
graphs of supersingular elliptic curves. We give two schemes, both of them based on interactive identification
protocols. The first identification protocol is due to De Feo, Jao and Plit. The second one, and the main contribution
of the paper, makes novel use of an algorithm of Kohel, Lauter, Petit and Tignol for the quaternion version of
the /-isogeny problem, for which we provide a more complete description and analysis, and is based on a more
standard and potentially stronger computational problem. Both identification protocols lead to signatures that are
existentially unforgeable under chosen message attacks in the random oracle model using the well-known Fiat-
Shamir transform, and in the quantum random oracle model using another transform due to Unruh. A version of the
first signature scheme was independently published by Yoo, Azarderakhsh, Jalali, Jao and Soukharev. This is the
full version of a paper published at ASTACRYPT 2017.

1 Introduction

A recent research area is cryptosystems whose security is based on the difficulty of finding a path in the isogeny graph
of supersingular elliptic curves [10,|12}/18}24,26]]. Unlike other elliptic curve cryptosystems, the only known quan-
tum algorithm for these problems, due to Biasse, Jao and Sankar [8]], has exponential complexity. Hence, additional
motivation for the study of these cryptosystems is that they are possibly suitable for post-quantum cryptography.

The work of Charles, Goren and Lauter [10] gave a collision-resistant hash function. Jao and De Feo [24] gave
a key exchange protocol, De Feo, Jao and PIit [18] gave a public key encryption scheme and an interactive identifi-
cation protocol, Jao-Soukharev [26] gave an undeniable signature, Xi, Tian and Wang [47]] gave a designated verifier
signature.

In this paper we present two public key signature schemes whose security relies on computational problems related
to finding a path in the isogeny graph of supersingular elliptic curves.

The first scheme is obtained relatively simply from the De Feo-Jao-Plit [18]] interactive identification protocol by
using the Fiat-Shamir transform to turn it into a non-interactive signature scheme. We also use a variant of the Fiat-
Shamir transform due to Unruh to obtain a post-quantum signature scheme. Essentially the same signature scheme
was independently published by Yoo, Azarderakhsh, Jalali, Jao and Soukharev [48]], but our version has improved
signature size. This scheme has the advantage of being simple to describe, at least to a reader who is familiar with
the previous work in the subject, and easy to implement. On the other hand, it inherits the disadvantages of [[18], in
particular it relies on a non-standard isogeny problem using small isogeny degrees, reveals auxiliary points, and uses
special primes.

The fastest classical attack on the first scheme has heuristic running time of O(pl/ 4) bit operations, and the fastest
quantum attack (see Section 5.1 of [[18]]) has running time of O(pl/ (’) Galbraith, Petit, Shani and Ti [21] and Petit [36]
showed that revealing auxiliary points may be dangerous in certain contexts. It is therefore highly advisable to build
cryptographic schemes on the most general, standard and potentially hardest isogeny problems.

Our second scheme uses completely different ideas and relies on the difficulty of a more standard computational
problem, namely the problem of computing the endomorphism ring of a supersingular elliptic curve (equivalently,
computing an isogeny between two given elliptic curves). This computational problem has heuristic classical com-
plexity of O(pl/ 2) bit operations, and quantum complexity O(pl/ 4). In particular, the second scheme does not involve
sending auxiliary points and so avoids the attacks of [21,]36]. The identification scheme is based on a sigma protocol



that is very similar to the proof of graph isomorphism. One obtains a signature scheme by applying the Fiat-Shamir
transform or Unruh’s transform. We now briefly sketch the main ideas behind our second scheme. The public key is
a pair of elliptic curves (FEy, E1) and the private key is an isogeny ¢ : Ey — F;. To interactively prove knowledge
of ¢ one chooses a random isogeny ¢ : 5 — FEo and sends Es to the verifier. The verifier sends a bit b. If b = 0
the prover reveals . If b = 1 the prover reveals an isogeny 7 : £y — FEs. In either case, the verifier checks that the
response is correct. The interaction is repeated a number of times until the verifier is convinced that the prover knows
an isogeny from FEj to ;. However, the subtlety is that we cannot just set 7 = i o ¢, as then E; would appear on the
path in the graph from Ej to E5 and so we would have leaked the private key. The crucial idea is to use the algorithm
of Kohel-Lauter-Petit-Tignol [32] to produce a “pseudo-canonical” isogeny 1 : £y — [ that is independent of ¢.
The mathematics behind the algorithm of Kohel-Lauter-Petit-Tignol goes beyond what usually arises in elliptic curve
cryptography.

The paper is organized as follows. In Section [2] we give preliminaries on isogeny problems, random walks in
isogeny graphs, security definitions and the Fiat-Shamir transform. Sections [3] and [] describe our two signature
schemes and Section [5] concludes the paper. In a first reading to get the intuition of our schemes without all im-

plementation details, one can safely skip parts of the paper, namely Sections[2.3] 2.4] 2.5 2.7] [4.3]and [4.4]

2 Preliminaries

2.1 Quaternion Algebras

We summarize the required background on quaternion algebras. For a more detailed exposition of the theory, see [43}
44]).

The quaternion algebras used in this paper are quaternion algebras over (Q ramified at a prime p and at infinity,
where moreover p = 3 mod 4. Such an algebra can be represented as B, « := Q(i,j), where i? = —1, j> = —p,
k = ij = —ji. The canonical involution on B, ., is given by

a=2x0+ 211+ x2j + 23k —> & = x¢g — 11 — x2j — x3k.
from which the reduced trace and norm take the form
Trd(a) = a + @ = 2z and Nrd(a) = aa = 22 + 23 + pa3 + pa3.

An ideal of B), « is a Z-lattice of rank 4. Ideals can be multiplied in the obvious way. The norm of an ideal I is the
gcd of the reduced norms of its elements. An order of B,, ., is an ideal that is also a ring. A maximal order is an order
that is not strictly contained in any other order. Order elements are integers, namely their reduced norm and trace are in
in Z. Orders and ideals in B, o, are conveniently represented by a Z-basis, namely 4 elements wy, w1, w2, w3 € By, .
For orders we can always take wy = 1. The quaternion algebra B,, , has a maximal order Oy = (1,1, %7 %> that
will be of particular interest in this paper.

For any ideal I, the left order of I is the set {h € B, oo|hI C I}. We also say that I is a left ideal of O. Right
orders and ideals are defined in a similar way. For any order O, any left ideal of O can be written as I = On + O«
where n is the norm of the ideal, and o € O is such that n| Nrd(«). For any order O and any prime ¢ # p, there are
£ + 1 left ideals of O with norm /.

We define equivalence classes of ideals and orders as follows. Two orders O, and O3 are equivalent if and only if
there exists ¢ € B, ., such that O1q = qO>. For any order O and any I, I left ideals of Op, I1 and I5 are equivalent
if and only there exists ¢ € By, ., such that I¢ = I5. These equivalence classes are compatible in the sense that the
left ideals I; and I, are equivalent if and only if their right orders are equivalent. The number of equivalence classes
is independent of O and is called the class number.

2.2 Hard Problem Candidates Related to Isogenies

We summarize the required background on elliptic curves. For a more detailed exposition of the theory, see [38]].
Let E, E' be two elliptic curves over a finite field F,. An isogeny ¢ : E — E' is a non-constant morphism
from E to E’ that maps the neutral element to the neutral element. The degree of an isogeny ¢ is the degree of ¢



as a morphism. An isogeny of degree ¢ is called an ¢-isogeny. If ¢ is separable, then deg ¢ = # ker . If there is a
separable isogeny between two curves, we say that they are isogenous. Tate’s theorem is that two curves E, E’ over
IF, are isogenous over Iy if and only if #E(F,) = #E'(IF,).

A separable isogeny can be identified with its kernel [46]]. Given a subgroup G of E, we can use Vélu’s formulae
[40] to explicitly obtain an isogeny ¢ : E — E’ with kernel G and such that ' = E/G. These formulas involve sums
over points in GG, so using them is efficient as long as #G is small. Kohel [31]] and Dewaghe [|16]] have (independently)
given formulae for the Vélu isogeny in terms of the coefficients of the polynomial defining the kernel, rather than in
terms of the points in the kernel. Given a prime ¢, the torsion group E[¢] contains exactly £ + 1 cyclic subgroups of
order ¢, each one corresponding to a different isogeny.

A composition of n separable isogenies of degrees /; for 1 < i < n gives an isogeny of degree N = [[, £; with
kernel a group G of order N. Conversely any isogeny whose kernel is a group of smooth order can be decomposed
as a sequence of isogenies of small degree, hence can be computed efficiently. For any permutation o on {1,...,n},
by considering appropriate subgroups of (7, one can write the isogeny as a composition of isogenies of degree £ ;).
Hence, there is no loss of generality in the protocols in our paper of considering chains of isogenies of increasing
degree.

For each isogeny ¢ : E — E’, there is a unique isogeny ¢ : E/ — F, which is called the dual isogeny of o, and
which satisfies o = ¢ = [deg p]. If we have two isogenies ¢ : E — E’ and ¢’ : E' — E such that ¢’ and ¢’ are
the identity in their respective curves, we say that o, ¢’ are isomorphisms, and that E, E' are isomorphic. Isomorphism
classes of elliptic curves over IF,, can be labeled with their j-invariant [38| IIL.1.4(b)]. An isogeny ¢ : E — E’ such
that E = E’ is called an endomorphism. The set of endomorphisms of an elliptic curve, denoted by End(E), has a
ring structure with the operations point-wise addition and function composition.

Elliptic curves can be classified according to their endomorphism ring. Over the algebraic closure of the field,
End(F) is either an order in a quadratic imaginary field or a maximal order in a quaternion algebra. In the first case,
we say that the curve is ordinary, whereas in the second case we say that the curve is supersingular. Indeed, the
endomorphism ring of a supersingular curve over a field of characteristic p is a maximal order O in the quaternion
algebra B, ., ramified at p and co.

In the case of supersingular elliptic curves, there is always a curve in the isomorphism class defined over IF >, and
the j-invariant of the class is also an element of F,>. A theorem by Deuring [15]] gives an equivalence of categories
between the j-invariants of supersingular elliptic curves over F,> up to Galois conjugacy in F,2, and the maximal
orders in the quaternion algebra B, «, up to the equivalence relation given by O ~ O’ if and only if O = a0«
for some o € By . Specifically, the equivalence of categories associates to every j-invariant a maximal order that is
isomorphic to the endomorphism ring of any curve with that j-invariant.

Furthermore, if Ejy is an elliptic curve with End(Fy) = Oy, there is a one-to-one correspondence (which we
call the Deuring correspondence) between isogenies ¢ : Ey — E and left Op-ideals I. More details on the Deuring
correspondence can be found in Chapter 42 of [44]. The key concept is that the ideal I is a kernel ideal for the isogeny
¢, meaning that the group Eo[I] := {P € Ey(F,) : a(P) = 0,Ya € I} is equal to ker(¢). In Sectionwe will
heavily use kernel ideals. In particular we will use the following result: Let ¢ : Fy — FE, be an isogeny of degree
1L <j<r E;j that can be factored as a sequence of isogenies ¢; : E;_1 — E; of degree ¢;*. Write I; for the kernel ideal
of the composition ¢; o - - - o ¢1, which is an isogeny from E to E; of degree [ [, ;. E;j. Then I; = I; 14" + I, 1«
where o € End(E)p) is an element such that ker(¢) N Fy[¢¢] C ker(a) and ged(deg(a), £57H1) = ¢4,

We now present some hard problem candidates related to supersingular elliptic curves, and discuss the related
algebraic problems in the light of the Deuring correspondence.

Problem 1 Let p, { be distinct prime numbers. Let E, E' be two supersingular elliptic curves over Fp2 with #E(F,2) =
#E'(Fp2) = (p+ 1)2 chosen uniformly at random. Find k € N and an isogeny of degree (* from E to E'.

The fastest classical algorithm known for this problem uses a meet-in-the-middle strategy, and has heuristic running
time of O(p'/?) bit operations.

Problem 2 Let p, £ be distinct prime numbers. Let E be a supersingular elliptic curve over IF 2, chosen uniformly at
random. Find k1, ky € N, a supersingular elliptic curve E' over 2, and two distinct isogenies of degrees & and
(k2 respectively, from E to E'.



The hardness assumption of the second problem has been used in [[L0] to prove collision-resistance of a proposed
hash function. Slightly different versions of the first problem, in which some extra information is provided, were used
in [|18]] to build an identification scheme, a key exchange protocol and a public-key encryption scheme.

More precisely, the identification protocol of De Feo-Jao-Plit [[I8] relies on problems [3] and 4] below (which De
Feo, Jao and Plat call the Computational Supersingular Isogeny (CSSI) and Decisional Supersingular Product (DSSP)
problems). In order to state them we need to introduce some notation. Let p be a prime of the form ¢ ¢52 - f +1, and let
E be a supersingular elliptic curve over F2. Let { Ry, S1} and { Ry, So} be bases for E[(]'] and E[¢5?], respectively.

Problem 3 (Computational Supersingular Isogeny) Let ¢y : E — E' be an isogeny with kernel ([m1]R1+[n1]S1),
where my,ny are chosen uniformly at random from Z/{7'Z, and not both divisible by (1. Given E' and the val-
ues ¢1(Ra), $1(S2), compute a compact representation of the isogeny ¢y (such as a point in E(F,2) that generates
([m1] Ry + [n1]S1)).

The fastest known algorithms for this problem use a meet-in-the-middle argument. The classical and quantum
algorithms have heuristic running time respectively of O(éil/ %) and 0(6?/ %) bit operations, which is respectively

O(p'/*) and O(p'/®) in the context of De Feo-Jao-Plit [18].

Problem 4 (Decisional Supersingular Product) Let E, E' be supersingular elliptic curves over F 2 such that there
exists an isogeny ¢ : E — E' of degree (7. Fix generators Ra, So € E[(5?] and suppose ¢(Rz) and ¢(S2) are given.
Consider the two distributions of pairs (Ea, EY) as follows:

— (Ea, EY) such that there is a cyclic group G C E[(5?] of order {52 and Es = E/G and E} =2 E'/¢(G).
- (Eq, EY) where E5 is chosen at random among the curves having the same cardinality as Eo, and ¢' : Ey — F)
is a random (' -isogeny.

The problem is, given (E,E') and the auxiliary points (Rz, So, $(Rz), $(S2)), plus a pair (Eq, Eb), to determine
from which distribution the pair is sampled.

We stress that Problems [3| and 4| are potentially easier than Problems |1|and [2| because special primes are used and
extra points are revealed. Furthermore, it is shown in Section 4 of [21] that if End(E) is known and one can find any
isogeny from E to E’ then one can compute the specific isogeny of degree ¢5'. The following problem, on the other
hand, offers better foundations for cryptography based on supersingular isogeny problems.

Problem S Let p be a prime number. Let E be a supersingular elliptic curve over F 2, chosen uniformly at random.
Determine the endomorphism ring of E.

Note that it is essential that the curve is chosen randomly in this problem, as for special curves the endomorphism
ring is easy to compute. Essentially, Problem [3]is the same as explicitly computing the forward direction of Deuring’s
correspondence. This problem was studied in [31], in which an algorithm to solve it was obtained, but with expected
running time O(p) It was later improved by Galbraith to O(p%), under heuristic assumptions [20]]. Interestingly,
the best quantum algorithm for this problem runs in time O(pi), only providing a quadratic speedup over classical
algorithms. This has largely motivated the use of supersingular isogeny problems in cryptography.

Problem 6 Let p be a prime number. Let E, E' be supersingular elliptic curves over F,2, chosen uniformly at ran-
dom Find an isogeny EE — E'.

Heuristically, if we can solve Problem|T]or Problem[6] then we can solve Problem 5| To compute an endomorphism
of E/, we take two random walks ¢1 : £ — Fq and ¢ : E — FE5, and solve Problem@]on the pair E';, F», obtaining an
isogeny ¢ : E; — E5. Then the composition ¢221M>1 is an endomorphism of E. Repeating the process, it is plausible
to find four endomorphisms that are linearly independent, thus generating a subring of End(E). Repeating the process
further, we expect to obtain a Z-basis of the full endomorphism ring after at most O(logp + log D), where D is a
bound on the degree of the isogeny . Indeed the subring index N is bounded by the product of the degrees of its

* The special case E' = E occurs with negligible probability so it can be ignored.



generators which is (pD)?(), any randomly chosen new element will be in that subring with a probability 1/N, and
every new element not in the subring will decrease the index by at least a factor of 2.

For the converse, suppose that we can compute the endomorphism rings of both E and E’. The strategy is to
compute a module [ that is a left ideal of End(FE') and a right ideal of End(E") of appropriate norm, and to translate
it back to the geometric setting to obtain an isogeny. This approach motivated the quaternion ¢-isogeny algorithm of
Kohel-Lauter-Petit-Tignol [32}/35]], which solves the following problem:

Problem 7 Let p,{ be distinct prime numbers. Let Oy, O be two maximal orders in By, -, chosen uniformly at
random. Find k € N and an ideal I of norm ¢* such that I is a left Oy-ideal and its right order is isomorphic to O;.

The algorithm can be adapted to produce ideals of B-powersmooth norm (meaning the norm is [ [, £;* where the
¢; are distinct primes and ¢;* < B) for B ~ % log p and using O(log p) different primes, instead of ideals of norm a
power of ¢. We will use that version in our second signature scheme.

For completeness we mention that ordinary curve versions of Problems|[I]and[5]are not known to be equivalent, and
in fact there is a subexponential algorithm for computing the endomorphism ring of ordinary curves [9]], whereas the
best classical algorithm known for computing isogenies is still exponential. There is, however, a subexponential quan-
tum algorithm for computing an isogeny between ordinary curves [11[], which is why the main interest in cryptography
is the supersingular case.

2.3 Random Walks in Isogeny Graphs

Let p > 5 be a prime number. There are N, := [#] + ¢, supersingular j-invariants in characteristic p, with €, =
0,1,1,2 when p = 1,5,7,11 mod 12 respectively. For any prime ¢ # p, one can construct a so-called isogeny graph,
where each vertex is associated to a supersingular j-invariant, and an edge between two vertices is associated to a
degree ¢ isogeny between the corresponding vertices.

Isogeny graphs are regularE] with regularity degree ¢ + 1; they are undirected since to any isogeny from j; to jo
corresponds a dual isogeny from js to j;. Isogeny graphs are also very good expander graphs [23]]; in fact they are
optimal expander graphs in the following sense:

Definition 1 (Ramanujan graph). Let G be a k-regular graph, and let k, Ao, - - - |, A, be the eigenvalues of the adja-
cency matrix sorted by decreasing order of the absolute value. Then G is a Ramanujan graph if

Ao < 2vk—1.

This is optimal by the Alon-Boppana bound: given a family {Gx } of k-regular graphs as above, and denoting by A\s
the corresponding second eigenvalue of each graph Gy, we have liminfy_ o A2 v > 2v/k — 1. The Ramanujan
property of isogeny graphs follows from the Weil conjectures proved by Deligne [|141[37].

Let p and £ be as above, and let j be a supersingular invariant in characteristic p. We define a random step of degree
¢ from j as the process of randomly and uniformly choosing a neighbour of j in the ¢-isogeny graph, and returning that
vertex. For a composite degree n = [ [, ¢;, we define a random walk of degree n from jj as a sequence of j-invariants
7i such that j; is a random step of degree ¢; from j;_;. We do not require the primes ¢; to be distinct.

The output of random walks in expander graphs converges quickly to a uniform distribution. In our signature
scheme we will be using random walks of B-powersmooth degree n, namely n = [, ¢;, with all prime powers £;*
smaller than some bound B, with B as small as possible. To analyse the output distribution of these walks we will use
the following generalizatiorﬁ] of classical random walk theorems [23]]:

Theorem 1 (Random walk theorem). Let p be a prime number, and let jo be a supersingular invariant in charac-
teristic p. Let j be the final j-invariant reached by a random walk of degree n = LL ¢ from jo. Then for every

j-invariant j we have
- 2VE \"
Prlj =j] — —| < ) .
‘ =il - _1:[(&_+1)

3 One needs to pay close attention to the cases 7 = 0 and j = 1728 when counting isogenies, but this has no effect on our general
schemes.

6 Random walks theorems are usually stated for a single graph whereas our walks will switch from one graph to another, all with
the same vertex set but different edges.
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PROOF: Let v,; be the probability that the outcome of the first ¢ random steps is a given vertex j, and let v, = (v4;);
be vectors encoding these probabilities. Let vy correspond to an initial state of the walk at jo (so that vg;, = 1 and
vo; = 0 for all ¢ # jo). Let Ay, be the adjacency matrix of the ¢;-isogeny graph. Its largest eigenvalue is k;. By the
Ramanujan property the second largest eigenvalue is smaller than k; in absolute value, so the eigenspace associated to
A1 = k; is of dimension 1 and generated by the vector u := (N, 1); corresponding to the uniform distribution. Let
Ag; be the second largest eigenvalue of A, in absolute value.

If step ¢ is of degree ¢; we have vy = k%Agivt_l. Moreover we have ||v; — ul]s < k%/\gq;Hvt_l — ul|2 since the
eigenspace associated to k; is of dimension 1. Iterating on all steps we deduce

o—UI\2<H|k

€

)\21

[lor = ull2 <

»p—1

. N,
since [[op — w3 = (1 - )2 + Y-

P

2\
— 1 € v
e — ulloo < lvr —ull2 < |l| |7 A2i < |Z| (&: 1) ;

where we have used the Ramanujan property to bound the eigenvalues. [

(F)2<1- N%, + ng < 1. Finally we have

.~ 1
‘PY[J =J] N
P

In our security proof we will want the right-hand term to be smaller than (p'*¢)~! for an arbitrary positive constant
€, and at the same time we will want the powersmooth bound B to be as small as possible. The following lemma shows
that taking B =~ 2(1 + €) log p suffices asymptotically.

Lemma 1. Let € > 0. There is a function ¢, = c(p) such that lim,,_, . ¢, = 2(1 + €), and, for each p,

| I li+1 “ 1+e
> .
, (2\/&: > P

0; prime
e;:=max{e€N|l; <cp log p}

PROOF: Let B be an integer. We have

0 (o) - () 0 ()

£; prime g g
e;:=max{e€N|{; <B} £; prime £; prime

Taking logarithms, using the prime number theorem and replacing the sum by an integral we have

Vi 1 B
1 = 1 l; — log2 ~ — 1 dx — =
o8 H ( 2 [;B o8 Z o8 / Ogmlog:c o log B

0;<B 0;<B
£; prime £; prime £; prime

1
2 logB 2

if B is large enough. Taking B = clog(p) where ¢ = 2(1 + €) gives £ B = (1 + €)log p = log(p' ™) which proves
the lemma. [J

2.4 Efficient Representations of Isogeny Paths and Other Data

Our schemes require representing/transmitting elliptic curves and isogenies. In this section we first explain how to
represent certain mathematical objects appearing in our protocol as bitstrings in a canonical way so that minimal
data needs to be sent and stored. Next, we discuss different representations of isogeny paths and their impact on the



efficiency of our signature schemes. As these paths will be sent from one party to another, the second party needs an
efficient way to verify that the bitstring received corresponds to an isogeny path between the right curves.

Let p be a prime number. Every supersingular j-invariant is defined over IF)>. A canonical representation of IF 2 -
elements is obtained via a canonical choice of degree 2 irreducible polynomial over IF),. Canonical representations in
any other extension fields are defined in a similar way. Although there are only about p/12 supersingular j-invariants
in characteristic p, we are not aware of an efficient method to encode these invariants into log p bits, so we represent
supersingular j-invariants with the 2log p bits it takes to represent an arbitrary F,,>-element.

Elliptic curves are defined by their j-invariant up to isomorphism. Hence, rather than sending the coefficients of
the elliptic curve equation, it suffices to send the j-invariant. For any invariant j there is a canonical elliptic curve
equation Ej : y? = 2% + 17§’g7jat + 1722573‘ when j # 0,1728, y?> = 23 + 1 when j = 0, and y? = 2% + = when
j = 1728. If one needs a particular group order then one might need to take a twist, which is why we use the curve
y? = x3 + Az in our second signature scheme.

We now turn to representing chains Ey, F1, ..., F, of isogenies ¢; : E;_1 — F; each of prime degree ¢; where
1 < i < n.Here ¢; are always very small primes. A useful feature of our protocols is that isogeny chains can always be
chosen such that the isogeny degrees are increasing ¢; > ¢;_1. First we need to discuss how to represent the sequence
of isogeny degrees. If all degrees are equal to a constant ¢ (e.g., { = 2) then there is nothing to send. If the degrees are
different then the most compact representation seems to be

which might be a global system parameter, or may be sent as part of the protocol. The receiver can recover the sequence
of isogeny degrees from N by factoring using trial division and ordering the primes by size. This representation is
possible due to our convention the isogeny degrees are increasing and since the degrees are all small.

Now we discuss how to represent the curves themselves in the chain of isogenies. We give several methods.

1. There are two naive representations. One is to send all the j-invariants j; = j(E;) for 0 < ¢ < n. This requires
2(n + 1) log,(p) bits. Note that the verifier is able to check the correctness of the isogeny chain by checking that
Dy, (ji—1,J;) = 0forall 1 <4 < n, where Py, is the ¢;-th modular polynomial. The advantage of this method is
that verification is relatively quick (just evaluating a polynomial that can be precomputed and stored).

The other naive method is to send the x-coordinate of a kernel point P; € E;, on the canonical curve. Given
Ji—1 and the kernel point P;_; one computes the isogeny ¢; : £}, _, — E;, using the Vélu formula and hence
deduces j;. Note that the kernel point is not unique and is typically defined over an extension of the field. Both
these methods require huge bandwidth.

A refinement of the second method is used in our first signature scheme, where £ is fixed and one can publish a
point that defines the kernel of the entire isogeny chain. Precisely a curve E and points R, S € E[("] are fixed.
Each integer 0 < o < £™ defines a subgroup (R + [a]S) and hence an £" isogeny. It suffices to send «, which
requires log, (¢™) bits. In the case £ = 2 this is just n bits, which is smaller than all the other suggestions in this
section.

2. One can improve upon the naive method in several simple ways. One method is to send every second j-invariant.
The Verifier accepts this as a valid path if, for all odd integers 4, the greatest common divisor over F,,2 [y]

ged(Py, (Ji-1,9), Peryy (Y, Jit1))

is a non-constant polynomial, which will almost always be (y — ;).
Another method is to send only some least significant bits (more than log, (¢; 4+ 1) of them) of the j; instead of the
entire value. The verifier can reconstruct the isogeny path by factoring @, (j;—1,y) over Fp2 (it will always split
completely in the supersingular case) and then selecting j; to be the root that has the correct least significant bits
(depending on how many bits are used there may occassionally be a non-unique choice of root, but considering
the path globally the compressed representation should lead to a unique sequence of j-invariants).

3. An optimal compression method seems to be to define a well-ordering on IF,2 (e.g., lexicographic order on the
binary representation of the element). Instead of j; one sends the index k such that when the ¢; + 1 roots of



Dy, (ji—1,y) are written in order, j; is the k-th root. It is clear that the verifier can reconstruct the value j; and
hence can reconstruct the whole chain from this information. The sequence of integers & can be encoded as a
single integer in terms of a “base H;:I (¢; + 1)” representation.

If the walk is non-backtracking and the primes ¢; are repeated then one can remove the factor (y — j;,_2) that
corresponds to the dual isogeny of the previous step, this can save some bandwidth.

We call this method “optimal” since it is hard to imagine doing better than log,(¢; + 1) bits for each step in
generalﬂthough we have no proof that one cannot do better. However, note that the verifier now needs to perform
polynomial factorisation, which may cause some overhead in a protocol. Note that in the case where all /; = 2
and the walk is non-backtracking then this method also requires n bits, which matches the method we use in our
first signature scheme (mentioned in item 1 above).

4. A variant of the optimal method is to use an ordering on points/subgroups rather than j-invariants. At each step
one sends an index & such that the isogeny ¢ : E;_1 — E; is defined by the k-th cyclic subgroup of Ej, | [¢;].
Again the verifier can reconstruct the path, but this requires factoring ¢;-division polynomials.

To be precise: Given a canonical ordering on the field of definition of E[¢], one can define a canonical ordering of
the cyclic kernels, hence represent them by a single integer in {0, . .., £}. One can extend this canonical ordering
to kernels of composite degrees in various simple ways (see also [3, Section 3.2]). If two curves are connected by
two distinct isogenies of the same degree then either one can be chosen (it makes no difference in our protocols),
so the ambiguity in exceptional cases is never a problem for us.

In practice, since these points may be defined over an extension of IF,2, we believe that ordering the roots of
Dy, (ji—1,y) is significantly more efficient than ordering kernel subgroups.

For future reference we now discuss how to efficiently represent the quaternion algebra and a special order Oy.
When p = 3 mod 4, the quaternion algebra B,, o, ramified at p and oo can be canonically represented as Q(i, j),
where i = —1, j2 = —p and k := ij = —ji. The maximal order Oy with Z-basis {1,1i, %, %} corresponds to
the curve Ey with j-invariant jo := 1728 under Deuring’s correspondence, and there is an isomorphism of quaternion
algebras 0 : B, oo — End(Ep) ® Q sending (1,1, j, k) to (1, ¢, 7, m¢) where 7 : (z,y) — («P,yP) is the Frobenius
endomorphism, and ¢ : (z,y) — (—z,wy) with (2 = —1 mod p (see Lemma 2 of [32])).

Finally we give a brief analysis of the complexity of the basic operations required for our schemes, assuming fast
(quasi-linear) modular and polynomial arithmetic.

As discussed above, an isogeny step of prime degree £ can be described by a single integer in {0, . .., £}. Similarly,
by combining integers in a product, an isogeny of degree [[, £;* can be described by a single positive integer smaller
than [ [, (¢; + 1)“. This integer can define either a list of subgroups (specified in terms of some ordering), or a list of
supersingular j-invariants (specified in terms of an ordering on the roots of the modular polynomial). In the first case,
the verifier will need at each step given a j-invariant to compute the curve equation, then its full ¢; torsion (which may
be over a large field extension), then to sort with respect to some canonical ordering the cyclic subgroups of order ¢;
to identify the correct one, and finally to compute the next j-invariant with Vélu’s formulae [40]]. In the second case
the verifier will need at each step given a j-invariant, to specialize one variable of the ¢;-th modular polynomial, then
to compute all roots of the resulting univariate polynomial and finally to sort the roots to identify the correct one.
The second method is more efficient as it does not require running Vélu’s formulae over some large field extension,
and the root-finding and sorting routines are applied on smaller inputs. We assume that the modular polynomials are
precomputed.

In our second signature scheme we will have ¢;* = O(log p). The cost of computing an isogeny increases with the
size of ¢;. Hence it suffices to analyse the larger case, for which e; = 1 and ¢; = O(log p). Assuming precomputation
of the modular polynomials and using [45]] for polynomial factorization, the most expensive part of an isogeny step is
evaluating the modular polynomials &y, (x,y) at x = j;_1, as these polynomials are bivariate with degree ¢; in each
variable they have O(¢?) monomials and so this requires O (log? p) field operations for a total cost of O(log® p) bit
operations since j-invariants are defined over IF 2. In our first signature scheme based on the De Feo-Jao-Plit protocol
we have £; = O(1) so each isogeny step costs O(log p) bit operations.

Alternatively, isogeny paths can be given as a sequence of j-invariants. To verify the path is correct one must
compute Py, (j;—1, ji), which still requires O(log3 p) bit operations. However, in practice it would be much quicker to

7 In the most general case, when all primes /; are distinct, then there are ]| ,(¢i + 1) possible isogeny paths and thus one cannot
expect to represent an arbitrary path using fewer than log, ([, ¢:) bits.



not require root-finding algorithms. Also, all the steps can be checked in parallel, and all the steps of a same degree
are checked using the same polynomial, so we expect many implementation optimizations to be possible.

2.5 Identification Schemes and Security Definitions

In this section we recall the standard cryptographic notions of sigma-protocols and identification schemes. A good
general reference is Chapter 8 of Katz [27]] and the lecture notes of Damgard [13|] and Venturi [41]. A sigma-protocol
is a three-round proof of knowledge of a relation. An identification scheme is an interactive protocol between two
parties (a Prover and a Verifier). We use the terminology and notation of Abdalla-An-Bellare-Namprempre [1] (also
see Bellare-Poettering-Stebila [S]]). We also introduce a notion of “recoverability” which is implicit in the Schnorr
signature scheme and seems to be folklore in the field. All algorithms below are probabilistic polynomial-time (PPT)
unless otherwise stated.

Definition 2. Let \ be a security parameter and let X = X () andY = Y () be sets. Let R be a relationonY x X
that defines a language L = {y € Y : 3z € X, R(y,x) = 1}. Given y € L, an element x € X such that R(y,x) = 1
is called a witness. Let K be a PPT algorithm such that K (1) outputs pairs (y, ) such that R(y,x) = 1.

A sigma-protocol for the relation R is a 3-round interactive protocol between a prover P and a Verifier V. Both P
and V are PPT algorithms with respect to the parameter \. The prover holds a witness x for y € L and the verifier
is given y. The prover first sends a value o (the commitment) to the verifier, the verifier responds with a challenge
B (chosen from some set of possible challenges), and the prover answers with ~y. The verifier outputs 1 if it accepts
the proof and zero otherwise. The triple («, 8,7) is called a transcript. Formally the protocol runs as o < P(y, x);
B V(y,a) v+ Ply,z,a,f); b+ V(y,a, B,7) is such that b € {0,1}.

A sigma-protocol is complete if the verifier outputs 1 with probability 1. A transcript for which the verifier outputs
1 is called a valid transcript.

A sigma-protocol is 2-special sound if there is an extractor algorithm X such that for any y € L, given two valid
transcripts (o, B,7) and (o, B',~") for the same first message o but 3’ # B, then X («, 8,7, 8',7') outputs a witness
x for the relation.

A sigma-protocol is honest verifier zero-knowledge (HVZK) if there is an efficient simulator S that on inputy € L
generates valid transcripts («, 8,y) that are distributed identically to the transcripts of the real protocol. Formally,
there exists a PPT simulator S such that for all PPT adversaries A, we have

| Pr((y, z) < K(1Y); (o, ST') 4= P(y, 2); (B,ST) + A(y);
v+ Py, x, ST o, B) : A(ST, y, a0, v) = 1]
—Pr((y, z) « K(1%);(8,5T) < A(y); (@,7) « S(y, ) : A(ST, y, @, 7) = 1]| < negl(A).

An identification scheme is an interactive protocol between two parties (a Prover and a Verifier), where the Prover
aims to convince the Verifier that it knows some secret without revealing anything about it. This is achieved by the
Prover first committing to some value, then the Verifier sending a challenge, and finally the Prover computing a
response that depends on the commitment, the challenge and the secret.

Definition 3. A canonical identification scheme is ZD = (K, P, V, ¢) where K is a randomised algorithm (key gener-
ation) that on input a security parameter \ outputs a pair (PK, SK); P is an algorithm taking input SK, random coins
r and state information ST and returns a message, c is the length of the challenge (a function of the parameter k) and
V is a deterministic verification algorithm that takes as input PK and a transcript and outputs O or 1. A transcript of
an honest execution of the scheme ID is the sequence: CMT <— P(SK,r), CH < {0, 1}, RSP <— P(SK, 7, CMT, CH).
On an honest execution we require that V(PK, CMT, CH, RSP) = 1.

An impersonator for ZD is an algorithm I that plays the following game: I takes as input a public key PK and a set
of transcripts of honest executions of the scheme ID; I outputs CMT, receives CH < {0, 1} and outputs RSP. We say
that I wins if V(PK,CMT, CH,RSP) = 1. The advantage of I is | Pr(I wins) — 5-|. We say that ID is secure against
impersonation under passive attacks if the advantage is negligible for all probabilistic polynomial-time adversaries.

An ID-scheme ID is non-trivial if ¢ > \.

An ID-scheme is recoverable if there is a deterministic algorithm Rec such that for any transcript (CMT, CH, RSP)
of an honest execution we have Rec(PK, CH, RSP) = CMT.



One can transform any 2-special sound ID scheme into a non-trivial scheme by running ¢ sessions in parallel, and
this is secure for classical adversaries (see Section 8.3 of [27]). We will not need this result in the quantum case. One
first generates CMT; «— P(PK, SK) for 1 < i < t. One then samples CH < {0, 1}* and parses it as CH; € {0, 1}¢ for
1 < i < t. Finally one computes RSP; < P(PK, SK, CMT;, CH; ). We define

V(PK, CMTq, - -+ ,CMTy, CH, RSPy, -+ ,RSP;) =1

if and only if V(PK, CMT;, CH;,RSP;) = 1 for all 1 < 4 < ¢. The successful cheating probability is then improved to
1/2¢, which is non-trivial when ¢t > \/c.

An ID-scheme is a special case of a sigma-protocol with respect to the relation defined by the instance generator
K as (PK, SK) < K, where we think of SK as a witness for PK. More generally, any sigma-protocol for a relation of a
certain type can be turned into an identification scheme.

Definition 4. (Definition 6 of [41)]; Section 6 of [|13|]; Definition 15 of [|39|], where it is called “hard instance gener-
ator”) A hard relation R on' Y x X is one where there exists a PPT algorithm K that outputs pairs (y,z) € Y x X
such that R(y, x) = 1, but for all PPT adversaries A

Pr((y,z) « K(1*);2’ < A(y) : R(y,z') = 1] < negl(\).

The following result is essentially due to Feige, Fiat and Shamir [[17] and has become folklore in this generality.
For the proof see Theorem 5 of [41]].

Theorem 2. Let R be a hard relation with generator K and let (P, V) be the prover and verifier in a sigma-protocol
for R with c-bit challenges for some integer c > 1. Suppose the sigma-protocol is complete, 2-special sound, and hon-
est verifier zero-knowledge. Then (K, P,V , c) is a canonical identification scheme that is secure against impersonation
under (classical) passive attacks.

PROOF: The only difference between the sigma protocol and the ID-scheme is a change of notation from (y, z) «
K (1) to (PK, SK) < K(1?), a to CMT, 3 to CH and  to RSP. For details see Theorem 5 of [41]. (J

2.6 Signatures and the Fiat-Shamir Transform

For signature schemes we use the standard definition of existential unforgeability under chosen message attacks [28]
(we sometimes abbreviate this to secure). An adversary can ask for polynomially many signatures of messages of his
choice to a signing oracle Signg, (-). Then, the attack is considered successful if the attacker is able to produce a valid
pair of message and signature for a message different from those queried to the oracle.

Definition 5. A signature scheme II = (Gen, Sign, Verify) is said to be existentially unforgeable under adaptive
chosen-message attacks (or secure, for short) if for all probabilistic polynomial time adversaries A with access to

Sigr]SK(')’
(PK, SK) + Gen(1*); a; < Signg, (m;) for 1 <i < k;
Pr | (m,o) < A(PK, (m;)¥_,, (0:))F ) < negl(A).
Verify, (m,c) =land m & Q

where Q = {my, ..., my} is the set of messages queried by A to the oracle, and k = #Q is polynomial in \.
We now discuss the Fiat-Shamir transform [[19] to build a signature scheme from an identification scheme. The
idea is to make the interactive protocol ZD = (K, P,V, c¢) non-interactive by using a random oracle to produce the

challenges. Suppose the protocol ZD must be executed in parallel ¢ times to be non-trivial (with soundness probability
1/2%¢). Let H be a random oracle that outputs a bit string of length ct.

— (PK, SK) < K (A): this is the same as in the identification protocol. The public key and secret key are the public
key and the secret key from key generation algorithm K of the identification protocol.
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— Sign(sK, m): Compute the commitments CMT; < P(SK,r;) for1 < i < ¢t. Compute h = H(m,CMTy, -+ ,CMTy).
Parse h as the ¢ values CH; € {0, 1}¢. Compute RSP; < P(SK, r;, CMT;, CH;) for 1 < ¢ < ¢. Output the signature
o = (CMTy,...,CMT¢, RSPy, ..., RSP;).

— Verify(m, o, PK): compute h = H(m,CMTy, -+ ,CMT;). Parse h as the ¢ values CH; € {0,1}¢. Check that
V(PK, CMT;, CH;,RSP;) = 1 forall 1 < ¢ < ¢. If V returns 1 for all ¢ then output 1, else output 0.

Abdalla-An-Bellare-Namprempre [ 1]] (also see Bellare-Poettering-Stebila [5]) have proved the security of the Fiat-
Shamir transform to a high degree of generality.

Theorem 3. ( [1|]) Let ID be a non-trivial canonical identification protocol that is secure against impersonation
under passive attacks. Let S be the signature scheme derived from TD using the Fiat-Shamir transform. Then S is
secure against chosen-message attacks in the random oracle model.

Remark 1. 1f the ID-scheme ZD is recoverable then one can obtain a more compact signature scheme. Recall that
“recoverable” means there is a deterministic algorithm Rec such that for any transcript of an honest execution we have
Rec(PK, CH, RSP) = CMT. We now describe the signature scheme.

— (PK, SK) « K (\).

— Sign(sk, m): Compute the commitments CMT; <— P(SK, r;) for 1 <4 <t.Compute h = H(m,CMTy,--- ,CMTy).
Parse h as the ¢ values CH; € {0, 1}¢. Compute RSP; < P(SK, r;, CMT;, CH;) for 1 < ¢ < ¢. Output the signature
o = (h,RSPy,...,RSP).

— Verify(m, o, PK): Parse h as the ¢ values CH; € {0,1}°. Compute CMT; = Rec(PK, CH;,RSP;) for 1 < ¢ < ¢.
Check that h = H(m,CMTy,--- ,CMT;) and that V(PK, CMT;, CH;,RSP;) = 1 forall 1 < i < ¢. If V returns 1
for all ¢ then output 1, else output 0.

An attacker against this signature scheme can be turned into an attacker on the original signature scheme (and vice
versa), which shows that both schemes have the same security. This is addressed in the following result.

Theorem 4. Let ID be a non-trivial canonical recoverable identification protocol that is secure against imperson-
ation under passive attacks. Let S be the signature scheme derived from LD using the Fiat-Shamir transform of
Remarkl[I] Then S is secure against chosen-message attacks in the random oracle model.

PROOF: Let A be an algorithm that forges signatures against the signature scheme of Remark [T We will convert
A into an algorithm B that forges signatures for the original Fiat-Shamir signature scheme that is proved secure in
Theorem [3

Let B be given as input a public key PK, and call A on that key. When A makes a sign query or a hash query,
pass these on as queries made by B. Results of hash queries are forwarded to A. When B gets back a signature
(CMTy,...,CMT¢, RSPy, ..., RSP;) for message m we compute h = H(m,CMTy,...,CMTy,) and return to A the
signature o = (h, RSPy, ..., RSP;).

Finally A outputs a forgery o* = (h*,RSP},...,RSP;) on message m. This is different from previous outputs
of the sign oracle, which means that o # (h,RSPq,...,RSP;) for every output of the sign oracle. Note that this
non-equality means either RSP} # RSP, for some ¢ or h # h*. Parse h* as a sequence of challenges CH}. Compute
CMT; = Rec(PK,CH},RSP}) for 1 < 4 < t and return (CMT],...,CMT;,RSP],...,RSP}) as a forgery on mes-
sage m for the original scheme. We claim that this is also distinct from all other signatures that have been returned
to B: if equal to some previous signature (CMTy,...,CMTy, RSPy, ..., RSP;) on message m then RSP = RSP; and
h* = H(m,CMT],...,CMT;) = h, which violates the fact that 0* was a valid forgery on m. O

Remark 2. The question of the output length ¢ of the hash function depends on the security requirements. The conser-
vative choice in the classical setting is ¢ = 2, to avoid generic collision attacks. However, in the Fiat-Shamir transform
the hash value is h = H(m, CMTy, - - - , CMT;). To construct an existential forgery when given a signing oracle (or to
break non-repudiation) it is sufficient to generate random commitments CMTy, - - - , CMT; and then find a collision in
the hash function H'(xz) = H(x,CMTy, - - - ,CMT;). For a chosen-message forgery or non-repudiation it is necessary,
given a chosen message m, to find a second message m’ with H(m,CMTy,--- ,CMTy) = H(m',CMTy,- -+ ,CMTy),
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which is essentially computing a second-preimage in the hash function. As a result, in most practical settings and if
H behaves like a random oracle, then one can take ¢ = . This optimisation was already mentioned in the original
paper on Schnorr signatures, and has been discussed in detail by Neven-Smart-Warinschi [33]]. It is known (see Sec-
tion 6.2 of [[7]]) that sponge hash functions behave like a random oracle, as do truncated Merkle-Hellman functions.
Hence, with a well-chosen hash function one can take ¢ = \. On the other hand, ¢ = A would not be sufficient for a
Merkle-Damgard functions [30,33].

2.7 Post-Quantum Alternatives To Fiat-Shamir

If one considers a quantum adversary who can make quantum queries to the random oracle then arguments in the clas-
sical random oracle model are not necessarily sufficient. Fortunately, an alternative transform was recently provided
by Unruh [39]], which converts a sigma-protocol into a signature scheme that is secure against a quantum adversary.
The transform is also discussed by Goldfeder, Chase and Zaverucha [22].

Definition 17 of [39] gives a notion of security for signature schemes in the quantum random oracle model. The
definition is identical to Definition [5| except that queries to the hash function (random oracle) may be quantum (note
that queries to the Sign oracle remain classical).

We now set the scene for Unruh’s transform. Let K be a generator for a hard relation as in Definition ] Let P
and V be a sigma-protocol for the relation, where the set of challenges is {0,1}° and where 2¢ is polynomial in the
security parameter. Suppose the sigma-protocol is complete, n-special sound, and honest verifier zero-knowledge. Let
t be a parameter so that 2° is exponential in the security parameter and let H : {0,1}* — {0, 1}*“ be a hash function
that will be modelled as a random oracle. Let I" be the set of possible responses v (also denoted RSP) in the sigma-
protocol.The transform also requires a quantum random oracle G : I" — I" which should be injective or at least be
such that every element has at most polynomially many pre-images.

Unruh first gives a construction for a NIZK proof (Figure 1 of [39]]) and then gives a construction for a signature
scheme (Definition 16 of [39]]). We collapse these into a single transform and use an optimisation from [22]], essentially
to define the challenges to be fixed bitstrings j = CH; ; so that they do not need to be hashed or checked.

— Gen(1Y): (PK, SK) + K(171).

— Sign(sk,m): Compute the commitments CMT; < P(PK, SK) for 1 < i < .
Now, for each ¢ and all 0 < j < 2° set CH;_; to be the binary representation of j. In other words {CH; ; : 0 < j <
2¢} is the set of all c-bit binary strings, and so is the set of all possible challenges.
Forall1 <¢ <tand0 < j < 2° compute RSP; ; <— P(PK, SK, CMT;, CH; ;) and g; ; = G(RSP; ;) (note that this
is t2¢ values).
Let T (the transcript) be a bitstring representing all commitments, challenges and the values g; ;, so that

T = (CMTy,...,CMTy, CHy g, ..., CHy 261, 91,05+ -+ 5 Gt,26—1)-

Let h = H(PK,m,T) and parse it as CHy, ..., CH; where each value is in {0, 1}°. More precisely, write .J; for
the integer whose binary representation is the ¢-th block of ¢ bits in the hash value and then CH; = CH;_j,. The
signature is

o= (T,RSPy,7,,...,RSP; 7).

— Verify(m, o, PK): Compute h = H(PK,m,T') and parse it as t integers Ji, . .., J;. Check that the challenges are
correctly formed in 7', that g; j, = G(RSP; j,), and that V(PK, CMT;, CH; j,,RSP; 5,) = 1 forall 1 < i < ¢. If all
checks are correct then output 1, else output 0.

Theorem 5. ( [39]) Let R be a hard relation with generator K and let (P, V) be the prover and verifier in a sigma-
protocol for R with c-bit challenges for some integer ¢ > 1. Suppose the sigma-protocol is complete, n-special
sound, and honest verifier zero-knowledge. Then the signature scheme obtained by applying the Unruh transform is
existentially unforgeable under an adaptive chosen-message attack in the quantum random oracle model.

PROOF: Apply Theorems 10, 13 and 18 of [39]. O
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If the scheme is recoverable then the signature may be compressed in size by computing CMT; = Rec(PK, CH;, j,,RSP; ;)
for 1 < ¢ < t. However, compared with the original Fiat-Shamir transform, the saving in signature size is negligible
since it is necessary to send all the g; ; as part of the signature.

Remark 3. In Unruh [39]] the set I is of a fixed size and all responses have the same length. The quantum random
oracle GG is used to commit to all responses at the same time, and its domain and image sets have the same size to
ensure that GG is biding in an unconditional or at least statistical sense (i.e. a computationally binding commitment
would not suffice). In our protocols however, the challenges are just one bit, and the responses to challenges 0 and 1
have different lengths. We therefore use two quantum random oracles Gy and (G; to hide responses to challenges 0
and 1 respectively.

Remark 4. In practice we will replace the random oracle by a concrete hash function with a certain output length .
The correct choice of ¢ in the quantum setting is still a subject of active research. As mentioned in Remark 2] a first
question is whether one is concerned with chosen-message forgery/repudiation. The next question is to what extent
quantum algorithms speed up collision finding. The third question is to consider a concrete analysis of the security
proof for Unruh’s transform, and any other factors in the security reduction that may be influenced by the hash output
size. One conservative option is to assume that Grover’s algorithm gives the maximal speedup for quantum algorithms,
in which case one could take ¢ = 3\ to ensure collision-resistance. Bernstein [6] has questioned the practicality of
quantum collision-finding algorithms. Following his arguments, Goldfeder, Chase and Zaverucha [22] chose ¢t = 2,
and a similar choice was made in Yoo et al. [48]]. On the other hand, Beals et al. [4]] suggest there may be a quantum
speedup that would require increasing ¢.

We keep t as a parameter that can be adjusted as more information comes to light. The tables in Section are
computed using the conservative choice t = 3.

2.8 Heuristic Assumptions used in this Paper

This paper makes use of several heuristic assumptions. All these assumptions say that some forms of the following
approximations are valid.

Approximation 1 Let N7 be a set and let No C Ni. Let x be a probability distribution on N1. We approximate
Prjz € Mo |z + x] = [Na|/|Vi].

In several cases, N7 will be the set of positive integers up to some bound, and A5 will be a subset of integers
with some factorization pattern. In this case, we will approximate |N>|/|N7| by the value naturally expected from the
density of primes.

Approximation 2 Ler B be a positive integer and let N7 := {1,2, ..., B}. Let No C N be the subset of integers in
M1 satisfying some factorization pattern. We approximate Pr[x € N5 | © < x| by the expected value of |N3|/|N |
following the density of primes.

More precisely:

— In Section[4.3] Step 2c, the existence of (3, is guaranteed if some linear system is invertible over Zx. Here N is an
integer of cryptographic size, and the system is randomized through the selection of o and /3; in Steps 2a and 2b.
We assume that the probability of having a non invertible system is negligible.

- In Lemmal6] we generate candidates for the ideals I; according to some distribution on the solution of a quadratic
form. Here there are O(log p) candidate ideals, and we assume that only O(logp) trials are needed to find the
correct one.

— In Section[4.3] Step 1, we construct a random element in an ideal I according to a specific distribution, and assume
the reduced norm of this element will be a prime with a probability as given by the prime number theorem.

— In Section[4.3] Steps 2b and 2d, we generate integer elements according to a specific distribution, and we assume
that the probability that these numbers are “Cornacchia-nice” (in the sense that Cornacchia’s algorithm will run
efficiently on them, which translates into some factorization pattern) only depends on their size, and is as expected
for numbers of these sizes.
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All assumptions except for the second one come from our use of (the powersmooth variant of) the quaternion
isogeny algorithm in [32].

We expect that the first two assumptions above can be removed with a finer analysis, maybe together with some
minor algorithmic changes and a moderate efficiency loss. In the case of the second assumption, trying all possible
solutions to the quadratic form will maintain a polynomial complexity, though of a slightly bigger degree. One might
then reduce that degree by exploiting the structure of all solutions leading to the same ideals.

On the other hand, a rigorous proof for the remaining assumptions seem to be beyond the reach of existing analytic
number theory techniques. We stress that these sorts of assumptions are generally believed to be true by analytic
number theory experts “unless there is a good reason for them to be false”, such as some congruence condition. In the
later case, we expect that simple tweaks to our algorithms will restore their correctness and improve their complexity.

3 First Signature Scheme

This section presents a signature scheme obtained from the interactive identification protocol of De Feo-Jao-Plit [[18]].
First we describe their scheme. The independent work [48]] presents a signature scheme which is obtained in the same
way, by applying the Fiat-Shamir or Unruh transformation to the De Feo-Jao-Plit identification protocol. Nevertheless,
in this paper we obtain a smaller signature size.

3.1 De Feo-Jao-Pliit Identification Scheme

Let p be a large prime of the form ¢5'£5% - f & 1, where {1, {5 are small primes (typically ¢; = 2 and {5 = 3). We start
with a supersingular elliptic curve Ey defined over IF,> with #F(FF,2) = ¢7'¢5* - f and a primitive £]*-torsion point
Py. Define Ey = Ey/(P;) and denote the corresponding ¢{*-isogeny by ¢ : Ey — Fj.

Let Ra, S2 be a pair of generators of Fy[¢52]. The public key is (Eg, E1, Ra, Sa2, p(R2), ¢(S2)). The private key
is the point P;. The interaction goes as follows:

1. The prover chooses a random primitive £52-torsion point P5 as P» = aRg + bSs for some integers 0 < a,b < £52.
Note that ¢(P2) = ap(Rz) + bp(S2). The prover defines the curves By = Ey/(Ps) and E3 = Ey/{p(P2)) =
Ey/{Py, Py), and uses Vélu’s formulae to compute the following diagram.

Ey d E;
(0 Y’
B L s

The prover sends F» and Ej3 to the verifier.
2. The verifier challenges the prover with a random bit CH + {0,1}.
3. If cH = 0, the prover reveals P, and ¢ (Fz).

If CH = 1, the prover reveals ¢( P} ).

In both cases, the verifier accepts the proof if the points revealed have the right order and are the kernels of
isogenies between the right curves. We iterate this process to reduce the cheating probability.

Note that the response to challenge 0 is two points while the response to challenge 1 is one point. In other words,
at first sight, the responses have different lengths. Compression techniques can be used in this case to ensure that
responses all have the same length (see Section 4.2 of [48]]).

The following theorem is the main security result for this section. The basic ideas of the proof are by De Feo-Jao-
PIat 18], but we give a slightly different formalisation that is required for our signature proof.
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Theorem 6. If Problems |3| and H| are computationally hard, then the interactive protocol defined above, repeated t
times in parallel for a suitable parameter t, is a non-trivial canonical identification protocol that is secure against
impersonation under passive attacks.

PROOF: It is straightforward to check that the scheme is correct (in other words, the sigma protocol is complete).
We now show that parallel executions of the sigma protocol are sound and honest verifier zero knowledge.

For soundness: Suppose A is an adversary that takes as input the public key and succeeds in the identification pro-
tocol with noticeable probability €. Given a challenge instance (Eq, E1, Ry, S1, Ra, Sa2, ¢(R2), ¢(S2)) for Problem 3]
we run 4 on this tuple as the public key. In the first round, A outputs commitments (E,;72, E,L‘,g) forl < <t We
then send a challenge CH € {0, 1}! to A and, with probability € outputs a response RSP that satisfies the verification
algorithm. Now, we use the standard replay technique: Rewind A to the point where it had output its commitments
and then respond with a different challenge CH’ € {0, 1}!. With probability €, A outputs a valid response RSP’

Now, choose some index ¢ such that CH; # CH}. We now restrict our focus to the components CMT;, RSP; and
RSP;. It means A sent Eo, E'3 and can answer both challenges CH = 0 and CH = 1 successfully. Hence we have the
following diagram.

Es E3

From this, one has an explicit description of an isogeny ¢ = 1&’ o' 01p from Ey to E1. The degree of @ is 6?6352.
One can determine ker(@) N Eo[¢<!] by iteratively testing points in Eo[¢1] for j = 1,2,.... Hence, one determines
the kernel of ¢, as desired. This proves soundness.

Now we show honest verifier zero-knowledge. For this it suffices to show that one can simulate transcripts of the
protocol without knowing the private key. When b = 0 we simulate correctly by choosing u,v € Zégz and setting
E; = Ey/{uRy + vS2) and E3 = Ey/(up(R2) + ve(S2)). When b = 1 we choose a random curve E3 and a
random point R € FE»[¢5'] and we publish Es, E5 = FEo/(R) and answer with the point R (hence defining the
isogeny). Although (Es, E'3) are a priori not distributed correctly, the computational assumption of Problem implies
it is computationally hard to distinguish the simulation from the real game. Hence the scheme has computational zero
knowledge.

Finally we prove the identification scheme is secure against impersonation under passive attacks. Let I be an
impersonator for the scheme. Given a challenge instance (Eg, E1, R1, S1, R2, S2, ¢(Rz2), ©(S2)) for Problem [3| we
run I on this tuple as the public key. We are required to provide I with a set of transcripts of honest executions of
the scheme, but this is done using the simulation method used to show the sigma protocol has honest verifier zero
knowledge. If I is able to succeed in its impersonation game then it breaks the soundness of the sigma protocol. We
have already shown that if an adversary can break soundness then we can solve Problem [3] This completes the proof. [J

3.2 Classical Signature Scheme based on De Feo-Jao-Pliit Identification Protocol

One can apply the Fiat-Shamir transform from Section to the De Feo-Jao-Plit identification scheme to obtain a
signature scheme. One can also check that the scheme is recoverable and so one can apply the Fiat-Shamir variant from
Remark [T} In this section we fully specify the signature scheme resulting from the transform of Remark [T} together
with some optimisations.

Our main focus is to minimise signature size. Hence, we use the most space-efficient variant of the Fiat-Shamir
transform. Next we need to consider how to minimise the amount of data that needs to be sent to specify the isogenies.
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Several approaches were considered in Section [2.4] For the pair of vertical isogenies it seems to be most compact to
represent them using a representation of the kernel (this is more efficient than specifying two paths in the isogeny
graph), however this requires additional points in the public key. For the horizontal isogeny there are several possible
approaches, but we think the most compact is to use the representation in terms of specifying roots of the modular
polynomial. One can easily find other implementations that allow different tradeoffs of public key size versus signature
size.

Key Generation Algorithm: On input a security parameter A generate a prime p with at least 4\ bits, such that p =
07052 f £ 1, with €4, £o, f small (ideally f =1, ¢ = 2, {3 = 3) and 5" ~ (2. Chooseﬂa supersingular elliptic curve
Ey with j-invariant jo. Fix points Ry, Sy € Ey(IF,2)[¢5?] and a random primitive /7’ -torsion point Py € Ey[¢7'].
Compute the isogeny ¢ : Ey — E; with kernel generated by P;, and let j; be the j-invariant of the image curve. Set
R} = p(R3), S5 = ¢(S2). Choose a hash function H with ¢ = 2 bits of output (see Remark [2). The secret key is
Py, and the public key is (p, jo, j1, Re, S2, R4, S, H). One can reduce the size of the public key by using different
representations of isogeny paths, but for simplicity we use this variant.

Signature Algorithm: For i = 1,...,t, choose random integers 0 < «; < ¢52. Compute the isogeny v; : Ey — Eo ;
with kernel generated by Ro + [;]S2 and let jo; = j(Es ;). Compute the isogeny ¢; : Eq — FEj; with kernel
generated by R) + [o;]S55 and let js; = j(Es3;). Compute h = H(m, jo1,...,52.¢,731,.--,J3,) and parse the
output as ¢ challenge bits b;. Fori = 1,... ¢, if b; = 0 then set z; = «;. If b; = 1 then compute v;(P;) and compute
a representation z; of the j-invariant j,; € F,2 and the isogeny with kernel generated by v;(P1) (for example,
as a sequence of integers representing which roots of the ¢;-division polynomial to choose at each step of a non-
backtracking walk, or using a compact representation of 1;(P; ) in reference to a canonical basis of Ej ;[¢7*]). Return
the signature o = (h, 21, ..., 2¢).

Verification Algorithm: On input a message m, a signature o and a public key PK, recover the parameters p, Ey, E;.
For each 1 <4 < ¢, using the information provided by z;, one recomputes the j-invariants js ;, j3 ;. In the case b; = 0
this is done using z; = a; by computing the isogeny from F with kernel generated by R + [«;]S2 and the isogeny
from E; with generated by R/, + [c;]S5. When b; = 1 then the value jo ; is provided as part of z;, together with a
description of the isogeny from Ej ; to E3 ;.
One then computes
W =H(m,ja1,. ., J2,6,3,1- -1 J3.)

and checks that the value equals h from the signature. The signature is accepted if this is true and is rejected otherwise.

Theorem 7. If Problems |3| and |4| are computationally hard then the first signature scheme is secure in the random
oracle model under a chosen message attack.

PROOF: This follows immediately from Theorem 4] Theorem [2]and Theorem 6] (J

Efficiency: Asisogenies are of degree roughly ,/p, the scheme requires to use primes p of size 4 to defeat meet-in-the-
middle attacks. Assuming H is some fixed hash function and therefore not sent, the secret key is simply z(P;) € F 2.
A trivial representation requires 2 log p = 8 bits; however with a canonical ordering of the cyclic subgroups this can
be reduced to 1 log p = 2 bits.

The public key is p and then jo, j1,2(R2),2(S2), z(R5), x(S5) € F,2 which requires 13log,(p) ~ 52X bits.
The values of jg, 2(R2) and x(S3) can be canonically fixed by the protocol, in which case the public key is only
7logp ~ 28\ bits. The values of z(Rj) and x(S%) can also be avoided but at the expense of larger signature sizes.
The signature size is analysed in Lemma 2]

In terms of computational complexity. The basic operations are repeated O(\) times (one for each challenge bit)
and each operation requires computing isogenies that are a composition of around O()) isogenies of degree ¢; or

8 Costello-Longa-Naehrig [[12] choose a special j-invariant in IF,, for efficiency reasons in their implementation of the supersingular
key exchange protocol. One could also choose a random j-invariant by performing a random isogeny walk from any fixed j-
invariant.
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{5, each of which is a small number of field operations. De Feo et al 18] showed how to compute an ¢¢-isogeny in
around e log(e) exponentiations/Vélu computations using what they call an “optimal strategy”. Assuming quasi-linear
cost O(log(p?)) = O(N) for the field operations, the total computational complexity of the signing and verifying

algorithms is O(\?) bit operations.

Lemma 2. The average signature size of this scheme is

t + £Mlogy(¢5)] + & (2[loga(p)] + [logy (¢51)]) ~ 6A°
bits.

PROOF: On average half the bits b; of the hash value are zero and half are one. When b; = 0 we send an integer
a; such that 0 < «; < £57, which requires [log,(¢5?)] bits. When b; = 1 we need to send ja ; € [F,2, which requires
2[log,(p)] bits, followed by a representation of the isogeny. One can represent a generator of the kernel of the isogeny
with respect to some canonical generators Pj, Q) of Es ;[¢7'] as §8; such that 0 < 3; < £5*, thus requiring [log, (¢7")]
bits. Alternatively one can represent the non-backtracking sequence of j-invariants in terms of an ordering on the
roots of the ¢;-th modular polynomial. This also can be done in [log,(¢5')] bits. For security level A one can take
t = A (as explained in Remark , giving ({" ~ £5? ~ 2%*, p ~ 2** and so signatures are around 62 bits. The more
conservative choice t = 2 gives signatures of around 12)? bits. [J

3.3 Post-Quantum Signature Scheme based on De Feo-Jao-Pliit Identification Protocol

Next, we describe the signature scheme resulting from applying Unruh’s transform to the identification scheme of De
Feo-Jao-Plit, and we discuss its efficiency.

Key Generation Algorithm: On input a security parameter \ generate a prime p with at least 6\ bits, such that p =
(0052 f £ 1, with £1, £o, f small (ideally f = 1, £; = 2, /5 = 3) and /{" ~ £5* > 23*. Choose a supersingular elliptic
curve [y with j-invariant jo. Fix a canonical basis { Ry, Sz } for E(IF,2)[¢5*] and a random primitive /" -torsion point
Py € Ey[¢7*]. Compute the isogeny ¢ : Ey — E; with kernel generated by Pi, and let j; be the j-invariant of the
image curve. Set R, = ¢(R3), S5 = ¢(S3). Choose a hash function H : {0,1}* — {0,1}" with ¢ = 3\ bits of
output (see Remark [4), and two hash functions G; : {0,1}": — {0,1}": for i = 0,1, such that every element has
polynomially many preimages. Here [V, is an upper bound on the bitlength of the responses in the protocol when the
challenge bit is i. The secret key is P;, and the public key is (p, jo, j1, R2, S2, RS, S%, H, G). One can reduce the size
of the public key by using different representations of isogeny paths, but for simplicity we use this variant.

Signing Algorithm: Fori = 1,...,t, choose random integers 0 < «; < ¢52. Compute the isogeny v; : Ey — Eo;
with kernel generated by Rs + [o;]S2 and let jo; = j(E2,). Compute the isogeny ¢, : By — Ej3; with kernel
generated by R) + [a;]S5 and let j3; = j(Es;). For i = 1,...,¢t, set z;0 = «; and z;1 as a representation of

the j-invariant jp; € IF,» and the isogeny with kernel generated by v;(P;) (for example, as a sequence of integers
representing which roots of the ¢;-modular polynomial to choose at each step of a non-backtracking walk, or using a
compact representation of ;(Py) in reference to a canonical basis of Es ;[(7]).
Compute g, 0 = Go(z,0) and g; 1 = G1(z;,1) for 1 < ¢ < ¢t. Compute
h=H(m,ja1,. 52,6031, 573,6:91,0,91,15 - - - 9£,0 Jt,1)

and parse the output as ¢ challenge bits h;. Fori = 1,...,¢, set RSP; = z; p,. Return the signature

0= (h,RSP1,..., RSP, §1 1—hys---s Gt 1—hy)-
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Verification Algorithm: On input a message m, a signature ¢ and a public key PK, recover the parameters p, Fy, .
For each 1 < ¢ < ¢, using the information provided by RSP;, one recomputes the j-invariants js ;, j3;. In the case
h; = 0 this is done using RSP; = «; by computing the isogeny from Ej with kernel generated by Ry + [«;]S2 and the
isogeny from F; with generated by R5 + [c;].S5. When h; = 1 then the value js ; is provided as part of RSP;, together
with a description of the isogeny from Ej ; to E3 ;.

The verifier computes g; », = G, (RSP;) for 1 < ¢ < ¢ (padding to IV bits using zeros) and checks that the hash
value

h' = H(m, ji,j2,1,- > J2,t,91,0, 91,15 - - - 91,0, 9t.1)-

is the same as h from the signature. In this case the verifier accepts the proof, otherwise it is rejected.

We now show that this scheme is a secure signature.

Theorem 8. If Problems|3| and 4| are computationally hard then the first signature scheme is secure in the quantum
random oracle model under a chosen message attack.

PROOF: This follows immediately from Theorem 5| Theorem [2]and Theorem[6] [J

Efficiency: There are four reasons why the post-quantum variant of the signature is less efficient than the variant in
Section [3.2] First, the prime p is larger in the post-quantum case due to the quantum attack on the isogeny problem
due to Biasse, Jao and Sankar [8]]. Second, one must compute responses to both values of the challenge bit, which
essentially doubles the computation compared with the non-post-quantum case. Thirdly, one needs to send the values
gi,; as part of the signature, which increases signature size. Note that we have introduced an optimisation that only
sends half the values g; ;, since the missing values can be recomputed by the verifier. And fourth, the chosen value of
t will be larger when aiming for quantum security, as per Remark [4]

We now compute the average signature size. When h; = 0, responses are of the form «; for a random integer
0 < a; < £52, and thus requiring Ny = log £2°* =~ %log p bits each. When h; = 1, responses encode the j-invariant
Jo,i» which takes [2log p] bits to represent, and the isogeny with kernel generated by ;(P; ), which has degree ¢7*,
and thus requires [log ¢{'] bits, for a total of N7 ~ % log p. Finally, we note that the average response length % log pis
doubled as in Unruh transform a commitment g; 1 _p, = G1_p, (2,1, ) to the other challenge value is simultaneously
transmitted. The average size of signatures is therefore ¢ + ¢ - 3 1og p. For X bits of security, we choose logp = 6\ and
t = 3, obtaining an average signature size of 542,

4 Second Signature Scheme

We now present our main result. The main advantage of this scheme compared with the one in the previous section
is that its security is based on the general problem of computing an isogeny between two supersingular curves, or
equivalently on computing the endomorphism ring of a supersingular elliptic curve. Unlike the scheme in the previous
section, the prime has no special property and no auxiliary points are revealed.

4.1 Identification Scheme Based on Endomorphism Ring Computation

The concept is similar to the graph isomorphism identification scheme, in which we reveal one of two graph isomor-
phisms, but never enough information to deduce the secret isomorphism.

As recalled in Section [2.4] although it is believed that computing endomorphism rings of supersingular elliptic
curves is a hard computational problem in general, there are some particular curves for which it is easy.

The following construction is explained in Lemma 2 of [32]. We choose Ej : y? = 3 + Az over a field F,> where
p=3mod 4 and #Ey(F,2) = (p+ 1)%. We have j(Ey) = 1728. When p = 3 mod 4, the quaternion algebra By,
ramified at p and co can be canonically represented as Q(i, j) = Q + Qi + Qj + Qk, where iZ2 = —1, j> = —p and

k := ij = —ji. The endomorphism ring of Ej is isomorphic to the maximal order Oy with Z-basis {1, i, %, %}
Indeed, there is an isomorphism of quaternion algebras 6 : B), .o — End(Ey) ® Q sending (1,1, ], k) to (1, ¢, 7, m¢)
where 7 : (z,y) — (2P, yP) is the Frobenius endomorphism, and ¢ : (z,y) — (—x,ty) with 12 = —1.
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To generate the public and private keys, we take a random isogeny (walk in the graph) ¢ : Ey — E; and, using
this knowledge, compute End(E1 ). The public information is E;. The secret is End(F ), or equivalently a path from
FEy to E7. Under the assumption that computing the endomorphism ring is hard, the secret key cannot be computed
from the public key only.

To prove knowledge of ¢ the prover will choose a random isogeny ¢ : E; — FE5 and give Es to the verifier. The
verifier challenges the prover to give either the isogeny ¢ : 1 — Fs or an isogeny n : g — FEs. The fundamental
problem is to find an isogeny 7 that does not leak any information about ¢ (in particular, the isogeny path corresponding
to 1 o ¢ would not be a secure response). Our scheme uses the following three algorithms, that are explained in detail
in later sections, that allow a “pseudocanonical” isogeny 7 to be computed (see Remark [3)).

Translate isogeny path to ideal: Given Ey, Oy = End(Ep) and a chain of isogenies from E, to E7, to compute
O1 = End(E)) and a left Og-ideal I whose right order is O .

Find new path: Given a left Oy-ideal I corresponding to an isogeny Ey — Ejs, to produce a new left Op-ideal J
corresponding to an “independent” isogeny Ey — FE of powersmooth degree.

Translate ideal to isogeny path: Given Ey, Og, Fo, I such that [ is a left Op-ideal whose right order is isomorphic
to End(Es), to compute a sequence of prime degree isogenies giving the path from Fy to Fs.

Figure [I] gives the interaction between the prover and the verifier. Let L be the product of prime powers ¢¢ up to
= 2log(p) (this choice is based on Lemma' In other words, let /1, .. ., £, be the list of all primes up to B and let
L [1,_, ¢ where £ < B < £5H1,
One can see that Figure [T] gives a canonical, recoverable identification protocol, but it is not non-trivial as the
challenge is only one bit.

1. The public key is a pair (Eo, E'1) and the private key is an isogeny ¢ : Eg — E1 of powersmooth degree L.
2. The prover performs a random walk starting from F; of powersmooth degree L in the graph, obtaining a curve F> and an
isogeny 1 : E1 — E», and reveals E to the verifier.
3. The verifier challenges the prover with a random bit b « {0, 1}.
4. If b = 0, the prover sends ) to the verifier.
If b = 1, the prover does the following:
— Compute End(F>) and translate the isogeny path between Ey and E> into a corresponding ideal I giving the path in the
quaternion algebra.
— Use the Find new path algorithm to compute a “pseudo-canonical” path between End(Ey) and End(E?>) in the quater-
nion algebra, represented by an ideal J.
— Translate the ideal J to an isogeny path 7 from Eg to E>.
— Return 7 to the verifier.
5. The verifier accepts the proof if the answer to the challenge is indeed an isogeny between F; and E» or between Ey and Eo,
respectively.

Fig. 1. New Identification Scheme

The isogenies involved in this protocol are summarized in the following diagram:

Ey d £y
) (0
Es
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The two translation algorithms mentioned above in the b = 1 case will be described in Section They rely on
the fact that End(E)) is known. The algorithms are efficient when the degree of the random walk is powersmooth,
and for this reason all isogenies in our protocols will be of powersmooth degree. The powersmooth version of the
quaternion isogeny algorithm of Kohel-Lauter-Petit-Tignol will be described and analysed in Section#.3] The random
walks are taken of sufficiently large degree such that their output has close to uniform distribution, by Theorem|[I] and
Lemmal[ll

We repeat the process to reduce the cheating probability. A standard random-self-reduction [25]] shows that yhe
computational hardness of Problem [6|remains essentially the same if the curves are chosen according to a distribution
that is close to uniform. We can then prove:

Theorem 9. Let A be a security parameter and t > X. If Problem [0] is computationally hard, then the identifica-
tion scheme obtained from t parallel executions of the protocol in Figure [I|is a non-trivial, recoverable canonical
identification scheme that is secure against impersonation under (classical) passive attacks.

The advantage of this protocol over De Feo-Jao-Pliit’s protocol is that it relies on a more standard and potentially
harder computational problem. In the rest of this section we first give a proof of Theorem[9} then we provide details of
the algorithms involved in our scheme.

4.2 Proof of Theorem[9]

We shall prove that the sigma protocol in Figure [I]is complete, 2-special sound and honest verifier zero-knowledge.
It follows that ¢ parallel executions of the protocol is non-trivial. The theorem will then follow from Theorem 2| and
Problem [6] (which implies that the relation being proved is a hard relation).

Completeness. Let ¢ be an isogeny between Ey and E; of B-powersmooth degree, for B = O(logp). If the
challenge received is b = 0, it is clear that the prover knows a valid isogeny ¥ : E; — Ej, so the verifier accepts the
proof. If b = 1, the prover follows the procedure described above and the verifier accepts. In the next subsections we
will show that this procedure is polynomial time.

2-special soundness. Let (Ey, F1) be a public key for the scheme. Suppose we are given transcripts (CMT,
{CH;,CH2}, {RSP1,RSP2}) for the single-bit scheme such that V(PK,CMT, CH;,RSP;) = 1 for all 4 € {1,2}. Let
FE5 = CMT. Since CH; # CHj the responses RSPy and RSPs therefore give two isogenies ¢ : E1 — FEo, n: By — Fs.
Given these two valid answers an extraction algorithm can compute an isogeny ¢ : Fy — E; as ¢ = 1[) on, where 1/; is
the dual isogeny of . The extractor outputs ¢, which is a solution to Problem [f] This is summarized in the following
diagram.

EO *********** > E1

E,

Honest-verifier zero-knowledge. We shall prove that there exists a probabilistic polynomial time simulator S that
outputs transcripts indistinguishable from transcripts of interactions with an honest verifier, in the sense that the two
distributions are statistically close. Note that Oy = End(Ey) is public information so is known to the simulator. The
simulator starts by taking a random coin b + {0,1}.

— If b = 0, take a random walk from E; of powersmooth degree L, as in the real protocol, obtaining a curve Ey and
an isogeny ¢ : E; — F». The simulator outputs the transcript (Es, 0, v).
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EO *********** > E1

Es

In this case, it is clear that the distributions of every element in the transcript are the same as in the real interaction,
as they are generated in the same way. This is possible because, when b = 0, the secret is not required for the
prover to answer the challenge.

— If b = 1, take a random walk from Ej of length L to obtain a curve E5 and an isogeny . : Ey — Fs, then proceed
as in Step 3 of Figureto produce another isogeny 7 : Fy — FE5. The simulator outputs the transcript (E2, 1, 7).

EO *********** > E1

Es

The reason to output 7 instead of 1 is to ensure that the transcript distributions are indistinguishable from the distribu-
tions in the real scheme.

We first study the distribution of E5 up to isomorphism. Let X,. be the output of the random walk from FE; to
produce j(E») in the real interaction, and let X be the output of the random walk from Ej to produce j(Es) in the
simulation.

Let G be the set of all supersingular j-invariants, namely the vertex set of the isogeny graph. Note that #G =
N, =~ p/12. By Theorem and Lemma since the isogeny walks have degree L, we have, for any j € G

. 1
PI'(XT = ]) — F
p

1
p1+e ?

. 1
PI'(XS :]) - F
p

1
p1+e :

< <

Therefore

D IPr(X, = j) = Pr(X, = j)| < N, - max [Pr(X, = j) — Pr(X, = j)| <

j€G
1 1 1
<Np'<p1+5+pl+e>“6pe

which is a negligible function of A for any constant ¢ > 0. In other words, the statistical distance, between the
distribution of j(E>) in the real signing algorithm and the simulation, is negligible. Now, since 7 is produced in the
same way from Fj and F» in the simulation and in the real protocol execution, we have that the statistical distance
between the distributions of 7 is also negligible. This follows from Lemma [3]in Section [4.3] which states that the
output of the quaternion path algorithm does not depend on the input ideal, only on its ideal class.

4.3 Quaternion Isogeny Path Algorithm

In this section we sketch the quaternion isogeny algorithm from Kohel-Lauter-Petit-Tignol [32] and we evaluate its
complexity when p = 3 mod 4. (The original paper does not give a precise complecity analysis; it is only claimed
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that the algorithm runs in heuristic probabilistic polynomial time.) This is the algorithm used for the Find new path
procedure in the identification scheme.

The algorithm takes as input two maximal orders O, O’ in the quaternion algebra B,, ., and it returns a sequence
of left O-ideals Iy = O D I; D ... D I. such that the right order of I. is in the same equivalence class as O'.
In addition, the output is such that the index of ;1 in I; is a small prime for all ¢. The paper [32] focuses on the
case where the norm of I, is ¢¢ for some integer e, but it mentions that the algorithm can be extended to the case
of powersmooth norms. We will only describe and use the powersmooth version. In our application there are some
efficiency advantages from using isogenies whose degree is a product of small powers of distinct primes, rather than a
large power of a small prime.

Note that the ideals returned by the quaternion isogeny path algorithm (or equivalently the right orders of these
ideals) correspond to vertices of the path in the quaternion algebra graph, and to a sequence of j-invariants by Deuring’s
correspondence. In the next subsection we will describe how to make this correspondence explicit; here we focus on
the quaternion algorithm itself.

An important feature of the algorithm is that paths between two arbitrary maximal orders O and O’ are always
constructed as a concatenation of two paths from each maximal order to a special maximal order. As mentioned above,
in our protocol and the discussion below we fix Og = (1,1, %, %) where i2 = —1 and j?> = —p. General references
for maximal orders and ideals in quaternion algebras are [42}/44].

We focus on the case where O = O, and assume that instead of a second maximal (O’ we are given the corre-
sponding left Oy-ideal I as input (the two variants of the problem are equivalent). This will be sufficient for our use
of the algorithm. We assume that I is given by a Z-basis of elements in Op. Denote by n(«) and n(I) the norm of
an element or ideal respectively. The equivalence class of maximal orders defines an equivalence class of Op-ideals,
where two ideals / and J are in the same class if and only if I = Jg with ¢ € B} .. Therefore our goal is, given a left
Op-ideal I, to compute another left Oy-ideal J with powersmooth norm in the same ideal class. Further, in order to be
able to later apply Algorithm [2] we require the norm of I to be odd (but the Find new path algorithm also allows to
find even norm ideals if desired). Without loss of generality we assume there is no integer s > 1 such that I C sQ,,
and that I # Oy. The algorithm proceeds as follows:

1. Compute an element § € I and an ideal I’ = 15/n(I) of prime norm N.
2. Find 3 € I’ with norm NS where .S is powersmooth and odd.
3. Output J = I’'8/N.

Steps 1 and 3 of this algorithm rely on the following simple result [32, Lemma 5]: if I is a left O-ideal of reduced
norm N and « is an element of I, then Ia&/N is a left O-ideal of norm n(«)/N. Clearly, I and .J are in the same
equivalence class.

To compute § in Step 1, first a Minkowski-reduced basis {a, s, a3, ay} of I is computed. To obtain Lemma
below we make sure that the Minkowski basis is uniformly randomly chosen among all such baseﬂ Then random
elements § = ), x;c; are generated with integers x; in an interval [—m, m], where m is determined later, until the
norm of ¢ is equal to n(I) times a prime. A probable prime suffices in this context (actually Step 1 is not strictly
needed but aims to simplify Step 2), so we can use the Miller-Rabin test to discard composite numbers with a large
probability.

Step 2 is the core of the algorithm and actually consists of the following substeps:

2a. Find a such that I’ = OgN + Oy

2b. Find 51 € Oy with odd norm N Sp, where S; is powersmooth.

2c. Find By € Zj + Zk such that « = 3183 mod NOy.

2d. Find 5 € Oy with odd powersmooth norm Sy and A € Z%; such that 85 = A8z mod NOy.

2e. Set 5 = p105.

In Step 2a we need o € I’ such that ged(n(a), N2) = N. This is easily achieved by taking o as a random small
linear combination of a Minkowski basis, until the condition is met. Note that if & € I’ is such that ged(n(a), N?) =
N then J := OgN + Ogar C I' and J # Oy N. Since the norm of Oy N is N2 and N is prime it follows that the norm
of Jis Nandso J =1TI'.

°In [32] an arbitrary Minkowski basis was chosen.
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In Step 2b the algorithm actually searches for 8; = a+bi+cj+dk. A large enough powersmooth number .57 is fixed
a priori, then the algorithm generates small random values of ¢, d until the norm equation a? + b2 = S; — p(c? + d?)
can be solved efficiently using Cornacchia’s algorithm (for example, until the right hand side is a prime equal to 1
modulo 4).

Step 2c is just linear algebra modulo N. As argued in [32] it has a negligible chance of failure, in which case one
can just go back to Step 2b.

In Step 2d the algorithm a priori fixes S large enough, then searches for integers a, b, ¢, d, A with A ¢ NZ such
that N%(a®+b?)+p ((AC + ¢N)? + (AD + dN)?) = S, where we have 3, = Cj+Dk. If necessary S is multiplied
by a small prime such that p(C? + D?)S, is a square modulo NV, after which the equation is solved modulo N, leading
to two solutions for A. An arbitrary solution is chosen, and then looking at the equation modulo N? leads to a linear
space of solutions for (¢, d) € Z . The algorithm chooses random solutions until the equation

a® +b* = (S2 — p* (AC 4+ ¢N)? + (AD + dN)?)) /N?

can be efficiently solved with Cornacchia’s algorithm.

The overall algorithm is summarized in Algorithm[I] We now prove two lemmas on this algorithm. The first lemma
shows that the output of this algorithm only depends on the ideal class of I but not on [ itself. This is important in our
identification protocol, as otherwise part of the secret isogeny ¢ could potentially be recovered from 7. The second
lemma gives a precise complexity analysis of the algorithm, where [32]] only showed probabilistic polynomial time
complexity. Both lemmas are of independent interest.

Lemma 3. The output distribution of the quaternion isogeny path algorithm only depends on the equivalence class of
its input. (In particular, the output distribution does not depend on the particular ideal class representative chosen for
this input.)

PROOF: Let I; and I be two left Ogy-ideals in the same equivalence class, namely there exists g € B;’OO such that
I, = I,q. We show that the distribution of the ideal I’ computed in Step 1 of the algorithm is identical for I; and I».
As the inputs are not used anymore in the remaining of the algorithm this will prove the lemma.

In the first step the algorithm computes a Minkowski basis of its input, uniformly chosen among all possible
Minkowski bases. Let By = {a11, @12, @13, @14} be a Minkowski basis of I;. Then by multiplicativity of the norm
we have that Bs = {a11¢, a12q, @13¢, a14q} is a Minkowski basis of I5. The algorithm then computes random ele-
ments 0 = Y . x,¢ for integers x; in an interval [—m, m]. Clearly, for any element 6, computed when the input is I,
there corresponds an element do = d1q computed when the input is I5. This is repeated until the norm of ¢ is a prime
times n(I). As n(l2) = n(I;)n(q) the stopping condition is equivalent for both. Finally, an ideal I of prime norm is
computed as 16/n(I). Clearly when 6, = &,q we have nl(?f;) = n(fé)‘lﬁ}l) =1 } 1511). This shows that the prime norm
ideal computed in Step 1 only depends on the equivalence class of the input. [

*#% SUGGESTION TO CHANGE s TO B — not sure if this will be a notation clash with earlier use of B as a
particular constant.
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Algorithm 1 Find new path algorithm

Input: Op = (1,1, 13%, ) T aleft Op-ideal.

Output: J a left Op-ideal of powersmooth norm such that I = Jgq for some ¢ € Bj .

: {oa, @z, as, s} Minkowski-reduced basis of .

a;  {Fa;}fori=1,2,3,4.

: loop

{x1, 29,3, 24} < [—m, m]*. Start with m = [logp] and do exhaustive search in the box, increasing m if necessary.

5 = Z:,'l=1 X0

if N := n(8)/n(I) is prime then return N, I’ := I5/n(I)

: Set an a priori powersmooth bound s = % log p, and odd integers Sy, S2 with S > plogp, So > p® log p and s-powersmooth
product S1.55.
8: Choose o € I’ such that gcd(n(a), N?) = N, so that I' = Oy N + Opa.
9: while a, b are not found do

10: ¢,d < [-m,m]?, form = | /NS1/2p|. Increase S1 and s if necessary.

11: a,b + Solution of a® + b*> = NS; — p(c® 4 d?) (solve using Cornacchia’s algorithm).

12: pi =a+bi+cj+dk

13: Set 32 as a solution of @ = 3182 mod NOy with B2 € Zj + Zk.

14: Write B2 = Cj + Dk. Try small odd primes r in increasing order until we find one such that (W) = 1, and set

So = Sor. Update s accordingly.

15: A < Solution of pA*(C? 4+ D?) = S5 mod N.

16: while a, b are not found do

17: ¢, d < Solution of pA*(C? + D?) + 2pAN(Cc + Dd) = S» mod N2,

18: a,b < Solution of a® + b*> = (S2 — p* (AC + ¢N)*> + (AD + dN)?)) /N? (solve using Cornacchia’s algorithm).

Increase S> and s if necessary.
19: B3 =a+bi+cj+dk
20: J =1TI'B1By/N

NN RN

The expected running time given in the following lemma relies on several heuristics related to the factorization of
numbers generated following certain distributions. Intuitively all these heuristics say that asymptotically those numbers
behave in the same way as random numbers of the same size.

Lemma 4. Let X := max|c;;| where c;; € Z are integers such that c;1 + ;21 + cig% + ci4%for 1 <1 < 4forms
a Z-basis for I. If log X = O(log p) then Algorithmheuristically runs in time O(log3 p), and produces an output of
norm S with log(S) ~ I log(p) which is (£ + o(1)) log p-powersmooth.

PROOF: The Minkowski basis can be computed in O(log2 X), for example using the algorithm of [34]].

For generic ideals the reduced norms of all Minkowski basis elementﬂ are in O(\/ﬁ) (see [32, Section 3.1]). In
the first loop we initially set m = [log p]. Assuming heuristically that the numbers N generated behave like random
numbers we expect the box to produce some prime number. The resulting N will be in O(\/ﬁ) For some non generic
ideals the Minkowski basis may contain two pairs of elements with norms respectively significantly smaller or larger
than O(,/p); in that case we can expect to finish the loop for smaller values of m by setting 3 = x4 = 0, and to
obtain some [V of a smaller size.

Rabin’s pseudo-primality test performs a single modular exponentiation (modulo a number of size O(\/ﬁ)), and
it is passed by composite numbers with a probability at most 1/4. The test can be repeated r times to decrease this
probability to 1/4". Assuming heuristically that the numbers tested behave like random numbers the test will only be
repeated a significant amount of times on actual prime numbers, so in total it will be repeated O(logp) times. This
leads to a total complexity of é(log3 p) bit operations for the first loop using fast (quasi-linear) modular multiplication.

The other two loops involve solving equations of the form x2? 4 2 = M. For such an equation to have solutions it
is sufficient that M is a prime with M = 1 mod 4, a condition that is heuristically satisfied after 2 log M random trials.

10 The reduced norm of an ideal element is the norm of this element divided by the norm of the ideal.
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Choosing S7 and S5 as in the algorithm ensures that the right-hand term of the equation is positive, and (assuming
this term behaves like a random number of the same size) is of the desired form for some choices (¢, d), at least
heuristically. Cornacchia’s algorithm runs in time O(log? M), which is also O(log? p) in the algorithm. The pseudo-
primality tests will require O(log3 p) operations in total, and their cost will dominate both loops.

Computing [, is just linear algebra modulo NV ~ O(\/ﬁ) and this cost can be neglected. The last two steps can
similarly be neglected.

As aresult, we get an overall cost of O~(log3 p) bit operations for the whole algorithm.

Let s = I logp. We have n(.J) = n(I')n(B1)n(B%)/N? so neglecting log log factors log n(J) ~ % logp+log p+
3logp —logp = % log p. We make the heuristic assumption that log n(J) = (% + 0(1)) log p. Moreover heuristically
Hp:i oD (5)%/ 1085 5 p7/2+0(1) 50 we can expect to find S; S, that is s-powersmooth and of the correct size. (]

Remark 5. A subtle issue is to understand in what sense the output of Algorithm |l|is a “random” isogeny. The al-
gorithm appears to make many random choices: first a “random ideal” I’ is chosen, then a “random” element 3; is
constructed, then an “arbitrary” (5 is constructed, and finally the ideal J is output. However, a crucial observation
is Lemma [3} since J is equivalent to I the output does not actually depend heavily on these choices (essentially the
“choices all cancel each other out”). There is only a small set of actual isogenies 1 that will be output by this al-
gorithm (once the parameter L and other smoothness bounds are fixed). For this reason, we can view the output as
“independent” of I (and hence of () and the isogeny 7 as a “pseudo-canonical” choice of isogeny from Ej to Es.

4.4 Step-by-Step Deuring Correspondence

We now discuss algorithms to convert isogeny paths into paths in the quaternion algebra, and vice versa. This will be
necessary in our protocols as we are sending curves and isogenies, whereas the process uses the quaternion isogeny
algorithm.

All the isogeny paths that we will need to translate in our signature scheme will start from the special j-invariant
Jo = 1728. We recall (see beginning of Section that this corresponds to the curve Ej with equation y? = 2 + Ax
and endomorphism ring End(Ey) := (1, ¢, H;, ’TTW) Moreover there is an isomorphism of quaternion algebras
sending (1,1,j, k) to (1, ¢, 7, 7).

For any isogeny ¢ : Fy — F1 of degree n, we can associate a left End(Ep)-ideal I = Hom(FE1, Eg) of norm n,
corresponding to a left Opy-ideal with the same norm in the quaternion algebra B), ... Conversely every left Op-ideal
arises in this way [31}, Section 5.3]. In our protocol we will need to make this correspondence explicit, namely we
will need to pair up each isogeny from Ej with the correct Op-ideal. Moreover we need to do this for “large” degree
isogenies to ensure a good distribution via our random walk theorem.

Translating an ideal to an isogeny path. Let Ey and Oy = End(Ej) be given, together with a left Oy-ideal T
corresponding to an isogeny of degree n. We assume I is given as a Z-basis {1, . . ., a4 }. The main idea to determine
the corresponding isogeny explicitly is to determine its kernel [46].

Assume for the moment that n is a small prime. One can compute generators for all cyclic subgroups of Ey[n],
each one uniquely defining a degree n isogeny which can be computed with Vélu’s formulae. A generator P then
corresponds to the basis {1, ..., a4} if and only if o;(P) = 0 for all 1 < j < 4. To evaluate a(P) with o € I and
P € Ey[n], we first write « = (u+vi+wj+ zk)/2, then we compute P’ such that [2] P’ = P and finally we evaluate
[P’ + [o]6(P") + [w]r(P") + [z]m($(P")).

An alternative to trying all subgroups is to choose a pair { Py, P>} of generators for Ey[n] and, for some o € I,
solve the discrete logarithm instance (if possible) a(Py) = [z]a(Py). It follows that a(P, — [z]Py) = 0 and so we
have determined a candidate point in the kernel of the isogeny. Both solutions are too expensive for large n.

When n = £¢ the degree n isogeny can be decomposed into a composition of e degree £ isogenies. If P is a genera-
tor for the kernel of the degree £¢ isogeny then £¢~**1 P is the kernel of the degree £ isogeny corresponding to the first
i steps. One can therefore perform the matching of ideals with kernels step-by-step with successive approximations of
I or P respectively. This algorithm is more efficient than the previous one, but it still requires to compute £¢ torsion
points, which in general may be defined over a degree /¢ extension of IF,,>. To ensure that the £¢ torsion is defined over
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IF,2 one can choose p such that £° | (p 1) as in the De Feo-Jao-Pliit protocols; however for general p this translation
algorithm will still be too expensive.

We solve this efficiency issue by using powersmooth degree isogenies in our protocols. When n = [], £ with
distinct primes ¢;, one reduces to the prime power case as follows. For simplicity we assume that 2 does not divide
n. The isogeny of degree n can be decomposed into a sequence of prime degree isogenies. For simplicity we assume
the isogeny steps are always performed in increasing degree order; we can require that this is indeed the case in our
protocols. However, rather than working with points on a sequence of elliptic curves, we work entirely on Ej. Using
a Chinese Remainder Theorem-like representation, points in Fy[n] can be represented as a sequence of points in
Ey[£5']. When one wishes to compute the corresponding sequence of isogenies ¢; : E;_1 — F;, each of degree é;-f,
it is necessary to transport the appropriate kernel points across to F;_; along the isogenies already computed.

Given a left Op-ideal I, Algorithm 2] progressively identifies the corresponding isogeny sequence. When deter-
mining points in ker(a)) N Ey[¢5"] the algorithm uses a natural optimisation of reducing the coefficients of v modulo
0

Algorithm 2 Translating ideal to isogeny path
Input: Oy = End(Ep) = (1, ¢, 52 T2 [ = (a1, a0, a3, ), n = [}, £5° with 2 { n.

2 2 1=1"17
Output: the isogeny corresponding to I through Deuring’s correspondence.

l: fori=1,...,rdo

2 Compute a basis { P;1, P2} for the £ torsion on Ej
3 for j =1,2do

4 Compute P;; such that P;; = [2]P];

5 po = [1]1“70

6: fori=1,...,rdo

7 for k =1,2,3,4do

8 o = oy, with its coefficients reduced modulo Zfl

9: Write o = (Uik + vl + wlk_] + zzkk)/Q
10: for j =1,2do
11: Piji = [ui] P; + [vi]o(Pi;) + [wir]m(P;) + [zi]m(¢(P;))

12: Solve ECDLP to compute Q; of order £; such that a;;(Q;) = 0 for all k

13: Compute ¢; = isogeny with kernel {p;_1(Q;)) (compute with Vélu’s formulae).
14: Set Y = ¢¢<pi71

15: Output ¢o, @1, . . ., Or.

In our protocols we will have £;° = O(logn) = O(logp); moreover we will be using O(log p) different primes.
The complexity of Algorithm [2under these assumptions is given by the following lemma. Note that almost all primes
¢; are such that /B < £; < B and so e; = 1, hence we ignore the obvious ¢-adic speedups that can be obtained in the
rare cases when ¢; is small.

Lemma 5. Let n =[] £* withlogn = O(logp) and (" = O(log p). Then Algorithm[2can be implemented to run in
time O(log® p) bit operations for the first loop, and O(log® p) for the rest of the algorithm.

PROOF: Without any assumption on p the ¢;* torsion points will generally be defined over £;* degree extension fields,
hence they will be of O(log® p) size. However the isogenies themselves will be rational, i.e. defined over IFp2. This
means their kernel is defined by a polynomial over [F 2. Isogenies over IF > of degree d can be evaluated at any point
in IF,,> using O(d) field operations in F 2.

Let d = ¢;'. To compute a basis of the d-torsion, we first factor the division polynomial over F,2. This polynomial
has degree O(d?) = O(log(p)?). Using the algorithm in [29] this can be done in O(log® p) bit operations. Since the
isogenies are defined over F 2, this will give factors of degree at most (d — 1)/2, each one corresponding to a cyclic
subgroup. We then randomly choose some factor with a probability proportional to its degree, and we factor it over
its splitting field, until we have found a basis of the d-torsion. After O(1) random choices we will have a basis of the
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d-torsion. Each factorization costs O(log5 p) using the algorithm in [45], and verifying that two points generate the
d-torsion can be done with O(d) field operations. It then takes O(d) field operations to compute generators for all
kernels. As r = O(log p) we deduce that the first loop requires O(log® p) bit operations.

Computing P; ;i involves Frobenius operations and multiplications by scalars bounded by d (and so O(loglogp)
bits). This requires O(loglog p) field operations, that is a total of O(log3 p) bit operations. Any cyclic subgroup of
order (5" is generated by a point Q; = aP;; + bP;2, and the image of this point by «y, is aPi1x + bPj2,. One can
determine the integers a, b by an ECDLP computation or by testing random choices. There are roughly £;* = O(log p)
subgroups, and testing each of them requires at most O(loglog p) field operations, so finding Q; requires O(log D)
field operations. Evaluating o;_1(Q;) requires O(log? p) field operations. Computing the isogeny ¢; can be done in
O(log p) field operations using Vélu’s formulae. As » = O(log p) we deduce that the second loop requires O(log” p)
bit operations. [

We stress that in our signature algorithm, Algorithm [2| will be run O(logp) times. However the torsion points

are independent of both the messages and the keys, so they can be precomputed. Hence the “online” running time of
Algorithmis O(log® p) bit operations per execution.

Translating an isogeny path to an ideal. Let Ey, F1, ..., E,. be an isogeny path and suppose ¢; : E;,_1 — F;

is of degree £;*. We define Iy = Op. Then for i = 1,...,r we compute an element o; € I;_; and an ideal I; =
I;_1 4" + Opoy; that corresponds to the isogeny ¢; o --- o ¢;. This is analogous in the power-smooth case to the
notation I; as used in Section 4.3} in particular Iy = Oy D I D ... D I,. The idea is to determine suitable

endomorphisms «; € I;_; with the desired norm and that kill the required kernel point.

Algorithm 3 Translating isogeny path to ideal

Input: Eo, F1, ..., E, isogeny path, ¢; : E;_1 — E; of degree £;°.
Output: the ideal path Iy, ..., I,. corresponding to the isogeny path.
1: Let Iy = Op
2: fori=1,...,rdo
3: Find Q; of order £; that generates the kernel of ¢;

4: Compute [8](Q;) forall 8 € {1,1, %, 1tk

5: Let {51, B2, B3, Ba} abasis of I;_1

6: Let fi(w,z,y,2) = n(wh + zB2 + yBs + 2P4)

7 repeat

8: Pick a random solution to f;(w, z,y, z) = 0 mod £;'
9: Set a; = wh1 + xP2 + yBs + 264

10: until [0;](Q;) =0
11: Set I; = Ii,lﬁfi + O
12: Perform basis reduction on I;

In our protocols we will have £;* = O(logn) = O(log p); moreover we will be using O(log p) different primes.
The complexity of Algorithm [3|for these parameters is given by the following lemma.

Lemma 6. Let n = [[;_, ¢ withlogn = O(logp) and ¢; = O(log p). Assuming natural heuristics, Algorithm
can be implemented to run in expected time O(log4 p) and the output is a Z-basis with integers bounded by X such

that log X = O(log p).

PROOF: The input consists of a sequence of isogenies, and we remind that the representation of an isogeny is usually
by explicitly specifying a kernel point (or else equivalent information, such as a polynomial whose roots are the kernel
points). We remind that the £;" torsion points will generally be defined over degree £;* extension fields, hence they
will be of O(log2 p) size. Isogenies of degree d can be evaluated at any point using O(d) field operations.
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When the degree is odd the isogeny ¢; is naturally given by a polynomial ¢/; such that the roots of /; correspond
to the z-coordinates of affine points in ker ;. To identify a generator (); we first factor v; over F,. Using the algo-
rithm in [45] this can be done with O(log3 p) bit operations. We choose a random irreducible factor with a probability
proportional to its degree, we use this polynomial to define a field extension of IF,,2, and we check whether the corre-
sponding point is of order £;*. If not we choose another irreducible factor and we repeat. We expect to only need to
repeat this O(1) times, and each step requires O(log p) bit operations. So the total cost for line 3 is O(log® p).

Step 4 requires O(log logp) field operations to compute a point @ such that [2]Q; = Q. After that it mostly
requires O(log p) field operations to compute the Frobenius map. The total cost of this step is therefore O(log3 D).

Basis elements for all the ideals I; appearing in the algorithm can be reduced modulo Ogyn, hence their coefficients
are of size logn = O(log p).

To compute a random solution to f; modulo ¢;*, we choose uniformly random values for w, z, y, and when the
resulting quadratic equation in z has solutions modulo £ we choose a random one. As £;* = O(log p) the cost of this
step can be neglected. Computing [o;](Q;) requires O(log log p) operations over a field of size O(log” p). On average
we expect to repeat the loop O(¢5") = O(log p) times, resulting in a total cost of O(log® p). Computing each f; costs
O(log p) bit operations.

As 7 = O(log p) the total cost of the algorithm is O(log® p).

One can check that all integers in the algorithm are bounded in terms of n, and so coefficients are of size X where
log X = O(logn) = O(logp). O

Recall that the condition log X = O(log p) is needed in Lemma 4]

4.5 Classical Signature Scheme based on Endomorphism Ring Computation

In this section we give the details of our second signature scheme based on our new identification protocol, with
security relying on computing the endomorphism ring of a supersingular elliptic curve.

Key Generation Algorithm: On input a security parameter A generate a prime p with 2\ bits, which is congruent to
3 modulo 4. Let Ey : y> = 23 + Az over F, be supersingular, and let Oy = End(FEj). Fix B, S;, S as small

€k,i
as possible!'!|such that Sy = [], 6/, £;"' < B, ged(S1,92) = 1, and [] Zek -Zif
random isogeny walk of degree .S; from the curve Ey with j-invariant jo = 1728 to a curve F; with j-invariant j;.
Compute O; = End(E}) and the ideal I corresponding to this isogeny. Choose a hash function H with ¢ bits of output
(e.g., t = X or, more conservatively, t = 2)). The public key is PK = (p, j1, H) and the secret key is SK = O, or
equivalently 1.

< (p**)~!. Perform a

Signing Algorithm: On input a message m and keys (PK, SK), recover the parameters p and j;. Fori = 1,...,¢,
generate a random isogeny walk w; of degree S, ending at a j-invariant j, ;. Compute h := H(m, jo 1, ..., j2,.) and
parse the output as ¢ challenge bits b;. For i = 1,...,t,if b; = 1 use w; and Algorithm [3] of Section to compute
the corresponding ideal I; and hence its right order O3 ; = End(Es ;), then use the algorithm of Section on input
I1; to compute a “fresh” path between Oy and O ;, and finally use Algorithmto compute an isogeny path w; from
Jo to jo;. If b; = 0 set z; := w;, otherwise set z; := w;. Return the signature o = (h, 21, ..., 2;).

Verification Algorithm: On input a message m, a signature o and a public key PK, recover the parameters p and j; . For
each 1 <4 <t one uses z; to compute the image curve F» ; of the isogeny. Hence the verifier recovers the j-invariants
Ja2,i for 1 < ¢ < t. The verifier then recomputes the hash H (m, J21s s j27t) and checks that the value is equal to h,
accepting the signature if this is the case and rejecting otherwise.

We now show that this scheme is a secure signature.

Theorem 10. If Problem [6]is computationally hard then the signature scheme is secure in the random oracle model
under a chosen message attack.

! The exact procedure is irrelevant here.
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PROOF: As shown in Section4.7] if Problem [f]is computationally hard then the identification scheme (sigma pro-
tocol) has 2-special soundness and honest verifier zero-knowledge. Theorem 2] therefore implies that the identification
scheme is secure against impersonation under passive attacks. It follows from Theorem [3]that the signature scheme is
secure in the random oracle model. [J

Efficiency: As the best classical algorithm for computing the endomorphism ring of a supersingular elliptic curve runs
in time O(\/ﬁ) one can take logp = 2\. By Theorem |l and Lemma (I} taking B ~ 2(1 + ¢) logp ensures that the
outputs of random walks are distributed uniformly enough. Random walks then require 2(1 + ¢) log p bits to represent,
S0 signatures are

t+ % (2(1 +¢€)[logp| + ;ﬂog]ﬂ)

bits on average, depending on the challenge bits. For A bits of security, we choose ¢ = A, so the average signature
length is approximately A + (3)(4(1 + €)A + 7A) ~ 1(11 + 4€)A? ~ L A2. The conservative choice ¢t = 2\ gives
signatures of size approximately 112 bits.

Private keys are 2(1 + ¢) log p = 4\ bits if a canonical representation of the kernel of the isogeny between Ej and
F is stored. This can be reduced to 2 bits for generic E: if [ is the ideal corresponding to this isogeny, it is sufficient
to store another ideal J in the same class, and for generic £ there exists one ideal of norm n =~ /p. To represent
this ideal in the most efficient way, it is sufficient to give n and a second integer defining the localization of I at every
prime factor £ of n, for canonical embeddings of Bj, o, into M(Qy), where M5(Qy) is the group of 2 x 2 matrices
over the (-adics. This reduces storage costs to roughly 2 bits. Public keys are 3log p = 6 bits. A signature mostly
requires ¢ calls to the Algorithms of Sections and for a total cost of O(AG). Verification requires to check O(\)
isogeny walks, each one comprising O(\) steps with a cost O(\?) field operations each when modular polynomials

are precomputed, hence a total cost of O(\°) bit operations (under the same heuristic assumptions as in Lemma {4)).

Optimization with Non Backtracking Walks: In our description of the signature scheme we have allowed isogeny paths
to “backtrack”. We made this choice to simplify the convergence analysis of random walks and because it does not
affect the asymptotic complexity of our schemes significantly. However in practice at any concrete security parameter,
it will be better to use non-backtracking random walks as they will converge more quickly to a uniform distribution [2].

4.6 Post-Quantum Signature Scheme based on Endomorphism Ring Computation

We briefly describe the signature scheme arising from applying Unruh’s transform to the identification protocol of
Section ]

Key Generation Algorithm: On input a security parameter A generate a prime p with 4 bits, which is congruent to 3
modulo 4. Let Ey : y* = 2® + Ax over F,, be supersingular, and let Oy = End(Ejp). Set t = 3\. Fix B, 51, S as
in the key generation algorithm of Section Perform a random isogeny walk of degree S; from the curve Ey with
j-invariant jo = 1728 to a curve F; with j-invariant j;. Compute @7 = End(F;) and the ideal I corresponding to
this isogeny.

Choose a hash function H : {0,1}* — {0,1}'. Let Ny ~ 2logp and N1 ~ Zlogp be upper bounds for the
bitlengths of the representations of isogeny paths in the algorithm, respectively in responses to challenges 0 and 1. For
i=0,1letG;:{0,1} — {0,1}" be a hash function such that every element has polynomially many preimages.
The public key is PK = (p, j1, H, Go, G1) and the secret key is SK = Oy, or equivalently 1.

Signing Algorithm: On input a message m and keys (PK, SK), recover the parameters p and j;. For ¢ = 1,...,¢
generate a random isogeny walk w; of degree S, ending at a j-invariant js ;.

For+ = 1,...,t apply Algorithm [3| of Section to compute the ideal I; corresponding to the isogeny path w;,
then use the algorithm of Section[d.3|on input I1; to compute a “fresh” ideal corresponding to a path between Oy and
O5,;, and finally use Algorithmto compute an isogeny path w; from jg to j ;.

Compute ¢; 0 = Go(w;) and g; 1 = G1(w}) for 1 < i < ¢, where the bitstrings w; and w} are padded with zeroes
to become binary strings of length N. Compute h := H(m, j1, jo.1,---,J2.t: 91,0, 91,15 - - - » §£,0, §¢,1) and parse the
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output as ¢ challenge bits h;. Fori = 1,...,t, if h; = 0 then set RSP; = w; and if h; = 1 then set RSP; = w)}. Return
the signature o = (A, RSP1,..., RSPy, G1.1—hys-- - Gt 1—h,)-

Verification Algorithm: On input a message m, a signature o and a public key PK, recover the parameters p and j.
For each 1 < i < t one uses RSP; to compute the image curve Ej ; of the isogeny (if »; = 0 then RSP; is a path
from E; and if h; = 1 then it is a path from Ej). Hence the verifier recovers the j-invariants jp ; for 1 <14 <t¢.
The verifier then computes g; p, = Gp, (RSP;) for 1 < ¢ < ¢ (again padding to N bits using zeros). Finally the
verifier computes the hash value

B = H(m,j1,52.1, s J2,ts 91,0y G115+ - - » Gt,05 Jt.1)-

If i/ = h then the verifier accepts the signature and otherwise rejects.

We now show that this scheme is a secure signature.

Theorem 11. If Problem|[6)is computationally hard then the signature scheme is secure in the quantum random oracle
model under a chosen message attack.

PROOF: As shown in Section if Problem [6] is computationally hard then the identification scheme (sigma
protocol) has 2-special soundness and honest verifier zero-knowledge. A result of Unruh [39]] then implies that the
signature scheme is secure in the quantum random oracle model. O

Efficiency: For the same reasons as in the application of the Unruh transform to the De Feo-Jao-Plit scheme, this
signature scheme is less efficient than its classical counterpart. Again, we only send half the values g; ;, since the
missing values can be recomputed by the verifier.

The average signature size is ¢ + ¢((2logp + % log p)), on the basis that half the challenge bits are 0 and half of
them are 1. For ) bits of security, we choose log p = 4\ and ¢ = 3. Then the average signature size is approximately
6612

4.7 Comparison

Tables |1| and |2| summarize the main efficiency features of the four signature schemes based either on De Feo-Jao-
PIdt or on our new identification scheme, and on the Fiat-Shamir or Unruh transforms. The numbers provided were
obtained by optimizing signature sizes first, then signing and verification time and finally key sizes; other trade-offs
are of course possible. The scheme based on the De Feo-Jao-Plit identification protocol and Unruh transform was
discovered independently in [48]]; the version we give incorporates optimizations that reduce the signature sizes for
the same security guarantees{T_Zl Signatures based on De Feo-Jao-Pl{it identification protocol are simpler and somewhat
more efficient than signatures based on our new identification protocol; however the latter have the advantage to rely on
more standard and potentially harder computational problems. Schemes based on the Fiat-Shamir transform are more
efficient than schemes based on Unruh’s transform; however the latter provide security guarantees against quantum
adversaries.

Table [T] and a quick comparison with RSA signatures suggest that isogeny-based signatures schemes may be
efficient enough for practical use. Indeed for RSA signatures, key sizes are cubic in the security parameter, and signing
and verification times are respectively quasi-quadratic and quasi-linear in the key sizes (the latter assuming a small
public key exponent is used), amounting to O()\j) and O()\G). As for concrete parameters, key sizes are much smaller
for isogeny-based signatures than for RSA signatures and comparable to ECDSA signatures. Further work in this area
should aim at decreasing signature sizes.

12 Both signature sizes depend linearly on a parameter ¢ which we fixed in a more conservative manner than Yoo et al. With ¢ = 2
their signatures are 69\ bits and ours are 482 bits, and with ¢ = 3 their signatures are [103.5)*] bits and ours are 722 bits.
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Table 1. Asymptotic efficiency of four signature schemes using De Feo-Jao-Plit and our identification protocol, and Fiat-Shamir
and Unruh transform, as a function of the security parameter A. All sizes are in bits and computation costs are in bit operations.

Private Key Size|Public Key Size|Signature Size|Signing Costs|Verification Costs
DFJP + FS 2\ 28 % O(\%) O(\%)
Secfd+ Fs 2X 6 )2 O(\%) O(\%)
DFIJP + U 3\ 42\ 54)\* O(\%) O(\%)
Secfl+U 4N 122 662 O(\%) O(\%)

Table 2. Concrete efficiency of our signature schemes at security levels of 128 and 256 bits. Security level provided are against
classical or quantum adversaries for schemes based on the Fiat-Shamir or Unruh transforms respectively. All sizes are in bits.

128 bit 256 bit
Private Key|Public Key|Signature||Private Key|Public Key|Signature
DFIP + FS 256 3584 98304 512 7168 393216
Sec@+ FS 256 768 90112 512 1536 360448
DFIP + U 384 5376 884736 768 10752 | 3538944
Sec@+ U 512 1536 1081344 1024 3072 | 4325376

5 Conclusion

We have presented two signature schemes based on supersingular isogeny problems. Both schemes are built from
a parallel execution of an identification scheme with bounded soundness, using the Fiat-Shamir transform. The first
scheme is built directly from the De Feo-Jao-Plit identification protocol with some optimization. A similar scheme
was given by Yoo, Azarderakhsh, Jalali, Jao and Soukharev [48]. The second scheme is more involved, and introduces
a new randomisation method for isogeny paths. A crucial ingredient for our second protocol is the quaternion isogeny
algorithm of Kohel-Lauter-Petit-Tignol [32]] in the powersmooth case, for which we provide a more complete descrip-
tion and analysis. The first scheme is significantly more efficient, but the second one is based on an arguably more
standard and potentially harder computational problem.

Our schemes rely on problems that can potentially resist to quantum algorithms. However this family of problems
are also are rather new in cryptography. Among all of them, we believe that the problem of computing the endomor-
phism ring of a supersingular elliptic curve (on which our second signature scheme relies) is the most natural one to
consider from an algorithmic theory point of view, and it was the subject of Kohel’s PhD thesis in 1996. The problem
is also potentially harder than Problems [3|and 4] considered in previous works (and used in our first signature scheme).
Yet, even that problem is far from having received the same scrutiny as more established cryptography problems like
discrete logarithms or integer factoring. We hope that this paper will encourage the community to study its complexity.
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