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Abstract. The Ring Learning-With-Errors (LWE) problem, whose se-
curity is based on hard ideal lattice problems, has proven to be a promis-
ing primitive with diverse applications in cryptography. There are how-
ever recent discoveries of faster algorithms for the principal ideal SVP
problem, and attempts to generalize the attack to non-principal ideals.
In this work, we study the LWE problem on group rings, and build
cryptographic schemes based on this new primitive. One can regard the
LWE on cyclotomic integers as a special case when the underline group
is cyclic, while our proposal utilizes non-commutative groups that elimi-
nates the weakness associated with the principal ideal lattices. In partic-
ular, we show how to build public key encryption schemes from dihedral
group rings, which maintains the efficiency of the Ring-LWE, and im-
proves its security. We also propose a simple modification of the Peikert-
Vaikuntanathan-Waters cryptosystem, which is an amortized version of
Regev’s original proposal based on LWE. Our modification improves the
encryption and decryption complexity per bit to sublinear in the security
level, without affecting the security.

Keywords: Matrix-LWE, Non-commutative group ring, Dihedral group
ring

1 Introduction

1.1 The LWE problem

Regev [31] introduced the learning with errors (LWE) problem as a generaliza-
tion of the classic learning parity with noise (LPN) problem. To be precise, let
q be a prime, s ∈ Fnq be a fixed private vector, ai ∈ Fnq , 1 ≤ i ≤ m be randomly
chosen, ei ∈ Fq, 1 ≤ i ≤ m be chosen independently accordingly to the proba-
bility distribution χ : Fq 7→ R+, which is a discrete Gaussian distribution that
centers around 0 with width qn−0.5−ε, and bi = 〈ai, s〉+ ei. Given a list of pairs
(ai, bi), 1 ≤ i ≤ m, the LWE problem asks to solve for s, and the LPN problem
is the special case when q = 2.

Informally speaking, it is believed that LWE is hard in the sense that even
though ei tends to be small, when s is hidden, (ai, bi) can not be distinguished



from a random vector in Fn+1
q . In fact, Regev [31] proved the hardness for certain

parameters q, χ by showing quantum reductions from approx-SVP and approx-
SIVP problems for lattices. Later, Peikert [27] showed a classical reduction from
approx-SVP to the LWE problem under more restrictive constraints.

Lyubashevsky, Peikert, and Regev [24] introduced an analogous version of
standard LWE over ring, and coined it Ring-LWE. Furthermore, they estab-
lished the hardness of Ring-LWE by showing the reduction from certain ideal
lattice problem to the Ring-LWE problem. The cryptography systems based on
ring-LWE are much more efficient in term of key sizes and encryption and de-
cryption complexity. However, the security of systems is based on conjecturally
hard problems on ideal lattices, rather than on general lattices.

The LWE problem and Ring-LWE problem have proven to be versatile prim-
itives for cryptographic purposes. Besides many other schemes, these applica-
tions include public key encryption schemes proposed by Regev [31], Peikert
and Waters [30], Peikert [27], Lindner and Peikert [22], Stehlé and Steinfeld [34],
Micciancio and Peikert [25]; identity-based encryption (IBE) schemes proposed
by Gentry, Peikert, and Vaikuntanathan [19], Cash, Hofheinz, Kiltz, and Peik-
ert [8], Agrawal, Boneh, and Boyen [2, 1]; fully homomorphic encryption (FHE)
schemes proposed by Brakerski and Vaikuntanathan [6, 7], Brakerski, Gentry,
and Vaikuntanathan [5], Fan and Vercauteren [17].

1.2 Our results

In this work, we first consider a matrix version of standard LWE in order to im-
prove the efficiency via fast matrix multiplication. Our modification improves the
encryption and decryption complexity per bit to sublinear in security level. We
note that there have been some matrix variants of original LWE, such as [18, 23,
14] or [4]. However, there are some differences with our work. In variants [18, 23,
14], the encrypted message is either a vector, or a matrix with binary alphabet.
In [4], the application in concern is key establishment.

We then propose a general framework of generating LWE instances from
group rings. In particular, we demonstrate our approach by generating LWE in-
stances from dihedral group rings. Recall that given a finite groupG = {g1, . . . , gn}
and a commutative ring R, the elements in group ring R[G] are formal sums∑n
i=1 rigi, ri ∈ R. If R = Z, (one-side) ideals in group rings naturally corre-

spond to integral lattices, if we provide a Z-module homomorphism from Z[G]
to Rn, otherwise known as an embedding. We can generalize LWE to the group
ring setting. In particular, let n be a power of two, D2n be the dihedral group
of order 2n, and r ∈ D2n be an element that generates the cyclic subgroup of
order n, we should use the ring

Z[D2n]/((rn/2 + 1)Z[D2n]),

which is also a free Z-module of rank n. Note that (rn/2+1)Z[D2n] is a two-sided
ideal, thus the quotient ring is well defined.

In Ring-LWE, there are two types of embeddings of rings of algebraic inte-
gers into Euclidean spaces: canonical embedding and coefficient embedding. If
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using canonical embedding, the multiplication is component-wise. It is the main
reason that the original Ring-LWE paper preferred canonical embedding. Nev-
ertheless, the whole ring is embedded as a lattice that is not self-dual, so the
error that is spherical, will become elliptical in its dual, which complicates the
implementation [28]. Note that the canonical embedding of cyclotomic integers
is basically the combined map:

Z[x]/(xn + 1) ↪→ C[x]/(xn + 1)→
⊕

0≤k≤n,2-k

C[x]/(x− e2π
√
−1k/(2n)),

where the first map is an inclusion, and the second one is an isomorphism. A
component of the canonical embedding of Z[x]/(xn + 1) corresponds to a group
representation of the cyclic group 〈x〉 of order 2n:

ρk(xj) = e2π
√
−1kj/(2n), 2 - k.

If a group is not commutative, to find a canonical embedding of the group
ring, we can use irreducible group representations. However some irreducible
representations will have dimensions larger than one, thus the multiplication in
the group ring is not component-wise under these representations. We should
use coefficient embedding, where implementation will be simpler.

There are recent discoveries of faster SVP algorithms for principal ideal lat-
tices, and attempts to generalize the idea to non-principal ideal lattices. See [12,
13] and references therein. First observe that the ratio between two generators
of a principal ideal is an integral unit. The main idea of the attacks comes from
the Dirichlet unit theorem: the group of integral units in a number field is a
direct product of a finite group with a free abelian group, whose generators are
known as fundamental units. If taking logarithms of complex norms of their
conjugates, the units are sent to the so-called log-unit lattice, whose SVP is not
hard in many cases. Nevertheless the Ring-LWE cryptosystems are not under
direct threat, since the lattice problems in ideal lattices are lower bounds of their
security, and the approximate factors in the attack are too large.

The principal ideals from non-commutative integral group rings do not ap-
pear to suffer from the weakness, since multiplications of units may not com-
mute [32]. A few remarks are in order:

1. The group ring LWE includes LWE on cyclotomic integers as a special case,
thus has security no less than the Ring-LWE. Indeed, the ringR = Z[x]/(xn+
1), used in many Ring-LWE cryptosystems, is a direct summand of a group
ring from C2n ( the cyclic group of order 2n ):

Z[C2n] = Z[x]/(x2n − 1) ≡ Z[x]/(xn + 1)⊕ Z[x]/(xn − 1)

One should avoid use the ring Z[x]/(x2n − 1), as the map

Z[x]/(x2n − 1)→ Z[x]/(x− 1)

may leak secret information.
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2. The non-commutative group-ring LWE is broader than LWE based on com-
mutative ring. For security and simplicity, many proposals of Ring-LWE have
lattice dimensions that are either powers of two, or ( one less than ) prime
numbers. The group ring LWE provides us more choices, while keeping the
simplicity. For example, if using dihedral group rings, the dimensions of the
lattices can be 2(p−1) for primes p. Yet the efficiency, as well as the security,
is as same as that of the Ring-LWE of the comparable dimensions.

3. We regard one-dimensional representations over finite fields as security risks
that should be eliminated. Many attacks on the Ring-LWE (implicitly) ex-
plores one-dimensional representation that sends x to a small order element
[9, 10, 15, 16], for example,

Fq[x]/(f(x))→ Fq[x]/(x− 1),

if (x− 1)|f(x) over Fq.
4. Even though rings of algebraic integers in number fields may not be principal

ideal domains (PID), their reductions modulo primes are always principal
ideal rings. The group ring Fp[G] however are not necessarily principal ideal
rings if G is non-commutative. We believe that this property provides an
extra protection against attacks.

The proof of security is largely similar to the case of Ring-LWE. There is
however an important difference: Unlike the ring of algebraic integers in a number
field, group rings have ideals that are not invertible. Security of group-ring-LWE
should be based on lattice problems of invertible ideals. A drawback of our
approach is that we are unable to provide a search-to-decision reduction.

We note that there have been attempts to use non-commutative algebraic
structures, especially the group structures, in designing cryptographical systems
[26]. The approaches that relate closely to ours include using group rings to
replace (Z/qZ)[x]/(xn − 1) in NTRU [36, 11, 35] and using learning problem of
non-commutative groups. In the first approach, there is no security proof from
lattice problems. In the second approach, it is not based on lattice problems.

1.3 Paper organization

The paper is organized as follows. In Section 2, we review the mathematical
background. In Section 3 we briefly discuss previous works. In Section 4, we
propose our variant version of LWE-based scheme. In Section 5, we propose gen-
erating LWE instances from non-commutative group rings and establish public
key cryptosystem from dihedral group rings. In Section 6 we analyse the security
of the new approach. Section 7 concludes the paper. We will not try to optimize
the parameters in this paper, leaving it to future work.

2 Mathematical preliminary

In the section, we review the mathematical background on lattices and group
rings.
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2.1 Efficiency of cryptographic schemes

To use a cryptography algorithm, one should first establish a security level n.
It is expected that the cryptosystem can not be broken in 2n bit operations. In
terms of efficiency, the most important parameters for an encryption algorithm
are block size, public/secret key sizes, cipher-text expansion factor and time
complexity per bit in encryption and decryption. Ideally these parameters should
have sizes that grow slowly with the security level.

Let us first calculate the parameters for the popular public key cryptosystem
RSA, whose security is based on the integer factorization problem. To factor a
number of l bits, the best algorithm – Number Field Sieve – takes heuristic time

at most 2l
1/3+ε

. Thus for security level n, the RSA-OAEP system, a practical
implementation of RSA, should have key size l = n3−ε. To encrypt a block of
O(l) bits, it adds small padding into the message, and computes an exponenti-
ation modulo a number of l bits. Thus it has cipher-text expansion O(1). The
public exponent is small (e.g. e = 65537), but the private exponent has l bits.
So encryption takes time Õ(l) and decryption takes time Õ(l2), assuming that
we use the fast multiplication algorithm for each modular multiplication. This
results in bit complexity n3−ε per ciphertext bit for decryption, and (log n)O(1)

per message bit for encryption if using small encryption exponent. Asymptot-
ically the key size for RSA is not so good. However, the ε part has played an
important role in its favor when n is small. To achieve a security level n = 80,
one can use a public modulus of size 1000 bits rather than 803 = 512000 bits,
although a public modulus of 2000-bits is recommended now.

2.2 Lattices and Ring-LWE

Given a list of linearly independent column vectors B = (b1, . . . ,bn) ∈ Rn×n,
the (full rank) lattice L(B) is the set

L(B) = {
n∑
i=1

xibi, xi ∈ Z}.

The determinant of the lattice is

det(L) := |det(B)|.

The minimum distance of the lattice is

λ1(L) := min
06=v∈L

|v|

where | · | is the Euclidean norm. The dual lattice is

L∗ := {u ∈ Rn|∀v ∈ L, 〈u, v〉 ∈ Z}.
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Definition 1. Let L ∈ Rn be a full rank lattice. The Shortest Vector Problem
(SVP) is to find a vector v ∈ L such that

|v| = λ1.

Given a target vector t ∈ Rn, the Closest Vector Problem (CVP) is to find a
vector v ∈ L such that

|v − t| ≤ |v′ − t|,∀v′ ∈ L.

Definition 2. Let 0 < β < 1/2 be a constant, and L be a lattice. Let y = x+ e
where x ∈ L, and |e| < βλ1(L). Given y, the β-BDD problem is to find x.

Definition 3. Let 0 < β < 1/2 be a constant, and L be a lattice. Let y = x+ e
where x ∈ L, and |e| < βλ1(L). Given y, the (q, β)-BDD problem is to find any
x′ such that x ≡ x′ (mod qL).

2.3 Dihedral groups and group rings

Let G = {g1, g2, . . . , gn} be a finite group of order n. The elements in group ring
R[G] are formal sums

∑n
i=1 rigi, ri ∈ R. The addition is defined by

n∑
i=1

aigi +

n∑
i=1

bigi =

n∑
i=1

(ai + bi)gi.

The multiplication is defined by

(

n∑
i=1

aigi)(

n∑
i=1

bigi) =

n∑
l=1

(
∑

gigj=gl

aibj)gl. (1)

If R = Z, a (one-side) ideal of Z[G] is mapped to a lattice, under an embed-
ding of Z[G] to Rn. Here we use coefficient embedding, i.e. a group element is sent
to a unit vector in Zn. The whole group ring Z[G] corresponds to Zn. Denote the
length of a group ring element X in the Euclidean norm under the embedding
by |X|. The following lemma shows that lengths of group ring elements behave
nicely under multiplication.

Lemma 1. Let X,Y ∈ R[G] be two elements. Then

|XY | ≤
√
n|X||Y |

Proof. From Equation (1), the l∞ norm of XY is less than |X||Y | by the Cauchy-
Schwarz inequality.

Let I be a right ideal, the left dual of I is defined as

I−1 = {x ∈ Q[G] | ∀y ∈ I, xy ∈ Z[G]}
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It can be verified that the left dual is a left Z[G] module, and

I ⊆ Z[G] ⊆ I−1.

We call an ideal invertible if I−1I = Z[G]. If I is invertible, then I−1 is a left
fractional ideal.

A dihedral group of order 2n, denoted by D2n, is the set

{risj | 0 ≤ i ≤ n− 1, 0 ≤ j ≤ 1}

satisfying the relations
rn = s2 = 1, srs = r−1.

In some sense, the dihedral group is the non-commutative group that is the
closest to the commutative one, since the dimension of any irreducible represen-
tation is bounded by 2, while commutative groups only have one-dimensional
irreducible representations.

If n is odd, there are (n + 1)/2 irreducible representations for D2n. Two of
them are one-dimensional:

ρ0(ri) = 1, ρ0(srj) = 1

and
ρ1(ri) = 1, ρ1(srj) = −1.

The rest are two-dimensional: for 2 ≤ k ≤ (n+ 1)/2,

ρk(ri) =

(
e2π
√
−1i(k−1)/n 0

0 e−2π
√
−1i(k−1)/n

)
,

ρk(sri) =

(
0 e2π

√
−1i(k−1)/n

e−2π
√
−1i(k−1)/n 0

)
.

By the Wedderburn theorem, the group ring C[D2n] can be decomposed into

C[D2n] ≡ C⊕ C⊕
(n+1)/2⊕
i=2

C2×2,

where the first two copies of C correspond to ρ0 and ρ1, the last (n−1)/2 copies of
2×2 matrix algebras corresponds to the two-dimensional representations ρi (2 ≤
k ≤ (n + 1)/2 ). To eliminate the influence of one-dimensional representations,
one can let n be a prime, and use the direct summand of the ring Z[D2n]:

Z[D2n]/((rn−1 + rn−2 + · · ·+ 1)Z[D2n]).

Note that (rn−1 + rn−2 + · · ·+ 1)Z[D2n] is a two-sided ideal, so the above ring is

well defined, and it can be regarded as a projection of Z[D2n] to
⊕(n+1)/2

i=2 C2×2.
In this paper we assume that n is a power of two, and let

R = Z[D2n]/((rn/2 + 1)Z[D2n]),
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which is also without one-dimensional component. Let q be a prime such that
gcd(q, 2n) = 1. Define

Rq = Fq[D2n]/((rn/2 + 1)Fq[D2n]).

Definition 4. Let n be a power of two, let q be a prime such that gcd(q, 2n) = 1,
and q ∈ [n2, 2n2]. Let the error distribution χ on Rq be selection of coefficients
independently according to a Gaussian of width n1.5−ε. The Rq-LWE problem is
to find the secret s, given a sequence of (ai, bi), where ai is selected uniformly
and independently from Rq, bi = ais+ ei, ei is selected independently according
to χ.

Remark 1. Not every ideal is invertible. For example, 1 + s ∈ R generates an
ideal that is not invertible. It is very important to have an ideal that is invertible
in order to have hard lattice problems. In the later proof, we need an onto R-
module morphism I → Rq, which requires I to be invertible.

Lemma 2. The element
∑

0≤i≤(n/2)−1 air
i +
∑

0≤i≤(n/2)−1 bisr
i ∈ R is invert-

ible in R⊗Q iff for all odd 1 ≤ k ≤ n/2,

|
∑

0≤i≤(n/2)−1

aie
2π
√
−1ki/n| − |

∑
0≤i≤(n/2)−1

bie
2π
√
−1ki/n| 6= 0,

where | ∗ | is the complex norm.

3 Previous works

Lattice-based cryptography has attracted much attention recently. It has a few
advantages over classical number theoretic cryptosystems such as RSA or Diffie-
Hellman: First it resists quantum attacks, compared with the traditional hard
problems such as integer factorization, or discrete logarithms [33]. Secondly it
enjoys the worst case to the average case reduction, shown in the pioneering
work of Ajtai [3]. Thirdly computation can be done on small numbers. No large
number exponentiations are needed, which tend to slow down the other public
key cryptosystems. It does have a major drawback in key sizes. The NTRU
cryptosystem [20] is the first successful cryptosystem based on lattice.

3.1 Regev’s scheme

Regev [31] introduced the Learning With Errors (LWE) problem as a generaliza-
tion from the classic learning parity with noise (LPN) problem to higher moduli,
and proposed a public key encryption system based on LWE problem. In the fol-
lowing description of Regev’s scheme, n is the security parameter, q ∈ [n2, 2n2]
is a prime number and m = O(n log q), α = o( 1√

n logn
).

The distribution Ψα is defined to be a normal distribution of T = R/Z with
mean 0 and standard deviation α√

2π
. And Ψ̄α is the discrete distribution of the

random variable bq ·Xe mod q over Fq, where a mod b = a− ba/bcb and X is
from the distribution Ψα.
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– Private key: Choose a random s ∈ (Z/qZ)n uniformly.
– Public key: Choose a random matrix A ∈ (Z/qZ)n×m uniformly. Choose an

error vector x from (Z/qZ)m, where each component of x is chosen according
to the distribution χ = Ψ̄α. Announce the public key (A,P) where P ∈
(Z/qZ)m should be calculated as sA + x.

– Encryption: First select a random vector eT ∈ {0, 1}m. For a message bit
v ∈ {0, 1}, the encryption is (Ae, vb q2c+ Pe).

– Decryption: For the cipher-text (a, b), output 0 if b − 〈a, s〉 is closer to 0
than to q/2; Otherwise de-crypt to 1.

For security level n, the private key has Õ(n) bits. The public key has Õ(n2)
bits, and can be reduced to Õ(n). The cipher-text expansion is Õ(n). The encod-
ing and decoding complexity is Õ(n2) per bit. Hence this system is not efficient,
especially in terms of cipher-text expansion and encryption/decryption complex-
ity.

To find the private key from the public key, one can solve a CVP problem
in the lattice L = {vA | v ∈ (Z/qZ)n}, which is a sub-lattice of qZm. Note that
qm−n | det(L). The shortest vector of L has length Õ(q

√
m). This means that

the secret key is likely unique.

3.2 PVW improvement

Peikert, Vaikuntanathan, and Waters [29] proposed a more efficient system based
on LWE. They made two important changes: first the secret and the error in
public key are matrices, and the message space consists of vectors; secondly the
alphabet of the message is Z/pZ for some p that may be greater than 2. The latter
idea has also been utilized by Kawachi, Tanaka, and Xagawa [21] to improve the
efficiency of several single-bit cryptosystems based on lattice problems.

Suppose that p = poly(n), l = poly(n), m = O(n log n), α = 1/(p
√
m log n)

and q > p is a prime. Let t be a function from Z/pZ to Z/qZ defined by t(x) =
[x× q

p ], and extended to act component-wisely on vector spaces over Z/pZ.

– Private key: Choose a random matrix S ∈ (Z/qZ)n×l uniformly.
– Public key: Choose a random matrix A ∈ (Z/qZ)n×m uniformly. Find

an error matrix X ∈ (Z/qZ)l×m where each entry is chosen independently
according to the error distribution χ = Ψ̄α. The public key is (A,P) where
P = STA + X ∈ (Z/qZ)l×m.

– Encryption: The message is assumed to be a vector v ∈ (Z/pZ)l. First
convert it to a vector t(v) in (Z/qZ)l. Then select eT ∈ {0, 1}m uniformly
at random. The encryption is (Ae,Pe + t(v)) ∈ (Z/qZ)n × (Z/qZ)l.

– Decryption: For the cipher-text (u, c), compute d = c− STu, and output
v ∈ (Z/pZ)l, where vi is the element in Z/pZ that make di− t(vi) closest to
0 (mod q).

Note that one may set l = n in the cryptosystem. In this case, the public
key size and secure key size are Õ(n2). The algorithm has cipher-text expansion
O(1). The encryption and decryption complexity is Õ(n) per bit.
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The security of the cryptosystem comes from the fact that if S is hidden, the
public key (A,P) is computationally indistinguishable from uniform distribution
over (Z/qZ)n×m×(Z/qZ)l×m, for suitable parameters, under the hypothesis that
LWE is hard.

3.3 PKC based on ideal lattices

To improve the efficiency of the LWE-based system, Lyubashevsky, Peikert, and
Regev [24] proposed the primitive of Ring-LWE. Let R = Z[x]/(xn + 1), where
n is a power of two. Let Rq = (Z/qZ)[x]/(xn + 1).

– Private key: The private key is s, e ∈ Rq from an error distribution.
– Public key: Select a random a ∈ Rq uniformly. Output (a, b) ∈ R2

q , where
b = as+ e.

– Encryption: To encrypt a bit string z of length n, we view it as an element
in Rq so that bits in z become coefficients of a polynomial. The cipher-text
is (u, v) obtained by

u = ar + e1, v = br + e2 + bq/2cz,

where r, e1, e2 are chosen from an error distribution.
– Decryption: For cipher-text (u, v), computes v − us, which equals

(re− se1 − e2) + bq/2cz.

One can read z from v − us, since r, e, e1 and e2 have small coefficients.

The algorithm is very efficient. Public and private key size is Õ(n). Cipher-
text expansion isO(1), and encryption/decryption complexity per bit is (log n)O(1),
assuming that we use the fast multiplication algorithm. The parameters are op-
timal asymptotically, however, the security is based on approx-SVP of ideal
lattices, rather than general lattices.

4 The matrix-LWE

Our first proposal would be a modification of PVW, which is a matrix version
of the standard LWE.

– Private key: Choose a random matrix S ∈ (Z/qZ)n×l uniformly.
– Public key: Choose a random matrix A ∈ (Z/qZ)n×m uniformly. Find

an error matrix X ∈ (Z/qZ)l×m where each entry is chosen independently
according to the error distribution χ. The public key is (A,P) where P =
STA + X ∈ (Z/qZ)l×m.

– Encryption: The message is assumed to be a matrix V ∈ (Z/pZ)l×k. First
convert it to a matrix in t(V) ∈ (Z/qZ)l×k. Then select E ∈ {0, 1}m×k
uniformly at random. The encryption is (AE,PE + t(V)) ∈ (Z/qZ)n×k ×
(Z/qZ)l×k.
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– Decryption: For the cipher-text (U,C), compute D = C − STU, and
output V ∈ (Z/pZ)l×k, where vij is the element in Z/pZ that make Dij −
t(Vij) closest to 0 (mod q).

As a general principle, there is a tradeoff between the efficiency and security
of the scheme using different parameters. For an instantiation that offers both
efficiency and security, we follow PVW’s concrete parameters. In detail, we ex-
press parameters as functions of n. Let p = nc for some positive constant c and
l = n = k. Let m = (12 + 6c) ·n log n and q be a prime in [10, 20] · pm log n. The
error distribution is χ = Ψ̄α, where α = 1

p
√
m logn

. Note that if p = 2 (c = 0), we

have the binary case.
Following a similar argument as PVW’s, we can firstly show the correctness

of our scheme.

Proposition 1. With the parameter fixed above, the encryption procedure fails
with negligible probability, where the probability is taken over the random choice
of X.

Following a similar proof of security as PVW’s, we have the following theorem
which implies that the matrix LWE is secure under chosen plaintext attack.

Proposition 2. With the given parameters, the matrix version of LWE scheme
is provably semantic secure, under the assumption that approx-SIVP and approx-
SVP to within some Õ(nc+3/2) factor is hard for quantum algorithm.

The efficiency is improved since we can use the fast matrix multiplication.
More precisely, we can set l = n, and m = Θ(n log n). The matrix is almost
square. Then we use the fast square matrix multiplication to optimize the perfor-
mance. The block size, public key and private key sizes are Õ(n2), and cipher-text
expansion is Õn(1). Most importantly, encryption and decryption complexity is
Õ(nω−2) per bit, which is sublinear. Here ω < 2.38 is the matrix multiplica-
tion exponent. For practical purpose, using the Strassen’s matrix multiplication
method should be a better choice, which also results in a sublinear encryp-
tion/decryption complexity per bit.

5 PKC from a dihedral group rings

In this section, we describe a cryptosystem based on the dihedral group ring.
The protocol is identical to one based on the ideal lattice, except that since the
multiplication is not commutative, one needs to pay attention to the order of the
multiplication. Let n be a power of two, let q be a prime such that gcd(q, 2n) = 1,
and q ∈ [n2, 2n2]. Recall

R = Z[D2n]/((rn/2 + 1)Z[D2n]),

Rq = Fq[D2n]/((rn/2 + 1)Fq[D2n]),

and the error distribution χ on Rq is to select coefficients independently accord-
ing to a Guassian of width n1.5−ε.
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– Private key: The private key is s, e ∈ Rq from the error distribution.
– Public key: Select a random a ∈ Rq uniformly. Output (a, b) ∈ R2

q, where
b = sa+ e.

– Encryption: To encrypt a bit string z of length n, we view it as an element
in Rq so that bits in z become coefficients of a polynomial. The cipher-text
is (u, v) obtained by

u = ar + e1, v = br + e2 + bq/2cz,

where r, e1, e2 are chosen from an error distribution.
– Decryption: For cipher-text (u, v), one computes v − su, which equals

(re− se1 − e2) + bq/2cz.

One can read z from v − us, since r, e, e1 and e2 have small coefficients.

One can verify that the public and private key size are linear in the security
level, and the ciphertext expansion is almost a constant. The following theorem
shows that the encryption/decryption complexity is logarithmic per bit.

Theorem 1. The multiplication in Z[D2n] can be done in Õ(n log q) time.

In this theorem, we use the whole group ring for generality. One can check
that it applies to R as well.

Proof. The main idea is to separate the terms in (Z/qZ)[D2n] into two parts.
Let f1+sf2 and f3+sf4 be two elements where f1, f2, f3 and f4 are polynomials
in r. We have

(f1 + sf2)(f3 + sf4)

=f1f3 + sf2f3 + f1sf4 + sf2sf4

=f1f3 + sf2f3 + s(sf1s)f4 + (sf2s)f4

=(f1f3 + (sf2s)f4) + s(f2f3 + (sf1s)f4)

where sf1s and sf2s are polynomials in r that can be calculated in linear time.
To find the product, we need to compute four polynomial multiplications in
(Z/qZ)[r], that can be done in time Õ(n log q).

In the normal version of group ring LWE, s and e are selected according
to error distribution, while in the regular version, only e is selected according
to error distribution. The following theorem shows that these two versions are
equivalent.

Theorem 2. The regular version of dihedral GR-LWE can be reduced to the
normal version of dihedral GR-LWE.

Proof. (Sketch) Suppose that the input of the LWE problem is (a1, b1) and
(a2, b2). With high probability, a1 is invertible, we construct the input for normal
version of LWE as

(a2a
−1
1 , a2a

−1
1 b1 − b2).

Note that

a2a
−1
1 b1 − b2 = a2a

−1
1 (a1s+ e1)− (a2s+ e2) = a2a

−1
1 e1 − e2.
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6 Security analysis of the new approach

In this section, we prove the main theorem

Theorem 3. Given an average case of search version of dihedral GR-LWE ora-
cle, there is a quantum polynomial time algorithm that solves the search version
of the SVP problem for any invertible ideal of R with approximate factor O(n1.5).

Let us first review the main ideas in Regev’s reduction from approx-SVP
to LWE, which inspires our proof. The reduction can be divided into iterative
steps. We will solve the Discrete Gaussian Sampling problem (DGS) for a lat-
tice, that has a comparable hardness as approx-SVP. The DGSL,r problem is
to sample lattice points of a lattice L according to a Gaussian centering at O
with width r. For precise definition, see [31]. The DGS will be reduced, by a
quantum algorithm, to a β-BDD problem on its dual lattice L∗, which will then
be reduced to a (q, β)-BDD problem. The (q, β)-BDD will be reduced to a DGS
problem of larger width. This step needs help from the search LWE oracle. After
a few iterations, we arrive at DGS with width that allows a polynomial time
algorithm.

The only step that needs an LWE oracle is the reduction from (q, β)-BDD
to DGS. Suppose we have a (q, β)-BDD instance y(= x + e), where x ∈ L∗
and |e| ≤ λ1(L∗)β. We wish to find x (mod qL∗). We are able to sample a
random element z ∈ L by the DGS algorithm, such that |z| ≤ m/λ1(L∗), where
m ≥ q

√
n. So we have

m/λ1(L∗) ≥ q
√
n/λ1(L∗) ≈ qη(L) = η(qL),

where η(∗) is the smoothing parameter of a lattice. Let a be z mod qL. Then a is
a random element in Fnq by the definition of smoothing parameter. We compute
a by writing down the coefficients of z in the base B and modulo q. There is
a Z-module isomorphism from Fnq to L (mod qL) given by the base matrix B,
such that ψB = 1, where ψ is a map in the Z-module exact sequence:

0→ qL → L ψ→ Fnq → 0

Let b = z(x+e)T = zxT+zeT (mod qZ), and s = xBT . Note that |zeT |∞ ≤ mβ,
and zxT = aBxT = aB(s(B−1)T )T = as. Call the search LWE oracle, we will
get s, which gives us x (mod qL∗), and completes the reduction. We can see
that working with the dual lattice is very important.

Remark 2. Here the transformation by B is important. We can not just mod z
by qZn, since it may be the case that L ⊆ qZn, or L is not even an integral
lattice.

For LWE on the ring R = Z[x]/(xn + 1), the idea is similar. Any ideal in
the number field Q[x]/(xn + 1) is a Z-module thus corresponds to a lattice if
we provide an embedding. There are two ways of embedding: canonical and

13



coefficient. If we use canonical embedding, then the dual is I∨ [24], instead
of I−1. To keep the multiplicative structure of the ring, we need a R-module
isomorphism from I/(qI) to R/(qR) = Fq[x]/(f(x)), and from I∨/(qI∨) to
R∨/(qR∨) = Fq[x]/(f(x)), so we can recover I∨/(qI∨) from a polynomial in
R/(qR). As pointed out in [24], it is important to clear ideals while preserving
the R-module structure.

Example 1. Let R = Z, q = 5 and I = (3). Suppose that z = 24 ∈ I, z (mod qI)
should be 9 in the parallelepiped [0, 15). Dividing by t = 3, we send z to 3 in
Z/qZ. Hence multiplying by 3 is a Z-module isomorphism from Z/5Z to I/5I.

On the other hand, Z-module isomorphism is not unique. If we can just
use the inclusion I ↪→ R, we have z = 4 (mod 5). This is another Z-module
isomorphism. If ψ : I → R is a R-module isomorphism, so is tψ for any t ∈ R.

To complete the reduction, one need to send an element in Z/5Z back to
I−1/5I−1. Here I−1 = (1/3)Z. One can see that the inclusion Z ⊆ I−1 induces
an isomorphism Z/5Z→ I−1/5I−1.

Now we will extend the idea to non-commutative group ring LWE. We should
use coefficient embedding to map ideals to lattices. In the following discussion,
we will use the same symbol for an ideal and its corresponding lattice under
coefficient embedding. All the steps can be adopted in a straightforward manner,
except the step from (q, β)-BDD to DGS using GR-LWE oracle. Thus we only
need to show

Lemma 3. With help from a search dihedral GR-LWE oracle, we can reduce the
(q, β)-BDD problem for I−1, where I is any invertible left ideal of R, to the DGS
on I with width m/λ1(I−1) , as long as mβ ≤ n1.5−ε, q > n2, gcd(q, 2n) = 1
and q - det(I).

Proof. (Sketch) Suppose that we have a BDD problem y = x+e in I−1. We find
a short z ∈ I using DGS algorithm, and let a = φ1(z) (mod qR) ∈ R/(qR),
where φ1 is the inclusion I → R, which is also a left R-module homomorphism.
Note that qR is a two-sided ideal, R/qR is a direct summand of the ring Fq[D2n].
Since det(I) is not divisible by q, φ1 induces a natural left R-module isomorphism
I/(qI) → R/(qR). We then calculate zy (in R ⊗Z R), discretize it to R, and
modulo qR. The discretization is easy, since R = Zn by coefficient embedding.
Let b be the result. The pair (a, b) is the input to the LWE oracle. Assume
that the oracle answers s in R/qR. Let φ2 be the inclusion R → I−1, which
is also a right R-module homomorphism. It induces a natural right module
homomorphism R/(qR)→ I−1/(qI−1), since q - det(I). So s gives us the residue
class of x (mod qI−1).

7 Conclusion

In this work, we first propose a matrix version of the standard LWE problem
which improves the efficiency of the public key cryptosystem, while maintaining
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its security. We then propose generating LWE instances from non-commutative
group rings and illustrate the approach by presenting a public key scheme based
on dihedral group rings. We believe that LWE on dihedral group rings achieves
the right trade-off between security and efficiency. As with the original LWE and
Ring-LWE, we hope that the new approach is a versatile primitive, so we can
build various cryptographic schemes based on this primitive besides public-key
encryption. There are two open problems that we find very interesting: Can we
generalize the approach to other non-commutative group and keep the efficiency
of Ring-LWE? Can we have LWE on non-commutative group rings that is CCA
secure?
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