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Abstract. A redactable signature scheme is one that allows the original signature to be used, usually
along with some additional data, to verify certain carefully specified changes to the original document
that was signed, namely the removal or redaction of subdocuments. For redactable signatures, the term
transparency has been used to describe a scheme that hides the number and locations of redacted
subdocuments. We present here two efficient transparent redactable signature schemes, which are the
first such schemes in the literature that are based solely on tools of symmetric cryptography, along with
a single application of an ordinary digital signature.
As with several previous schemes for redactable signatures, we sign a sequence of randomized commit-
ments that depend on the contents of the subdocuments of the document to be signed. In order to
hide their number and location, we randomize their order, and mix them with a sequence of “dummy
nodes” that are indistinguishable from commitment values. Our first scheme uses a data structure of
size quadratic in the number of subdocuments, encoding all the precedence relations between pairs
of subdocuments. By embedding these precedence relations in a smaller family of graphs, our second
scheme is more efficient, with expected cost linear in the number of subdocuments in the document
to be signed. We introduce a quantified version of the transparency property, precisely describing the
uncertainty about the number of redacted subdocuments that is guaranteed by the two schemes.
We prove that our schemes are secure, i.e. unforgeable, private, and transparent, based on the security of
collision-free hash functions, pseudorandom generators, and digital signature schemes. While providing
such strong security, our scheme is also efficient, in terms of both computation and communication.

1 Introduction

Motivation Traditional digital signature schemes can be used to check—among other properties—that
integrity of data is maintained, i.e. the data has not been modified since it was signed. However, in some
scenarios modification of the data is not only allowable, but also desirable.

Several governments in the world have analogues to the US Freedom of Information Act (FOIA). Under
this act, formerly confidential documents can be released to the public. Often, before a document is released
certain words containing sensitive information, such as names of individuals or national secrets, are redacted,
i.e. removed or blacked out.

For electronic documents, redaction is problematic when it is also important to protect the authenticity
and integrity of the document. Conventional digital signatures and time-stamping schemes can be used to
prove the integrity of the original data, and they are meant to identify all changes to the document as invalid.
So the problem is to devise a scheme that can be used to attest to the integrity of correctly redacted versions
of the original document and no other versions.

As with conventional schemes, it should be computationally infeasible to forge improper signatures or
certificates. Specifically, it should be difficult to compute a valid signature or certificate for any document
other than one that is a legitimately redacted version of the original. In addition, all information about
redacted subdocuments should be hidden.

In certain settings, it is furthermore desirable to hide the length and even the existence of any redacted
subdocuments. For example, when a name (e.g. that of a person, a place, or an official agency) is redacted,
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revealing the length of the redacted portion may allow a viewer of the redacted version of the document to
infer the missing name. A newsworthy demonstration of exactly this vulnerability was given by the authors
of [NW04], as widely reported by [Mar04]. Another example is provided by the case of electronic health
records in a system with a standard schema for the format of the records, e.g. XML. In this case, the
very existence of a redacted sub-record in a particular position of an individual patient’s record may attest
to the patient having a particular diagnosis or medical condition. Previous authors have considered this
property, most often calling it transparency [ACMT05, MHI06, BFF+09, CLX09, BBD+10, MPPS14]. Even
though “transparent” may not be the best one-word description of the property, we follow previous authors
in doing so.

Several prior schemes for transparent redactable signatures make use of aggregate signature schemes,
based on techniques from pairing-based cryptography using bilinear maps. Other schemes for certain varia-
tions on redactable signature schemes make use of cryptographic accumulators. Still other schemes use many
invocations of an ordinary digital signature scheme, with the number of invocations at least linear in the
number of subdocuments. Inherent in all of these classes of techniques is the limitation that every subdoc-
ument of the original document (or a value that depends on it) is used as input to a relatively expensive
number-theoretic or algebraic computation.

In this paper we are interested in designing a redactable signature scheme that hides the existence of
redacted subdocuments, using only the tools of symmetric cryptography, along with a single invocation of
an ordinary digital signature or time-stamping scheme.

Our security proofs require no further number-theoretic or algebraic assumptions.

Our contribution We present two efficient secure redactable signature schemes that conditionally hide
the existence of redacted subdocuments. Along the way, we introduce a new quantified notion that we call
(α(n), β(n)) transparency, capturing the property that the viewer of a possibly redacted document of size
n, i.e. containing n subdocuments, may have been redacted from an original document whose length was
somewhere in the interval [α(n), β(n)].

Our first scheme uses a data structure of size quadratic in n, the number of subdocuments, encoding all
the precedence relations between pairs of subdocuments. For our second scheme, we define and design a new
graph family, which we call a redactable precedence graph family, for each n embedding these precedence
relations in a smaller family of graphs; these graphs are of expected size linear in n. This technical tool may
be of independent interest.

Ours are the first such schemes that use only basic symmetric cryptographic tools. They are enormously
more efficient than previous ones, since they require only a single invocation of a number-theoretic operation,
either to sign or to check a signature on a cryptographic hash value. In a practical implementation, all other
cryptographic operations are only invocations of a collision-free hash function or of a block cipher.

Without using algebraic techniques, it remains an interesting open problem whether there exists a
redactable signature scheme that completely hides the existence of redacted subdocuments, e.g. one that
even hides the maximum possible length of the original document.

All of the algorithms presented in this paper can be stated in terms of any proofs of integrity for digital
objects that begin by hashing their inputs with a collision-free hash function, including both digital signa-
tures and time-stamping schemes. (Indeed, this is true of many of the redactable-signature schemes in the
literature.) Following most previous authors, we limit ourselves here to discussion of digital signatures.

Outline Section 2 gives a brief overview of the related work on redactable signatures, and introduces our
model and the cryptographic preliminaries. Section 3 presents our security definitions. Section 4 describes
our first transparent redactable signature algorithm, of quadratic cost. Section 5 presents our improved
linear-cost algorithm.

2 Background

2.1 Related work

The redactable signature problem was first studied independently by several groups of researchers, under
different names: as “content extraction signatures” by Steinfeld et al. [SBZ01], as “redactable signatures” by
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Johnson et al. [JMSW02], and as “digitally signed document sanitizing schemes” by Miyazaki et al. [MSI+03,
MIM+05]. Hereafter, we will only use the term “redactable”.

A related problem, that of “sanitizable” signatures, was introduced by Ateniese et al. [ACMT05]. (These
are not to be confused with the “sanitizing” schemes of Miyazaki et al.) Here, instead of allowing redaction
as a public operation, in a sanitizable signature scheme a designated party can modify certain parts of the
document and sign the modified version. The authors proposed schemes using chameleon hash functions
instead of the usual hash functions. Later, Brzuska et al. revisited and formalized the security definitions
for sanitizable signatures, and proved the security of a modified scheme that also uses chameleon hash
functions [BFF+09].

Researchers have studied a number of other variations on the requirements of what may be called “mal-
leable” signature schemes (to use the term of [MPPS14]), sometimes for redaction signatures, sometimes for
sanitizable signatures, and sometimes for both. Such papers include [CKLM13,JMSW02].

The variation that we study here is that of hiding from viewers of a possibly redacted signed docu-
ment even the existence of redacted portions of the original document [ACMT05, MHI06, BFF+09, CLX09,
BBD+10]. Following previous authors, we call this property “transparency”, and call a scheme having this
property “transparent”.

Miyazaki et al. studied cryptographic redaction mechanisms that can prevent as well as allow the redac-
tion of designated parts of a document, calling this feature “disclosure control” [MIM+05]. Haber et al.
proposed a more efficient signature scheme supporting redaction, disclosure control, pseudonymization and
data deidentification [HHH+08].

Several researchers have extended the study of malleable signatures from documents to trees and graphs,
with the motivation of applying these signatures to XML graphs. Kundu and Bertino introduced structural
signatures for trees that support public redaction of subtrees by third-party distributors while retaining the
integrity of the remaining parts [KB08]. The same authors later proposed two schemes that make use of
bilinear maps in order to authenticate directed graphs without leaking information [KB10]. Brzuska et al.
formalized a security model for redactable signatures for tree-structured data, and gave a construction that
can be proven secure under standard cryptographic assumptions [BBD+10]. In their scheme, the signer
computes a new digital signature for every edge of the tree.

Brzuska et al. posed the problem of preventing users who happen to see different redacted versions of the
same document from linking them, and they presented a construction to achieve this property of “unlinka-
bility” for redactable signature schemes; their construction makes use of a group signature scheme [BFLS10].
Their construction was improved by Brzuska et al. [BPS14].

Pöhls and Samelin studied the property possessed by certain redactable signature schemes in the literature
that allow two legal redactions of a signed document to be merged, and proposed a new scheme based on a
trapdoor accumulator function [PS14].

Ahn et al. extended the problem of these and several other kinds of malleable signatures to the general
problem of computing on authenticated data [ABC+12].

Chang et al. use a novel randomized variant of a GGM tree (see Section 2.2 below) to supply the random-
izing values needed for their transparent redactable signature scheme [CLX09]. This is similar to one part of
our construction. Their scheme uses a new hash function based on the strong RSA assumption, whereas we
use only a conventional collision-free hash function.

Samelin et al. constructed a redactable signature scheme for a list in O(n) time for computation and
storage, assuming the existence of an associative non-abelian hash function [SPB+12].

Ghosh et al. present another O(n) construction of a privacy-preserving authenticated list that supports
order queries on its elements, using bilinear maps [GOT14].

We note that each of the latter two papers calculates the complexity of its O(n)-time algorithm in terms
of number-theoretic or algebraic operations. By contrast, our linear algorithm’s complexity is calculated in
terms of applications of symmetric-cryptography operations, along with a single digital signature.

2.2 Preliminaries

Model There are three sorts of players in our model: signers, redactors, and verifiers.
The signer, having a key pair for a digital signature scheme, prepares and authenticates a document or

data set once, producing an ordinary digital signature along with some auxiliary information. We will call
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the signature together with the auxiliary information an extended signature for the original document. The
signature depends on the original data, on a list of operations to be allowed on parts of the data, and on the
signer’s private signing key.

The document and extended signature may be given to a redactor. The redactor may modify the docu-
ment, according to the signer’s list of operations allowed. The redactor makes certain corresponding changes
to the auxiliary information, and combines this with the original signature value to form a modified extended
signature, which, together with the modified document, may then be “published”, i.e. sent to another redac-
tor or sent to a verifier. We emphasize that redactors are able to make these changes without access to the
signer’s private key.

There may be more than one redaction operation, performed by more than one redactor, where subsequent
operations will only be verifiable if they are performed starting from the current modified form of the
document and its extended signature (so that, for example, a redacted portion cannot be changed back to
the subdocument that it replaced in a previous redaction operation). A user of the system may act as both
verifier and redactor.

A verifier is able to verify the correctness of the modified document using the (modified) extended
signature, capturing the property that the data should only be modified by the redactor according to the
specifications of the signer. Unlike the situation with ordinary signature schemes, where any change to the
data should cause the signature verification to fail, here we do allow removing certain information from a
document, namely the redaction of permitted subdocuments, while disallowing all other changes. We give
formal definitions of security for redactable signature schemes in Section 3, and prove that our two algorithms
satisfy the definitions in Section 4.4 and Section 5.4.

We describe our cryptographic algorithms in terms of how they apply to single documents, viewed as bit-
strings. LetM denote a document to be signed, segmented into a sequence of subdocuments m1,m2, . . . ,mn.
In the case of ordinary text documents, these might correspond to words, sentences, or paragraphs, depend-
ing on the level of granularity desired. In the case of image or audio or other data files, for example, they
might correspond to other convenient divisions of the document; here we ignore these details, and regard
the document simply as the sequence of its subdocuments. We measure the size of M by its number of
subdocuments n, sometimes denoted |M|. If L denotes a subsequence of (the sequence of subdocuments of)
M, then we use M\L to denote the resulting document after redacting L from M.

Cryptographic building blocks The security of our algorithms relies on several cryptographic assump-
tions.

Let H denote a particular choice of collision-free hash function, e.g. SHA-256 [NIS12].

Let S be a digital signature scheme that is secure against existential forgery attacks by an adaptive chosen-
message adversary [GMR88]. (Strictly speaking, we assume that the signing procedure starts by hashing its
input. In practice, this is completely without loss of generality.)

Let C be a secure randomized commitment scheme, as can be constructed based on the existence of
collision-free hash functions [HM96]. The commitment function takes two inputs, a message m and a random
string r. Its output x = C(m, r) is computationally hiding, in that it does not leak any information about
the particular committed value m, and computationally binding, in that it cannot be opened by revealing
any other string r′ so that x = C(m′, r′) is also a commitment to another message m′ 6= m. (In practice—
making the stronger assumption that H is a pseudo-random function—one might implement C simply by
taking C(m, r) = H(0,m, r), with 0 serving as a domain-separation tag indicating input for the commitment
scheme.)

Let P be a secure length-doubling pseudorandom generator, as used in the GGM construction of pseudo-
random functions [GGM86]. Since we use it repeatedly throughout this paper, we sketch here the construction
of GGM trees. Beginning with a single random seed s, the construction computes a list of pseudorandom
values by building a binary tree from the root to the leaves. Specifically, suppose that s is k bits long. The
constructor uses the pseudorandom generator to expand s to a 2k-bit string, and lets the first and second k
bits form, respectively, the left and the right children of s. (In practice—making the same strong assumption
on H—this could be implemented by computing H(1, s) for the left child and H(2, s) for the right child, with
1 and 2 serving as domain-separation tags.) Continuing in this manner to the necessary depth, we can obtain
a sequence of any desired number of leaves.
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A Merkle tree is a tree such that the values assigned to each internal node is a one-way function of
the values assigned to its children [Mer89]. The one-way function is usually instantiated as a standard
cryptographic hash function. The root of the tree can be used to authenticate the list of values assigned to
its leaves. In our algorithms, we build (possibly unbalanced) binary Merkle trees whose values at the leaves
are either “real nodes” that depend on commitments to the contents of the subdocuments, or “dummy
nodes”, meant to mask the possible existence of subdocuments that may or may not have already been
redacted.

2.3 A basic redactable signature scheme

In this section we sketch a particular redactable signature algorithm due to [JMSW02] that does not hide
the number or location(s) of redacted subdocuments. This scheme only makes a single signature invocation.
It is the basis for designing our new algorithms. In this algorithm, some data are added to form the extended
signature for the original document. The size of the additional data grows logarithmically with the number
of sequences of consecutively redacted subdocuments. The signature scheme works as follows.

Setup: Given a security parameter, Setup entails the choice of a collision-free hash function H, a secure
pseudorandom generator P, a secure commitment scheme C, and a secure signature scheme S. The signer
generates a public-private key pair (PK,SK) for S, and adds PK to the list of public parameters (H,P,C,S),
while keeping the private key SK secret.

Sign: Given a document M, parsed as the sequence of its subdocuments (m1,m2, . . . ,mn), the signer
chooses a random seed s, and computes an n-leaf GGM tree, using P, as explained in §2.2. Let (r1, . . . , rn)
denote the list of these leaves. For each subdocument mi, the signer computes ci = C(mi, ri). Next, the
signer builds a Merkle hash tree from the list of leaves (c1, . . . , cn), and signs its root with the private key
SK, to obtain a signature σ. The extended signature for m is σ, along with auxiliary information aux = s.

Redact: Given the original document M and its extended signature (σ, aux), along with L, the set of
subdocuments inM to redact, the redactor proceeds as follows. The redactor constructs the GGM tree from
the random seed s, and obtains n pseudorandom values (r1, . . . , rn). Let M′ = (m′1, . . . ,m

′
n) denote the

resulting redacted document, where m′i = mi if i /∈ L and m′i = ⊥ if i ∈ L. (Here, ⊥ is a special symbol
resrved to indicate the presence of redacted subdocuments.) The redactor finds SG, the minimal set of nodes
of the GGM tree that exactly covers {ri|i /∈ L}, the set of GGM leaves corresponding to non-redacted
subdocuments, as well as SM , the minimal set of nodes of the Merkle tree that exactly covers {ci|i ∈ L}, the
set of commitment values corresponding to redacted subdocuments. (The choice of these sets SG and SM for
a specific example is illustrated in Figure 3 in Section 4.2 below.) The modified auxiliary information for the
redacted document M′ is aux′ = (SG,SM ). M′ along with its extended signature (σ, aux′) can be passed
along for further redaction, which proceeds in similar fashion.

Verify: The verifier is given a possibly redacted documentM′ = (m′1, . . . ,m
′
n) and an extended signature

of the form (σ, (SG,SM )). The verifier uses SG to recompute the set of commitments {C(m′i, ri)|m′i 6= ⊥}
for non-redacted subdocuments. The verifier combines these commitments with the (sub)roots in SM to
compute the root of the Merkle tree, and verifies the correctness of σ as a signature on that root with respect
to the public key PK of the signer.

3 Security definitions

In this section, we formally define the security requirements for a redactable signature scheme. We give
formal definitions for three different security requirements: unforgeability, privacy, and transparency.

The principal requirement for any kind of signature scheme is that it should be computationally infeasible
to forge illegitimate signatures. In contrast to conventional signature schemes, where no changes to a signed
document are permitted, we need a precise characterization of the class of modifications to the original
document that we consider to be legitimate. Adapting the definition of [JMSW02] to our scenario, we define
a partial order � on documents, as follows.

Definition 1. Let M consist of n subdocuments (m1,m2, . . . ,mn), and M′ consist of n′ subdocuments
(m′1,m

′
2, . . . ,m

′
n′). Then M′ � M iff M′ is a subsequence of M, considering each document M or M′

simply as the sequence of its subdocuments.



6

In this case, M′ is a possibly redacted version of M, and we may also write M�M′. If M′ �M and
M′ 6=M, then we write M′ ≺ M (or M �M′). Given a set of documents or messages S, we use lub(S)
to denote the least upper bound on the elements of S according to the partial order defined by �.

Definition 2. A redactable signature scheme with respect to binary relation � is a quadruple of probabilistic
polynomial-time algorithms Σ = (Setup,Sign,Verify,Redact), such that:

– Setup. The setup algorithm Setup(1k) generates a set of public parameters and a public-private key pair
based on the security parameter k.

(params, PK, SK)← KeyGen(1k)

– Signing. The algorithm Sign(SK,M) takes as input a secret key SK and a document M. It outputs
redactable signature s = (σ, aux) for M.

(σ, aux)← Sign(SK,M)

– Verification. The verification algorithm Verify(PK,M, s) takes the public key PK and signature s as
inputs and outputs a bit b reporting whether s is a valid redactable signature on M with respect to PK.

b← Verify(PK,M, s)

– Redaction. On inputs a public key PK, a document M together with its redactable signature s =
(σ, aux), as well as a subdocument M′ �M, the redaction algorithm Redact(PK,M, s,M′) returns the
document M\M′ and a signature s′ = (σ, aux′).

(M\M′, σ, aux′)← Redact(PK,M, s,M′)

We say the redactable signature scheme is correct if it satisfies both of the following conditions:

– Signature correctness. For any k ∈ N, key pair (PK,SK) ←,KeyGen(1k), any document M, the
signature s = (σ, aux)← Sign(SK,M) satisfies Verify(PK, s,M) = 1.

– Redaction correctness. For any k ∈ N, key pair (PK,SK) ← KeyGen(1k), any document M and
signature s = (σ, aux) with Verify(PK, s,M) = 1, any subdocuments M′,L satisfying M′ � M, L =
M\M′, and any (L, s′)← Redact(PK,M, s,M′) where s′ = (σ, aux′), we require Verify(PK,L, s′) = 1.

Remark: We denote the (extended) signature s = (σ, aux) as having two parts. This is for convenience,
since all the algorithms we discuss work this way. After redaction, the new signature becomes s′ = (σ, aux′),
where the first component σ is identical to the previous version while the second component is updated. Our
notation is no restriction on the form of a redactable signature acheme, since the first component can be
empty.

Informally expressed, a transparent redactable signature should satisfy the following properties.

Redactability Given a valid signature tuple (M, σ, aux), another valid signature (M′, σ, aux′) can be
derived for any document M′ �M, without the use of the signer’s private key, SK.

Unforgeability Without SK, it should be infeasible to compute a valid extended signature for any doc-
ument other than one that is a redacted version of a document that was signed with SK. Even for an
attacker able to request signatures on several different documents Mi, it should remain impossible to
forge a signature on any document M′ 6� lub{Mi}.
However, valid signatures on documents M′ � lub{Mi} do not count as successful forgeries. For ex-
ample, having seen signed versions of AC and AD, both resulting as redactions of the longer signed
document ABCD, a user might be able to produce a signature for ACD; this would not constitute a
forgery for the scheme.

Privacy All information about redacted subdocuments is completely hidden.
Transparency Given a signature tuple (M, σ, aux), it should be infeasible to infer whether M is a newly

signed document or a redacted version of another longer document, nor anything about the locations of
previously redacted subdocuments of any longer document.
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More formally, we capture these properties in the following definitions, adapted from those given
by [JMSW02] and followed by later authors. These security definitions are as strong as those of more recent
papers, for example those of [BBD+10,MPPS14].

Definition 3 (Unforgeability). A redactable signature scheme Σ = (Setup,Sign,Verify,Redact) is un-
forgeable under adaptive chosen-message attack if no PPT adversary A can win the following game with
non-negligible probability.
Setup: The challenger runs the Setup algorithm and gives the adversary the public parameters
(H,P,C,S, PK).
Query: The adversary adaptively chooses documents M1,M2, . . . to be signed by an oracle with access to
SK. In response to the query Mi, the oracle returns a freshly signed redactable signature (σi, auxi) for Mi

with respect to PK.
Forge: The adversary A outputs (M′, σ′, aux′), winning the game if VerifyPK(M′, σ′, aux′) = TRUE and
M′ 6� Mi for every i from the Query phase.

We omit here a formal game-based definition of privacy, as in previous papers, because privacy for a
redactable signature scheme is implied by the property that we define next. This is our new definition of a
quantified version of the stronger subdocument-hiding property of transparency.

Definition 4 (Transparency). Let α and β denote functions on positive integers, such that ∀n, n ≤ α(n) <
β(n). A redactable signature scheme Σ = (Setup,Sign,Verify,Redact) is (α, β) transparent if the following two
distributions are computationally indistinguishable, given any document M of size n along with documents
M0 and M1, both of sizes in the interval [α(n), β(n)] and such that M�M0 and M�M1:

D0 = {(σ, aux) : (σ, aux) = RedactPK(M0,SignSK(M0),M0\M} and
D1 = {(σ, aux) : (σ, aux) = RedactPK(M1,SignSK(M1),M1\M},

where (PK,SK) is the public-private key pair generated by an invocation of Setup.

Here we use the convention that RedactPK(M,SignSK(M), ∅) := SignSK(M).
This definition implies that, given a redactable signature for a document of size n, no adversary can

distinguish whether the signature is freshly generated or redacted from a document of size n′ ∈ [α(n), β(n)],
where the bounds on this uncertainty interval depend on the algorithm used. In practice, leaving a large
range of uncertainty will suffice for many applications.

Unconditionally hiding the original size seems to be difficult to achieve using only tools of symmetric
cryptography for manipulation of any data associated with the subdocuments. We leave this as an open
problem.

We note that Definition 4 is equivalent to the similar game-based definitions of [BBD+10,MPPS14], with
the addition of our condition that quantifies the size of possibly redacted subdocuments.

As noted above, (α, β) transparency is a strictly stronger requirement than privacy, as defined in earlier
papers with a distinguishability game where the adversary’s task is to define which of two original subdoc-
uments (or sequences of subdocuments) has been redacted from the document given to the adversary. An
adversary that successfully wins the privacy game against a particular scheme can easily be transformed into
an adversary that wins the transparency game, with a similar probability of winning; see e.g. [BBD+10].

4 A quadratic algorithm

As noted above, we base both of our new algorithms on the redactable signature scheme by the authors
of [JMSW02], which we described in Section 2.3.

As in their algorithm, we build both a GGM and a Merkle tree. In order to hide what their algorithm does
not, we modify the algorithm, incurring some additional cost. For the algorithm we present in this section,
the data structures we build will be of size quadratic in the number of subdocuments. For the algorithm we
present in Section 5 below, they will be of linear expected size.

As in [JMSW02], we build a Merkle tree, some of whose leaves are computed from the subdocuments.
But rather than using a randomized commitment to the contents of each subdocument, for each pair of
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subdocuments mi,mj with i < j we compute a precedence node cij , which is a randomized commitment
value encoding the fact that mi precedes mj in the original document (as well as the contents of the
two subdocuments). In addition, the signer computes several dummy nodes, which are bit-strings of the
appropriate length that are indistinguishable from commitment values. Furthermore, rather than using the
list of commitment values in their original order as leaves of the Merkle tree as in [JMSW02], intsead the
ordered list of the positions of the precedence nodes and dummy nodes as leaves of the Merkle tree is chosen
at random.

Again as in [JMSW02], the random bits needed for the computation of randomized commitment values
are themselves computed as the leaves of a GGM tree. And also as before, when a subdocument is redacted,
the preimages of its associated commitment values are deleted from the signature’s associated data, in effect
transforming these commitment values—first computed as precedence nodes—into what will appear to be
dummy nodes to verifiers of the redacted version.

In other words, we deal with the sequence of subdocuments of M by considering a graph that models
their order, namely the graph with nodes 1, 2, . . . , n having a directed edge (i, j) for every pair of nodes
with i < j; this is the tournament on [1 . . . n], with the canonical ordering. (A tournament is a directed
graph with exactly one edge between every pair of nodes.) For each edge of this graph, the signer computes
a corresponding precedence node, and randomly places it among the leaves of a Merkle tree that is built as
part of the signing algorithm.

4.1 Details of the quadratic algorithm

The redactable signature scheme can be described in terms of four subalgorithms: Setup,Sign,Redact, and
Verify. To illustrate the operations of these subalgorithms, we provide a small example in Section 4.2 below.

– Setup(1k): Given the security parameter k, Setup entails the choice of a collision-free hash function H, a
secure pseudorandom generator P, a secure commitment scheme C, and a secure signature scheme S. The
signer generates a public-private key pair (PK,SK) for S, and adds PK to the list of public parameters
(H,P,C,S), while keeping the private key SK secret.

– Sign(M, SK): Given a documentM, parsed as a sequence of n subdocuments m1,m2, . . . ,mn, the signer
does the following.

1. For each subdocument, compute H(mi) and store it in a lookup table T2.
2. Choose a size M for the total number of leaves, M >

(
n
2

)
but M ∈ O(n2). (The signer will build an

M -leaf Merkle tree, D = M −
(
n
2

)
of whose leaves are dummy nodes.)

3. Choose a random ordering for these leaves by sampling a vector x uniformly at random from the set
of length M binary vectors of Hamming weight D. We write x = x0x1 . . . xM−1.
The signer will construct a sequence of M leaves for the Merkle tree based on x, denoted
a0, a1, . . . , aM−1, where D positions in the sequence are dummy nodes, indicated by the 1 bits in x,
and the remaining M − D leaves are real nodes. Define φ : [0, . . . ,

(
n
2

)
− 1] → [0, . . . , (M − 1)] by

letting φ(`) denote the position of the `th real node in x (i.e. the position of the `th 0 in x).

(a) Write {(i, j)|1 ≤ i < j ≤ n} in lexicographic order to form the index column of a new table, T1.
(b) Choose a random permutation Π: {(i, j)} →

[
0, . . . ,

(
n
2

)
− 1
]
.

(c) Choose a random seed s and compute an M -leaf GGM tree using the pseudorandom generator
P. Let (r0, r1, . . . , rM−1) denote the list of these leaves. Compute SG, the minimum set of nodes
of the tree whose descendants at the leaf level is exactly the set of real nodes defined by (the 0
positions in) x.

(d) For each (i, j) with 1 ≤ i < j ≤ n, insert φ(Π(i, j)) into the row indexed by (i, j) in T1. Then
compute the commitment value cij , the precedence node for the pair of subdocuments mi and
mj , as follows:

cij = C( [φ(Π(i, j)),H(mi),H(mj)], rφ(Π(i,j))).

(Note that H(mi),H(mj) can be retrieved using the the index (i, j) from their precomputed hash
values, the ith and jth entries in T2, and that rφ(Π(i,j)) is the leaf in position φ(Π(i, j)) in the
GGM tree.)
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(e) Assign the leaf nodes in the Merkle tree as follows:

ak=

{
C(d, rk) if xk = 1,
cij if xk = 0, k = φ(Π(i, j)).

Each dummy node, indicated by 1 in its position in x, is a randomized commitment to a constant
symbol, here denoted d; each real node, indicated by 0 in its position in x, is the appropriate
commitment value cij .

4. Use H to compute a Merkle tree from the list of leaf nodes defined in Step 3e above. Compute SM ,
the minimum set of subroots of the Merkle tree that covers the leaves corresponding to the dummy
nodes, i.e. those with 1 in their position in x.

5. Sign the root of the Merkle tree, producing the signature σ. The auxiliary information that will
accompany σ to form the extended signature is aux = (T1,T2,SG,SM ,x).

– Redact(M, σ, aux,L): Given M and σ, together with the auxiliary data aux and L, the set of subdocu-
ments in M to redact, the redactor proceeds as follows.

1. Call Verify(M, σ, aux) to verify the signature; if the signature is invalid, then abort.

2. For each mα ∈ L, repeat the following:

(a) Remove the αth row, which contains H(mα), from T2.
(b) For each row (i, α) with i < α, change the bit in x at position φ(Π(i, α)), given by the mapping

value in this row, from 0 to 1, and then remove the row from T1. This changes the leaf in position
φ(Π(i, α)) from a real node to an apparent dummy node.
Make the corresponding changes for each row (α, j) with α < j: change the bit in x at position
φ(Π(α, j)) from 0 to 1, and then remove the row from T1.

(c) Rename β := β − 1 for β = α + 1, . . . , n, and relabel the corresponding entries in both T1 and
T2, obtaining T1

′ and T2
′, respectively.

3. Let x′ denote the result of all the updates to x.

4. Update SG to account for the changes from x to x′, to obtain S ′G, the minimum set of nodes of the
GGM tree whose descendants at the leaf level constitute exactly the set of nodes defined by the 0
positions in x′.

5. Update SM to account for the changes from x to x′, to obtain S ′M , the minimum set of subroots of
the Merkle tree that covers exactly the set of leaves with 1 in their positions in x′.

LetM′ denote the redacted documentM\L. The extended signature forM′ is σ with updated auxiliary
data aux′ = (T1

′,T2
′,S ′G,S ′M ,x′). The 1 bits in x′ indicate the positions that were either dummy nodes

inM or nodes that were changed from real to apparent dummy nodes as part of the redaction procedure.

– Verify(M, σ, aux):

Given the document M parsed as a sequence of n subdocuments m1,m2, . . . ,mn, the signature σ, and
the tuple aux = (T1,T2,SG,SM ,x), the verifier does the following:

1. For each subdocument, compute H(mi) and compare it to the value in table T2. If the hashes do not
match, output FALSE.

2. Check that table T1 correctly encodes the edge set of the tournament on [1 . . . n]. If not, output
FALSE.

3. Reconstruct the approriate subgraph of the GGM tree from SG and x.

4. For each (i, j), 1 ≤ i < j ≤ n, compute the precedence-proof commitment value for (mi,mj), namely

cij = C( [φ(Π(i, j)),H(mi),H(mj)], rφ(Π(i,j))),

after accessing φ(Π(i, j)) from table T1 and then rφ(Π(i,j)) from the GGM tree.

5. Use H to compute the Merkle tree from the values cij and SM , based on x.

6. Check whether σ is a valid signature for the root of the Merkle tree, with respect to the signer’s
public key. If yes, return TRUE, otherwise return FALSE.
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4.2 A small example for the quadratic algorithm

Let M = 15, n = 5, D = 15 −
(

5
2

)
= 5. The vector x is chosen at random from ∆15,5, say e.g. x =

0100 1001 1100 000. We choose M not a power of 2 in order to emphasize that the Merkle tree does not have
to be balanced.

The signer constructs the table T1 as shown in Figure 1, and then builds the GGM tree and Merkle tree as
shown in Figure 3. The collection of red-circled nodes in the GGM tree form the set SG, and the blue-circled
nodes in the Merkle tree form the set SM . Note that in Figure 1, the random permutation Π in the second
column is only known by the signer, and is never sent as part of the signature. We show this column here
in gray just to clarify the mapped indices φ(Π(i, j)). We illustrate the redaction of subdocument m2 from

index (i, j) Π(i, j) φ(Π(i, j))

(1, 2) 4 6
(1, 3) 1 2
(1, 4) 9 10
(1, 5) 5 11
(2, 3) 0 0
(2, 4) 7 13
(2, 5) 8 14
(3, 4) 3 5
(3, 5) 2 3
(4, 5) 6 12

Fig. 1: T1 for the original document.

(i, j) φ(Π(i, j))

(1, 2) 6
(1, 3) 2
(1, 4) 10
(1, 5) 11
(2, 3) 0
(2, 4) 13
(2, 5) 14
(3, 4) 5
(3, 5) 3
(4, 5) 12

⇒

(i, j) φ(Π(i, j))

(1, 2) 2
(1, 3) 10
(1, 4) 11
(2, 3) 5
(2, 4) 3
(3, 4) 12

Fig. 2: Updating T1 by removing rows involving m2, and
relabeling j := j − 1 for j = 3, 4, 5.
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Fig. 3: GGM and Merkle trees for the original docu-
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Fig. 4: Updated SG, SM and x after redaction of m2.

the orginal document. The result is that T1 is updated as in Figure 2, where the gray rows in the left-hand
table indicate those rows, the ones involving the redacted subdocument m2, that are to be removed. Then
x, SG, and SM are updated as in Figure 4.
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4.3 Efficiency

The redactable signature scheme presented above is computationally efficient. It does not require the use of
any relatively expensive number-theoretic computations such as modular exponentiation or bilinear pairing.
Instead, it can be implemented using only the basic symmetric cryptographic tools of collision-free hash
functions and pseudorandom generators, before making a single invocation of an ordinary digital signature
scheme to sign the root of a Merkle hash tree.

Let TL denote the time required by a lightweight operation of symmetric cryptography, and let TH denote
the time required by the heavyweight assymmetric cryptographic operation of signing or verifying an ordinary
digital signature. All three of the algorithms Sign, Verify, and Redact run in time O(n2) · TL +O(1) · TH ,

The communication overhead of the redactable signature is due to σ and aux = (T1,T2,SG,SM ,x). Given
a document of size n, the size of table T1 is

(
n
2

)
= O(n2). Because of the random choice of x to position

dummy nodes among real nodes and the random choice of the permutation Π, we expect that for many signed
documents, many of the redacted portions as well as many of the dummy nodes will occur as sequences of
consecutive leaves in the Merkle tree. If x contains ` such sequences of consecutive 0’s (marking real-node
positions), then SG contains O(` log

(
n
2

)
) tree nodes and SM contains O(` log(M −

(
n
2

)
)) tree nodes. As long

as the maximum tree size is M = O(n2), we incur a total cost of O(` log n) tree nodes in SG and SM . So the
communication overhead is dominated by the size of table T1, which is quadratic in n.

4.4 Security analysis

Here we prove that the algorithm of this section meets the security definitions for a redactable signature
scheme defined in Section 3 above, by reducing the existence of an adversary that successfully breaks our
scheme to one that breaks one or more of the signature scheme, the pseudorandom generator, the commitment
scheme, or the collision-free hash function that we use.

Theorem 1. Assume that H is a collision-free hash function, S is a digital signature scheme that is adap-
tively secure against existential forgery, C is a secure commitment scheme, and P is a secure pseudorandom
generator. Then the algorithm of Section 4.1 is an efficient, secure (unforgeable, transparent, and private)
redactable-signature scheme.

The security assertion of Theorem 1 follows immediately from Theorem 2, Theorem 3, and the fact that
(α, β) transparency implies privacy.

Theorem 2. With the assumptions of Theorem 1, the algorithm of Section 4.1 is unforgeable.

Proof. Let A be an adversary having a non-negligible probability of winning the forgery game of Definition 3.
We construct below an adversary B that uses A to attack one or more of H, C, and S, acting as the challenger
for A and using A’s outputs in turn as her own outputs. B proceeds as follows.
Setup: B’s challenger chooses hash function H, commitment scheme C, signature scheme S, and pseudoran-
dom generator P, and computes a new public-private key pair (PK,SK) for S. The challenger then gives B
the list of public parameters (H,P,C,S, PK), and B passes the list along to A. Note that neither B nor A is
given the signing key SK.
Query: Adversary A issues queries to its challenger, B. For each queryMi, B runs the Sign algorithm of the
redactable signature scheme, stopping before its last step, having generated (hi, auxi), where hi is the root
of the Merkle tree for Mi. Next, B submits hi as a signing query to its own challenger, receiving in return
a signature σi, and stores return (σi, auxi) as the response to A’s query on Mi.
Forge: Adversary A outputs a possible forgery, (M′, σ′, aux′). With non-negligible probability, A wins the
game, in which caseM′ 6� Mi for every i, and Verify(M′, σ′, aux′) = TRUE. B can use this successful forgery
for the overall redaction signature scheme to attack one of the cryptographic primitives it is based on.

Suppose first that σ′ is not equal to any of the signatures σi that were returned to A during the Probe
phase of the game. To convert σ′ into a signature forgery for PK, B uses (M′, aux′) to reconstruct the
Merkle tree and and obtains its root, h′. Then B has computed a successful forgery against the signature
scheme S, namely (h′, σ′).

Suppose now that A’s signature σ′ is equal to one of the responses that were returned to A during the
Query phase, namely σi, in response to the queryMi, where. Let (auxi, σi) be the extended signature from
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this response. Let T ′ be the Merkle hash tree determined by (M′, aux′), and let Ti be the one determined by
(Mi, auxi). B compares T ′ and Ti. If the two trees have different root nodes, then as above B has computed
a successful forgery against the signature scheme S. Otherwise, if the two Merkle trees differ anywhere below
the root, then B can compute a hash collision for H with non-negligible probability.

There remains the case that the two Merkle trees T ′ and Ti are identical. Let a′k and āk respectively
denote their kth leaf nodes; note that at this point we have a′k = āk, though the two values may have been
constructed differently. Next, B compares the two GGM trees constructed forM′ and forMi. Because as a
successful forgeryM′ 6� Mi, along with the fact that by construction every leaf in our Merkle trees is either
a precedence node or a dummy node, B can find at least one of the following two cases among the pairs of
corresponding leaf nodes:

– For some index k, a′k and āk are both precedence nodes: a′k is a commitment value depending on a pair
(m′i,m

′
j) of subdocuments of M′ and similarly āk is a commitment for a pair (m̄ī, m̄j̄) from Mi. We

have (m′i,m
′
j) 6= (m̄ī, m̄j̄), while a′k = āk. Thus B has constructed a pair of inputs for the commitment

scheme C that can be used to break its binding property.
– For some index k, one of a′k and āk is a precedence node, depending as above on a pair of subdocuments

of eitherM′ orMi, while the other is a dummy node, computed as a commitment to the constant value
d. As above, B has successfully constructed a pair of inputs for the commitment scheme C that can be
used to break its binding property.

Theorem 3. With the assumptions of Theorem 1, the algorithm of Section 4.1 is (n, β(n)) transparent,
where M is the signer’s choice of a maximum size for the GGM tree, and β(n) = max{` :

(
`
2

)
≤M}.

The proof of Theorem 3 is based on the next lemma and its corollaries. Let ∆`,w be the set of binary
vectors of length ` and Hamming weight w. For any k ≤ ` − w, consider the probabilistic map flipk :
∆`,w → ∆`,w+k defined by flipping k randomly chosen 0 bits of its input vector to 1 bits. By straightforward
calculation, we have the following lemma.

Lemma 1. For any k ≤ `− w, the distribution {flipk(x) : x
$← ∆`,w} is identical to {x : x

$← ∆`,w+k}.

Corollary 1. Let On denote the distribution of the sequence of M leaf nodes in the Merkle tree for a non-
redacted document of size n, and Rn+1→n the distribution of the sequence of M leaf nodes in the Merkle tree
after redacting any single subdocument in a document of size n+1. Then On and Rn+1→n are computationally
indistinguishable.

Corollary 2. Let On be as above, and let Rn+k→n be the distribution of the sequence of M leaf nodes in
the Merkle tree after redacting any k subdocuments in a document of size n+ k. Then On and Rn+k→n are
computationally indistinguishable

As each leaf node in the Merkle tree is either a commitment to a dummy constant value or a commitment
to a precedence proof for two subdocuments, Corollary 1 follows directly from the computationally hiding
property of C, and the application of Lemma 1 by setting ` = M , w = M −

(
n+1

2

)
and k =

(
n+1

2

)
−
(
n
2

)
= n.

Corollary 2 then follows by multiple applications of Corollary 1.

Proof of Theorem 3. We are given a documentM of size n and its signature tuple (σ, aux), computed by the
algorithm of Section 4, along with two documents M0, M1, both of size |Mi| ≥ n and satisfying Mi �M.

If
(|Mi|

2

)
is greater than M , the maximum number of leaves of the Merkle tree, then the verifier knows that

M is not redacted from Mi.
Assume now that for both i = 0, 1 we have |Mi| ≤ β(n) = max{` :

(
`
2

)
≤ M}. The signature for M by

redacting Mi\M is

(σi, auxi) = RedactPK(Mi,SignSK(Mi),Mi\M} = (σi,Ti
1,T2

i,SiG,SiM ,xi).

We would like to prove that the two distributions (σ0, aux0) and (σ1, aux1) are computationally indistin-
guishable.
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For this purpose we will use the following lemma several times: Given two computationally indistin-
guishable distributions X and Y , and an efficiently computable (possibly probabilistic) function f , the two
joint distributions (X, f(X)) and (Y, f(Y )) are also computationally indistinguishable.

Since wt(x0) = wt(x1) =
(
n
2

)
, it follows from Lemma 1 that the distributions x0 and x1 are identical.

Also, the distributions of the two hash tables T2
0 and T2

1 are identical. Similarly, in T0
1 and T1

1 their respective
first columns are identical, and the values in their second columns are based on the random permutation Π
and the position information of real nodes in x. Since permutation Π is independent of the generation of x,
T0
1 and T1

1 are identically distributed.
SiG is a set of pseudorandom numbers generated using P, beginning from a randomly chosen string at

the root of the GGM tree. It consists of the minimum list of GGM tree nodes that covers the real nodes
indicated by the 0 entries in xi. Since the output of P is computationally indistinguishable from random,
the distributions of S0

G and S1
G are themselves computationally indistinguishable.

It can be concluded from Corollary 2 above that the respective lists of leaf nodes for the two Merkle
trees generated by the computation (or verification) of the two extended signatures are computationally
indistinguishable. Because of the way each SiM is computed as the list of internal nodes of the tree that
cover the dummy nodes indicated by the 1 entries in xi, it follows that the distributions S0

M and S1
M are also

computationally indistinguishable. Thus we conclude that the two joint distributions (Ti
1,T2

i,SiG,SiM ,xi)
are computationally indistinguishable.

Finally, the Merkle tree root hi is a hash value that is calculated by a deterministic computation with
inputMi\M and (Ti

1,T2
i,SiG,SiM ,xi), and σi is computed with the ordinary signature scheme S with input

hi. Hence σ0 and σ1 are computationally indistinguishable, and so are the two distributions (σ0, aux0) and
(σ1, aux1). This concludes the proof of the transparency of our scheme.

5 A linear algorithm

In order to sign a document containing n subdocuments, the quadratic algorithm of Section 4 above makes
crucial use of the canonical tournament on n nodes, and the extended signature is therefore necessarily of
size at least

(
n
2

)
. To reduce the size of the graphs we need to handle, we can add several nodes while removing

many edges; instead of including a single edge in the graph for every pair of subdocuments mi,mj with i < j,
we merely require the existence of a directed path from i to j. For each n, we replace the single graph on n
nodes with a distribution on a set of such graphs, Hn. We further define a redact operation on these graphs,
corresponding to the redaction of one of the n subdocuments. This operation transforms any graph in Hn
into a graph in Hn−1, and we require that the result of choosing a graph from the distribution on Hn and
then choosing a random redact operation be identical to simply choosing a graph from the distribution on
Hn−1. We call such an infinite family of distributions on graphs a redactable precedence graph family.

We define such a family, Gn,k, by adding k− 1 bridge nodes to [1 . . . n], thereby dividing the n nodes into
k groups; constructing tournaments for each of these groups; connecting the bridge nodes in a simple chain;
and finally connecting each bridge node to every node in its two neighbouring groups. For properly chosen
k, the graphs in Gn,k are of expected size linear in n.

In the rest of this section, we define redactable precedence graph families, describe the construction of
the family Gn,k and prove that it possesses the properties we require, and finally show how to use these
graphs in a secure redactable signature algorithm.

5.1 Redactable precedence graph families

Definition 5. Let Vn = {1, 2, . . . , n}. A redactable precedence graph family is a collection H = {Hn}n=1,2,...

of probability distributions on directed acyclic graph families, such that:

– Reachability: for every instance H = (V ′, E′) ∈ Hn,
1. V ′ ⊇ Vn, and
2. ∀ i, j ∈ Vn, i < j, there is a path in E′ from i to j.

– Redactability: After a choice of H = (V ′, E′)
$← Hn followed by a random choice of i ∈ Vn, the result of

removing node i from H along with all its incident arcs is an instance of Hn−1, chosen with the correct
probability distribution.
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This is a strict generalization of the graphs we used in the quadratic algorithm: If for each n, Hn consists
of a single graph, namely the canonical tournament on n nodes, then {Hn} is a redactable precedence graph
family.

In order to define our new redactable precedence graph family, we will need some notation. For nonneg-

ative integers a1, . . . , ak satisfying n =
k∑
i=1

ai, the multinomial coefficient
(

n
a1,a2...,ak

)
is given by

(
n

a1, a2 . . . , ak

)
=

n!

a1!a2! . . . ak!
.

Fact 1. For each n, the sum of all these multinomial coefficients is∑
a1+a2+...+ak=n

(
n

a1, a2 . . . , ak

)
= kn.

Next we describe a new redactable precedence graph family Hn = Gn,k, with k to be chosen as specified
below. We define two sets of vertices, V = {1, . . . , n} and B = {b1, . . . , bk−1}. The vertices i ∈ V correspond
to the respective subdocuments mi of M, and we call vertices bi ∈ B bridge nodes. An instance from Gn,k

is defined by a choice of nonnegative integers a1, . . . , ak satisfying
k∑
i=1

ai = n. The resulting directed graph

Ga1,...,ak = (V ∪B,E) is defined by choosing its arcs as follows:

1. Use the the k − 1 bridge nodes to divide the n vertices in V into k contiguous groups g1, . . . , gk of sizes
|g1| = a1, . . . , |gk| = ak, respectively. Then we have g1 = {1, . . . , a1}, g2 = {a1 + 1, . . . , a1 + a2}, . . ., etc.

2. In each group gi, construct a transitive tournament on the ai vertices based on their canonical ordering.
3. For every group gi, i = 1, . . . , k, for every vertex v ∈ gi, add the arc (bi−1, v).
4. For every group gi, i = 1, . . . , k − 1, for every vertex v ∈ gi, add the arc (v, bi).
5. Connect all the bridge nodes bi ∈ B sequentially with the canonical ordering.

Each graphGa1,...,ak is chosen according to the normalized multinomial coefficient pa1,...,ak =
(

n
a1,a2...,ak

)
·k−n.

To illustrate, Figure 5 shows a graph from the family G12,4. After the redaction of a node representing
one of the 12 subdocuments, the result is a graph from the family G11,4, as shown in Figure 6.
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Fig. 5: a graph G4,5,3,0 chosen from G12,4
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Fig. 6: G4,5,3,0
redact m9−−−−−−−−−−−−−−→

rename m10,m11,m12

G4,4,3,0

Now we discuss the the properties of the new graph family Gn,k.

Fact 2. There are
(
n+k−1
k−1

)
graphs in the graph family Gn,k.

Fact 3. The number of arcs in graph Ga1,...,ak is

|EGa1,...,ak
| =

k∑
i=1

(
ai
2

)
+ 2

k∑
i=1

ai − (a1 + ak) + (k − 2)

Theorem 4. The average size of a graph sampled from Gn,k according to the multinomial distribution is
linear. More precisely, with k = O(n), the number of edges is Θ(n).

Theorem 4 is proved by way of a probability calculation whose details are included in the Appendix,
Section A.
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5.2 Details of the linear algorithm

The quadratic algorithm of Section 4 above can be regarded as operating essentially on the tournament
[1 . . . n]. The “real nodes” of that algorithm are commitments to the edges of this tournament graph. Every
algorithm step that is stated in terms of a pair (i, j) can be restated in terms of an edge of the graph. With
this point of view, given a document M of size n, after the choice of a parameter k as described below and
the choice of a graph G according to the distribution Gn,k, the previous algorithm can be applied mutatis
mutandis to the graph G.

As shown in Theorem 4 above, a graph sampled from Gn,k is of expected size Θ(n) when k = O(n). But
if k were picked as an exact function of n, the verifier of a possibly redacted document could infer from k
the size of the original document. To avoid this, we have the signer choose k instead from a suitable interval,
and quantify the uncertainty provided by this choice.

Specifically, public parameters for an instance of our linear scheme will include bounds L,U for a small
interval around 1, e.g. [L,U ] = [1 − ε, 1 + ε] with ε < 1

2 . The signer chooses c at random from [L,U ], takes
k = bcnc, chooses G according to Gn,k, and finally chooses a size M for the number of leaves in the GGM
and Merkle trees, M > |E(G)|, the size of the edge set of G.

The scheme proceeds now as in our quadratic algorithm, applied to the graph G instead of to the
tournament on n nodes, with the following changes in detail:

1. A canonical ordering must be chosen for the edges of any graph in the family Gn,k.
2. The table T2 contains not only hash values H(mi) of subdocuments mi, but also hash values for the

individual bridge nodes. For the jth bridge node bj , this can be computed as H(bridge, j).
3. Redacting the ith subdocument entails removing vertex i from G along with all its incident edges,

including arcs to and from the next and previous bridge nodes, and making the corresponding changes
to the data structures in the auxiliary data aux.

4. The graph G is included in aux, updated as needed during calls to Redact.

5.3 Efficiency

As with the analysis of the efficiency of the quadratic algorithm in Section 4.3 above, the communication
cost of this algorithm is dominated by the size of the graph G, which has expectation linear in n. The
computation cost is dominated by the sizes of the Merkle and GGM trees, which have expectation linear in
n. All three of the algorithms Sign, Verify, and Redact run in expected time O(n) · TL +O(1) · TH (where, as
above, TL is the running time of a lightweight operation of symmetric cryptography, and TH is the running
time of signing or verifying an ordinary digital signature).

5.4 Security of the linear algorithm

Assuming as before that H is a collision-free hash function, S is a digital signature scheme that is adap-
tively secure against existential forgery, C is a secure commitment scheme, and P is a secure pseudorandom
generator, we prove in this section that the scheme presented immediately above is secure.

Theorem 5. With the assumptions of Theorem 1, the algorithm of Section 5.2 is unforgeable.

The argument of Theorem 2 goes through as before, with the point of view that the precedence-proving
graph G of the linear algorithm replaces the underlying tournament on n nodes of the quadratic algorithm.

In order to prove transparency, we need to further investigate the distribution of our graph family Gn,k.
We begin by showing the effect on our choice of graph of redacting a subdocument mi from the graph chosen
to represent a document of length n+ 1.

Lemma 2. The probability of obtaining a particular graph Ga1,...,ak with
k∑
i=1

ai = n by sampling a graph

instance from the distribution Gn+1,k and then redacting one node chosen at random from [1 . . . n + 1] is
identical to the probability of sampling Ga1,...,ak from the distribution Gn,k.

The calculaton that proves Lemma 2 is included in the Appendix, Section B.
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Theorem 6. With the assumptions of Theorem 1, the algorithm presented in Section 5.2 is (α(n), β(n))
transparent, where α(n) = max{n, kU } and β(n) = min{e(`, k,G), kL}, where e(`, k,G) is the quantity defined
as follows, depending on the signer’s choices of k, M , and the graph G ∈ Gn,k:

e(`, k,G) = max{` : ∃G′ ∈ G`,k satisfying G′ � G, |EG′ | ≤M}.

Proof of Theorem 6. The transparency proof for the linear algorithm is similar to the proof of Theorem 3.
We are given (σ, aux), a redactable signature for a documentM of size n computed by the linear algorithm,
and two documents M0, M1 of sizes ≥ n and both satisfying M�Mi.

Let the original document’s length be denoted norig. Then the bounds α(n) ≥ k
U and β(n) ≤ k

L follow
directly from the choice of k = bcnorigc with c ∈ [L,U ].

Assume now that |M0|, |M1| ∈ [α(n), β(n)]. We want to show that the distributions of the two extended
signatures (i = 0, 1)

(σi, auxi) = RedactPK(Mi,SignSK(Mi),Mi\M}
= (σi,Ti

1,T2
i,SiG,SiM ,xi, Giai1,...,aik)

are computationally indistinguishable.
The only difference between the extended signatures generated by the linear algorithm and by the

quadratic algorithm is that, for the linear algorithm, the auxilary data aux also includes the redactable
precedence graph description Ga1,...,ak . Since both (σ0, aux0) and (σ1, aux1) are valid redactable signatures
for M, the parameters of graph Gi

ai1,...,a
i
k

(i = 0, 1) satisfy

k∑
j=1

a0
j =

k∑
j=1

a1
j = n.

As a consequence of Lemma 2, the distributions G0
a01,...,a

0
k

and G1
a11,...,a

1
k

are identical.

Using a similar analysis as in the transparency proof for the quadratic algorithm, we conclude that
the distributions aux0 and aux1 are computationally indistinguishable, which further implies that the two
extended signatures (σ0, aux0) and (σ1, aux1) are computationally indistinguishable. This concludes the
proof.

If n ≥ α(n) = k
U , then the uncertainty interval [α(n), β(n)] includes n, and thus, as is always the case for

the quadratic algorithm, the verifier cannot infer whether the document being checked has been redacted at
all.

However, in the case that n < α(n) = k
U , the verifier knows that the document in question has been

redacted, even though there may remain a long interval of possible lengths for the original document. As
k ≥ L · norig, this occurs when

n <
L · norig

U
=
L

U
· norig,

in which case the fraction of the original subdocuments that has been redacted is at least 1− L
U .
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Appendix

A Average graph size

Theorem (Theorem 4). The average size of a graph sampled from Gn,k according to the multinomial
distribution is subquadratic. More precisely, with k = O(n), the number of edges is Θ(n).

Proof of Theorem 4. Let Ea1,...,ak denote the set of arcs for graph Ga1,...,ak . The average number of arcs is

|Ē| =
∑

Ga1,...,ak

|Ea1,...,ak | · pa1,...,ak (1)

=
∑

a1+...+ak=n
ai≥0

((
k∑
i=1

(
ai
2

)
+ 2

k∑
i=1

ai − (a1 + ak) + (k − 2)

)
·
(

n

a1, . . . , ak

)
· k−n

)
(2)

=k−n ·
∑

a1+...+ak=n
ai≥0

(
k∑
i=1

(
ai
2

)
−(a1+ak)

)
·
(

n

a1, ..., ak

)
+k−n·(2n+ k − 2)·

∑
a1+...+ak=n

ai≥0

(
n

a1, ..., ak

)
(3)

=
1

2
k−n ·

∑
a1+...+ak=n

ai≥0

(
k∑
i=1

ai · (ai − 1)

)
·
(

n

a1, . . . , ak

)
− k−n ·

∑
a1+...+ak=n

(a1 + ak)·
(

n

a1, . . . , ak

)
+ 2n+ k − 2 (4)

Equation 1 follows from summing over all graphs Ga1,...,ak ∈ Gn,k the product of the number of arcs in
Ga1,...,ak and the probability of obtaining Ga1,...,ak . Equation 2 follows from Fact 3. Equation 3 is rewritten
from Equation 2 by separating two terms and pulling out the constants. Equation 4 follows from Fact 1 and
further separation of terms.

To compute |Ē|, we first need to separately compute the major components of Equation 4.

Xj =
∑

a1+a2+...+ak=n
∀ai≥0

(
aj · (aj − 1) ·

(
n

a1, a2, . . . , ak

))

=
∑

a1+a2+...+ak=n
∀ai≥0,i6=j; aj=0 or 1

(
aj ·(aj−1)·

(
n

a1, a2, . . . , ak

))
+

∑
a1+...+ak=n
∀ai≥0,i6=j; aj≥2

(
aj ·(aj−1)·

(
n

a1, . . . , ak

))
(5)

=0 +
∑

a1+...+ak=n
∀ai≥0,i6=j; aj≥2

n!

a1! · a2! . . . aj−1!(aj−2)!aj+1! . . . ak!
(6)

=
∑

a1+...+aj+ak=n−2
∀ai≥0

n · (n− 1) · (n− 2)!

a1! · a2! . . . aj−1!aj !aj+1! . . . ak!
(7)

=n · (n− 1) ·
∑

a1+...+ak=n−2
∀ai≥0

(
n− 2

a1, . . . , ak

)
(8)
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=n · (n− 1) · k(n−2) (9)

Equation 6 follows from the fact that aj or aj − 1 is equal to 0 in the first term, and the fact that
aj(aj−1)

aj ! =
1

(aj−2)! in the second term. Equation 7 follows by substituting aj for aj − 2. Equation 8 uses the definition

of the multinomial coefficient. Equation 9 follows from Fact 1.

Y1 =
∑

a1+a2+...+ak=n
∀ai≥0

(
a1 ·

(
n

a1, a2, . . . , ak

))

=
∑

a1+a2+...+ak=n
∀ai≥0,i6=1; a1=0

(
a1 ·

(
n

a1, a2, . . . , ak

))
+

∑
a1+a2+...+ak=n
∀ai≥0,i6=1; a1≥1

(
a1 ·

(
n

a1, a2, . . . , ak

))
(10)

=0 +
∑

a1+a2+...+ak=n
∀ai≥0,i6=1; a1≥1

n!

(a1 − 1)! · a2! . . . ak!
=

∑
a1+...+aj+...+ak=n−1

∀ai≥0

n · (n− 1)!

a1! · a2! . . . ak!

=n ·
∑

a1+a2+...+ak=n−1
∀ai≥0

(
n− 1

a1, a2, . . . , ak

)
= n · k(n−1) (11)

Equation 10 follows from separating the cases that a1 ≥ 1 and a1 = 0. The second part of Equation 11
follows from Fact 1. Similarly,

Yk =
∑

a1+a2+...+ak=n
∀a1≥0

(
ak ·
(

n

a1, a2, . . . , ak

))
= n · k(n−1)

Plugging Xj , Y1 and Yk into Equation 4, we obtain the expected number of edges:

|Ē| =1

2
k−n ·

k∑
j=1

Xj − k−n ·(Y1+Yk) + 2n+ k − 2

=
1

2
k−n · (k · n · (n− 1) · k(n−2))− k−n · (2 · n · k(n−1)) + 2n+ k − 2

=
n · (n− 1)

2k
− 2n

k
+ 2n+ k − 2 =

n · (n− 5)

2k
+ 2n+ k − 2 (12)

Differentiating the last part of Equation 12 and setting it equal to 0, we obtain

2k2 = n(n− 5).

Solving this equation, we find that the optimal number of groups is k = O(n) ≈ 2−
1
2n ≈ 0.7n, with resulting

expectation |Ē| = O(n).

B Indistinguishability of graph Ga1,...,ak

Lemma (Lemma 2).

The probability of obtaining a particular graph Ga1,...,ak with
k∑
i=1

ai = n by sampling a graph instance

from the distribution Gn+1,k and then redacting one node i chosen at random from [1 . . . n + 1] is identical
to the probability of sampling Ga1,...,ak from the distribution Gn,k.

Proof of Lemma 2. According to the graph sampling definition, the probability of choosing Ga1,...,ak ∈ Gn,k
is pa1,...,ak =

(
n

a1,a2...,ak

)
· k−n.

If Ga1,...,ak ∈ Gn,k is redacted from a graph in Gn−1,k by deleting any one subdocument vertex, there are
k possibilities:
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Redact one vertex from group g1 in graph Ga1+1,...,ak

Redact one vertex from group g2 in graph Ga1,a2+1,...,ak

...
Redact one vertex from group gk in graph Ga1,...,ak−1,ak+1

Since every subdocument vertex mi, i = 1, . . . , n + 1, may be redacted with equal probability, we find
that the probability of obtaining Ga1,...,ak by redaction is

p′a1,...,ak =
a1 + 1

n+ 1
· pa1+1,a2,...,ak +

k−1∑
i=2

ai + 1

n+ 1
· pa1,...,ai,ai−1,ai+1,...,ak +

ak + 1

n+ 1
· pa1,...,ak−1,ak+1

=
a1+1

n+1
·
(

n+ 1

a1+1, a2, ..., ak

)
· k−(n+1) +

k−1∑
i=2

ai+1

n+1
·
(

n+ 1

a1, ..., ai−1, ai+1, ai+1, ..., ak

)
· k−(n+1)

+
ak+1

n+1
·
(

n+ 1

a1, . . . , ak−1, ak+1

)
· k−(n+1)

= k−(n+1) ·

(
a1 + 1

n+ 1
· (n+ 1)!

(a1 + 1)!a2! . . . ak!
+

k−1∑
i=2

ai + 1

n+ 1
· (n+ 1)!

a1! . . . ai−1!(ai + 1)!ai+1! . . . ak!

+
ak + 1

n+ 1
· (n+ 1)!

a1! . . . ak−1!(ak + 1)!

)
= k−(n+1) ·

k∑
i=1

n!

a1! . . . ai−1!ai!ai+1! . . . ak!
= k−(n+1) ·

(
k · n!

a1!a2! . . . ak!

)
= k−n ·

(
n

a1, a2 . . . , ak

)
= pa1,...,ak


