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Abstract

We describe a public key encryption that is IND-CPA secure under the Learning with Errors (LWE)
assumption, but that is not circular secure for arbitrary length cycles. Previous separation results for
cycle length greater than 2 require the use of indistinguishability obfuscation, which is not currently
realizable under standard assumptions.

1 Introduction

The notion of key dependent message security departs from standard encryption security in that it allows the
attacker to access ciphertexts where the messages are functions of the secret key. One prototypical example
is k-circular security. An encryption scheme is said to be k-circular secure, if an adversary is unable to
distinguish Enc(pk1, skk),Enc(pk2, sk1), . . . ,Enc(pkk, skk−1) from k encryptions of the all 0 message.

The demand for encryption schemes that provide circular security has arisen in multiple applications.
Camenisch and Lysyanskaya [14] applied circular secure encryption to anonymous credential systems, while
Laud [22] and Adão et al.[2] use circular security to prove the soundness of symbolic protocols. Most notably
Gentry’s [20] bootstrapping technique shows how to achieve fully homomorphic encryption (FHE) for circuits
of any depth chosen at evaluation time (i.e. not fixed at setup) from those of shallower depth if the FHE
scheme is circular secure. There have been multiple constructions of circular secure schemes or more generally
key-dependent message security, some proven in the random oracle model [14, 9] and others in the standard
model from particular assumptions [10, 6, 11, 7, 12, 5, 4].

One interesting question is whether k-circular security can come “for free”. Is there some k such that
any IND-CPA secure encryption scheme is guaranteed to be k-circular secure? If true, this would give an
immediate path to applying Gentry’s FHE bootstrapping technique among other applications.

A trivial folklore argument provides a separation for the case of k = 1. The first non-trivial example
for k = 2 was given by Acar et al. [1] and extended by Cash, Green and Hohenberger [15] using the
Decisional Diffie-Hellman assumption over asymmetric bilinear groups. Subsequently, Bishop, Hohenberger
and Waters [8] extended the result to include symmetric groups under the decision linear assumption as
well as moving to the lattice setting with a separation under the Learning with Errors (LWE) assumption.
However, they leave open the possibility of getting “free” circular security by simply extending the key cycle
lengths to be greater than two.

The more general case of k-length cycles for arbitrary size k was considered by Koppula, Ramchen,
and Waters [21] who showed that under the assumption of indistinguishability obfuscation (for polynomial
sized circuits), for any k there exists schemes that are IND-CPA secure, but that are not k-circular secure.
Marcedone and Orlandi [23] independently gave a similar result, but under the assumption of a virtual black
box secure obfuscator for a certain functionality.
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While these works cast doubts on the ability to get free circular security for larger cycle lengths, they do
so by invoking a quite strong primitive of obfuscation. Notably, the only current candidates for obfuscation
rely on the multilinear encodings for which the first candidate was proposed in 2013[18]. In addition, to being
relatively untested there have subsequently been several attacks discovered [16, 17] on various multilinear
encoding proposals.

Separation without obfuscation. This brings up to the central question of this paper.

Can we separate IND-CPA and circular security for arbitrary length cycles using standard assumptions (i.e
without invoking obfuscation or multilinear maps)?

Such a result would provide a firmer understanding of circular security. In addition, the introduction
of the first general purpose obfuscation candidate [19] has lead to the realization of many cryptographic
primitives that to this point were not realizable (e.g., deniable encryption, functional encryption, etc.).
However, very few of these newly realized primitives have since been adapted to a standard assumption —
one not involving obfuscation or multilinear maps. We believe that attacking this problem for one primitive
can begin to crack the ice and hopefully begin to lead to insights for others.

A separation example from Learning with Errors The main result of our paper is the introduction
of a family of encryption systems that are IND-CPA secure under the LWE assumption, but which are made
to not be k-circular secure for arbitrary k. Here, k can be any polynomial in the security parameter.

We first illustrate the challenges of building such a scheme by looking at the recent Bishop, Hohenberger
and Waters construction [8], which gave a separation from LWE for k = 2. In this work, Bishop et al.
first proposed a general framework for constructing circular security separations. This framework, called
the k-cycle tester framework, consists of algorithms for setup, key generation, encryption and testing cycles.
Note that unlike an encryption scheme, there is no decryption algorithm here. The setup algorithm outputs
public parameters, which are used by the key generation algorithm to choose the public key and secret key.
The encryption algorithm takes a public key and a message, and outputs its encryption. The cycle tester
algorithm takes k public keys and k encryptions, and outputs 1 if the k public keys/ciphertexts form a
key cycle (that is, cti ← Enc(pki, ski−1)), else it outputs 0 with all but negligible probability. For security,
encryptions of distinct messages must be computationally indistinguishable. Bishop et al. showed how to
use such a k-cycle tester, together with an IND-CPA encryption scheme, to construct an IND-CPA encryption
scheme that is not k-circular secure. They also showed several constructions of a 2-cycle tester from various
assumptions, including one from LWE.

The BHW 2-cycle tester from LWE: Unlike most existing LWE based encryption schemes where the
message is part of a large norm vector, Bishop et al. used a novel approach for encrypting the message: via
lattice trapdoors. A lattice trapdoor generation algorithm outputs a matrix A together with a trapdoor TA.
The matrix looks uniformly random, while the trapdoor can be used to compute, for any matrix U, a low
norm matrix S = A−1(U) such that A · S = U. 1 Moreover, if U is chosen uniformly at random, then S
reveals no information about the matrix A, or the randomness used to sample A, TA. Bishop et al. used
the message vector as randomness for the lattice trapdoor generation algorithm.

Their construction (with some modifications) can be described as follows. The setup algorithm simply
outputs the LWE parameters. The key generation algorithm first samples a matrix A along with its lattice
trapdoor TA. The secret key is the randomness used to compute A, TA. To compute the public key,
the algorithm chooses a matrix C, computes D = C ·A + noise and outputs (C,D) as the public key. The
encryption algorithm uses the message msg as randomness for the trapdoor generation algorithm, computing
a matrix Z and its trapdoor TZ. Next, it chooses a uniformly random {−1, 1} vector r and computes
u = C> · r and v = D> · r ≈ A> ·C> · r. The final ciphertext consists of a short vector s = Z−1(u) that

1For simplicity, we use the notation A−1(·) to represent the pre-image S. In the formal description of our algorithms, we
use the pre-image sampling algorithm SamplePre.
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contains the message, and a large vector v that is used for cycle testing. For IND-CPA security, one can use
the LWE assumption and the Leftover Hash Lemma to argue that C> ·r is indistinguishable from a uniformly
random vector, and therefore Z−1(C> · r) reveals no information about msg.

The cycle testing algorithm takes as input two ciphertexts (v1, s1), (v2, s2) and checks if v>1 · s2 is close
to v>2 · s1. To see why this works, let us consider the case when the two ciphertexts form a key cycle; that is,
s1 = B−12 (C>1 · r1), v>1 = r>1 ·C1 ·B1 + noise and s2 = B−11 (C>2 · r2), v>2 = r>2 ·C2 ·B2 + noise. In this case,
the testing algorithm outputs 1 because v>1 · s2 ≈ r>1 ·C1 ·C>2 · r2 = r>2 ·C2 ·C>1 · r1 ≈ v>2 · s1. However,
if both ciphertexts are encryptions of 0, then both v>1 · s2 and v>2 · s1 are uniformly random elements, and
therefore, they are likely not close to each other. At a high level, this approach works because in a key
cycle, the B1 in v1 and B−11 in s2 cancel each other (and similarly the matrix B2 and B−12 in v2 and s1
respectively).

Unfortunately, the BHW approach cannot be directly used to handle longer cycles.

Our approach via cascading cancellations: For simplicity, let us consider the problem of constructing
a 3-cycle tester (this can be easily extended to handle longer cycles). The starting point of our approach is
the following simple observation: for i = 1, 2, 3, let Bi be matrices with trapdoors, and let X,C1,C2,C3 be
arbitrary matrices. Consider the matrices M1 = B−13 (C1 ·X), M2 = B−11 (C2 ·B2) and M3 = B−12 (C3 ·B3).
Then B1 ·M2 ·M3 ·M1 = C2 ·C3 ·C1 ·X. The matrix B1 starts the ‘chain reaction’ by canceling B−11 in
M1, and after each matrix multiplication, the product is a canceling matrix for the next one in the sequence.

In fact, this observation can be easily extended to have noisy matrices: for i = 1, 2, 3, let Bi be matrices
with trapdoors, Ci matrices with low norm entries, and X any arbitrary matrix. Consider the matri-
ces M1 = B−13 (C1 · X + noise), M2 = B−11 (C2 · B2 + noise) and M3 = B−12 (C3 · B3 + noise). Then
B1 ·M2 ·M3 ·M1 ≈ C2 · C3 · C1 · X. This observation inspires us to try the following approach: each
ciphertext consists of two low norm matrices such that a key cycle gives us two parallel chains with the same
end product matrix. Before discussing this approach in more detail, we will present an extension of the cycle
tester framework which will help simplify our presentation.

Extending the BHW k-cycle tester framework : We introduce an extension of the BHW cycle tester frame-
work, which we call the Leader-Follower k-cycle tester framework. This framework has a setup algorithm
for outputting the parameters, two different key generation and encryption algorithms, and finally a tester
algorithm. Looking ahead, in our counterexample, one of the public keys/ciphertexts has a special role, and
they are generated using the ‘leader’ key generation/encryption algorithms, while the remaining are gen-
erated using the ‘follower’ key generation/encryption algorithms. For correctness, we require that the test
algorithm outputs 1 if the k ciphertexts form an encryption cycle, else it outputs 0. For security, both the
leader and follower encryption schemes must satisfy IND-CPA security. One can establish a simple reduction
from our Leader-Follower framework to the BHW cycle-tester framework.

First Attempt via two parallel chains: As an initial attempt, we present a Leader-Follower 3-cycle tester
where any message/secret key consists of two strings, each of which can be used to sample a lattice trapdoor.
To begin, we will describe the follower key generation/encryption algorithms.

The follower key generation algorithm chooses two strings x1,x2 and sets (x1,x2) as the secret key.
To compute the public key, it first chooses two matrices B1,B2 with trapdoors (using strings x1 and x2

respectively as randomness). The public key simply consists of the matrices B1,B2. The corresponding
encryption algorithm uses the message msg = (y1,y2) to sample matrices Z1,Z2 together with the respective
trapdoors. Next, it chooses a low norm matrix C and outputs S1 = Z−11 (C ·B1 + noise), S2 = Z−12 (C ·B2 +
noise) as the ciphertext.

The leader key generation algorithm is a bit more involved. The secret key is chosen as in the follower
key generation, and the public key has an additional component: a uniformly random matrix X. As in the
follower encryption algorithm, the leader encryption algorithm chooses matrices Z1,Z2 and their trapdoors.
Next, it chooses low norm matrices C1 and outputs S1 = Z−11 (C ·X + noise), S2 = Z−12 (C ·X + noise).

The testing algorithm, on input three ciphertexts (S11,S12), (S21,S22), (S31,S32) and three public keys
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(B11,B12,X), (B21,B22), (B31,B32), checks if B11 ·S21 ·S31 ·S11 ≈ B12 ·S22 ·S32 ·S12. The testing algorithm
works as desired, because if Ci is the random matrix used for computing Sij and the three ciphertexts form
an encryption cycle, then both the expressions are approximately C2 ·C3 ·C1 ·X.

For IND-CPA security of follower key generation/encryptions, note that by the LWE assumption, both
C ·B1 + noise and C ·B2 + noise are indistinguishable from truly random matrices. As a result, S1 and S2

hide the randomness used to choose Z1 and Z2.
Next, let us consider IND-CPA security of leader key generation/encryptions. Unfortunately, this part is

problematic, because the matrices Z−11 (C ·X+noise) and Z−12 (C ·X+noise) clearly reveal information about
Z1 and Z2 (for example, one can check if Z1 = Z2). To address this problem, we first increase the number
of parallel chains to a suitably large number (say `), and have ` matrices X1, . . . ,X` as part of the leader
public key. These matrices satisfy the following relation: there exist a {−1, 1} coefficient vector x such that
xi ·Xi = 0. This vector x must be hidden from the IND-CPA adversary; however, the test algorithm must
be able to somehow use this vector to cancel out the Xi matrices.

Our solution: Our final solution is similar to the approach outlined above. The messages and secret
keys consist of ` strings, each of which can be used as the randomness for lattice trapdoor generation. The
follower key generation and encryption algorithms are similar to the ones described above, except that now
there are ` public matrices B1, . . . ,B`, and the ciphertext consists of ` low norm matrices S1, . . . ,S`, where
Si = Z−1i (C ·Bi + noise).

The main differences are in the leader key generation algorithm. The leader key generation algorithm
first uses the secret key to sample ` matrices B1, . . . ,B` along with their trapdoors. Next, it chooses an `
length string x, chooses `− 1 matrices X1, . . . ,X`−1, and sets X` such that

∑
i xi ·Xi = 0. The public key

consists of the matrices (x1 ·B1, . . . , x` ·B`,X1, . . . ,X`) (note the xi coefficients attached to each Bi). To
encrypt a message, one chooses matrices Z1, . . . ,Z` with trapdoors using the message strings as randomness.
Then it chooses a matrix C and outputs Si = Z−1i (C · Xi + noise) as the ciphertext. To argue IND-CPA
security, note that the matrices Xi look uniformly random (since the vector x is hidden from the adversary).
As a result, the matrices C ·Xi + noise look like ` uniformly random matrices, and therefore the adversary
does not learn any information about the Zi matrices.

The test algorithm is similar to what was described in the previous solution, except at the end, the
algorithm computes the sum of the final products, and checks if it is of low norm. The correctness of the test
algorithm for k = 3 can be verified easily from the table below. Let pk1 = (x1 ·B11, . . . , x` ·Bi`,X1, . . . ,X`),
and let ct1, ct2, ct3 be the three ciphertexts that form a 3-cycle.

pk1 matrices x1 ·B11 . . . x` ·B1`

ct2 matrices S21 = B−111 (C2 ·B21 + noise) . . . S2` = B−11` (C2 ·B2` + noise)
ct3 matrices S31 = B−121 (C3 ·B31 + noise) . . . S3` = B−12` (C3 ·B3` + noise)
ct1 matrices S11 = B−131 (C1 ·X1 + noise) . . . S1` = B−13` (C1 ·X` + noise)

Product ≈ x1 ·C2 ·C3 ·C1 ·X1 . . . ≈ x` ·C2 ·C3 ·C1 ·X`

Clearly, the sum of the products is low norm, and therefore the testing algorithm outputs 1 if the input
is a key cycle. For a non-key cycle, each of these products is a uniformly random matrix, and therefore, with
high probability, their sum has large norm. This concludes our scheme.

The construction described above can be extended to handle any polynomially bounded cycle length k.
For this, we need to set the matrix dimensions n,m, the LWE noise parameter σ and the LWE modulus q
appropriately as functions of k and security parameter λ.

Recent Work Independent of and concurrently to our work, Alamati and Peikert [3] provided novel
constructions for separating circular security and IND-CPA security. While the goals of [3] and our work are
similar, the technical approaches of these two works, interestingly, differ quite significantly.

Alamati and Peikert present a tester in the common random string model whose IND-CPA security
is based on the Ring-LWE assumption, which reduces to worst case problems in ideal lattices. While
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their testing algorithm also employs a “telescoping cancellation”, the other technical aspects differ quite
significantly from ours. Intuitively, their tester works by transforming a key cycle into two ciphertexts that
are encrypted under similar randomness.2 This transformation relies upon the commutativity property of
rings. In addition, their underlying encryption system is designed such that it is detectable if there exists
two ciphertexts encrypted under similar randomness. Putting together the transformation and the common
randomness detection properties results in a cycle detector.

Their ring-based solution has the property that the encryption system grows polynomially in the security
parameter and the cycle length detection k. Since the overhead increases only polynomially with k, it
is possible to create an encryption system where the (maximum) length of cycles that can be tested is a
polynomial k(λ) that grows with the security parameter λ.

In their second solution they turn toward adapting their techniques with the goal of achieving security
under the plain LWE assumption. The primary barrier is in moving outside the ring setting they no longer
have the commutativity property needed to transform key cycles into two ciphertexts under similar ran-
domness. Instead they manage to realize a form commutativity by employing a novel tensoring technique
while maintaining standard LWE security. The cost, however, of this technique is an overhead factor of nk

where n is the lattice security parameter. Since the system’s overhead increases exponentially in k, the max-
imum cycle length for any system must be a constant and cannot grow polynomially in λ like the ring-based
solution.

Our system is based on the plain LWE assumption and has polynomial growth in k. Thus, it is possible
for to build a system where the maximum cycle length k(λ) is an arbitrary polynomial. In addition, if one
fixes the LWE parameters n,m and modulus q to be fixed functions of the security parameter we can do
without a common random string (assuming all parties use the same security parameter). For simplicity, we
do not highlight these features in our main presentation, however, we address them further at an informal
level in Section 4.1.

2 Preliminaries

Notations: We will use lowercase bold letters for vectors (e.g. v) and uppercase bold letters for matrices
(e.g. A). For any finite set S, x ← S denotes a uniformly random element x from the set S. Similarly, for
any distribution D, x← D denotes an element x drawn from distribution D. The distribution Dn is used to
represent a distribution over vectors of n components, where each component is drawn independently from
the distribution D.

Given a randomized algorithm A(·), the notation A(·; ·) is used to explicitly describe the randomness
used by A (e.g. A(x; r) denotes computation on input x using randomness r).

Randomness Extraction: We will use the following theorem, which follows from the Leftover Hash
Lemma.

Theorem 2.1. Let m > (n+ 1) log2 q + ω(log n) and q a prime. Then the statistical distance between the
following distributions is negligible in n.

{(A,A · r) : A← Zn×mq , r← {−1, 1}m} ≈ {(A,u) : A← Zn×mq ,u← Zmq }.

Public Key Encryption A public key encryption scheme PKE with message space M consists of algo-
rithms Setup, KeyGen, Enc, Dec with the following syntax.

• Setup(1λ) → pp. The setup algorithm takes as input the security parameter and outputs the public
parameters pp.

• KeyGen(pp) → (pk, sk). The key generation algorithm takes as input the public parameters pp and
outputs a public key pk and secret key sk.

2Here “similar randomness” means ignoring short noise factors.
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• Enc(pk,m ∈M)→ ct. The encryption algorithm takes as input a public key pk and a message m ∈M.
It outputs a ciphertext ct.

• Dec(sk, ct) → y ∈ M ∪ {⊥}. The decryption algorithm takes as input a secret key sk, ciphertext ct
and outputs a message y ∈M if the decryption is successful, else it outputs ⊥.

A public key encryption scheme must satisfy correctness and IND-CPA security.

Correctness: For any security parameter λ, message m ∈M, pp← Setup(1λ) and (pk, sk)← KeyGen(pp),

Pr[Dec(sk,Enc(pk,m)) 6= m] < negl(λ)

where the probability is over the random coins used during encryption and decryption.

Security : In this work, we will be using the IND-CPA security notion.

Definition 2.1. Let PKE = (Setup, KeyGen, Enc, Dec) be a public key encryption scheme. The scheme is

said to be IND-CPA secure if for all security parameters λ, all PPT adversaries A, AdvPKE,λA = |Pr[A wins
the IND-CPA game ]− 1/2| is negligible in λ, where the IND-CPA experiment is defined below:

• The challenger chooses pp← Setup(1λ), (pk, sk)← KeyGen(pp) and sends pk to A.

• The adversary sends two challenge messages m0,m1 to the challenger. The challenger chooses b ←
{0, 1} and sends ct← Enc(pk,mb) to A.

• A sends its guess b′ and wins if b = b′.

2.1 Lattice Preliminaries

An m-dimensional lattice L is a discrete additive subgroup of Rm. Given positive integers n,m, q and a
matrix A ∈ Zn×mq , we let Λ⊥q (A) denote the lattice {x ∈ Zm : Ax = 0 mod q}. For u ∈ Znq , we let Λuq (A)
denote the set {x ∈ Zm : Ax = u mod q}.

Discrete Gaussians Let σ be any positive real number. The Gaussian distribution Dσ with parameter σ
is defined by the probability distribution function ρσ(x) = exp(−π · ||x||2/σ2). For any set L ⊂ Rm, define
ρσ(L) =

∑
x∈L ρσ(x). The discrete Gaussian distribution DL,σ over L with parameter σ is defined by the

probability distribution function ρL,σ(x) = ρσ(x)/ρσ(L) for all x ∈ L.
The following lemma (Lemma 4.4 of [25]) shows that if the parameter σ of a discrete Gaussian distribution

is small, then any vector drawn from this distribution will be short (with high probability).

Lemma 2.1. Let m,n, q be positive integers with m > n, q ≥ 2. Let A ∈ Zn×mq be a matrix of dimensions

n×m, and L = Λ⊥q (A). Then

Pr[||x|| >
√
m · σ : x← DL,σ] ≤ negl(n).

Learning with Errors (LWE) The Learning with Errors (LWE) problem was introduced by Regev [28].
The LWE problem has four parameters: the dimension of the lattice n, the number of samples m, the
modulus q and the error distribution χ(n).

Assumption 1 (Learning with Errors). Let n, m and q be positive integers and χ a noise distribution on Z.
The Learning with Errors assumption (n,m, q, χ)-LWE, parameterized by n,m, q, χ, states that the following
distributions are computationally indistinguishable:{

(A, s> ·A + e) :
A← Zn×mq ,
s← Znq , e← χm

}
≈c
{

(A,u) :
A← Zn×mq ,
u← Zmq

}
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Under a quantum reduction, Regev [28] showed that for certain noise distributions, LWE is as hard
as worst case lattice problems such as the decisional approximate shortest vector problem (GapSVP) and
approximate shortest independent vectors problem (SIVP). The following theorem statement is from Peikert’s
survey [27].

Theorem 2.2 ([28]). For any m ≤ poly(n), any q ≤ 2poly(n), and any discretized Gaussian error distribution
χ of parameter α · q ≥ 2 ·

√
n, solving (n,m, q, χ)-LWE is as hard as quantumly solving GapSVPγ and SIVPγ

on arbitrary n-dimensional lattices, for some γ = Õ(n/α).

Later works [26, 13] showed classical reductions from LWE to GapSVPγ . Given the current state of art in

lattice algorithms, GapSVPγ and SIVPγ are believed to be hard for γ = Õ(2n
ε

), and therefore (n,m, q, χ)-LWE

is believed to be hard for Gaussian error distributions χ with parameter 2−n
ε · q · poly(n).

LWE with Short Secrets In this work, we will be using a variant of the LWE problem called LWE with
Short Secrets. In this variant, introduced by Applebaum et al. [6], the secret vector is also chosen from
the noise distribution χ. They showed that this variant is as hard as LWE for sufficiently large number of
samples m.

Assumption 2 (LWE with Short Secrets). Let n, m and q be positive integers and χ a noise distribution
on Z. The LWE with Short Secrets assumption (n,m, q, χ)-LWE-ss, parameterized by n,m, q, χ, states that
the following distributions are computationally indistinguishable 3:{

(A,S ·A + E) :
A← Zn×mq ,
S← χn×n,E← χn×m

}
≈c
{

(A,U) :
A← Zn×mq ,
U← Zn×mq

}
.

Lattices with Trapdoors Lattices with trapdoors are lattices that are statistically indistinguishable from
randomly chosen lattices, but have certain ‘trapdoors’ that allow efficient solutions to hard lattice problems.

Definition 2.2. A trapdoor lattice sampler consists of algorithms TrapGen and SamplePre with the following
syntax and properties:

• TrapGen(1n, 1m, q)→ (A, TA): The lattice generation algorithm is a randomized algorithm that takes
as input the matrix dimensions n,m, modulus q and `TG(n) bits of randomness, and outputs a matrix
A ∈ Zn×mq together with a trapdoor TA.

• SamplePre(A, TA,u, σ) → s: The presampling algorithm takes as input a matrix A, trapdoor TA, a
vector u ∈ Znq and a parameter σ ∈ R (which determines the length of the output vectors). It outputs
a vector s ∈ Zmq .

These algorithms must satisfy the following properties:

1. Correct Presampling: For any string y ∈ {0, 1}`TG , vector u and parameter σ, let (A, TA) ←
TrapGen(1n, 1m; y), s← SamplePre(A, TA,u, σ). Then A · s = u.

2. Well Distributedness of Matrix: The following distributions are statistically indistinguishable:

{A : (A, TA)← TrapGen(1n, 1m)} ≈s {A : A← Zn×mq }.

3. Well Distributedness of Preimage: For any string y ∈ {0, 1}`TG , let (A, TA) = TrapGen(1n, 1m; y).
Then if σ = ω(

√
n · log q · logm), the following distributions are statistically indistinguishable:

{s : u← Znq , s← SamplePre(A, TA,u, σ)} ≈s DZm,σ.

Note that the first and third properties must be satisfied for all strings y ∈ {0, 1}`TG . These properties
are satisfied by the gadget-based trapdoor lattice sampler of [24].

3Applebaum et al. showed that {(A, s> · A + e) : A ← Zn×m
q , s ← χn, e ← χm} ≈c {(A,u) : A ← Zn×m

q ,u ← Zm
q },

assuming LWE is hard. However, by a simple hybrid argument, we can replace vectors s, e,u with matrices S,E,U of appropriate
dimensions.
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3 Circular Security and Our Framework for Generating Circular
Counterexamples

In this section, we define the notion of circular security for public key encryption schemes, and then dis-
cuss frameworks for obtaining separation between circular security and IND-CPA security. Let PKE =
(Setup,KeyGen,Enc,Dec) be a public key encryption scheme. A k-encryption cycle consists of k encryptions,
where the ith encryption is an encryption of the (i− 1)th secret key using the ith public key. Intuitively, the
scheme is k-circular secure if no adversary can distinguish between an encryption cycle and k encryptions of
zeros.

Definition 3.1 (k-Circular Security). Let PKE = (Setup,KeyGen,Enc,Dec) be a public key cryptosystem.
The scheme is said to k-circular secure if for all PPT adversaries A, the following expression is at most
negl(λ). ∣∣∣∣∣Pr

[
1← A({(pki, cti)}i) :

pp← Setup(1λ); (pki, ski)← KeyGen(pp);
cti ← Enc(pki, ski−1)

]

−Pr

[
1← A({(pki, cti)}i) :

pp← Setup(1λ); (pki, ski)← KeyGen(pp);
cti ← Enc(pki, 0

|ski−1|)

] ∣∣∣∣∣.
The above definition is derived from the Key-Dependent Message (KDM) security notion of Black et

al. [9]. A weaker security notion, proposed by Cash et al. [15] requires the adversary to output the secret
key when given an encryption cycle. Koppula et al. [21] showed that if there exists an adversary that can
distinguish between an encryption cycle and encryptions of zeros, then there exists an adversary that can
recover the entire secret key given an encryption cycle. Therefore, in this work, we focus on Definition 3.1.

3.1 The BHW Cycle Tester Framework

In a recent work, Bishop, Hohenberger and Waters [8] introduced a generic framework for creating circular
security counterexamples. In this cycle tester framework, there are four algorithms - Setup, KeyGen, Encrypt
and Test. The setup algorithm outputs the public parameters, the key generation algorithm uses the public
parameters to output a public key/secret key pair. The encryption algorithm takes a public key and message
as input, and outputs a ciphertext. Finally, the testing algorithm takes as input k public keys and k
ciphertexts, and outputs 1 if the k encryptions form an encryption cycle, else it outputs 0. Note that in this
framework, there is no decryption algorithm. The security requirement is identical to the IND-CPA security
game. The following description is taken from [8].

Definition 3.2 (k-Cycle Tester). A cycle tester Γ = (Setup,KeyGen,Enc,Test) for message space M and
secret key space S is a tuple of algorithms specified as follows:

• Setup(1λ, 1k) → pp. The setup algorithm takes as input the security parameter λ and the length of
cycle k. It outputs the public parameters pp.

• KeyGen(pp) → (pk, sk). The key generation algorithm takes as input the public parameters pp and
outputs a public key pk and secret key sk ∈ S.

• Enc(pk,m ∈M)→ C. The encryption algorithm takes as input a public key pk and a message m ∈M
and outputs a ciphertext C.

• Test(pk, ct) → {0, 1}. On input pk = (pk1, . . . , pkk) and ct = (ct1, . . . , ctk), the testing algorithm
outputs a bit in {0, 1}.

The algorithms must satisfy the following properties.
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1. (Testing Correctness) There exists a polynomial p(·) such that for all security parameters λ, the Test
algorithm’s advantage (given by the following expression) is at least 1/p(λ).

Pr

[
1← Test(pk, ct) :

pp← Setup(1λ); (pki, ski)← KeyGen(pp);
cti ← Enc(pk, ski−1)

]
−Pr

[
1← Test(pk, ct) :

pp← Setup(1λ); (pki, ski)← KeyGen(1λ);
cti ← Enc(pki, 0

|ski−1|)

]
2. (IND-CPA Security) Let Π = (Setup,KeyGen,Enc, ·) be an encryption scheme with empty decryption

algorithm. The scheme Π must satisfy the IND-CPA security definition (see Definition 2.1).

Bishop et al. [8] showed that in order to construct a separation between IND-CPA and k-circular security,
it suffices to construct a k-cycle tester (as defined in Definition 3.2).

Theorem 3.1 (CPA Counterexample from Cycle Testers, [8]). If there exists an IND-CPA-secure encryption
scheme Π for message space M = (M1 ×M2) and secret key space S1 ⊆ M1 and an k-cycle tester Γ for
message space M2 and secret key space S2 ⊆ M2, then there exists an IND-CPA-secure encryption scheme
Π′ for message space M = (M1 ×M2) and secret key space S = (S1 × S2) that is k-circular insecure.

3.2 Our Leader-Follower Tester Framework

In this section, we propose an adaptation of the BHW cycle tester framework that we call Leader-Follower
Tester. In this modification, the key generation and encryption have two modes - leader and follower. The
tester algorithm takes k public keys and ciphertexts: the first public key (resp. ciphertext) is a ‘leader’ public
key (resp. ciphertext). The remaining are ‘follower’ public keys/ciphertexts. It outputs 1 if the ciphertexts
form a cycle, else it outputs 0. First, we will formally define the syntax/properties of this modification, and
then show how this implies the cycle tester framework of [8].

Definition 3.3 (k-Leader-Follower Tester). A Leader-Follower cycle tester Γ = (Setup, KeyGen-L, KeyGen-F,
Enc-L, Enc-F, Test) for message space M and secret key space S is a tuple of algorithms specified as follows:

• Setup(1λ, 1k) → pp. The setup algorithm takes as input the security parameter n and length of cycle
k, and outputs public parameters pp.

• KeyGen-L(pp) → (pk, sk). The leader key generation algorithm takes as input the public parameters
pp, and outputs a public key pk and secret key sk ∈ S.

• KeyGen-F(pp)→ (pk, sk). The follower key generation algorithm takes as input the public parameters
pp, and outputs a public key pk and secret key sk ∈ S.

• Enc-L(pk,m ∈ M)→ C. The leader encryption algorithm takes as input a leader public key pk and a
message m ∈M and outputs a ciphertext C.

• Enc-F(pk,m ∈M)→ C. The follower encryption algorithm takes as input a follower public key pk and
a message m ∈M and outputs a ciphertext C.

• Test(pk, ct) → {0, 1}. The test algorithm takes as input a public key vector pk = (pk1, . . . , pkk) and
a ciphertext vector ct = (ct1, . . . , ctk). Of these, the first public key and ciphertext are of leader type,
while the remaining are of follower type. The testing algorithm outputs a bit in {0, 1}.

The algorithms must satisfy the following properties.
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1. (Testing Correctness) There exists a polynomial p(·) such that for all security parameters λ, the Test
algorithm’s advantage (given by the following expression) is at least 1/p(λ).

Pr

1← Test({pki, cti}) :
pp← Setup(1λ, 1k); (pk1, sk1)← KeyGen-L(pp);
ct1 ← Enc-L(pk1, skk); (pki, ski)← KeyGen-F(pp);
cti ← Enc-F(pk, ski−1)


−Pr

1← Test({pki, cti}) :
pp← Setup(1λ, 1k); (pk1, sk1)← KeyGen-L(pp);
ct1 ← Enc-L(pk1, skk); (pki, ski)← KeyGen-F(pp);
cti ← Enc-F(pki, 0

|ski−1|)


2. (IND-CPA Security for Both Modes) Let Π-L = (Setup,KeyGen-LEnc-L, ·) and Π-F = (Setup, KeyGen-F,

Enc-F, ·) be two encryption schemes with empty decryption algorithm. We require that both Π-L and
Π-F must satisfy IND-CPA security as in Definition 2.1.

We will now show that the Leader-Follower Tester defined above implies the tester framework of [8]
(Definition 3.2 ).

Lemma 3.1. Suppose there exists a k-Leader-Follower-Tester (Setup, KeyGen-L, Enc-L, KeyGen-F, Enc-F,
Test) as defined in Definition 3.3. Then there exists a k-Tester (Setup′, KeyGen′, Enc′, Test′) that satisfies
Definition 3.2.

Proof. The proof of this lemma is fairly straightforward: the setup algorithm first chooses a bit b← Ber1/k.
If b = 1, it runs KeyGen-L and sets the mode to be ‘leader’, else it runs KeyGen-F and sets the mode to be
‘follower’. The encryption algorithm, based on the mode, either uses Enc-L or Enc-F.

• Setup′(1λ)→ (pp) : The setup algorithm first chooses the public parameters pp.

• KeyGen′(pp) → (pk′, sk′) : The key generation algorithm chooses b ← Ber1/k. If b = 1, it chooses

(pkL, skL) ← KeyGen-L(1λ), sets mode = L and pk′ = (pkL,mode), sk′ = skL. Else, it chooses
(pkF , skF )← KeyGen-F(1λ), sets mode = F and pk′ = (pkF ,mode).

• Enc′(pk′,msg) → ct : The encryption algorithm parses the public key pk′ as (pk,mode). If mode = L,
it computes ct← Enc-L(pk,m), else it computes ct← Enc-F(pk,m).

• Test′((pk1, . . . , pkk), (ct1, . . . , ctk))→ {0, 1} : The test algorithm first checks that pk1 has mode ‘L’ and
all other public keys have mode ‘F’. If not, it aborts and outputs 1 with probability 1/2. Else, it simply
runs Test((pk1, . . ., pkk), (ct1, . . ., ctk)) and outputs the result.

Now, given the scheme (Setup′,KeyGen′,Enc′,Dec′), we need to show that it satisfies Definition 3.2.

• Testing Correctness: Suppose the algorithm Test succeeds with non-negligible advantage ε. From the
construction, it follows that the algorithm Test succeeds with probability (1− 1/k)k−1 · (1/k) · ε. This
is because if pk1 has mode ‘L’ and all others have mode ‘F’, then the algorithm has advantage ε, else
it has advantage 0.

• Security : The IND-CPA security of (Setup′,Enc′,Test′) follows directly from the Leader/Follower
IND-CPA security definitions (recall that the leader-follower-tester scheme must satisfy IND-CPA secu-
rity in both modes).

The purpose of introducing this modification is that it simplifies the description of our construction (see
Section 4). In our construction, one of the k public keys/ciphertexts is used to ‘tie’ the ends together, and
therefore is referred to as the Leader. A similar structure can be found in the counterexample shown by [21].
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4 Counter Example for k-Circular Security

In this section, we will describe a Leader-Follower cycle tester E = (Setup, KeyGen-L, Enc-L, KeyGen-F, Enc-F,
Test) such that it satisfies the properties described in Definition 3.3. Recall, `TG(n) denote the number of bits
of randomness required by the TrapGen algorithm. For simplicity of description, we will drop the dependence
on n.

Fix any ε < 1/2 and cycle length k. Our scheme has following algorithms:

• Setup(1λ) : The setup algorithm chooses the following parameters: matrix dimensions n,m, LWE
modulus q, parameter σ for the Gaussian noise distribution χ, and an additional parameter `. These
parameters will be functions of λ, k and ε. We require the parameters to satisfy the following relations:

n = poly(k, λ)

(n,m) are the dimensions of matrices output by TrapGen, therefore m = Ω(n · log q).

χ = Dσ and σ/q ≥ poly(n)/2n
ε

(for LWE noise/modulus ratio to be greater than poly(n)/2n
ε

)

` = Ω(n · log q) ( for Leftover Hash Lemma: Lemma 2.1)

` · (` ·m · n · σ)k ≤ q/8( for the correctness of our Test algorithm)

One instantiation which works is as follows: let n = k1/ε · λ, m = 2n · log q, σ = nc for some constant
c. Then setting q = 2n

ε

, ` = 2n log q satisfies the above relations.

Note that if k is constant, we can set q to be polynomial (which will in turn result in polynomial
approximation factors for GapSVP).

The message space of our scheme (which is also the space of secret keys) is ({0, 1}`TG)`.

• KeyGen-L(pp) : The leader key generation algorithm first chooses y1, . . .yw ← {0, 1}`TG . For i ≤ w,
the algorithm computes (Bi, TBi) = TrapGen(1n; yi). Next it chooses a string x ∈ {−1, 1}` by choosing
uniformly random bits xi ← {−1, 1} for i ≤ `− 1 and setting x` = 1. The first part of the public key
consists of matrices Di defined as follows:

Di = xi ·Bi ∈ Zn×mq for all i ≤ `

Next, it selects random vectors hi ∈ Znq for i < ` and lets h` = −
∑
i<` xi · hi. The second part of the

public key consists of the vectors {hi}i.
The secret key is sk = {yi}i≤` and the public key is pk = ({Di}i≤`, {hi}i≤`).

• Enc-L(pk,msg) :

Let pk = {Di}, {hi} and msg = (m1, . . . ,m`). The leader encryption algorithm computes (Zi, TZi) =
TrapGen(1n; mi) for i ≤ `. Next, it chooses matrix C← χn×n, error vector ei ← χn for i ≤ `, and sets
fi = C · hi + ei. Finally, it computes si ← SamplePre(Zi, TZi , σ, fi).

The ciphertext is set to be ct = (s1, . . . , s`).

• KeyGen-F(pp) : The follower setup algorithm takes as input the security parameter 1n. It first chooses
` uniformly random binary vectors of length `TG; that is, it chooses yi ← {0, 1}`TG for i ≤ `. Next, it
computes (Bi, TBi) = TrapGen(1n; yi).

The algorithm outputs secret key sk = {yi}i≤` and public key pk = {Bi}i≤`.
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• Enc-F(pk,msg) : Let msg = (m1, . . . ,m`). The follower encryption algorithm computes (Zi, TZi) =
TrapGen(1n; mi) for i ≤ `. Next, it chooses matrix C ← χn×n, error matrix Ei ← χn×m and sets
Fi = C ·Bi + Ei. Finally, it computes Si ← SamplePre(Zi, TZi , σ,Fi).

The ciphertext is set to be ct = (S1, . . . ,S`).

• Test((pk(1), . . . , pk(k)), (ct(1), . . . , ct(k))) :

Let pk(1) = ({D(1)
i }, {hi}), ct(1) = (s

(1)
1 , . . . , s

(1)
` ) and ct(j) = (S

(j)
1 , . . . ,S

(j)
` ) for 2 ≤ j ≤ k.

The test algorithm computes

sum =
∑
i∈[`]

D
(1)
i · (

∏
2≤j≤k

S
(j)
i ) · s(1)i .

It tests if each component of sum ∈ [−q/8, q/8] and outputs 1 if so to indicate a cycle. Otherwise it
outputs 0.

4.1 Discussion

Before proving the correctness and security properties of our construction we give a brief interlude to highlight
various features including the ability to remove setup and letting the maximum cycle length be a polynomial
function of the security parameter.

Testing for polynomial length cycles : The construction described above works for any (apriori fixed)
polynomial bound k = k(λ) on the length of the cycle. This is achieved by setting the parameters n, q, σ
appropriately. For large k, we require σ/q to be subexponential in n. However, if k is a constant, then
we can have q to be polynomial in n. In particular, we can set n = λ, q = n5k, σ = n and m = 2n log q.
This setting of parameters results in polynomial approximation factors for worst-case lattice problems like
GapSVP.

Removing Setup : For simplicity of presentation, we have a separate setup algorithm which chooses
the LWE parameters. Since this algorithm can be deterministic once k, ε is fixed, we don’t need a setup
algorithm. This can be performed by the key generation algorithm itself.

Handling cycles of length less than k : Our tester algorithm description assumes the length of the
cycle is k. However, note that the same algorithm can be used to handle cycle lengths less than k as well.
Let (pk(1), . . . , pk(t)) be t public keys, and let (ct(1), . . . , ct(t)) be t ciphertexts, where t ≤ k. Further, let us

assume pk(1) = ({D(1)
i }, {hi}) and ct(1) = (s

(1)
1 , . . . , s

(1)
` ) and ct(j) = (S

(j)
1 , . . . ,S

(j)
` ) for 2 ≤ j ≤ t. The test

algorithm simply computes
∑
i∈` D

(1)
i · (

∏
2≤j≤t S

(j)
i ) · s(1)i and checks if each component of the sum is less

than q/8.
We would like to mention that in general, any cycle-tester where the test algorithm works for only specific

cycle lengths can be transformed to one where the test algorithm works for all lengths below a specific length
bound. More formally, suppose for all integers k, there exists a cycle tester Tk where the test algorithm
can distinguish between a k-cycle and k encryptions of 0. Then we can construct a cycle tester T ′k that can
detect cycles of all lengths less than k. This scheme T ′k will simply consist of k separate instantiations of Ti,
one for each cycle length i ≤ k.

Improving efficiency of our scheme : In our scheme, the public keys consist of ` matrices, each
message msg in the message space consists of ` vectors (m1, . . . ,m`) and the ciphertext for msg comprises
of ` different matrices, where the ith one is derived from mi. We require ` = Ω(n log q) since we use an
information-theoretic argument for the final step of our proof. Alternatively, we can reduce ` to O(n) by
choosing the vector x in KeyGen-L from Dσ, and using the LWE assumption instead of the Leftover Hash
Lemma.
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4.2 Proof of Correctness

First, we will show that the Test algorithm distinguishes between a cycle and encryptions of zeros with
overwhelming probability. For this, we need to set up some notations. Let Bd = n · σ. From Lemma 2.1,
it follows that if x ← χn, then ‖x‖∞ ≤ Bd with overwhelming probability. Let pk(1) = ({Di}, {hi}) where

Di = xi ·B(1)
i . Recall, the vectors hi are chosen such that

∑
i xi · hi = 0 and therefore, ‖hi‖∞ ≤ ` · Bd.

Next, the follower public keys are pk(p) = {Bp
i } for 2 ≤ p ≤ k and TBpi denote the trapdoor corresponding

to matrix Bp
i for p ≤ k, i ≤ `.

We will first analyse the case where the ciphertexts are encryptions of a cycle. Let ct(1) = (s1, . . . , s`).

Here, fi = C(1) · hi + ei and si = SamplePre(B
(k)
i , T

B
(k)
i

, σ, fi).

Next, for 2 ≤ p ≤ k, let F
(p)
i = C(p) · B(p)

i + E
(p)
i and S

(p)
i = SamplePre(B

(p−1)
i , T

B
(p−1)
i

, σ, F
(p)
i ). Let

∆i,p∗ = Di · (
∏p∗

p=2 S
(p)
i ) and ∆′i,p∗ = xi · (

∏p∗

p=2 C(p)) ·B(p∗)
i

Claim 4.1. For any i ≤ `, p∗ ∈ [2, k],

‖∆i,p∗ −∆′i,p∗‖∞ ≤ (` ·m · Bd)p
∗−1.

Proof. The proof of this theorem involves a simple induction argument on p∗. First, the base case: p∗ = 2.

In this case, ∆i,p∗ = Di · S(2)
i = xi ·C(2) ·B(2)

i + xi ·E(2)
i . Hence ‖∆i,2 −∆′i,2‖∞ ≤ ` ·m · Bd.

Suppose this holds true for all indices less than p∗. Now, ∆i,p∗ = ∆i,p∗−1 · S(p∗)
i , and let ∆i,p∗−1 =

∆′i,p∗−1 + Erri,p∗−1, where ‖Erri,p∗−1‖∞ ≤ (` ·m · Bd)p
∗−2.

∆i,p∗ = ∆′i,p∗−1 · S
(p∗)
i + Erri,p∗−1 · S(p∗)

i

= ∆′i,p∗ + xi · (
p∗−1∏
p=2

C(p)) ·E(p∗)
i + Erri,p∗−1 · S(p∗)

i

Let Erri,p∗ = xi · (
∏p∗−1
p=2 C(p)) ·E(p∗)

i + Errp∗−1 · S(p∗)
i .

‖Erri,p∗‖∞ ≤ (` · n · Bd)p
∗−2 · (` ·m · Bd) + ‖Errp∗−1‖∞ · (m · Bd)

≤ (` · n · Bd)p
∗−2 · (` ·m · Bd) + (` ·m · Bd)p

∗−2 · (m · Bd)

≤ (` ·m · Bd)p
∗−1

Finally, let us now consider the term ∆k · si. By a similar analysis as above, we can show that ∆k · si =
xi · (

∏k
p=2 C(p)) ·C(1) · hi + Errori where ‖Errori‖∞ ≤ (` ·m · Bd)k. As a result,

‖
∑
i

∆k · si‖∞ = ‖
∑
i

xi · hi‖∞ +
∑
i

‖Errori‖∞ ≤ ` · (` ·m · Bd)k.

Given our choice of parameters, ` · (` ·m · Bd)k < q/8, and as a result, the Test algorithm outputs 1.

On the other hand, if the k cycle consists of encryptions of 0, then for all i ≤ `, Di ·
∏k
p=2 S

(p)
i · si is a

uniformly random vector in Znq , and therefore the test algorithm outputs 1 with negligible probability.

4.3 Proof of INDCPA Security

In this section, we will show that the construction described above is IND-CPA secure as per Definition 3.3.
Recall, the IND-CPA security definition for leader-based encryption schemes requires two separate IND-CPA
proofs for both leader and follower modes.
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4.3.1 INDCPA security for Leader Mode

First, we will prove IND-CPA security for Leader mode. For this, we will define a sequence of hybrid
experiments, and then show that the hybrids are computationally indistinguishable. The first hybrid will
correspond to the IND-CPA security game, while the final hybrid will be one where the adversary has 0
advantage.

Hyb0: This corresponds to the IND-CPA security game.

1. Setup Phase:

(a) The challenger first chooses yi ← {0, 1}`TG for i ≤ ` and computes (Bi, TBi) = TrapGen(1n; yi).
(b) Next, it chooses xi ← {−1, 1} for i < `, sets x` = 1.
(c) It chooses hi ← Znq for i < `, sets h` = −

∑
i<` xi · hi.

(d) Finally, the challenger sends ({xi ·Bi}, {hi}) to the adversary.

2. Challenge Phase

(a) The adversary sends two messages msg0,msg1. The challenger chooses matrix C ← χn×n, error
vector vecei ← χn for i ≤ ` and sets fi = C · hi + ei for i ≤ `.

(b) Next, it chooses b ← {0, 1}. Let msgb = (m1, . . . ,m`). The challenger computes (Zi, TZi) =
TrapGen(1n; mi).

(c) Using TZi , the challenger computes si ← SamplePre(TZi , fi) for all i ≤ `. It sends ct∗ = ({si}).

3. Guess: The adversary sends its guess b′ and wins if b = b′.

Hyb1: In this game, the challenger chooses Bi uniformly at random, and outputs {Bi} as part of public
key, instead of {xi ·Bi}.

1. Setup Phase:

(a) The challenger first chooses Bi ← Zn×mq .

(b) Next, it chooses xi ← {−1, 1} for i < `, sets x` = 1.
(c) It chooses hi ← Znq for i < `, sets h` = −

∑
i<` xi · hi.

(d) Finally, the challenger sends ({Bi}, {hi}) to the adversary.

2. Challenge Phase

(a) The adversary sends two messages msg0,msg1. The challenger chooses matrix C ← χn×n, error
vector vecei ← χn for i ≤ ` and sets fi = C · hi + ei for i ≤ `.

(b) Next, it chooses b ← {0, 1}. Let msgb = (m1, . . . ,m`). The challenger computes (Zi, TZi) =
TrapGen(1n; mi).

(c) Using TZi , the challenger computes si ← SamplePre(Zi, TZi , σ, fi) for all i ≤ `. It sends ct∗ =
({si}).

3. Guess: The adversary sends its guess b′ and wins if b = b′.
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Hyb2: In this game, the challenger chooses h` uniformly at random instead of setting it as −
∑
xihi.

Therefore, from this game onwards, the challenger does not need to choose xi for i < `.

1. Setup Phase:

(a) The challenger first chooses Bi ← Zn×mq .
(b) It chooses hi ← Znq for i ≤ `.
(c) Finally, the challenger sends ({Bi}, {hi}) to the adversary.

2. Challenge Phase

(a) The adversary sends two messages msg0,msg1. The challenger chooses matrix C ← χn×n, error
vector vecei ← χn for i ≤ ` and sets fi = C · hi + ei for i ≤ `.

(b) Next, it chooses b ← {0, 1}. Let msgb = (m1, . . . ,m`). The challenger computes (Zi, TZi) =
TrapGen(1n; mi).

(c) Using TZi , the challenger computes si ← SamplePre(Zi, TZi , σ, fi) for all i ≤ `. It sends ct∗ =
({si}).

3. Guess: The adversary sends its guess b′ and wins if b = b′.

Hyb3: In this game, the challenger modifies the challenge phase. It chooses uniformly random vectors
fi ← Znq .

1. Setup Phase:

(a) The challenger first chooses Bi ← Zn×mq . hi ← Znq for i ≤ ` and sends ({Bi}, {hi}) to the adver-
sary.

2. Challenge Phase

(a) The adversary sends two messages msg0,msg1.
The challenger chooses fi ← Znq for all i ≤ `.

(b) Next, it chooses b ← {0, 1}. Let msgb = (m1, . . . ,m`). The challenger computes (Zi, TZi) =
TrapGen(1n; mi).

(c) Using TZi , the challenger computes si ← SamplePre(Zi, TZi , σ, fi) for all i ≤ `. It sends ct∗ =
({si}).

3. Guess: The adversary sends its guess b′ and wins if b = b′.

Hyb4: In this game, the challenger chooses si from the Discrete Gaussian distribution DZm,σ with param-
eter σ. Note that in this hybrid, the adversary has 0 advantage.

1. Setup Phase:

(a) The challenger chooses vi,j ← Znq , for i ≤ `, j ≤ l and sends pk = ({Bi}, {vi,j) to the adversary.

2. Challenge Phase

(a) The adversary sends two messages msg0,msg1.
The challenger chooses di ← Znq for all i ≤ `.
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(b) Next, the challenger chooses bit b← {0, 1} and si ← Dσ. It sends ct∗ = ({di}, {si}).

3. Guess: The adversary sends its guess b′ and wins if b = b′.

Analysis: We will now show that any PPT adversary has nearly identical advantage in the hybrid exper-
iments described above. Let AdviA denote the advantage of adversary A in experiment Hybi.

Claim 4.2. For any adversary A, Adv0A − Adv1A ≤ negl(n).

Proof. We will show that the statistical distance between the distributions of public keys in Hyb0 and Hyb1
is negligible in the security parameter n. Note that the only difference between the two hybrids is the
distribution of Bi for i ≤ `.

From the well-distributedness property of TrapGen, we know that the following distributions have negli-
gible statistical distance:

{Bi : (Bi, TBi)← TrapGen(1n)} ≈ {Bi : Bi ← Zn×mq }.

Next, note that the following distributions are identical:

{(xi, xi ·Bi) : xi ← {−1, 1},Bi ← Zn×mq } ≡ {(xi,Bi) : xi ← {−1, 1},Bi ← Zn×mq }

Therefore, we can conclude that{
(xi, xi ·Bi) :

xi ← {−1, 1},
(Bi, TBi)← TrapGen(1n)

}
≈
{

(xi,Bi) :
xi ← {−1, 1},
Bi ← Zn×mq

}
.

As a result, the public key distributions in Hyb0 and Hyb1 are statistically indistinguishable.

Claim 4.3. For any adversary A, Adv1A − Adv2A ≤ negl(n).

Proof. The only difference between hybrid experiments Hyb1 and Hyb2 is in the choice of h`. In Hyb1,
h` = −

∑
i xihi, while in Hyb2, it is chosen uniformly at random. Here, we will use the Leftover Hash

Lemma (Theorem 2.1). Since ` > (n+ 1) log2 q + ω(log n), it follows that

{(A = [h1| . . . |h`−1],h` = −A · r) : hi ← Znq for all i ≤ `− 1, r← Z`−1q }
≈

{(A = [h1| . . . |h`−1],h`) : hi ← Znq for all i ≤ `}

Claim 4.4. Assuming (n, `, q, χ)-LWE-ss (Assumption 2), for any PPT adversary A, Adv2A−Adv
3
A ≤ negl(n).

Proof. The only difference in Hyb2 and Hyb3 is the manner in which fi are computed. In Hyb2, the challenger
chooses C ← χn×n, ei ← χn and sets fi = C · hi + ei for all i ≤ `. In Hyb3, fi are chosen uniformly at
random from Znq .

Suppose there exists an adversary A such that Adv2A − Adv3A is non-negligible in n. Then there exists
a reduction algorithm B that can use A to break Assumption 2 with non-negligible advantage. First, B
receives as LWE challenge two n × ` matrices (H,F). It chooses ` matrices Bi ← Zn×mq , sets hi as the ith

column of H and sends {Bi,hi} as the public key.
On receiving the challenge messages msg0,msg1, B uses F to compute the challenge ciphertext. It first

chooses b← {0, 1}, computes (Zi, TZi) using msgb and sets fi to be the ith column of F. Next, it computes
si ← SamplePre(Zi, TZi , σ, fi) and sends the vectors {si} as the ciphertext. Finally, the adversary sends the
guess b′. If b = b′, B guesses that F is an LWE matrix, else it guesses that F is uniformly random.

Clearly, if F = C ·H + E for some C← χn×n, E← χn×`, then B simulates Hyb2, and if F is uniformly
random, then this corresponsds to Hyb3. This concludes our proof.
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Claim 4.5. Assuming the well-distributedness property of (TrapGen,SamplePre) 2.2, for any adversary A,
Adv3A − Adv4A ≤ negl(n).

Proof. This follows directly from the well-distributedness property of (TrapGen, SamplePre) algorithms, be-
cause the vectors {fi}i are chosen uniformly at random from Znq . Therefore, the well-distributedness property
states that for all random coins y, {si : (M, TM)← TrapGen(1n; y), si ← SamplePre(M, TM, σ, fi)} ≈s DZm,σ.

Using the above claims, we can show that Adv0A−Adv5A ≤ negl(n), and therefore, the scheme is IND-CPA
secure for Leader setup.

4.4 INDCPA Security for Follower Mode

This case is similar to the Leader mode, therefore we will only describe the intermediate hybrids, and refer
to the corresponding proofs from the section above.

Hyb0: This corresponds to the IND-CPA security game.

1. Setup Phase:

(a) The challenger first chooses yi ← {0, 1}`TG for i ≤ `. Next, it computes (Bi, TBi) = TrapGen(1n; yi).
The challenger sends {Bi}i to the adversary.

2. Challenge Phase

(a) The adversary sends two messages msg0,msg1. The challenger first chooses C ← χn×n, Ei ←
χn×m and sets Fi = C ·Bi + Ei.

(b) Next, it chooses b ← {0, 1}. Let msgb = (m1, . . . ,m`). The challenger computes (Zi, TZi) =
TrapGen(1n; mi).

(c) Using TZi , the challenger computes Si ← SamplePre(Zi, TZi , σ,Fi) for all i ≤ `. It sends ct∗ =
{Si}i as the challenge ciphertext.

3. Guess: The adversary sends its guess b′ and wins if b = b′.

Hyb1: In this hybrid, the challenger uses truly random matrices Bi.

1. Setup Phase:

(a) The challenger chooses Bi ← Zn×mq for i ≤ ` and sends {Bi}i to the adversary.

2. Challenge Phase

(a) The adversary sends two messages msg0,msg1. The challenger first chooses C ← χn×n, Ei ←
χn×m and sets Fi = C ·Bi + Ei.

(b) Next, it chooses b ← {0, 1}. Let msgb = (m1, . . . ,m`). The challenger computes (Zi, TZi) =
TrapGen(1n; mi).

(c) Using TZi , the challenger computes Si ← SamplePre(Zi, TZi , σ,Fi) for all i ≤ `. It sends ct∗ =
{Si}i as the challenge ciphertext.

3. Guess: The adversary sends its guess b′ and wins if b = b′.
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Hyb2: In this hybrid, the challenger uses truly random matrices Fi to compute the ciphertext.

1. Setup Phase:

(a) The challenger chooses Bi ← Zn×mq for i ≤ ` and sends {Bi}i to the adversary.

2. Challenge Phase

(a) The adversary sends two messages msg0,msg1. The challenger first chooses Fi ← Zn×mq for all

i ≤ `.
(b) Next, it chooses b ← {0, 1}. Let msgb = (m1, . . . ,m`). The challenger computes (Zi, TZi) =

TrapGen(1n; mi).
(c) Using TZi , the challenger computes Si ← SamplePre(Zi, TZi , σ,Fi) for all i ≤ `. It sends ct∗ =
{Si}i as the challenge ciphertext.

3. Guess: The adversary sends its guess b′ and wins if b = b′.

Hyb3: In this hybrid, the challenger chooses the matrices Si with entries from the discrete Gaussian
distribution DmZm,σ. Therefore, in this game, any adversary has 0 advantage.

1. Setup Phase:

(a) The challenger chooses Bi ← Zn×mq for i ≤ ` and sends {Bi}i to the adversary.

2. Challenge Phase

(a) The adversary sends two messages msg0,msg1. The challenger first chooses Fi ← Zn×mq for all
i ≤ `.

(b) Next, it chooses Si ← DmZm,σ for all i ≤ `. It sends ct∗ = {Si}i.

3. Guess: The adversary sends its guess b′ and wins if b = b′.

Analysis: As mentioned above, the proofs for this section will be very similar to the ones in Section 4.3.1.

Claim 4.6. For any PPT adversary A, Adv0A − Adv1A ≤ negl(n).

The proof of this claim is identical to the proof of Claim 4.2.

Claim 4.7. Assuming (n,m · `, q, χ)-LWE-ss (Assumption 2), for any PPT adversary A, Adv1A − Adv2A ≤
negl(n).

The proof of this claim is similar to the proof of Claim 4.4.

Claim 4.8. Assuming the well-distributedness property of (SamplePre,TrapGen) algorithms (Definition 2.2),
for any PPT adversary A, Adv3A − Adv4A ≤ negl(n).

This proof is identical to the proof of Claim 4.5.
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