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Abstract

In recent years, there has been a growing trend towards outsourcing of computational tasks with the development of cloud
services. The Gentry’s pioneering work of fully homomorphic encryption (FHE) and successive works have opened a new vista
for secure and practical cloud computing. In this paper, we consider performing statistical analysis on encrypted data. To improve
the efficiency of the computations, we take advantage of the batched computation based on the Chinese-Remainder-Theorem. We
propose two building blocks that work with FHE: a novel batch greater-than primitive, and matrix primitive for encrypted matrices.
With these building blocks, we construct secure procedures and protocols for different types of statistics including the histogram
(count), contingency table (with cell suppression) for categorical data; k-percentile for ordinal data; and principal component analysis
and linear regression for numerical data. To demonstrate the effectiveness of our methods, we ran experiments in five real datasets.
For instance, we can compute a contingency table with more than 50 cells from 4000 of data in just 5 minutes, and we can train a
linear regression model with more than 40k of data and dimension as high as 6 within 15 minutes. We show that the FHE is not
as slow as commonly believed and it becomes feasible to perform a broad range of statistical analysis on thousands of encrypted
data.

I. INTRODUCTION

In recent years, considerable efforts have been made in the field of fully homomorphic encryption. Starting from Gentry’s
breakthrough work in constructing the first fully homomorphic encryption (FHE) scheme [7], successive innovations and
improvements [3]-[6], [24], [27], [28] of fully homomorphic encryption have been proposed. At a high level, FHE enables
us to perform addition and multiplication on ciphertexts. Thus it allows us to evaluate any function f on ciphertexts. We can
decompose the input into bits and encrypt each bit separately. Since addition and multiplication on {0, 1} are equivalent to the
AND-gate and the XOR-gate in boolean circuits, we can construct the corresponding boolean circuit for the function f and
evaluate the boolean circuit on ciphertexts. Such scheme has become widely recognized as a technology to enable processing of
private data without compromising privacy.

Computational resources of cloud computing are completely virtualized, which helps to reduce the operational costs of service
providers. However, such virtualization makes it difficult to keep control of data. In many domains; for instance, medical, and
financial ones, confidentiality and privacy of data are one of the principal concerns raised in cloud-based applications. FHE
schemes provide a natural method to address these concerns by encrypting data in the cloud and performing computations on
ciphertexts without decrypting the data. Since FHE schemes theoretically allow evaluating any function on ciphertexts, FHE
schemes might enable us to use the cloud for outsourcing computational tasks such as statistical analysis with a guarantee of
data privacy.

Statistical analysis usually involves a large scale of data with a large number of dimensions. As a result, conducting statistical
analysis in a way that evaluates the corresponding boolean circuits on FHE ciphertexts might be inefficient in practice, in terms
of the memory usage and computational time. On the other hand, we can avoid encrypting the data bit-by-bit to obtain more
efficient solutions. In [24], [31], and [20], particular encoding methods are used to obtain computationally and spatially efficient
solutions on FHE ciphertexts. We remark that these encoding methods are specifically designed for a certain statistical analysis
task. Thus it seems difficult to reuse these encoding methods for other tasks.
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In this paper, we focus on applications of FHE to statistical analysis with three types of data. Our goal is to conduct a wide
range of statistical analysis on FHE ciphertexts with computational and space efficiency. To achieve this goal, we need to have
somewhat generic encodings for statistical analysis and fast computing routines on FHE ciphertexts. In this work, we present
efficient procedures for a wide range of statistical analysis using just a few of generic data encodings. Specifically, we use two
encodings to conduct descriptive and predictive statistics including the histogram (count, histogram order), contingency table
with cell suppression, k-percentile, principal component analysis, and linear regression.

A. Related Works

The first fully homomorphic encryption (FHE) scheme is proposed in [7] while the efficiency of FHE is known as a big
question following its invention. During the last few years, considerable effort has been devoted to improving the performances
of FHE schemes [3]-[6], [24], [27], [28]. Moreover, packing techniques for example [28] and [24] to name a few, are used
for accelerating the computation on ciphertexts and are applied to real applications. In [31] the authors present a specific string
matching method with FHE; and in [20], the authors demonstrate a specific method for conducting a x? test with FHE. These
methods both leverage unique data encoding methods for particular problems. Thus these methods might be lacking in generality.
The generic database query system using FHE [1] can support different aggregation queries.

Several studies that realize evaluating descriptive statistics using FHE have been reported. Evaluating the standard descriptive
statistics such as the mean and standard deviation from FHE ciphertexts are presented in [24]. In [29] the authors also show
how to compute the co-variance using FHE. Notice that these statistics involve numerical attributes only, while in the statistical
analysis we can also have categorical and ordinal data. For categorical and ordinal data, we can implement procedures for
statistics such as histogram and k-percentile using the private database query system of [1]. These implementations might require
O(N) multiplicative depths on ciphertexts where NV is the number of data points, this might be impractical for a large scale of
datasets.

For predictive statistics, the earlier study [12] presents the construction of building linear classifiers (i.e., the Linear Mean
Classifier and Fisher’s Linear Discriminant Classifier) from FHE encrypted data. More recently, the work of [2] shows three
protocols for private evaluation of hyperplane decision classifiers, naive Bayes classifiers and decision tree classifiers on
ciphertexts. Notice they focus on the model evaluation and the privacy-preserving model building is beyond the scope of [2].
In [29], the authors also present a protocol to obtain a linear regression model from FHE encrypted data using Cramer’s rule
or matrix inversion. The computational complexity of their method, thus, blows up factorially with the data dimension. In other
words, their method is only suitable for data with small dimensions, i.e., less than 6. To the best of our knowledge, no practical
FHE solution that trains the linear regression model from data with high dimension has been established.

B. Contribution

In this work, we show that we can evaluate a broad range of statistics for three different kinds of data on FHE ciphertexts using
two encodings methods. The evaluation of many descriptive and predictive statistics commonly requires comparison operations
and matrix operations. We, thus, propose two building blocks: a novel batch greater-than primitive and a layout consistent matrix
primitive. We give concrete implementations using an open-sourced library, i.e., HElib [26]. Our contributions are summarized
as follows.

Batch Greater-than Primitive. Comparing encrypted numbers is a common low-level primitive in many cryptographic protocols.
In Section IV-B, we leverage the packing technique of [28] and present a batch variant of the greater-than protocol of [11].
Specifically, our bGT primitive requires O([(62¢)/¢]) homomorphic operations to compare 6 pairs of d-bit integers while the
greater-than protocol of [11] needs O(62¢) homomorphic operations. Thereby, a large ¢ can translate to a substantial improvement
in efficiency.

Layout-Consistent Matrix Primitive. The current routine supports multiplication of encrypted matrices but the layout of the
resulting matrix is inconsistent with that of the input [14]. Our matrix primitive, described in Section IV-A, allows one to
conduct matrix additions and multiplications without changing the layout of encrypted matrices. We achieved this by arranging
matrices in a row-wise manner and coupling the row-wise layout with a replication operation from HEIlib. Consequently, this
layout consistency enables us to conduct iterative algorithms [13], [22] on encrypted matrices and contributes to our methods
for predictive statistics.

To show that our building blocks are suitable for secure statistical analysis, in Section IV-C, we give experimental comparisons
of our FHE-based bGT and matrix primitive with the garbled circuit (GC) [30] implementations using the state-of-the-art
framework [19]. From the experimental results, we can see that our FHE-based primitives, in some common cases, are competitive
with the GC counterparts.

Wide Range of Descriptive Statistics. We present practical procedures for conducting the k-percentile queries and contingency
tables with cell suppression functionality in Section V-B. We can derive the secure versions of these statistics from the private
database query system of [1]. However, it might be impractical to apply it to these descriptive statistics since [1] requires
multiplicative depths of O(NN) to perform the comparison, where N is the number of the data. On the other hand, our procedures
only require a constant multiplicative depth, which is of particular importance for the FHE scheme.



Our procedure for evaluating the contingency table also supports the cell suppression functionality which naturally requires
comparisons. With the use of our bGT primitive, we show that we can achieve an efficient procedure for evaluating the contingency
tables with cell suppression on ciphertexts without any interaction. Our review of the literature suggests that this report is the
first approach to secure evaluation of contingency tables with cell suppression from FHE ciphertexts.

Protocols for Building Predictive Models. We describe procedures for principal component analysis (PCA) and linear regression
in Section V-C. Our procedures apply iterative algorithms that involve matrix additions and multiplications only. Thereby, we
can evaluate these algorithms on FHE ciphertexts straightforwardly. However, these iterative algorithms require a large message
space whereas HEIib only offers a limited size of message space. In Section V-C, we also propose the use of Plaintext Precision
Expansion (PPE), which provides desired message space by compositing two or more ciphertexts with a limited message space.
With our matrix primitives and PPE, we can evaluate the PCA and linear regression with data dimension up to 20 which is
4-times larger than that in [29]. Our review of the literature suggests that this report is the first practical approach to building a
linear regression model with high dimensional data from FHE ciphertexts.

II. PRELIMINARIES

We begin by introducing the notations used in this paper. We write [d] to denote the set of positive integers {1,...,d} and

the cardinality of a set D are marked as |D|. We write x & D to denote that = is sampled uniformly at random from D. A
matrix is shown as a bold uppercase roman letter, e.g., A. We presume vector v forms a column vector following the convention
of statistics. The row vector is represented by the transpose operation, e.g., v . Let a, denote the i-th row of the matrix A:
elements of a matrix are represented by non-bold lowercase roman letters with subscripts, e.g., a;;. Matrix-vector multiplication
and matrix multiplication are denoted as X a and XY, respectively. We denote the element-wise multiplication of vectors as
a x b where (a x b); = a;b; for all possible position j. We write @ < k (resp. a > k) to denote the left-rotation (resp.
right-rotation) of the vector a with an offset k. We use 1{PP(z)} to denote the indicator function for the predicate P(z), that is
1{P(x)} =1 if and only if P(x) is true, and 0 otherwise. We denote the encryption of a message x as [z].

A. Leveled Homomorphic Encryption

In this work, we specifically examine the Ring Learning with Error [21] variant of the Brakerski-Gentry—Vaikuntanathan
(BGV) scheme, a leveled homomorphic encryption scheme proposed in [3].

The message space of the BGV’s scheme works over a polynomial ring modulo a cyclotomic polynomial A; := Z;[z]/®,,(x),
where ®,,(x) is the m-th cyclotomic polynomial. Five algorithms specify the encryption scheme: KeyGen, Encpk, Decs, Add
and Mul stand for key generation, encryption, decryption, addition, and multiplication respectively. We write pk and sk to denote
the public and private keys, respectively. When the choice of the key is clear, we drop the pk and sk subscripts. KeyGen takes
as input three positive integers m, ¢, and L; outputs a public-private key pair (pk,sk). Here m and ¢ determine the message
space; L indicates the multiplicative depth that the scheme can evaluate. According to the security analysis of [9], to achieve
k-bit security, parameters in the KeyGen should follow

(L(log ¢(m) + 23) — 8.5)(x + 110)
$(m) > =3 :

where ¢(-) is the Euler function. In a leveled homomorphic encryption, we have additive and multiplicative homomorphisms:

Dec(Add([a], [0])) =a+b mod (D,,(x),t)
Dec(Mul([a], [b])) =a x b mod (P, (z),t),

ey

where messages a,b € A;. Also, the BGV’s scheme supports scalar addition and multiplication, that is, given a ciphertext Enc(z)
of x € A, we can have operations that output ciphertexts Enc(a + x) and Enc(ax) for all a € A;. Due to space limitation, we
omit the details of functions of the BGV’s scheme here. We refer to [3] for more information about these functions.

Packing. One interesting and useful property of the BGV’s scheme is that it enables us to pack multiple “messages” into one
ciphertext allowing asymptotically efficient computation on encrypted data [28]. The cyclotomic polynomial ®,,(x) factors into ¢
irreducible polynomials for some prime modulo ¢. That is ®,,,(z) = Hle Fj(z) mod t. We can pack an integer vector u € Z
into an element a € A; by viewing each element of w as a polynomial (only with the constant term) and then applying the
polynomial Chinese-Remainder-Theorem over factors F;(x). On the other hand, the unpacking function just takes the residual
of the polynomial factors as u; = ¢ mod (Fj(z),t) for 1 < j < L.

The efficiency gain of the CRT-packing comes from the element-wise addition and multiplication. We briefly demonstrate
this property. Let Pack : Z{ — A; be the packing function, and Unpack : A; ~ Z! be the unpacking function. Given vectors
x,y € 7!, the CRT-packing works as follows.

Unpack(Pack(x) + Pack(y)) =« +vy mod ¢t
Unpack(Pack(x) x Pack(y)) =« x y mod t.



If we use Pack to encode the integer vectors before applying the encryption function, we can perform ¢ homomorphic additions
(resp. multiplications) by just a single application of Add (resp. Mul).

In addition to element-wise addition and multiplication, the CRT-packing also supports manipulations of encrypted vectors.
Specifically, we can homomorphically rotate an encrypted vector and replicate one element of an encrypted vector. Similarly,
let Rotate : A; x Z — A, be the rotation function and Replicate : A; x Z — A; be the replication function. These functions
work over the CRT-packing as follows.

Unpack(Rotate(Pack(x), k)) = u € Z¢

Unpack(Replicate(Pack(z), k)) = v € Z¢,
where we have u; = Zj4r mod ¢ (rotation) and v; = x, (replication) for all 1 < j < /. For rotation, we can have negative k
while we require 1 < k < £ for the replication. In this work, we take advantage of the CRT-packing and the vector manipulation

operations to give efficient solutions of statistical analysis. For instance, we can perform matrix multiplications within a quadratic
order of homomorphic operations. We present the matrix primitive in Section IV.

For the sake of simplicity, we write [a] + [b] and [a] - [b] to denote Add([a], [b]) and Mul(Ja], [b]), respectively. We also
use the rotation operators to indicate the invocation of the Rotate function, i.e., [a] > k or [a] < k. When we apply the
Pack function to vectors with length less than ¢, we append zeros to the vectors. We usually assume enough spaces for packing
vectors but we discuss one exception in Section IV, in which over-sized vectors are divided into smaller parts before applying
the CRT-packing.

B. Data Representation

In this paper, we aim to conduct a broad range of statistics of numerical, ordinal, and categorical data. We firstly describe
data representations for different types of attributes.

Categorical Attributes. The values of categorical attributes represent some states without meaningful order. Let d. be the number
of categorical attributes. We denote the domain of each categorical attribute as

Cj = {SJDS%? T 7S|JCJ.‘}7 1 < J < dC?
where si is the k-th state of the attribute C;. The cross-product gives the domain of the categorical attributes C := C; x -+ - x Cq,.
Let ¢/ € C be a vector of the categorical data. Then cij € C; is a categorical value of the j-th categorical attribute.

Ordinal Attributes. Values in an ordinal attribute have a meaningful ranking among them. We designate the number of ordinal
attributes as d,. Similarly, the domain of each ordinal attribute is represented as

O ={81.80,-+ .8, }, L <j<d,,

where §k is the k-th state of the attribute ;. The order of attribute values is given as & < --- < §|j0‘. We also present the
J

domain of the ordinal attributes as the cross-product O := O; x --- x Oq4,. Let o;r € O be the i-th ordinal data. Then o;; is an
ordinal value of the j-th ordinal attribute.

Numerical Attributes. In this paper, we presume that all the numerical values are integers since the BGV’s scheme can only
process integers. We use a fixed point number of finite precision. Given € R and M € Z, we have |[Mz]| € Z where |-]
rounds a real number to the nearest integer. Let d,, be the dimension of numerical data and x; € Zf" be the ¢-th numerical
data. The j-th element of each vector is designated as the j-th numerical attribute.

We represent the collections of N categorical, ordinal, and numerical data points respectively as follows.

el ol 2
C=|:]|echo=|:|eoVNX=|: |ezy*™

T T T
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C. Data Encoding

The choice of value encoding method can affect the efficiency of function evaluation on ciphertexts dramatically. We introduce
some encoding methods that are specifically to categorical and ordinal data.

Indicator Encoding &g : C; — {0, 1}/61. &4 takes as input an attribute value S{C € C; and outputs a vector with all elements
zero except the k-th element, which is set to 1. For instance, presuming |C;| = 3, the indicator encoding of the second state s
will be Eq(sh) = [0,1,0]. We construct protocols of the histogram (count) and the contingency table using this encoding.

Staircase Encoding & : O; — {0, 1}'01‘. Staircase encoding takes as input an attribute value §f€ € Oj; and outputs a binary
vector. The staircase encoding sets the 1-st to the (k — 1)-th elements as 0 and sets the k-th to the last elements as 1. For
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Fig. 1: A contingency table of two categorical attributes C,, and C, of N data points.

example, presuming the domain size of |O;| = 3, the staircase encoding of the second state 5} will be £y(85) = [0,1,1]. We
use & for the evaluation of k-percentile.

To apply the CRT-packing to different types of attributes, we process the numerical data with constant magnification and
convert the categorical and ordinal data using the indicator encoding and the staircase encoding. For instance, we first process a
categorical value ¢;; with the indicator encoding and then encrypt it as [Pack(&iq(ci;))]. Also, when X is a matrix, let Pack(X)
be the vector formed by applying the operation to each row of X separately. That is Pack(X) = [Pack(zx] ), Pack(z] ),...].
In this paper, we represent the encryption of matrices and vectors with the CRT-packing by default. We write [x] to denote the
ciphertext of vectors instead of using [Pack(x)] for the sake of simplicity. Similarly, [ X] denotes the ciphertext of the matrix
X.

III. PROBLEM STATEMENT

In this work, we consider statistical functions including the histogram (count and histogram order) and contingency table
(with cell suppression) for categorical attributes; the k-percentile for ordinal attributes; and the principal component analysis and
linear regression for numerical attributes. We present these statistics in turn.

A. Descriptive Statistics

Single Categorical Attribute. Let {c1;,...,cn;} be the j-th categorical attribute values of N data points. If ¢;;s are encoded
by the indicator encoding, then the summation of vectors yields the histogram.
N
Hist({c1,...,¢cn;}) = h where h = Zé’id(cij). )
i=1

The histogram query naturally gives the count and histogram order. The count of the state sé can be given as
Count({ci;,...,cn;},p) =1, h, 3)
where 1,, is an indicator vector of which the elements are 0 except the p-th element is 1.
The histogram order reveals the order of the counts of the histogram h. We define this functionality as
HistOrder({ci;,...,cn;}) =k, 4
where the count of the state s{cx is not less than the count of the state siy forany 1 <z <y <|Cj].

Multiple Categorical Attributes. Next, we consider the evaluation of contingency tables of two categorical attributes C,, and
Cq. Evaluation of a contingency table corresponds to counting combinations (s%, s¢) for all possible (u,v) pairs. We write [ty

to denote the count of the combination (s£, s9). For instance, one categorical data point ¢; = [--- , sh, -+, s%, .- -] contributes to

the count p93 by 1. An example of the contingency table of attributes C, and C, is shown in Fig. 1. We define the functionality
of contingency table evaluation as

ContingencyTable({cip, cig} 1) = p. 5)

In a contingency table, small counts represent rare individuals or cases of the population. For concerns of individual privacy,
applications that evaluate contingency tables with private data collected from different sources usually additionally perform cell
suppression [16], [23] to conceal existence of individuals with rare combination of attribute values. A common practice of the
cell suppression is to zero-out the counts that are smaller than a constant threshold 7. The functionality of zero-out suppression
can be defined as

CT-Suppression({cip, cig}1-1, T) = i, (©6)

where fis = ps - L{pus > T} for 1 < s < |Cp||C,|. Notice that p is the output of ContingencyTable. We describe a novel
method to compute CT-Suppression in Section V-B.



Ordinal Attributes. For the ordinal attributes, we consider k-percentile. k-percentile is the value that separates given ordinal
values into two parts so that the one part with lower values contains k& % of the data. For instance, the 50-percentile is also
named as the median. Letting {o01;,...,0x,} be the j-th ordinal attribute values of N data points, we can sort the ordinal values
in ascending order as 0r(1); = -+ = 0x(n);. Here, 7 is a permutation function that returns indices in descending order. Using
the notation of 7, we can define the k-percentile functionality as

k-Percentile(o1;,...,0n;) = on+j, @)
where N* := m([(k- N)/100]) and 0, (;); = Or(i+1); holds for all 1 <i < N.

B. Predictive Statistics

Principal Component Analysis. PCA is a statistical procedure that converts a set of numerical observations of possibly correlated
variables into a small number of directions that are mutually linearly independent. In PCA, we firstly compute a covariance
matrix

Lo T 1 T
E:NX X —pp whereu:Nin. ®)
Then we compute the eigenvalues and elgenvectors of 3. Let the eigenvalues of ¥ be A\; > --- > A4, and denote the
corresponding eigenvectors as uq, . . . An iterative algorithm (i.e., PowerMethod) can evaluate the k-th elgenvalue A, and

the corresponding principal component uk with T iterations.
PowerMethod (X, {}, }q 1,{uq}
1. Fr.=x- Zq;l Aquqgu,

$
2. Choose a random vector v(®) & 7.

3. For 0 <7 < T, compute
) = 3,07, )
ey ||1,(T)||

4. Output uj, = o] and A\, = o@D

Linear Regression. The problem of linear regress1on is to find a model that predicts values of a numerical target Varlable from
observations of numerical input variables using a linear equation. Let {(x i 7yl)}N | be the given dataset in which x; are the
input variables and y; is the target variables. The model of linear regression is given as y ~ @« 'w. Therein, the model w is
obtained by minimizing the least-squares error:

w' = arg mm—Zn% z] w3
i=1

The analytical solution w* is given as
w' = (X'X)'X "y, (10)

where the matrlx X and vector y are the collections of numerical data. The Eq. 10 is immediately solved if we can evaluate the
inverse of X ' X. We leverage a division-free variant of the iterative matrix inversion method from [13] so that we can compute
the matrix inversion on FHE encrypted matrices. Let M be a matrix, A be a real value, and T be the number of iterations. The
division-free matrix inversion method works as follows.

DF-MatrixInversion (M, A\, T):
1. Initialize A = M, R =1, a0 = ).
2. For 0 <7 < T, compute
R — 900 R _ BT A7)
ATTD — 9, AT _ A(T)A(T): (11)

QD) = (Mg

3. Output R

Here I is an identity matrix. This method approximates the inverse of the matrix M. According to the analysis of [13], R™
converges to A\2° M ' quadratically if ) is close to the largest eigenvalue of M.
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TABLE I: Complexity of our primitives. We write to indicate that the homomorphic operation is not used.

addition multiplication rotation
[XT - [u] 0(d) 0(d) O(dlog d)
[X]+ Y] O(d) - -
[X]-[Y] o(d?) o(d?) O(d® log d)
bGT o(n)/e]) | o([(eD)/£1) | O(log D)

IV. BUILDING BLOCKS

In the previous section, we have described the descriptive and predictive statistics that we are going to evaluate. We can
see that the evaluations of these statistics require operations including matrix addition, matrix multiplication, and comparison
operation. In this section, we present two building blocks for matrix operations and comparison on encrypted values. We give
the summary of complexities of our primitives in Table I.

A. Matrix Operations

For our statistical analysis, we process every data in the form of matrices and vectors. Once matrices are encoded and
encrypted, it requires expensive homomorphic operations to rearrange the layout of these values. For instance, it requires many
homomorphic operations to change a row-wise encrypted matrix to a column-wise encrypted counterpart. To achieve a low
computation overhead, it is important for us to keep the layout consistent throughout each matrix operation. We introduce
layout-consistent matrix operations for FHE encrypted matrices.

Halevi et al. [14] introduced three layouts to represent matrix as a single ciphertext: the row-major order, the column-major
order, and the diagonal-major order. In this work, we consider the row-major order in which rows of the matrix are encrypted
separately. It is natural to apply this layout in real applications. For instance, some research agents might independently hold
data with a different size but following the same data schema. Recall that we apply the CRT-packing to each row of matrices
and then encrypt each row. Thereby, we write {[z,]}%_, and {[y, ]}%, to denote the ciphertexts of each row of X and Y,
respectively. The ciphertext of a vector u € Z¢ is [u].

Matrix—vector Multiplication. Halevi et al. [14] introduced a general procedure for the matrix—vector multiplication. For the
row-major layout, their procedure requires to “sum up” all the slots of the CRT-packing, which might be expensive than the
replication operation regarding computational time. However, we give a different routine according to the observation that we only
involve symmetric matrices in the matrix—vector multiplication (i.e., PCA). We thus can conduct the matrix—vector multiplication
as [Xu] = Zle[[mj]] - Replicate([u],¢). The idea of this equation follows that the matrix X being symmetric, thus, having
the i-th row equals to the ¢-th column.

Matrix Addition & Multiplication. We can simply conduct the layout-consistent matrix addition as [z, ] + [y, ] for 1 <i <d
while we need more delicate operations to achieve the matrix multiplication without destroying the row-major layout.

We hope to conduct XY so that we can evaluate the inverse matrix (i.e., Eq. 11) on encrypted matrices. To keep the layout
consistent, we use the Replicate function. We conduct the matrix multiplication on encrypted matrices as

d
> Replicate([z, ], i) - [y, ] for 1 < j < d.
i=1
We give an example to demonstrate this routine as follows.
j=1
[L2]) fle flf _|1-le f]+2-[g 7]
3 4] [lg Al |3-le fl+4-[g 7
j=2

Also, we can compute [uu '] on the ciphertext [u] in a similar manner. Specifically, the ciphertext of the k-th row of the matrix
uu' is given as Replicate([u], k) - [u]. We write [u] - [u"] to denote this operation.

B. Batch Greater-than Primitive

For conducting statistics such as contingency tables, histogram order, and k-percentile, we need comparison operations. To
this end, we introduce a novel batch greater-than (bGT) primitive.

Given integers a, b € [D] for some positive D, we know that @ > b if and only if 3w € [D] such that a —b—w = 0. Thereby,
we can construct a straw-man protocol by homomorphically computing (@ —b — w) - r for all w € [D] where the random value r
is used to hide |a — b|. This straw-man protocol, thus, requires O (D) homomorphic operations and generates O(D) ciphertexts.
The idea behind the straw-man protocol follows the greater-than protocol of [11].



Algorithm 1 Batch greater-than primitive.

- Input: [a], and [b], where a,b € [D]’ for D, € Z".
- Output: [v] where the length of ~ is 6D.
- Remark: One can learn 1{a; > b;} = 1{0 € {vr-0+5}1 o }

1: Compute [a] = Repeat([a], 0, D); [b] = Repeat([b], 8, D).

2: Generate random permutations 7; : [D] — [D] for 0 < j < 6.

3: Compute a ¢ - D dimension vector w in which w,(j) = m;(a). Here a(j) := 0 - a + j, fora € [D] and 0 < j < 6.
4: Compute [3] = [a] — [b] — Pack(w).

5: Compute [v] = [3] - Pack(r) where r & (Z:/{0})?P.

6: Output [v].

We can reduce the computational cost and the number of ciphertexts of the straw-man protocol by using the CRT-packing.
Recall that the CRT-packing enables us to pack /¢ integers into one ciphertext and the homomorphic addition and multiplication
are then carried out on these ¢ integers simultaneously. Thereby, we can compute (a — b — w) - r with ¢ different w by viewing
these w as a vector w and using the Pack function. Moreover, we need to shuffle the positions of each w before packing them
since |a — b| will be revealed if the position of w is predictable. This greater-than method, thus, requires O([D/¢]) homomorphic
operations and generates O([D/¢]) ciphertexts which is a considerable improvement for a large .

Indeed, we can give a generalized batch greater-than method which takes as input [a] and [b] where a,b € [D]? and outputs
l{aj > bj} for all 1 < j < 6. The method described above is a specialization of this with § = 1. The bGT protocol is shown
in Alg. 1. The Repeat function (Step 1) takes as input Ju], 6, and R. Repeat duplicates the first 6 elements of u for R times.
For instance Repeat([u], 8 = 3, R = 2) = [[ujususuiugus]].

Repeat([u], 0, R):

. [a] =[u]- Pack([l.(.).lOO...]).
2. R= (bp ---bibg)2 where b, is the most significant bit.

3. For0<i1<p
a) If b; is 1 then [a] = [a] > k; [a] = [@] + [u]
b)) [u] = [u] + ([u] > k)
¢c) k=kx2

4. return [u]

The Repeat procedure requires O(log, R) homomorphic additions and rotations.

We operate multiple comparisons in a batch manner. Thus we need to avoid collisions of w in different comparisons (Step
3). Moreover, we might do not have enough spaces, i.e., { < 6D for packing. In this case, we can extend the spaces with
multiple ciphertexts. The bGT protocol performs comparisons of § pairs of integers and requires O([(0D)/¢]) homomorphic
operations and generates O([(0D)/¢]) ciphertexts. In this work, we usually use § = 1 while we use 6 > 1 in the evaluation of
the contingency table and k-percentile. We usually use the bGT only in the last step of a larger protocol since we need to decrypt
the output of bGT to obtain the comparison result. However, exceptions do exist when we can take advantage of the randomness
of the output of bGT. For instance, in this work, we use the bGT as an intermediate step to evaluate Eq. 6. Precisely, at Line
5 — Line 7 of the PCT-Suppression protocol in Section V-B, the output of bGT is used to mask the suppressed counts with
random values.

C. Comparison with the Garbled Circuit
We experimentally compared our proposed primitives with the garbled circuit implementations (Fig. 2).

GC Setting. For GC, we used a state-of-the-art framework, ObliVM [19] which allows us to implement the garbled circuit with
a high-level programming language interface. We used two physically separated machines as the circuit generator and the circuit
evaluator. The generator and evaluator held random shares of the private inputs. We ran the GC experiments on two network
settings: a Local Area Network (two machines located inside the same router) and a Wide Area Network (one machine located
in Japan and the other located on the west coast of USA). The network bandwidth of LAN and WAN was about 88 Mbps and
48 Mbps, respectively. In ObliVM, we used the real-mode which provides the garbled-row-reduction [25] and free-XOR [17]
optimizations.

FHE Setting. In the executions of the FHE primitives, we assume an encryptor encrypts the private inputs and uploads the
ciphertexts to the server. The server operates the primitives on the ciphertexts and obtains the result. A decryptor downloads the
result from the server and gets the plain result after the decryption. For performance measurement, we used the same network
(LAN and WAN) as GC. For FHE-based primitives, we implemented using eight parallels. We also used different parameters in
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Fig. 2: Performance numbers (averaged over 10 runs) of FHE-based and GC-based primitive implementations. LAN and WAN
were introduced. For the matrix addition and matrix multiplication, matrices with 32-bits values were used. The numbers on the
figure (g) — figure (i) indicate the number of AND-gates in the garbled circuits.

bGT and the matrix primitives. Specifically, we set the parameters of the BGV’s scheme ¢ = 67499 and ®,,,(z) with m = 5227
(i.e., £ = 1742) for evaluating the batch greater-than primitive. On the other hand, we use ¢t = 73213 and m = 27893 (i.e.,
¢ = 78) for evaluating the matrix primitives.

Performance Measurements. We employed three different performance measurements: evaluation time, ciphertext size, and
operation time. The operation time of our FHE-based primitives includes the time of encryption, upload, evaluation, download,
and decryption. The evaluation time includes the time of evaluation only, which is independent of the network bandwidth. For
the GC implementations, we measured the time for circuit generation and the time for circuit evaluation.

When we use the FHE primitives as an independent two-party computation, the entire computation time is measured by
the operation time. On the other hand, when the FHE primitives are used as building blocks for a more complicated two-party
computation, the outputs of the FHE primitives are successively reused without interaction with the other party. In such reuses,
encryption, upload, and download are not processed, and thus the server does not need to communicate with encryptors and
decryptors. Thus, to measure the efficiency of our FHE primitives, we measured the evaluation time, too. We note that we can
not separately evaluate the evaluation time from operation time for GC execution. Therefore, the evaluation time of GC is the
same as the operation time in our evaluation.

We also compared the size of ciphertexts that the FHE-based primitives output with the size of network packets exchanged
during the execution of the GC-based primitives !.

Greater-than. Fig. 2a, Fig. 2d, and Fig. 2g show the performances of the FHE-based and GC-based greater-than implementations.
As shown in the results, our FHE-based greater-than primitive offers competitive performances to its GC counterpart when

'We counted the number of AND-gates (20 bytes each) in the circuit.



TABLE II: Input-output relationships for the stakeholders. We write “~" to indicate no input or output.

Stakeholder Possess Input Output
encryptor pk x -
cloud pk - [=]
decryptor pk, sk - z

comparing relatively small integers such as integers with less than 16 bits. The complexity of the FHE-based greater-than grows
exponentially with the bit length. Thus, it seems inefficient for our greater-than primitive to handle large numbers. Noting that
descriptive statistics of ordinal or categorical attributes typically assumes small domains (e.g., 0 < age < 150), we consider
12 ~ 16-bits to be sufficient to meet regular requirements in many cases.

Matrix Addition. Fig. 2b, Fig. 2e, and Fig. 2h show the performances of the FHE-based and GC-based implementations of
matrix addition. Since we leverage the CRT-packing for FHE encrypted matrices, the evaluation time of the FHE-based matrix
addition increases linearly with the matrix dimension. The FHE-based matrix addition can operate faster than its GC counterpart
in terms of evaluation time while the size of ciphertexts generated by the FHE-based matrix addition was two magnitudes
larger than that in the GC counterpart. The operation time of the FHE-based matrix addition is thus greater than that of its GC
counterpart. We can also see that the evaluation time of the FHE-based matrix addition was smaller than the operation time of
the GC (Fig. 2b). In the WAN setting, the operation times of these two implementations w