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Abstract. Zero-knowledge proofs are a core building block for a broad
range of cryptographic protocols. This paper introduces a generic zero-
knowledge proof system capable of proving the correct computation of
any circuit. Our protocol draws on recent advancements in multiparty
computation and its security relies only on the underlying commitment
scheme. Furthermore, we optimize this protocol for use with multivariate
quadratic systems of polynomials, leading to provably secure signatures
from multivariate quadratic systems, with keys that scale linearly and
signatures that scale quadratically with the security parameter.
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1 Introduction

One of the central tasks of cryptography is to provide users with the capability
to produce evidence for particular claims while at the same time preserving
privacy. In particular, zero-knowledge proofs enable one party, the prover, to
convince another party, the verifier, beyond a shadow of a doubt that he knows
secret information satisfying public criteria without ever revealing it [18].

There is an intrinsic link between zero-knowledge proofs and signature schemes:
any sufficiently general construction for zero-knowledge proofs can be trans-
formed into a digital signature scheme by using the Fiat-Shamir transform [13].
This relatively simple transformation has spawned a multitude of signature
schemes, although there are many exceptions that do not arise from zero-knowledge
constructions. Likewise, there exist many applications for zero-knowledge proofs
beyond signature schemes, such as e.g. verifiable secret sharing, anonymous cre-
dentials, or anonymous mix networks.

Consequently, there is a large body of research attempting to build zero-
knowledge proofs on top of minimalistic assumptions, such as the existence one-
way functions. For example, it was shown early on by Goldreich et al. [17] that
if such a one-way function exists, then there exist protocols for proving any NP
statement in zero-knowledge. Aside from their implications on computational



complexity theory, these minimalistic protocols are interesting from a crypto-
graphic perspective because they offer a modicum of defense against unforesee-
able advances in the cryptanalysis of any specific primitive: namely, the ability to
switch to another. For example, when large-scale quantum computers are built,
any protocol based on the discrete logarithm problem will be considered broken;
however, any minimalistic protocol can retain security simply by switching to a
primitive that is not broken by Shor’s quantum algorithm [30].

In the same vein of zero-knowledge proofs on top of minimalistic assumptions,
Ishai et al. [20] show an intrinsic link between zero-knowledge and multiparty
computation (MPC). In particular, any MPC protocol can be turned into an
interactive or non-interactive zero-knowledge proof. Their construction relies on
the prover’s simulation of an MPC protocol “in the head”, i.e., by simulating
all players in the protocol. The prover’s first message to the verifier consists of a
binding commitment to each player’s contribution to the protocol. The verifier’s
challenge identifies the players whose protocol contributions are to be shown in
the prover’s second message. If the prover is cheating, his fraud will be laid bare
with high probability by the verifier’s random audit.

In addition to making only minimalistic assumptions, both Goldreich et al.
and Ishai et al. propose protocols that are generic, i.e., apply to any circuit or
polynomial-time computation. In order for the protocol to be meaningfully zero-
knowledge, this circuit or polynomial-time computation must itself be one-way.
Otherwise, the attacker can obtain the secret preimage by applying the inverse
function to the known output image.

One-way functions are by definition computable in polynomial time and the
set of images associated with one family of one-way functions is a language in
NP; the matching witness is given by the corresponding preimage. Consequently,
the generic constructions for minimalistic zero-knowledge proofs are capable of
proving knowledge of the preimage under any one-way function. The tempting
combination of such a proof with a message-dependent non-interactive challenge
trivially yields a provably secure signature scheme whose security relies on the
difficulty of finding inverse images.

However, not any one-way function will do. Many cryptographically secure
one-way functions such as hash functions are not designed with zero-knowledge
proofs in mind. As a result, a generic zero-knowledge proof of knowledge of a
preimage is likely to be bloated and difficult to generate. A one-way function
must be tailored to the zero-knowledge proof for an efficient signature scheme.

Contributions. We propose a zero-knowledge proof system which is generic in
two senses: on the one hand, it is minimalistic, relying only on the random
oracle model for security; and on the other, it allows the correct computation
of any arithmetic circuit to be proven. Our protocol draws on recent advances
in multiparty computation such as information-theoretically secure and linearly
homomorphic MACs, as well as pre-computed multiplication triples for non-
linear operations [5]. The only cryptographic primitive the protocol requires in
practice is a collision-resistant hash function for secure commitments.
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Moreover, we propose optimizations for this protocol that apply in special
cases. For instance, the circuit whose correct computation is proven can contain
field inversion gates; these require just one multiplication triple. Another exam-
ple is the use of field extensions to pack bits and thus make more efficient use of
the wires and gates in a given circuit. Most importantly, we extend the notion
of multiplication triples to bilinear triples which enable the computation of any
bilinear or quadratic form by representing it as a single gate.

We apply these last two optimizations to the case where the underlying cir-
cuit is a set of multivariate quadratic polynomials. In particular, we propose an
optimized version of our protocol that is capable of proving knowledge of the
preimage of any multivariate quadratic function using only five bilinear triples,
resulting in protocol transcripts that scale quadratically in the security parame-
ter, as opposed to the cubic scaling associated with a complete description of the
quadratic system. While zero-knowledge proofs for multivariate quadratic sys-
tems are interesting in their own right, we focus on the non-interactive case in
which the protocol boils down to a signature scheme. In contrast to other multi-
variate quadratic signature schemes, our signature scheme is provably secure —
but at the cost of larger signatures.

In contrast to other generic zero-knowledge proof as well as identification
schemes relying on post-quantum hard problems, our interactive protocols are
proven secure against quantum adversaries. To this end, we invoke Unruh’s no-
tions of quantum proof of knowledge [31] as that which is to be proven, in ad-
dition to collapsing hash functions and collapse-binding commitments [34] as a
mediate goal. In addition to that, we employ El Yousfi et al.’s (2n + 1)-pass
generalization of special soundness, called special n-soundness [1]. In a nutshell,
collapse-binding commitments allow us to rewind the prover to just before the
last message was sent. We change the last challenge of the verifier and obtain
a different protocol transcript. Special n-soundness guarantees it is possible to
extract the witness from these transcripts.

These strategies only apply to the interactive protocols. For non-interactivity
we apply the Fiat-Shamir transform [13]; the transformed protocol is known to
retain security in the classical random oracle model. Unfortunately, some proof
techniques fail in the quantum random oracle model [6]. For instance, Dagde-
len et al. show that if the underlying interactive protocol is actively secure and
uses commitments that are independent of the witness, black box extractors can-
not exist for the non-interactive protocol [10]. Ambainis et al. show that, relative
to an oracle, some Fiat-Shamir-transformed protocols are classically-secure but
quantumly-insecure, even if they rely only on quantumly-hard problems [2]. On
the bright side, Unruh shows that it is possible to transform a specially sound
protocol into a non-interactive version retaining quantum security by using ex-
tractable commitments and by forcing the protocol to adopt a split-and-choose
strategy [32]. We prefer to use the much more message-size-friendly Fiat-Shamir
transform with collapse-binding commitments and remark that our protocol is
by design already a split-and-choose type protocol. Security is proven against
classical adversaries only but we conjecture that it also holds in the quantum
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case. The same strategy is adopted by many, if not all, other post-quantum
zero-knowledge-based signature schemes [1, 7–9,21,22,24,28,29].

Related work. The graph-3-colorability protocol by Goldreich et al. [17] was the
first generic (in both senses) zero-knowledge proof as graph-3-colorability is NP-
complete. The first construction to explicitly target cryptographic applications
(as opposed to complexity-theoretic theorems) was indeed the MPC-in-the-head
protocol proposed by Ishai et al. [20]. In 2014, Ranelucci, Tapp and Zakarias [27]
proposed another protocol that accomplishes the same in a different way, namely
by emphasizing the cryptographic power of commitments to individual bits.
Ranellucci et al. benchmark their scheme using the AES circuit, where they
prove knowledge of the secret key that maps a known plaintext to a known
ciphertext. More recently, Giacomelli et al. [15] define several improved variants
of the MPC-in-the-head technique and benchmark their scheme using the circuits
for SHA-1 and SHA-256, demonstrating their practical feasibility.

At CRYPTO 2011, Sakumoto et al. proposed an interactive zero-knowledge
proof system for proving knowledge of the preimage associated with the output
image under a public multivariate quadratic function [29]. Their protocol applies
the split-and-choose pattern to the polar form of the system of polynomials,
thus convincing the verifier that the opened shares testify to the validity of the
claim while hiding its secret information-theoretically. This construction gives
rise to a provably secure identification scheme with a probability of successful
impersonation of 2−30. To reduce this number to a level that is acceptable for
signatures, the protocol must be repeated several times. Therefore, the protocol’s
relatively low communication cost of some 26 565 bits for a single execution only
represents a fraction of the size of the signature. In contrast, our scheme incurs a
communication cost of 29 600 bits for the same security level of 80 bits. Moreover,
as it is a signature scheme by design it does not require any repetition.

More recently, Chen et al. present an optimized implementation of the signa-
ture scheme based on the Sakumoto et al. protocol targeting a 128 bit security
level against quantum computers [9]. Their signatures clock in at 327 616 bits
whereas ours are 356 608 bits in size for the same security level or even 414 592
bits if we mimic their parameter choices. While our scheme seems to be outper-
formed for the purpose of post-quantum signatures with provable security based
on the MQ problem, we argue that the contributions of this paper still stand. For
instance, the novel constructions introduced in this paper may inspire further
improvements that do in the end break the Chen et al. record; or inspire im-
provements in other fields altogether. Moreover, our scheme is naturally flexible:
it allows the user to prove knowledge of the solution to an MQ problem and link
this information to other circuit satisfiability problems. It is not clear whether
constructions based on Sakumoto et al.’s identification scheme are capable of
such composability.
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2 Preliminaries

Arithmetic Circuits. Every function H : {0, 1}n → {0, 1}m of fixed input and
output length can be represented as an arithmetic circuit over any finite field
Fq. An arithmetic circuit is a directed acyclic graph (G, E) whose edges or wires
represent elements in Fq and whose vertices or gates represent operations on
them. We employ bit packing when one such field element represents more than
one bit. In addition to fields, arithmetic circuits may be defined over many other
algebraic structures. In particular, for our purposes we consider arithmetic fields
over the ring of univariate polynomials Fq[x], where a wire’s value is represented
by the polynomial’s value at x = 0.

Negligible. A function ε : N→ R>0 is negligible if for all polynomials p(x) ∈ R[x]
there is an N ∈ N such that for all x > N , ε(x) drops faster than the reciprocal
of |p(x)|. Formally, we need only consider the dominant monomial of p(x):

∀c > 1 .∃N ∈ N .∀κ > N . ε(κ) ≤ 1

κc
.

From here on, any reference to negligible functions drops the quantifiers from
the notation. However, they are still implicitly present whenever asymptotical
security notions, the security parameter κ, or the exponent c appear.

Zero Knowledge. An interactive proof system for a language L ∈ NP is a pro-
tocol between a pair of interactive Turing machines (called the prover P and
verifier V, respectively) whose common input is a string ` ∈ {0, 1}∗. The secret
information for the prover is a witness v ∈ {0, 1}∗ that certifies that ` ∈ L, i.e.,
L(`, v) = 1. At the end of the protocol, the verifier outputs a single bit, denoted
〈P(v),V〉(`), which is 1 if he accepts and 0 if he rejects. The transcript consists
of all messages sent between the two parties and the distribution of transcripts
is denoted T 〈P(v),V〉(`). We aim to satisfy three properties [4, 16]:

1. Completeness. For every ` ∈ L and matching certificate v, an honest prover
will likely convince an honest verifier:

∀` ∈ {0, 1}∗, v ∈ {0, 1}∗ .L(`, v) = 1 ⇒ Pr[〈P(v),V〉(`) = 1] ≥ 2

3
.

2. Soundness. For every ` 6∈ L no prover B is likely to convince the verifier:

∀` 6∈ L .∀B .Pr[〈B,V〉(`) = 1] ≤ 1

3
.

The probability 1
3 is an arbitrary cutoff point. More generally, the proof

has soundness error σ whenever Pr[〈B,V〉(`) = 1] ≤ σ and as long as σ
is not negligibly close to 1 the notion is meaningful because repeating the
protocol will send the soundness error to a negligible quantity in the security
parameter.
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2?. In some cases we want a stronger version of zero-knowledge proofs, namely
zero-knowledge proofs of knowledge which prove not only that ` ∈ L but
also that P “knows” a witness v and in this case we write the proved claim
concisely as ZKPoK{(v) : L(`, v) = 1} or even ZKQPoK{·} if the prover
is a quantum computer. This notion extends the soundness property by
requiring the existence of a probabilistic (respectively, quantum) polynomial-
time Turing machine EP (“the extractor”) with black-box oracle access to
P, capable of outputting a witness v for ` with a probability related to P’s
probability of convincing V:

∃E .∀P .Pr[〈P,V〉(`) = 1] ≥ 1− σ ⇒ Pr[EP(`) = v] ≥ 1− σ .

Here σ represents the knowledge error. If P and E are quantum computers,
black box oracle access is defined following Unruh [31]: The prover’s compu-
tations before and between sending and receiving messages are described by
exponentially-large unitary matrices P0, . . . ,Pn acting on a quantum state
|Ψ〉 and where the first acts on the all-zero-qubits state |Ψ〉 = |0〉. The ex-
tractor can apply these unitaries as well as their inverses to his own quantum
register |Φ〉.

2??. An even stronger variant called special n-soundness [1] may apply when the
transcript of the protocol consists of 2n+ 1 messages of which every second
one is from the verifier; this property is satisfied whenever a probabilistic
polynomial-time extractor E is able to extract the witness v from any pair
of transcripts T1 6= T2 that prove the same claim and differ only in the last
two messages.

∃E .∀T1, T2 ∼ T 〈P(v),V〉(`) .((
∀i ∈ {1, . . . , 2n− 1} . T1[i] = T2[i]

)
∧ T1 6= T2

)
⇒ E(T1, T2) = v .

This notion generalizes special soundness which applies when n = 1.
3. Zero knowledge. For all probabilistic polynomial-time verifiers V there exists

simulator SV capable of producing a transcript T ← SV(`) (or equivalently
T ∼ SV(`)) of the protocol without knowledge of v (and indeed, regardless
of whether ` ∈ L), such that T is indistinguishable from authentic tran-
scripts of protocol executions between P(v) and V. The restriction of the
same notion to only verifiers that follow the protocol specifications is named
honest-verifier zero knowledge. We consider two variants of indistinguishabil-
ity: perfect indistinguishability, which holds if the distributions of counterfeit
and authentic transcripts are identical:

S(`) = T 〈P(v),V〉(`) ;

and computational indistinguishability, which holds if there exists no proba-
bilistic (or quantum) polynomial-time Turing machine D who has more than
a negligible advantage over a random guess in distinguishing authentic from
counterfeit transcripts:

∀D .
∣∣Pr[D(Ta) = 1|Ta ∼ T 〈P(v),V〉(`)]−Pr[D(Ts) = 1 |Ts ∼ S(`)]

∣∣ ≤ 1

|`|c
.
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Commitment scheme. An important primitive frequently used in zero-knowledge
proofs is a commitment scheme. This subprotocol consists of two phases: a com-
mit phase, in which the prover binds himself to a choice without revealing it; and
a reveal phase, in which the prover reveals a value that was previously committed
to. As both phases represent messages sent by the prover, we denote by com(v; r)
and rev(v; r) the commitment and opening of a message v, bearing in mind that
the randomness r may be omitted from this notation. The verifier’s role is to re-
ceive the value v, or to reject (i.e., output ⊥) if either message is malicious. This
should be possible regardless of the randomness used: V(com(v; r), rev(v; r)) = v.
We require two more properties from a commitment scheme:

1. Hiding. Commitments are semantically secure. That is to say, for all quantum
polynomial-time distinguishers D and for all pairs of values (v1, v2), D has
a negligible advantage over a random guess in distinguishing the messages’
commitments:

∀D .∀v1, v2 .
∣∣Pr[D(com(v1)) = 1]− Pr[D(com(v2)) = 1]

∣∣ ≤ 1

(|v1|+ |v2|)c
.

2. Binding. All quantum polynomial-time cheating provers B have a negligible
probability of producing a message B(v, r) 6= rev(v, r) that will cause the
verifier to receive and accept an alternative value v′ 6= v:

∀B .Pr[v 6= V(com(v; r),B(v, r)) 6=⊥] ≤ 1

(|v|+ |r|)c
.

2?. A stronger variant of binding particularly relevant for quantum computers
is collapse-binding, defined along the same lines as collapsing hash func-
tions [34]. Consider a pair of quantum algorithms A and B, where A outputs
three quantum states M,S,U and one classical message h, and where B takes
the three quantum states and outputs a single classical bit. Such a pair is
valid if whenever M and U are measured in the computational basis, thus
giving m← M(M) and u← M(U), then V(h, u) = m. Consider the following
two games:

Game1 : (S,M,U, h)← A(1κ); m← M(M); b← B(1κ, S,M,U)

Game2 : (S,M,U, h)← A(1κ); b← B(1κ, S,M,U) .

Then a commitment scheme (com, rev,V) is collapse-binding if every quan-
tum polynomial-time adversary (A,B) has at most a negligible advantage in
distinguishing the two games:

∀(A,B) . |Pr[b = 1 |Game1]− Pr[b = 1 |Game2]| ≤ 1/κc .

Our results require only a generic hiding and collapse-binding commitment
scheme. For the purpose of estimating operational costs we use the canonical
commitment scheme which is defined by

com : {0, 1}∗ × {0, 1}κ → {0, 1}κ : (v; r) 7→ RO(v‖r)
rev : {0, 1}∗ × {0, 1}κ → {0, 1}∗ : (v, r) 7→ v‖r .
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Unruh shows that this commitment scheme is collapse-binding in the quantum
random oracle model and remains collapse-binding even if the random oracle
(RO) is instantiated by a collapsing hash function. Furthermore, the same au-
thor gives evidence that popular hash functions such as SHA2-256 may well be
collapsing already, even though the definition is relatively new [33,34].

Signature scheme. A public key signature scheme is defined as a triple of poly-
nomial-time algorithms (G,S,V). The probabilistic key generation algorithm
produces a secret and public key: G(1κ) = (sk, pk); the possibly probabilistic
signature generation algorithm produces a signature: s = S(sk,m) ∈ {0, 1}∗.
The verification algorithm takes the public key, the message and the signature
and decides if the signature is valid V(pk,m, s) ∈ {0, 1}, which it should be if
and only if the signature matches both the public key and the message.

Security is defined with respect to the Existential Unforgeability under Cho-
sen Message Attack (EUF-CMA) game [19] between the adversary A and the
challenger C, both probabilistic polynomial-time Turing machines. The chal-
lenger generates a key pair and sends the public key to the adversary. The adver-
sary is allowed to make a polynomial number of queries mi, i ∈ {1, . . . , q}, q ≤ κc,
which the challenger signs using the secret key and sends back: si ← S(sk,mi). At
the end of the game, the adversary must produce a pair of values (m′, s′) where
m′ was not queried before:m′ 6∈ {mi}qi=1. The adversary wins if V(pk,m′, s′) = 1.

A signature scheme is defined to be secure in the EUF-CMA model if for all
adversaries A, the probability of winning is negligible:

∀A .Pr

[
V(pk,m′, s′) = 1
∧m′ 6∈ {mi}qi=1

∣∣∣∣ (sk, pk)← G(1κ)

({mi, si}q<κ
c

i=1 ,m′, s′)← 〈C(sk),A〉(pk)

]
≤ 1

κc
.

Multivariate quadratic systems. A subset of arithmetic circuits of particular
interest to this paper are multivariate quadratic (MQ) systems, consisting of
circuits of algebraic degree two. By representing the outputs algebraically as
polynomial functions of the inputs, the problem of finding satisfying inputs re-
duces to the MQ problem:

MQ Problem: Given a set H ∈ (Fq[x1, . . . , xn])
m

of m multivariate quadratic
polynomials in n variables; find a solution x = (x1, . . . , xn)T ∈ Fnq such that
H(x) = 0.

The associated MQ Assumption states that no quantum polynomial-time
Turing machine exists that solves uniformly random MQ Problem instances
with m ≈ n. In addition to being NP-hard [14], the MQ Problem is empiri-
cally hard-on-average for these parameters. Moreover, MQ cryptography is itself
a well-established branch of post-quantum public-key cryptography whose cryp-
tosystems depend on the conjectured average-case hardness of this problem [12].

A frequently occurring theme in MQ cryptography is the notion of an ex-
tension field Fqn of Fq, which is constructed by choosing an irreducible degree-n
polynomial f(z) ∈ Fq[z] and working in the ring of polynomials modulo f(z),
i.e., Fqn ∼= Fq[z]/〈f(z)〉. The embedding function ϕ : Fnq → Fqn maps vectors of
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base field elements to extension field elements according to ϕ((a0, . . . , an−1)T) =
a0 + a1z + · · · an−1zn−1 ∈ Fqn . The same function can be applied to the vector
of indeterminates x, in which case we get a single extension field indeterminate
X = ϕ(x). If m = n, the system of multivariate polynomials over the base field
H(x) ∈ (Fq[x])m can be represented by a single univariate polynomial over the
extension field H(X ) ∈ Fqn [X ].

Moreover, because H(x) is quadratic over the base field, H(X ) is q-quadratic,
meaning that it can be described by coefficients γi,j , βi, α ∈ Fqn through the

expression H(X ) =
∑n−1
i=0

∑n−1
j=i γi,jX q

i+qj +
∑n−1
i=0 βiX q

i

+α. We use bold-and-
calligraphic capital letters such as X to indicate that we identify X = ϕ(x)

with the vector X = (X ,X q, . . . ,X qn−1

)T. By doing so we can identify the
homogeneous part Ĥ(X ) of H(X ) with a quadratic form: Ĥ(X ) = XTHX where
H ∈ Fn×nqn is uniquely defined up to an alternating matrix term, i.e., H +A ≡ H

iff AT = −A. If the unique upper-triangular representation of H is chosen, it
contains the γi,j coefficients.

3 Generic Zero-Knowledge

3.1 Overview

The function H : {0, 1}∗ → {0, 1}∗ to be computed is given as an arithmetic
circuit of gates whose inputs and outputs are connected acyclically by wires.
Each wire represents an element of the finite field Fq, where for practical purposes
q is on the order of several hundred but in principle q has no upper bound. Both
addition and multiplication are represented by gates that have two inputs and
one output. Furthermore, constant gates have zero inputs and one output and
guarantee that their output assumes a given value.

Each wire f is associated with a univariate polynomial f(x) ∈ Fq[x] with
deg(f) ≤ d. The value associated with the wire corresponds to the evalua-
tion of the polynomial in zero. The value of f , i.e., f(0), remains information-
theoretically hidden from the verifier as long as the verifier knows at most d
points on f(x) and x = 0 is not among them. If this is the case, then we will
denote the wire by 〈f〉 whereas we will use f to indicate that its value is known
by the verifier.

The evaluations of f(x) in d points x1, . . . , xd are MAC values of f(0) and
the points x1, . . . , xd are their corresponding keys. The verifier can verify this
MAC value as soon as he discovers the full description of f(x) by evaluating the
polynomial in the points that make up the MAC keys. The key principle that
makes the protocol work is that the prover is ignorant of the MAC keys; the only
way he can ensure that necessary relations hold for all possible MAC values is
to ensure that the same relations hold for the full polynomials. However, since
the verifier knows only d MAC values, he is not in possession of any information
on the secret value f(0).

This MAC is homomorphic for addition. Given two wires 〈f〉 and 〈g〉 where
the evaluations of the associated polynomials in x1, . . . , xd are known by the
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verifier, the output of the addition gate is easily obtained by both participants.
The associated polynomial of 〈f + g〉 is f(x) + g(x) and hence the MAC value
is computed by element-wise addition. Moreover, addition of a known constant
is cost-free as the constant is simply added to the wire’s value and MACs. Mul-
tiplication by a constant is similarly cost-free.

A slightly more difficult problem is multiplication, as the product of two
polynomials with degree at most d is of degree up to 2d. Thankfully, Beaver
proposes an elegant solution by way of multiplication triples [3], which has
since been applied to great effect in the online phase of multiparty computation
protocols [5, 11]. Given a triple of wires 〈a〉, 〈b〉, 〈c〉 for which it is known that
a(0)b(0) = c(0), we can efficiently compute 〈fg〉 from 〈f〉 and 〈g〉 as follows. We
open 〈f −a〉 and 〈g− b〉 and then compute (f(0)−a(0))〈b〉 and (g(0)− b(0))〈a〉.
Finally, we compute 〈fg〉 = 〈c〉 + (f(0) − a(0))〈b〉 + (g(0) − b(0))〈a〉 + (f(0) −
a(0))(g(0)− b(0)). No information on f(0), g(0) or f(0)g(0) is leaked. Of course,
once a multiplication triple 〈a〉, 〈b〉, 〈c〉 has been used, it cannot be reused and
hence every multiplication consumes one multiplication triple. The good news is
that the multiplication triples are independent of the gate inputs and hence can
be generated beforehand.

This leaves us with the problem of proving that a particular multiplication
triple 〈a〉, 〈b〉, 〈c〉 is indeed a correct one and not the malicious design of a cheat-
ing prover. We accomplish this by emulating Bendlin et al. [5] and sacrificing
another multiplication triple 〈p〉, 〈q〉, 〈r〉. In particular, we use the second triple
to compute 〈ab〉 and then open 〈ab − c〉 to test if it is equal to zero. If exactly
one multiplication triple is incorrect, then the result cannot possibly be zero.
However, it is possible that this result is zero but both triples are incorrect. To
prove this is not the case, we incorporate a challenge e1, e2 from the verifier, i.e.,
we sacrifice 〈p〉, 〈q〉, 〈r〉 to prove that e2〈a〉, e1〈b〉, e1e2〈c〉 is a correct triple.

Some wires will eventually be opened, but their value must remain hidden
until the very end of the protocol, when the MAC values are verified. The prover
accomplishes this by committing to the polynomials of all the wires that should
be opened before receiving the challenges from the verifier. At the end of the
protocol, the prover opens the wires and allows the verifier to verify the com-
mitments.

3.2 Protocol

We present the generic zero-knowledge protocol in two parts: PACE a zero-
knowledge proof of correct evaluation of a linear arithmetic circuit H in se-
cret inputs; and PCMT, a zero-knowledge protocol for proving the correctness of
multiplication triples which is necessary for extension to non-linear arithmetic
circuits. While conceptually distinct, there is little reason to use either protocol
in a standalone manner: without the multiplication triples the circuit is linear
and cannot hide secrets; and without the linear MAC check it is impossible
to make the correct multiplication triple proof complete. We detail the proper
construction of the overall protocol in the third part of this section.
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Proof of Correct Arithmetic Circuit Evaluation. The protocol PACE, de-
picted visually in Fig. 1, proceeds as follows. The verifier knows the circuit
H : Fnq → Fmq and the output o ∈ Fmq , whereas the prover knows the secret
input i ∈ Fnq such that H(i) = o. Let I and O denote the sets of indices identi-
fying the input and output wires to the circuit, respectively. The prover starts
by choosing n random polynomials wi(x) with degree at most d to represent i,
i.e. such that i = (wi(0))i∈I , and then computes all wires wi(x)∀i ∈ I ∪ O in
the linear circuit H from these input polynomials. Next, the prover commits to
u MACs wi(j)∀i ∈ I ∀j ∈ U as well as to the polynomials of all output wires
wi(x)∀i ∈ O, by sending these commitments to the verifier. The verifier chooses
a random size-d subset J ⊂ U indicating the MAC keys of his random audit.
The prover responds to this challenge by revealing the requested MAC values
and also by revealing the polynomials of all output wires. In the final step, the
verifier verifies that the MAC values of the output wires satisfy the linear rela-
tions implied by H, and that the list of output polynomials (wi(x))i∈O evaluate
to o in 0.

In order to make the protocol work for non-linear circuits in addition to
linear ones, we must include k multiplication triples in the input i, where k is
the number of multiplication gates in H. In order for the verifier to obtain the
subset of weights ak for non-linear gates, the wires f(x)− a(x) and g(x)− b(x)
must be included in the output; by evaluating these in x = 0, the verifier obtains
the weights and constants required to compute the MAC values of f(x)g(x) =
c(x)− (f(0)− a(0))b(x)− (g(0)− b(0))a(x)− (f(0)− a(0))(g(0)− b(0)).

Proof of Correct Multiplication Triples. The interactive proof of correct
multiplication triples is intended as a subprotocol of the overall proof. This allows
us to assume that the verifier knows the MAC values of all wires corresponding
to a set of d MAC keys J , which is a subset of the set of all possible MAC keys
U . The verifier knows J but the prover is ignorant of these values. In order to
succeed with high probability in convincing the verifier that the additive relations
between the wires hold, the prover must guarantee the additive relations for all
possible MAC keys — which is only possible if the wires themselves satisfy the
linear relations.

The protocol PCMT proceeds as follows. The prover holds k sets of triples of
polynomials a(x),b(x), c(x), denoted in bold to indicate that these are vectors
of k elements. These represent k multiplication triples, i.e., the element-wise
product a(0) · b(0) is equal to the vector c(0). Similarly, the prover possesses
another k size set of multiplication triples f(x),g(x),h(x) which will be sacrificed
to prove that the first set are correctly formed. The verifier holds the evaluations
of all these polynomials in the d points J ⊂ U , where J is kept secret from the
prover. The protocol is started by the verifier who chooses a pair of k-size vectors
over Fq to challenge with, denoted by e1 and e2. Upon receiving this challenge,
the prover computes the polynomial vectors δ(x) = e1 · b(x) − g(x), ε(x) =
e2 ·a(x)−f(x), and k(x) = e1 ·e2 ·c(x)−h(x)−δ(0)·ε(0)−δ(0)·f(x)−ε(0)·g(x).
These polynomial vectors are then opened up by the prover, who sends them

11



Interactive Zero-Knowledge Proof PACE

P V
secret knowledge: public knowledge:
i ∈ Fnq o ∈ Fmq
s.t. o = H(i) H : Fnq → Fmq

for all k ∈ I do:

wk(x)
$←−
(
Fq[x≤d]

)n
s.t. (wk(0))k∈I = i
for all gates (+, h, i, j) ∈ H do:
wj ← wi(x) + wh(x)

{com({wi(j)}i∈I)}j∈U ,
com({wi(x)}i∈O)

−−−−−−−−−−−−−−−−−−→
J

$←− {V ⊂ U |#V = d}
J

←−−−−−−−−−−−−−−−−−−

{rev({wi(j)}i∈I)}j∈J
rev({wi(x)}i∈O)

−−−−−−−−−−−−−−−−−−→
for all i ∈ O do:

deg(wi(x))
?

≤ d
wi(0)

?
= oi

for all j ∈ J do:

wi(j)
?
=
∑
k∈I

akwk(j) + bk

Fig. 1. Interactive proof of correct evaluation of an arithmetic circuit H.

to the verifier. In the last step, the verifier checks that these polynomials are
correctly formed, i.e., that their MACs satisfy the claimed linear relations, that
the wires related to k represent zero, i.e., k(0) = 0, and that all polynomials
have degree at most d. The protocol is visually depicted in Fig. 2.

It is important to note that the challenge e1, e2 associated with a single
triple-proof contains 2 log2(q− 1) bits, where q is the size of the finite field. The
protocol’s soundness depends on enough entropy coming from the verifier’s chal-
lenge, and the finite field might not be large enough to contain this information.
This problem is solved by adding more multiplication triples in cascade. The
first triple is sacrificed to prove the correctness of the second, which is then sac-
rificed to prove the correctness of the third. After being validated by a cascade of
several sacrifices, the non-sacrificial multiplication triple is used in the linearized
circuit to compute a multiplication.
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Interactive Zero-Knowledge Proof PCMT

P V
secret knowledge: secret knowledge:

a,b, c ∈
(
Fq[x≤d]

)k {a(j),b(j), c(j)} ∀j ∈ J
s.t. a(0) · b(0) = c(0) {f(j),g(j),h(j)} ∀j ∈ J
f ,g,h ∈

(
Fq[x≤d]

)k
J ⊂ U, #J = d

s.t. f(0) · g(0) = h(0)

e1, e2
$←− (Fq\{0})k

e1, e2
←−−−−−−−−−−−−−−−−−−

δ ← e1 · b(x)− g(x)
ε← e2 · a(x)− f(x)
k← e1 · e2 · c(x)− δ(0) · ε(0)

− δ(0) · f(x)− ε(0) · g(x)
− h(x)

δ(x), ε(x),k(x)
−−−−−−−−−−−−−−−−−−→

for all j ∈ J do:

δ(j)
?
= e1 · b(j)− g(j)

ε(j)
?
= e2 · a(j)− f(j)

k(j)
?
= e1 · e2 · c(j)− h(j)

− δ(0) · ε(0)

− δ(0) · f(j)
− ε(0) · g(j)

k(0)
?
= 0

max{deg(δ(x)), deg(ε(x)),

deg(k(x))}
?

≤ d

Fig. 2. Interactive proof of correct multiplication triples.

Sequential Composition. Of course, the verifier should not merely assume
that the wires indicated by the prover as such are indeed correctly formed mul-
tiplication triples; he should verify this. To this end, PCMT must be combined
with PACE. The changes to the shape of the circuit H are obvious: the input
must contain an additional triple of vectors of k elements representing f ,g and
h, the multiplication triples that are sacrificed to prove the correctness of a,b
and c. Similarly, the output of H must contain k additional wires matching δ, ε
and k, i.e., the response values proving the correct formation of the multiplica-
tion triples. Thankfully, the verification of these last three sets of wires consists
of validating the MACs against linear relations and evaluating the polynomials
x = 0 — essentially the same as the last step of PACE and hence easily combined.
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Näıve parallel composition allows the prover to choose ε(x), δ(x) and k(x)
as a function of J , guaranteeing valid MAC values but getting away with a
different wire value. Since PCMT assumes that the prover is ignorant of J at
the time he computes ε(x), δ(x) and k(x), we must somehow demand that this
computation takes place before J is chosen. We propose one way of combining
PACE with PCMT which guarantees the proper order of computation, but note that
other strategies may exist also. A high-level schematic overview of the composite
protocol is shown in Fig. 3.

In this sequential composition structure, five messages are exchanged rather
than three. After committing to the polynomials of the inputs and all their
MAC values, the verifier responds with the FCMT-challenge e1, e2. Only after
the prover responds with commitments to the polynomials ε(x), δ(x) and k(x),
does the verifier challenge him with the random audit J and only after that
does the prover respond by revealing the requested MAC values and output wire
polynomials. While five messages is not optimal in terms of interactivity, both
challenges are public coin challenges and hence either one step or both can be
made non-interactive via application of the Fiat-Shamir transform [13].

Interactive Zero-Knowledge Proof PSGZK

P V
...

com(wi(j)), com(wk(x))
−−−−−−−−−−−−−−−−−−→

· $←− ·
e1, e2

←−−−−−−−−−−−−−−−−−−
...

com(ε(x), δ(x),k(x))
−−−−−−−−−−−−−−−−−−→

· $←− ·
J

←−−−−−−−−−−−−−−−−−−
rev(ε(x), δ(x),k(x)),

rev(wi(j)), rev(wk(x))
−−−−−−−−−−−−−−−−−−→

...
?
=

...

Fig. 3. Sequential composition of PACE with PCMT for generic zero-knowledge proofs.
The ellipses leave out the identical computations by the prover and verifier found in
protocols PACE and PCMT.
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3.3 Interactive Security

The protocols PACE and PCMT are presented as separate entities. It is tempting
to prove their security separately as well. However, this strategy will fail: as the
circuit for PACE is linear, the notions knowledge and knowledge-soundness are
meaningless. The extractor can compute the secret from the public information
without ever interacting with the prover. Consequently, to prove security we
must take into account the sequential composition with PCMT which allows for
nonlinear and thus potentially one-way circuits.

Theorem 1. Let (com, rev) be a correct, hiding and collapse-binding commit-
ment scheme. Let H be a circuit for a one-way function defined over some finite
field Fq, and where every input is involved in at least one nonlinear gate. Then
PSGZK is a complete, honest-verifier zero-knowledge quantum proof of knowledge
of the relation

ZKQPoK{(i) : H(i) = o}

satisfying special 2-soundness with knowledge error σ ≤ max
(
1/
(
u
d

)
, 1/(q − 1)D

)
,

where D is the depth of the multiplication cascade and u = #U .

Proof. Completeness. Since a,b and c represent correct multiplication triples,
the completeness follows from induction on the gates of H. If the output of each
gate is computed correctly from that gate’s inputs, then the MACs of its outputs
can successfully by verified all the way down to the circuit’s output wires. The
prover chooses polynomials of degree at most d and as the polynomials are only
linearly combined this degree never increases, thus guaranteeing that the degree-
check of the verifier succeeds as well. The verifier’s test for multiplication triple
validity is guaranteed to succeed as well because f ,g,h also represent correct
multiplication triples and

k = e1e2c− h− δε− δf − εg

= e1e2c− h− (e1b− g)(e2a− f)− (e1b− g)f − (e2a− f)g

= e1e2c− h− e1e2ab + e2ag + e1fb− fg − e2ag + fg − e1bf + gf

= 0 .

Soundness. If H((wi(0))i∈I) 6= o then at some point the circuit was computed
incorrectly and then either a) not all linear relations between the polynomials
hold; or b) the linear relations do hold but the multiplication triples are incorrect.
We treat these cases separately.

In case (a), the linear mismatch will be exposed with high probability due
to the verifier’s random audit in d points indicated by the second challenge J .
Assume that all involved polynomials are of degree at most d. (We justify this
assumption later.) Then the linear mismatch means that for some i, wi(x) 6=∑
k∈I akwk(x) + bk. The difference between left and right hand sides must be

nonzero and of degree at most d, and consequently it must evaluate to zero
in at most d points. By the binding property of the commitment scheme, these
polynomials are fixed before J is chosen. Consequently, the probability that these

15



d points where the difference polynomial evaluates to zero are exactly those in
J is 1/

(
u
d

)
with u = #U .

In case (b), the cheating prover must produce polynomials δ(x), ε(x) and
k(x) that pass the verifier’s test. As their linear relations hold, these polynomials
satisfy

δ(x) = e1 · b(x)− g(x) ; ε(x) = e2 · a(x)− f(x) ;
k(x) = e1 · e2 · c(x)− h(x)− δ(0) · f(x)− ε(0) · g(x)− ε(0)δ(0) .

Consider one pair of triples. Evaluate in 0 and drop (0) from notation. Then:

0 = k = e1e2c− h− δf − εg − εδ
= e1e2c− h− (e1b− g)f − (e2a− f)g − (e1b− g)(e2a− f)

h+ e1bf − fg − fg − e1bf + fg = e1e2c− e2ag − e1e2ab+ e2ag

= h− fg = e1e2(c− ab) .

If either (a, b, c) or (f, g, h) is an incorrect triple but not both, then no assignment
to e1, e2 ∈ Fq\{0} can be valid. However, if both are incorrect triples, then there
is exactly one valid assignment. By the binding property of the commitment
scheme, the polynomials are fixed before e1 and e2 are chosen. Consequently, the
probability of a valid pair (e1, e2) being selected is 1/(q−1). For a multiplication
triple cascade of depth D, the effect is compounded: the probability of a valid
sequence of pairs (e1, e2) being selected is 1/(q − 1)D.

If any one of the polynomials has degree larger than d, then this fraud will be
exposed by the multiplication challenge with high probability as well, provided
that the wire is involved in at least one multiplication. Consider one multiplica-
tion triple audit and suppose a(x), b(x), c(x), f(x), g(x), h(x) or a combination of
them have degree larger than d. We know that the linear MAC check guarantees
with high probability that

δ(x) = e1b(x)− g(x) ; ε(x) = e2a(x)− f(x) ;
k(x) = e1e2c(x)− h(x)− δ(0)f(x)− ε(0)g(x)− ε(0)δ(0) .

If exactly one from {a(x), b(x), c(x), f(x), g(x), h(x)} has degree larger than d,
then one of the degree checks must fail. If deg(a(x)) = deg(f(x)) > d and their
quotients by xd are linearly dependent, then there is exactly one choice of e2 that
guarantees deg(ε(x)) ≤ d and the probability that it will be selected is 1/(q−1).
The same argument holds for b(x), g(x), e1 and δ(x). If deg(c(x)) = deg(h(x)) >
d (with linearly dependent quotients by xd) but deg(f(x)), deg(g(x)) ≤ d, then
the random choice of e1 and e2 will cause the degree check on k(x) to fail with
probability 1/(q − 1). This covers all possibilities. The effect compounds for
multiplication cascades of depth D because polynomials of degree larger than d
need to come in pairs from different triples. The probability of a cheating prover
getting away with a polynomial of degree larger than d is at most 1/(q − 1)D.
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Quantum-knowledge-soundness. The computation of the prover can be repre-
sented by three unitary transforms P0,P1 and P2 sharing a state. The collapse-
binding property of the commitments guarantee that after measuring the first
and third messages, the state of the prover is not disturbed too much by also
measuring the last message. Consequently, we can rewind the prover’s last com-
putation by applying P−12 and re-run it with a different challenge J ′ 6= J . This
generates a second transcript, different from the first in only the last two mes-
sages. Efficient extractability follows from special 2-soundness.
Special 2-soundness. There exists an efficient extractor who, given two tran-
scripts T1 and T2 with the same first three messages but with a different fourth
and fifth one, is able to compute the secret information i. The first message
of T1 and T2 is the same, indicating that the wires {wi(x)}i∈I are the same.
The fourth messages are different and consequently J ∪ J ′ contains more than d
points. Consequently, the extractor obtains from the sets {rev({wi(j)}i∈I)}j∈J
more than d points on every polynomial wi(x), i ∈ I. As their degrees are at
most d, the extractor can interpolate and obtain (wi(0))i∈I = i.
Honest-verifier zero-knowledge. There exists a simulator who, given only the
public information, is capable of generating a transcript T that is valid and in-
distinguishable from the transcript between an honest prover with the secret i
and an honest verifier. The simulator proceeds as follows: he chooses the input
wires {wi(x)}i∈I at random and computes the circuit honestly, i.e., using honest
multiplication triples with an honest audit e1, e2 and correct linear relations.
Next, the simulator chooses at random J ⊂ U and evaluates the output polyno-
mials {wi(x)}i∈O in x ∈ J . Together with the points o, this makes d+1 points for
each output polynomial. The simulator interpolates between d+1 points for each
output to find a new polynomial {w′i(x)}i∈O satisfying both (w′i(0))i∈O = o and
the linear relations w′i(j) =

∑
k∈I akwk(j) + bk ∀i ∈ O, j ∈ J . The full transcript

is given by

T =


{com({wi(j)}i∈I)}j∈U , com({wk(x)′}k∈O)

e1, e2
com(ε(x), δ(x),k(x))

J
rev(ε(x), δ(x),k(x)), {rev({wi(j)}i∈I)}j∈J , rev({w′k(x)}k∈O)

 .

This transcript is indistinguishable from authentic as the distinguisher would

have to recover the values of the input i and test them against H(i)
?
= o in order

to tell authentic transcripts from counterfeit. However, any such value-recovering
adversary would break the hiding property of the commitment scheme. ut

3.4 Optimizations

Bit packing. There are many choices for the finite field underlying the circuit.
On the one hand, the field must contain more elements than the degree d of the
polynomials so that they are not reduced modulo the field ideal. On the other
hand, a larger field means more data and larger messages, which is especially
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redundant if the multiplication triples are used for nonlinear bit gates. Fortu-
nately, the input and output can be densely packed if an extension field is used,
such as e.g. F28 . After all, if f(x) is the polynomial associated with a wire and
f(0) is that wire’s value, then to obtain the ith bit of this value amounts to
a linear operation: (f(0))i = L(f(0)). The transformation L propagates to the
MAC values because L(f(x)) evaluates to L(f(j)) =

∑
k L(akj

k) = L(
∑
k akj

k)
in the MAC keys j ∈ J .

Field inverse. While addition and multiplication over a finite field are together a
universal set of operations, i.e., capable of computing any computable function,
for some applications it may be worthwhile to include field inversion in this
set. This operation may be simulated by raising an element to the order of the
field minus one, but this requires a substantial number of multiplication triples,
especially if the field is large. However, it requires only one multiplication triple
to prove that 〈g〉 is the multiplicative inverse of 〈f〉 as all the verifier needs to
do is to verify that 〈fg〉 opens to 1.

One extra point. As a result of the protocol, the verifier already obtains d points
of each output polynomial. Rather than committing to the entire output polyno-
mials and revealing them later, the prover commits to the evaluations in x = 1
and reveals those points later. Consequently, x = 1 6∈ U should be off-limits as
a potential MAC key.

Commitment tree. At the start of the protocol, the prover commits to u = #U
sets of MAC values: {{wi(j)}i∈I}j∈U . However, not all of these commitments
are eventually opened. Depending on the size of U , it may be prudent to arrange
the commitments to the sets {wi(j)}i∈I as leafs in a Merkle tree, where each
node in the next layer is the hash of two nodes in the previous layer such as in
Fig. 4. The prover commits to the root of this tree and eventually opens only
those branches that correspond to the verifier’s challenge J . While this does not
reduce the work done by the prover, it drastically reduces the communication
cost from O(u) to O(d dlog2ue).

Fig. 4. Merkle commitment tree with one opened branch.

Specifically, the commitments com({wi(2)}i∈I), com({wi(3)}i∈I), . . . , com({wi(u+
2)}i∈I) are aligned horizontally on the bottommost layer (layer 0) with indices
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starting at 0, along with empty strings to pad this layer until the number of ele-
ments is a power of 2. Let νi,j denote the ith node on layer j, then except for layer
0 all elements are found as νi,j = RO(ν(i‖0),j−1‖ν(i‖1),j−1). The root of the tree
is ν0,dlog2ue−1. The path to bottom node i is given by πi = ν0,dlog2ue−1‖ · · · ‖νi,0,
where the first index of the kth node in this expression represents the first k− 1
most significant bits of i.

Fiat-Shamir transform. The Fiat-Shamir transform [13] turns interactive proofs
into non-interactive proofs by replacing the verifier’s public coins with the ran-
dom oracle’s response. The query that generated this response equals the con-
catenation of all previous protocol messages. Let

ic = ν0,dlog2ue−1‖com
(
{wi(1)}i∈O

)
oc = com

(
{δ(1), ε(1),k(1)}

)
represent the first and second messages sent by the prover in PSGZK. Then for
PSGZK the Fiat-Shamir transform amounts to setting

(e1, e2)← RO
(
ic
)

J ← RO
(
ic‖e1‖e2‖oc

)
.

The resulting non-interactive protocol retains security against classical adver-
saries in the random oracle model via the forking lemma as formalized by
Pointcheval and Stern [26]. Unfortunately, no quantum analogue of the fork-
ing lemma is known.

3.5 Complexity

Let κ be a security parameter which is also the number of bits in the random
oracle’s responses. Let k be the number of multiplication gates in the circuit and
let n be the number of inputs and m the number of outputs, not including the
additional inputs and outputs that arise due to linearization.

There are several design choices to be made. For instance, while the choice
of the finite field Fq does not influence security, it does impose restrictions on
other parameters that do. Unless the circuit is specifically designed otherwise, it
makes sense to choose a field with characteristic 2 as this simplifies the protocol’s
implementation. The number of elements q must be large enough to accommo-
date all potential MAC keys U as well as the values 0 and 1 that are off-limits
as potential keys: q ≥ #U + 2 = u + 2. The maximum degree d of the wire
polynomials is another parameter choice subject to restrictions. As the verifier’s
work is linear in d2, and as the prover’s work is linear in du, both numbers are
preferably as small as possible. However, they must be large enough to ensure
that the query J ⊂ U of the verifier contains at least κ bits of information:(
u
d

)
≥ 2κ. Also, the size of the transcript is logarithmic in u but linear in d and

consequently one may wish to minimize d at the expense of u to some degree.
Table 1 shows some sets of design choices that satisfy the required criteria.
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Table 1. Choices of parameters: security level κ, size of finite field q, number of MAC
keys u, polynomial degree d, and the resulting scale of the communication cost dlog2ued.

κ 80 80 80 128 128 256 256
log2q 8 10 12 10 12 10 12
u 226 765 3859 855 3425 996 3920
d 16 11 8 19 14 44 31

dlog2ued 128 110 96 190 168 440 372

The process of linearization exchanges every multiplication gate for three
extra inputs (a, b, c) and two extra outputs (a− f, b− g). So after linearization
the number of inputs is n′ = n+ 3k and the number of outputs is m′ = m+ 2k.
Of course, every multiplication triple should be accompanied by a cascade of
depth d κ

log2(q−1)
e of sacrificial multiplication triples to guarantee at least κ bits

of information in the verifier’s challenge e. Each sacrificial triple introduces three
new inputs (f, g, h) and three new outputs (δ, ε, k). Thus, the total number of
inputs and outputs are respectively

n′′ = n+ 3k

(⌈
κ

log2(q − 1)

⌉
+ 1

)
m′′ = m+ 2k + 3k

(⌈
κ

log2(q − 1)

⌉)
.

The MAC values for the n′′ inputs are stored in u vectors (w1(j), w2(j), . . .)
of n′′ elements. Every such vector is the leaf of a binary Merkle tree. In order
to generate the full tree from all the u leafs, 2u hashes or oracle queries are
necessary. The prover’s first message (ic for input commitment) is the root of
this Merkle tree and contains κ bits.

However, in order to open the n′′ MAC values for key x = j of all input
wires, only dlog2ue commitments must be opened. Only the bottom-most layer
of the tree requires κ bits of randomness for semantically secure commitments.
There are dlog2ue mergers, each requiring the κ bits from the other branch to
be verified. Lastly, the actual released MAC values constitute n′′ finite field
elements. Thus, the number of bits necessary to open one full branch of the tree
is κ+ n′′ dlog2qe+ κdlog2ue. Not one but d branches must be opened.

There is no subset of the output wires that must remain hidden; all must be
revealed. Consequently, a single commitment will do the trick and the prover’s
second message (oc for output commitment) consists of κ bits. This message is a
commitment to the evaluations in 0 and 1 for each to-be-opened wire; opening
it thus requires κ+ 2m′′dlog2qe bits.

Both challenges of the verifier consist of κ bits as any further information
required can be deterministically generated from this seed. Alternatively, if the
Fiat-Shamir transform is applied, both terms can be reduced to zero. The last
message of the prover (r for response) opens all the necessary commitments. The
size of this message is therefore d(κ + n′′ dlog2qe + κdlog2ue) + κ + 2m′′dlog2qe
bits. Asymptotically speaking, u � d and consequently 2κ ≈

(
u
d

)
≈ ud, making

the asymptotic message size on the order of O(κ2).
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The task of the prover is divisible into six parts: 1) evaluating the linearized
circuit in n′′ polynomials of d+1 coefficients each, resulting in m′′ output polyno-
mials; 2) evaluating n′′ polynomials of degree at most d in u points; 3) arranging
u leafs into a Merkle tree; 4) computing the effect of the verifier’s multiplica-
tion challenge e; 5) committing to m′′ output polynomials; and 6) revealing
these polynomials along with d branches from the Merkle tree of MACs of depth
dlog2ue. Asymptotically speaking, the computational cost of the prover is dom-
inated by (1) and (2), i.e., O(d(m′′n′′ + u)).

The task of the verifier consists of five parts: 1) generating entropy for the
challenges; 2) verifying all the commitments associated with d branches in the
tree of depth log2u; 3) verifying the commitment associated with the output
wires; 4) computing the d points of the m′′ output polynomials from the n′′

input polynomials; and 5) interpolating m′′ polynomials of degree d in d + 1
points in order to verify their values in x = 1. The computational load of the
verifier is dominated by (4) and (5), i.e., O(d(m′′n′′ + d)).

4 Zero-Knowledge for Multivariate Quadratic Systems

The protocol PSGZK as expounded so far applies to any arithmetic circuit. We now
shift our attention to focus on systems of multivariate quadratic polynomials,
a special case of arithmetic circuits that allows a specialized protocol and a
significant performance enhancement.

The key insight which our tailored protocol exploits is the fact that the
roughly n3 field-multiplications in the base field Fq of the quadratic system
H : Fnq → Fnq can be exchanged for a single non-linear operation in the extension
field Fqn , along with several linear operations. As a consequence, we work over
the large field Fqn , in contrast to the relatively small field of the last section.

Let x1 represent one element of the input of H(x). Then x = (x1, . . . , xn)T

represents the vector of input elements. We employ bit packing and represent
this vector in a single wire 〈x〉 which can be seen as an element X of the extension

field Fqn and 〈X 〉 = 〈x〉. The Frobenius powers of X are X ,X q,X q2 , . . . ,X qn−1

and are Fq-linear functions of X .

Let X = (X ,X q, . . . ,X qn−1

)T be the vector of Frobenius powers of X and
let the use of boldface denote the application of the map X 7→ X . Note that
the associated list of wires, 〈X 〉 can be computed for free, i.e., its computation
requires only linear operations. Importantly, the homogeneous part of H can
be regarded as a quadratic form over the vector space Fnqn : Ĥ(X ) = XTHX ,
where H ∈ Fn×nqn is the unique upper-triangular matrix associated with H. Most
importantly, H is efficiently computable from H, which is part of the public
information.

To compute 〈XTHX 〉 from 〈X 〉 we require essentially one multiplication
triple, albeit over the extension field Fqn rather than over the base field Fq. This
multiplication triple is tailored to H and cannot be used for generic multipli-
cations and hence a more accurate name is a bilinear triple. In particular, let
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〈A〉, 〈B〉, 〈C〉 represent the wire vectors satisfying C = ATHB, then the com-
putation of 〈XTHX 〉 from 〈X 〉 proceeds straightforwardly from first opening
〈X − A〉 and 〈X − B〉 and then computing 〈XTHX 〉 = (X −A)TH(X − B) +
(X −A)TH〈B〉+ 〈A〉TH(X − B)− 〈C〉.

4.1 Proof of Correct Bilinear Triples

Unfortunately, PCMT, the earlier protocol for proving correctness of multiplica-
tion triples, cannot be translated to the case of bilinear triples. The reason is
that the verifier’s challenge E does not propagate properly in the bilinear form
(E ·F)THG 6= EH. However, the sequel describes another protocol, PCBT, which
addresses this problem at the cost of three more bilinear triples. Like PCMT,
PCBT is not designed for standalone use but for sequential composition with
PACE, either instead of or alongside instances of PCMT.

The protocol PCBT starts by allowing the verifier to randomize two of the
prover’s wires: 〈M〉 = 〈I〉 + E〈J 〉 and 〈N〉 = 〈K〉 + D〈L〉, where E and D are
chosen by the verifier. The prover uses four bilinear triples to compute each of
the cross terms. Additionally, the verifier chooses two constants, F and G and the
prover uses the fifth bilinear triple to compute 〈(M+F)TH(N +G)〉. Next, the
prover subtracts all cross-terms from the product of 〈M〉 and 〈N〉 and opens
this wire to the prover as Q(X ), in addition to all the opened wires required
to compute products. Lastly, the prover opens the sum O = H0 + H1 of two
correction terms H0 = (M + F)THG and H1 = FTH(N + G) to the verifier,
who can verify its MACs. At this point the verifier has enough information to
verify that the product ofM+F with N +G was computed correctly. Moreover,
if any one of the bilinear triples was fraudulent, the verifier’s challenge values will
expose this fraud with overwhelming probability. As the verifier remains ignorant
of 〈M + F〉 and 〈N + G〉, the triple that was used to compute their product
is likewise kept secret, and can consequently be used elsewhere in a composed
protocol for circuit evaluation. A schematic overview of protocol PCBT is given
in Fig. 5, where we use ⊗i to denote consumption of the ith bilinear triple to
compute the bilinear product, and δi and εi to denote the wires that were opened
in the process.

4.2 Composed Proof for MQ Systems

In order to prove security in a meaningful sense we must once again consider
the composition with PACE. Let PMQ be the protocol obtained by composing
PACE with one instance of PCBT sequentially, and having the structure depicted
in Fig. 6. A given homogeneous multivariate quadratic function Ĥ : Fnq → Fnq of
the input i ∈ Fnq is computed, resulting in output o ∈ Fnq . This is accomplished
by working in the extension field Fqn , i.e., by packing the input elements i into
a single input Y = ϕ(i) ∈ Fqn ; using one bilinear triple (A0(X ),B0(X ), C0(X ))

to compute Z = YTHY ; and then unpacking o = ϕ−1(Z). The packing and
unpacking operations are for free. The next theorem shows that this composed
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Interactive Zero-Knowledge Proof PCBT

P V
secret knowledge: secret knowledge:

Ai,Bi, Ci ∈ Fqn [X≤d] {Ai(j),Bi(j), Ci(j)} ∀j ∈ J
s.t. Ci(0) = Ai(0)THBi(0) {I(j),J (j),K(j),L(j)} ∀j ∈ J
I,J ,K,L ∈ Fqn [X≤d] J ⊂ U, #J = d

D, E $←− Fqn
F ,G $←− Fqn\{0}

D, E ,F ,G
←−−−−−−−−−−−−−−−−−−

N ← I(X ) + EJ (X )
M←K(X ) +DL(X )
Q0 ← (N (X ) + F)⊗0 (M(X ) + G)

Q1 ← I(X )⊗1 DL(X )
Q2 ← I(X )⊗2 K(X )
Q3 ← EJ (X )⊗3 DL(X )
Q4 ← EJ (X )⊗4 K(X )

Q ← Q0(X )−
∑4
i=1Qi(X )

H0 ← FTH(M(X ) + G)

H1 ← (N (X ) + F)THG
O ← H0(X ) +H1(X )

δi, εi,Q, O
−−−−−−−−−−−−−−−−−−→

for all j ∈ J do:
verify δi(j), εi(j),Q(j),O(j)

Q(0)−O(0)
?
= 0

max{deg(δi(X )), deg(εi(X )),

deg(Q(X )), deg(O(X ))}
?

≤ d

Unless indicated otherwise, all expressions with subscript i hold for i ∈ {0, 1, 2, 3, 4}. The

symbols ⊗i indicate that the triple (Ai,Bi, Ci) is consumed to compute the bilinear product

of the left- and right-hand-sides. As a result, the wires δi and εi are created.

Fig. 5. Interactive proof of correct bilinear triples.

protocol is secure, although we note that its proof generalizes to any number of
MQ gates and any number of multiplication gates.

Theorem 2. Let (com, rev) be a correct, hiding and collapse-binding commit-
ment scheme. Let Ĥ : Fnq → Fnq be a list of homogeneous multivariate quadratic

polynomials, and let H ∈ Fn×nqn be a matrix of extension field elements satis-

fying ϕ ◦ Ĥ ◦ ϕ−1(X ) = XTHX where X = (X ,X q, . . . ,X qn−1

)T. Then PMQ

is a complete, honest-verifier zero-knowledge quantum proof of knowledge of the
relation

ZKQPoK{(i) : H(ϕ(i)) = ϕ(o)}
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Interactive Zero-Knowledge Proof PMQ

P V
secret knowledge: public knowledge:
i ∈ Fnq o ∈ Fmq
s.t. o = H(i) H : Fnq → Fnq

Y $←− Fqn [X≤d]
s.t.Y(0) = ϕ(i)
for i ∈ {0, . . . , 4} do:

Ai,Bi, Ci
$←− Fqn [X≤d]

s.t. Ci(0) = Ai(0)THBi(0)

I,J ,K,L $←− Fqn [X≤d]
V ← Y(X )−A0(X )
W ← Y(X )− B0(X )

Z ← V(0)THW(0)− C0(X )

−V(0)THB0(X )

−A0(X )THW(0)

{com({w`(j)}`∈I)}j∈U ,
com({wk(X )}k∈O)

−−−−−−−−−−−−−−−−−−→
· $←− ·

D, E ,F ,G
←−−−−−−−−−−−−−−−−−−

...

com(εi(X ), δi(X ),Q(X ),O(X ))
−−−−−−−−−−−−−−−−−−→

J
$←− {V ⊂ U |#V = d}

J
←−−−−−−−−−−−−−−−−−−

rev(εi(X ), δi(X ),Q(X ),O(X )),
{rev({w`(j)}`∈I)}j∈J ,
rev({wk(X )}k∈O)

−−−−−−−−−−−−−−−−−−→
...

?
=

...
max{deg(V(X )), deg(W(X )),

deg(Z(X ))}
?

≤ d
for j ∈ J do:

V(j)
?
= Y(j)−A0(j)

W(j)
?
= Y(j)− B0(j)

Z(j)
?
= V(0)THW(0)− C0(j)

−V(0)THB0(j)

−A0(j)THW(0)

Z(0)
?
= ϕ(o)

Here {w`}`∈I is shorthand for {Y,Ai,Bi, Ci, I,J ,K,L} and {wk}k∈O for {Z,V,W}.

Fig. 6. Sequential composition of PACE with PCBT for a zero-knowledge proofs. The
ellipses leave out the identical computations by the prover and verifier in PCBT.
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with soundness error at most max
(
1/
(
u
d

)
, 1/(qn − 1)

)
and satisfying the special

2-soundness property.

Proof. Completeness. Follows from construction. If (A0,B0, C0) is a valid triple
then, by evaluating in 0 and dropping (0), we have

Z = VTHW − C0 − VTHB0 −A0
THW

= (Y −A0)TH(Y −B0)− C0 − (Y −A0)THB0 −A0
TH(Y −B0)

= YTHY
= ϕ ◦ Ĥ ◦ ϕ−1(X ) = ϕ(Ĥ(i))

= ϕ(o) .

Moreover, since the polynomials are only ever weighted and added they must be
of degree at most d.

As for the bilinear triples, if the honest prover possesses Ai,Bi, Ci, I,J ,K,L
satisfying the required criteria, then the linear relations of the MAC values in
the verifier’s secret points J are guaranteed to hold. Moreover, the degrees of
δi, εi,Q,O are at most d. Lastly, independently of the verifier’s challenge, these
polynomials satisfy

Q(0)−O(0) +FTHG
= Q0(0)−Q1(0)−Q2(0)−Q3(0)−Q4(0)−H0(0)−H1(0) +FTHG
= (I(0) + E ·J (0) +F)

T
H (K(0) +D ·L(0) + G)− I(0)TH(D ·L(0))

− I(0)THK(0)− (E ·J (0))TH(D ·L(0))− (E ·J (0))THK(0)

−FTH(M(0) + G)− (N (0) +F)THG +FTHG
= 0 .

Soundness. The case where the polynomials are of degree at most d but their
linear relations do not hold has been covered in the proof of Thm. 1. In this case
the success probability of a cheating prover is at most 1/

(
u
d

)
, coinciding with the

probability of choosing the right set of MAC keys at random. This leaves two
strategies for cheating: a) invalid bilinear triples, and b) using polynomials of
degree higher than d.

In the case (a), the prover must produce polynomials δi, εi,Q,O that pass
the verifier’s tests. Dropping the (0) from notation, the verifier’s last equality
test will only succeed if

Q−O = 0 .

If O 6= FTH(M(X ) + G) + (N (X ) +F)THG, then the MAC test will fail.
So expand Q = O into

Q0 −Q1 −Q2 −Q3 −Q4 = FTH(M+ G) + (N +F)THG . (1)

If Eqn. 1 is satisfied despite the prover cheating, this can only be the effect of
a very favorable (for the prover) choice of D, E ,F ,G. By expanding the equation,
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we get
FTH(K+D ·L+ G) + (I + E ·J +F)THG

= (I + E ·J +F)TH0(K+D ·L+ G)− ITH1K
− ITH2(D ·L)− (E ·J )TH3K− (E ·J )TH4(D ·L) .

(2)

In this expression, Hi is the potentially fraudulent bilinear relation that sat-
isfies Ai(0)THiBi(0) = Ci(0) and which was used for computing Qi(X ).

If every Hi = H, then the equation is guaranteed to hold for all E ,D,F ,G —
but in this case the prover is not cheating. However, if one or more of the
Hi are different from H, then the discrepancy must be compensated for with
a favorable assignment to E ,D,F ,G. In particular, if H 6= H0 = H1 = H2 =
H3 = H4, then the H-terms are not canceled unless by a suitable assignment
to D, E ,F ,G. If H1 6= H0 then the term ITH1K cannot be canceled unless
by a suitable assignment to D, E ,F ,G. Conversely, if H2 6= H0 then the term
ITH2(D · L) cannot be canceled unless by a suitable assignment to D, E ,F ,G.
Similar arguments hold for H3 and H4. As one of these inequalities must hold
(or else the prover is not cheating at all) the cheating prover’s only hope for
success is the suitable assignment to D, E ,F ,G. By the binding property of the
commitment scheme, the prover’s polynomials are fixed before D, E ,F ,G are
chosen. The probability of a suitable tuple being chosen is thus at most 1/(qn−1).

In the case (b) where the prover wishes to get away with using polynomials
of degree larger than d, his fraud is equally likely to be exposed by the random
challenge D, E ,F ,G. Since εi(X ), δi(X ),Q(X ),O(X ) have degree at most d, any
terms in higher-than-d powers of X must cancel in Eqn. 2. However, any assign-
ment of canceling terms in higher-than-d powers of X to the polynomials under
the prover’s control rely on a suitable assignment to D, E ,F ,G for success. The
probability of this event is 1/(qn − 1).
Quantum-knowledge-soundness and special 2-soundness. Identical to the proof of
Thm. 1: collapse-binding commitments allow rewinding and replaying the prover
on a different last challenge J ′ 6= J , thus obtaining the values of the polynomials
in more than d points. Interpolation yields the polynomials and evaluation in 0
yields the secret i.
Honest-verifier zero-knowledge. Identical to the proof of Thm. 1: the simulator
computes the circuit honestly but with random input polynomials, in order to
obtain the MAC values. Interpolation yields the polynomials that should be
comitted to. The resulting transcript is indistinguishable because to distinguish

from authentic requires testing H(i)
?
= o and that requires breaking the hiding

property of the commitment scheme. ut

4.3 Signature Scheme

Protocol PMQ is in and of itself a valid zero-knowledge proof for multivariate
quadratic systems. We now describe how to transform it into a provably secure
signature scheme. From a high-level point of view, the public key consists of
a random seed R from which a multivariate quadratic system H ∈ F2[x] can
be extracted using a cryptographically secure pseudo-random number generator
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(PRG), along with one output image o; the secret key consists of the matching
input i such that o = H(i). The zero-knowledge protocol is made non-interactive
and dependent on the message via the Fiat-Shamir transform [13]; the result is
a signature. We let PoK{· · · } denote the generation of a zero-knowledge proof
of knowledge using the protocol PMQ with the given challenges from the verifier,
and where ic (input commitment) and oc (output commitment) represent the
first two messages from the prover, respectively. We use a hash function H but
for the purpose of proving security this is modeled as a random oracle. The three
algorithms of the public key signature scheme are given in Fig. 7.

Gen(1κ):

R
$←− {0, 1}κ

H ← PRG(R)

i
$←− {0, 1}κ

o← H(i)
secret key: i
public key: R,o

Sign(sk,m ∈ {0, 1}∗):
T ← PoK{(i) : H(i) = o}

with e← H(ic‖m)
and J ← H(ic‖m‖oc)

signature: T

Verify(pk, m, T ):

H ← PRG(R)
verify(T,H,o)

T.e
?
= H(ic‖m)

T.J
?
= H(ic‖m‖oc)

Fig. 7. Three algorithms of the signature scheme based on the generic zero-knowledge
proof for multivariate quadratic systems.

The signature scheme uses the random oracle in three different ways: firstly,
the quadratic system H is generated from the PRG. Secondly, the function H,
which is used for the Fiat-Shamir transform, is modeled by the random ora-
cle. Thirdly, the generation of the interactive part of the zero-knowledge proof
requires many instances of the commitment function, which uses the random
oracle as a building block. Consequently, in order for the signature scheme to
be secure, we must assume that whatever function we instantiate the random
oracle with is secure. The only additional assumption is the hardness of the MQ
problem.

Theorem 3. If the MQ Assumption is true, then the MQ signature scheme
based on PMQ is a valid and secure signature scheme in the EUF-CMA and
random oracle models.

Proof. The validity of signatures generated with the knowledge of the secret
key follows from the completeness of the underlying zero-knowledge protocol.
Its knowledge-soundness, which is retained after application of the Fiat-Shamir
transform, guarantees that without knowledge of the secret key the adversary
cannot produce valid signatures. The zero-knowledge property of the protocol
guarantees that the adversary does not learn more than a negligible amount of
information on the secret key from the signatures, even after any polynomial
number of querying messages and receiving their signature. Alternatively, the
adversary can attack the public key and attempt to invert H in o but as this is
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essentially an instance of the MQ problem, this strategy is infeasible under the
MQ Assumption. ut

In order to target κ bits of classical security, we recommend generating ran-
dom quadratic systems that map κ bits to κ bits over small-order base fields,
e.g., Fκ2 → Fκ2 . This parameter choice is supported by the empirically observed
exponential (in κ) complexity of an algebraic attack on the MQ problem, see
for example type V and VI systems in Yasuda et al. treatment of the MQ chal-
lenge [35].

The number of (extension field) inputs to the linear circuit involved in the
zero-knowledge proof is n′′ = 20; the number of outputs is m′′ = 13. For a
degree-` extension of the base field Fq, the size of the signature is computed
using the formula

|T | = |ic|+ |oc|+ |r| = d(κ+ n′′`dlog2qe+ κdlog2ue) + 3κ+ 2m′′`dlog2qe ,

whose terms were derived in the previous section. Table 2 shows some signature
sizes for various parameter choices. The purpose of the fourth column is to mimic
the parameter choices of Chen et al. [9] and thus enable an apples-to-apples
comparison.

Table 2. Size of signature T (and public key pk) for various parameter choices.

κ 80 128 256 256
u 765 855 996 996
d 11 19 44 44
q 2 2 2 31
` 80 128 256 64

|T | (bits) 29 600 79 104 356 608 414 592
|pk| (bits) 160 256 512 225

5 Conclusion

This paper presents a new construction for generic zero-knowledge proofs in
the random oracle model. The only computational assumption necessary for a
secure realization of our protocol is that of the existence of a one-way function
to generate the hash function that instantiates the random oracle. Our protocol
is remarkably efficient: for a fixed security parameter, the computational cost of
the prover and of the verifier scales quadratically with the size of the circuit; the
communication cost scales linearly with the circuit size but quadratically with
the security level.

Our protocol is particularly well-suited to zero-knowledge proofs for mul-
tivariate quadratic systems. The communication cost in this case drops to a
fraction of the size of the circuit, scaling linearly not with the number of multi-
plication gates but with the size of the input and output. As a result, we obtain
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reasonably compact provably secure signatures whose security is based on the
MQ problem. While more work is required to fully understand the security of
the Fiat-Shamir transform in the quantum random oracle model, we do not rely
on any construction or computational problem whose hardness is known to fail
under attack by quantum computers. We thus conjecture that the protocol and
signature scheme we obtain from them resist attacks on quantum computers. A
future quantum analogue of the forking lemma would lift the scheme’s provable
security to cover quantum adversaries.

While our construction is a generic construction, it surprisingly suitable for
unexpected optimizations that enhance its efficiency. In particular, the linearity
of the Frobenius transform allows bit packing and as a result cuts the size of the
messages by a constant factor. Moreover, multiplication triples apply not just
to multiplication gates but to any bilinear form, or even quadratic form over
the extension field. Consequently, any quadratic function can be computed from
just one bilinear triple. We expect this insight to be of independent interest.

A very natural direction of future research will aim to decrease the complex-
ity of the generic zero-knowledge proof construction. The key cause of the still
sizeable communication and proving cost is the commitment function, which by
virtue of being based on the random oracle, forces the adoption of a split-and-
choose strategy. If one is prepared to depart from the well-emphasized minimal-
istic assumptions and opt instead for a commitment function that is richer in
structure, this cost may be reduced quite significantly. Alternatively, perhaps
there is a more efficient and less verbose way of releasing d out of u polynomial
points without first computing and then committing to each of those u points
individually, and without sacrificing random oracles.
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6. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.:
Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) Advances in
Cryptology - ASIACRYPT 2011 - 17th International Conference on the Theory and
Application of Cryptology and Information Security, Seoul, South Korea, December
4-8, 2011. Proceedings. Lecture Notes in Computer Science, vol. 7073, pp. 41–69.
Springer (2011), http://dx.doi.org/10.1007/978-3-642-25385-0_3

7. Cayrel, P., Lindner, R., Rückert, M., Silva, R.: Improved zero-knowledge identi-
fication with lattices. In: Heng, S., Kurosawa, K. (eds.) Provable Security - 4th
International Conference, ProvSec 2010, Malacca, Malaysia, October 13-15, 2010.
Proceedings. Lecture Notes in Computer Science, vol. 6402, pp. 1–17. Springer
(2010), http://dx.doi.org/10.1007/978-3-642-16280-0_1

8. Cayrel, P., Véron, P., Alaoui, S.M.E.Y.: A zero-knowledge identification scheme
based on the q-ary syndrome decoding problem. In: Biryukov, A., Gong, G., Stin-
son, D.R. (eds.) Selected Areas in Cryptography - 17th International Workshop,
SAC 2010, Waterloo, Ontario, Canada, August 12-13, 2010, Revised Selected Pa-
pers. Lecture Notes in Computer Science, vol. 6544, pp. 171–186. Springer (2010),
http://dx.doi.org/10.1007/978-3-642-19574-7_12

9. Chen, M., Hülsing, A., Rijneveld, J., Samardjiska, S., Schwabe, P.: From 5-pass
MQ -based identification to MQ -based signatures. In: Cheon, J.H., Takagi, T.
(eds.) Advances in Cryptology - ASIACRYPT 2016 - 22nd International Con-
ference on the Theory and Application of Cryptology and Information Security,
Hanoi, Vietnam, December 4-8, 2016, Proceedings, Part II. Lecture Notes in
Computer Science, vol. 10032, pp. 135–165 (2016), http://dx.doi.org/10.1007/
978-3-662-53890-6_5
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