
Impossible-Differential and Boomerang

Cryptanalysis of Round-Reduced Kiasu-BC

Christoph Dobraunig1⋆, Eik List2

1 Graz University of Technology, Austria
christoph.dobraunig@iaik.tugraz.at

2 Bauhaus-Universität Weimar, Germany
eik.list@uni-weimar.de

Abstract. Kiasu-BC is a tweakable block cipher proposed by Jean et
al. at ASIACRYPT 2014 alongside their TWEAKEY framework. The
cipher is almost identical to the AES-128 except for the tweak, which
renders it an attractive primitive for various modes of operation and
applications requiring tweakable block ciphers. Therefore, studying how
the additional tweak input affects security compared to that of the AES
is highly valuable to gain trust in future instantiations.
This work proposes impossible-differential and boomerang attacks on
eight rounds of Kiasu-BC in the single-key model, using the core idea
that the tweak input allows to construct local collisions. While our results
do not threat the security of the full-round version, they help concretize
the security of Kiasu-BC in the single-key model.

Keywords: Symmetric-key cryptography · cryptanalysis · tweakable block ci-
pher

1 Introduction

TWEAKEY. At ASIACRYPT 2014, Jean et al. [18] proposed the TWEAKEY
framework together with three software-efficient tweakable block ciphers based
on the AES round function Deoxys-BC, Joltik-BC, and Kiasu-BC. Such
tweakable block ciphers process, in addition to key and plaintext, an additional
public input, called the tweak. While the first construction that followed this
concept was the AES candidate by Schroeppel and Orman [33], the formal foun-
dations have been laid by Liskov, Rivest, and Wagner [24]. Nowadays, tweak-
able block ciphers possess various applications in cryptographic schemes, such
as compression functions (e. g. [16]), variable-input-length ciphers (e.g. [27]),
message-authentication codes (e.g. [29]), or (authenticated) encryption schemes
(e.g., [23,31]).

⋆ This work has been supported in part by the Austrian Science Fund (project P26494-
N15).

Table 1: Existing attacks on Kiasu-BC and comparison with attacks proposed in
this work. ACC = chosen plaintexts and adaptive chosen ciphertexts; CP = #chosen
plaintexts; (A)CC = #(adaptive) chosen ciphertexts; E = #Encryption equivalents;
MA = #Memory accesses.

Computations

Rds. Attack Type E MA Data (CP) Memory Ref.

7 Integral 282 240 241 [15]

7 Integral 248.5 243.6 241.7 [15]

8 MitM 2116 2116 286 [34]

8 Imposs. Diff. 2118 2125.2 2117.6 2101.6 [1]

7 Rectangle 279 280 279 278 App. A

7 Boomerang 265 266.6 265 ACC 260 App. B

8 Imposs. Diff. 2116.1 2120.2 2118 2102 Sec. 3

8 Boomerang 2103.1 2103 2103 ACC 260 Sec. 5

10 Bicliques 2125.34 288 CC 262 Sec. 6

Kiasu-BC. While Deoxys-BC and Joltik-BC use a new linear tweak and
key schedule, and in the case of Joltik-BC a round function different from
AES [30] working on 64-bit blocks, the design of Kiasu-BC strictly follows
AES-128. Kiasu-BC uses exactly the key schedule, round function, and number
of rounds of the AES-128. The only difference is an additional 64-bit tweak that
is XORed to the topmost two rows of the state after every round. So, Kiasu-BC

is identical to the AES-128 if the tweak is set to all-zeroes. Therefore, Kiasu-

BC may appear attractive as primitive for instantiating ciphers, AE schemes, or
MACs based on tweakable block ciphers, for it can reuse existing components
of AES implementations. In addition, all the existing and newly done analysis
for AES-128 is directly applicable to Kiasu-BC. However, the additional tweak
input enhances the freedom in attacks. Thus, a comprehensive cryptanalysis of
Kiasu-BC is necessary to determine possible negative effects.
The designers’ analysis in [17] concentrates on differential and meet-in-the-middle
attacks. They stress that the size of the tweak and the position where it is XORed
to the state has been the result of a careful security analysis and “the current
choice in Kiasu-BC assures that no such high probability characteristics ex-
ist on more than 6 rounds and no boomerang characteristics on more than 7
rounds” [19]. Concluding from an automated search, the designers argue that
the minimum number of active S-boxes for seven-round Kiasu-BC is 22, cor-
responding to an upper bound of the probability of differential characteristics
of (2−6)22 = 2−132. Since the bound is not tight, they conclude in [17, Sec. 4.1]
that “in the framework of related-key related-tweak differential attacks [Kiasu-

BC] has only at most one round security loss compared to AES”.

2

Regarding Meet-in-the-Middle attacks, the designers [17, Sec. 4.2] conclude that
“the same [MitM] attacks existing for AES-128 appl[y] to Kiasu-BC”. Concern-
ing further attacks in the single-key model, [17, Sec. 4.3] states that “the security
level of Kiasu-BC against the remaining types of attacks stays the same”. Re-
cently, integral attacks showed that the latter claim does at least not hold in
general [15]. The additional degrees of freedom from the choice of the tweak
leads to improved attacks on Kiasu-BC compared to the AES-128.

Contribution. This work complements the analysis by [15] with differential-
based attacks on Kiasu-BC on eight rounds of Kiasu-BC. Our attacks share
the observation that a chosen non-zero tweak difference allows to cancel a dif-
ference in the state at the beginning of some round. We propose impossible-
differential, and boomerang analysis of Kiasu-BC with lower time complexities
and/or higher number of covered rounds than comparable attacks on the AES-
128. Our detailed results are summarized in Table 1 and compared with existing
results on Kiasu-BC. We would like to mention that while this work was under
review, independent work of Abdelkhalek, Tolba, and Youssef [1] lead to an sub-
mission of an impossible-differential attack on Kiasu-BC similar to ours (based
on different trails) to a journal and also independently meet-int-the-middle at-
tacks on Kiasu-BC [34] have been published.

Outline. In the following, Section 2 briefly recalls the basics of Kiasu-BC.
Section 3 presents our impossible-differential attack. Section 4 continues with a
brief introduction of boomerang and rectangle attacks, which is followed by the
description of a boomerang attack on eight rounds in Section 5. We give a de-
scription of a biclique-based accelearated exhaustive search in Section 6. For the
interested reader, we provide three further boomerang attacks in Appendices A
and B. Section 7 concludes this work.

2 Brief Overview of Kiasu-BC

Kiasu-BC [18] is a tweakable block cipher that adopts the state size (128 bits),
key size (128 bits), round function – consisting of SubBytes (SB), ShiftRows

(SR), MixColumns (MC), and AddKey (AK) – as well as number of rounds
(10), and key schedule from the AES-128. We assume the reader is familiar with
the structure of the AES; otherwise, we refer to e. g. [13,30] for details.
Kiasu-BC adds to the AES-128 only an additional public 64-bit tweak T =
(T [0] ‖T [1] ‖ . . . ‖T [7]). During the en-/decryption, the same tweak is XORed
to the topmost two state rows at every occurrence of AddKey in every round,
as illustrated in Figure 1. In the following, we denote by

– Si the state after Round i, for 0 ≤ i ≤ 10.
– Ki the round key of Round i, for 0 ≤ i ≤ 10.
– Si[j] the j-th byte of the state Si, for 0 ≤ j ≤ 15, indexed column-wise as

usual for the AES, and as illustrated in State Si−1 in Figure 1.
– Ki[j] the j-th byte of the round key Ki, for 0 ≤ j ≤ 15.

3

0
1

2
3

4
5

6
7

TKi

Si−1 Si
SB

Si
SR

Si
MC

Si
AK

Si

0
1
2
3

4
5
6
7

8
9
10
11

12
13
14
15

SB SR MC

Fig. 1: Round Function of Kiasu-BC.

– T [j] the j-th byte of the tweak T , for 0 ≤ j ≤ 7. Note that these bytes are
enumerated differently than states and keys, as illustrated in Figure 1.

– Si
SB

, Si
SR

, Si
MC

, and Si
AK

the intermediate states in Round i directly after
SubBytes, ShiftRows, MixColumns, and AddKey, respectively.

For brevity, we also use the notions SB = SB
−1, SR = SR

−1, and MC = MC
−1.

Note that the order of some operations can be swapped without affecting the
result to simplify the description of attacks. For instance, the order of the Mix-

Columns and AddKey operations with a round key Ki can be swapped if
the key addition with the equivalent round key K̂i = MC

−1(Ki) is performed
instead. This means, for all x,Ki ∈ {0, 1}128, it holds that Ki ⊕ MC(x) =

MC(K̂i ⊕ x). The same argument holds for decryption.

3 Impossible-Differential Attack on 8-Round Kiasu-BC

This section describes an impossible-differential attack on 8-round Kiasu-BC.
For this attack, we modify existing differential trails for the AES-128 by in-
troducing differences in the tweak, so that they can be used in attacks. Those
introduced differences allow us to extend the key-recovery phase. First, we briefly
recall the concept of such attacks and explain how we can reuse existing differen-
tial trails for the AES-128. Then, we provide the impossible differential, followed
by a detailed description of the attack.

3.1 Impossible-Differential Attacks

In this section, we briefly recall the main concept of impossible-differential at-
tacks. Assume,E is a given cryptographic transform; in the following, we consider
E to be a tweakable block cipher or a reduced version thereof: E : Fk

2×F
t
2×F

n
2 →

F
n
2 , for k, t, n ≥ 1. The adversary partitions E into parts E = E3 ◦ E2 ◦ E1, as

illustrated in Figure 2. Then, she searches for a differential ∆X 6→ ∆Y which
has probability 0 over E2. The differential trail is extended in forwards and
backwards direction over the parts E1 and E3, respectively. Next, the adversary
chooses pairs of plaintexts with a desired input difference ∆in and requests their
corresponding ciphertexts. For each plaintext-ciphertext pair (P i, Ci) with a de-
sired ciphertext difference ∆out, the adversary partially encrypts it over E1, and

4

Kin Kout

∆in ∆out

∆X ∆Y

Contradiction

E1 E2 E3

Fig. 2: Schematic illustration of an impossible-differential attack.

partially decrypts it over E−13 to reconstruct the differences ∆i
X , ∆i

Y at the be-
ginning and at the end of the trail. The key material that is required for partial
encryption over E1 and decryption over E3 is guessed. If the differences ∆i

X and
∆i

Y conform to the start and end differences of the impossible differential trail
∆X and ∆Y for any of the available pairs, the current key guess must be invalid
and can be discarded. Clearly, the involved differences can also be truncated.
Moreover, early-abort techniques can speed up the search; e.g., if guessing a few
key bits in E1 allows to conclude that ∆X cannot be fulfilled for a certain pair,
it need not be considered further for the current key guess.

3.2 Impossible Differentials on Kiasu-BC

Influence of the Tweak. The tweak input provides the adversary with addi-
tional freedom that can be used for instance to extend the number of covered
rounds. In Kiasu-BC, the tweak can be used to cancel a difference in the trail,
which allows to pass one round for free. Moreover, since the tweak is not mod-
ified by a tweak-schedule over the rounds, the subsequent tweak addition will
produce exactly the same difference that occurred before the free round.

A Concrete Impossible Differential. There exist various impossible differ-
entials – e.g. [4,25,26] on round-reduced AES – which can serve as base of our
analysis of Kiasu-BC. Though, we have to ensure that the influence of the tweak
difference preserves the impossibility of the differential in the middle. Figure 3
shows an impossible differential over 3.5 rounds based on the trail used in [4]. In
addition, we use a tweak difference ∆T with a single active byte T [0]. In forward
direction, the single active byte in the state Si from the beginning of the trail
always activates at least three bytes in the first column of Si+1 – depending on
whether the tweak difference cancels the difference in Si+1[0] or not. In both

cases, the three rightmost columns which correspond to
−→
S i+2[4, . . . , 15] are al-

ways active. In backward direction, the fact that only three bytes are active in
Si+3 and the diffusion in the third inverse round will ensure a zero difference
in
←−
S i+2[1, 6, 11, 12], which contradicts with

−→
S i+2[4, . . . , 15], independent from

whether the tweak difference cancels out the diagonal
←−
S i+2[0, 5, 10, 15] or not.

5

SB

SB

SR

SR MC

SB

SB

SR

SR

MC

MC

Ki+1

Ki+2

Ki+3

T

T

T

Si Si+1

−→
S i+2

←−
S i+2 Si+3

Si+4

SR

Contradiction

Zero difference

Non-zero difference

Unknown

Fig. 3: Impossible differential for 3.5 rounds of Kiasu-BC.

3.3 Attack Procedure

We can extend our impossible differential by two rounds at the beginning and
the end each to a key-recovery attack over Rounds 3 through 10 of Kiasu-BC,
using the fact that the final round omits MixColumns. Figure 4 shows our
differential trail. The following describes the individual steps.

Precomputation. Initially, we precompute a hash table Hprecomp which maps

pairs (S1
AK

, S′
1
AK) ← (S1

MC
, S′

1
MC). For all possible pairs S1

MC
[0, 1, 2, 3] and

S′
1
MC[0, 1, 2, 3] which differ only in Byte 0, compute

S1
AK[0, 5, 10, 15] = SB

−1(SR−1(MC
−1(S1

MC[0, 1, 2, 3])))

and S′
1
AK[0, 5, 10, 15] accordingly. Define ∆S1

AK
[0, 5, 10, 15] = S1

AK
[0, 5, 10, 15]⊕

S′
1
AK[0, 5, 10, 15]. Compute ∆S1

MC
[0] = S1

MC
[0] ⊕ S′

1
MC[0] and store the pairs as

tuples (S1
AK

[0, 5, 10, 15], S′
1
AK[0, 5, 10, 15]) in a hash table Hprecomp indexed by

(∆S1
AK
‖∆S1

MC
[0]). Since there are 224 values for S1

MC
[1, 2, 3] and 28·(28−1) ≈ 216

pairs for S1
MC

[0], there exist about 240 possible pairs. So,Hprecomp has 2
40 buckets

and one element in each on average.

Structures. We will consider sets and structures of plaintexts. A set S consists
of 232 plaintexts Pi which all share equal values in bytes Pi[1, 2, 3, 4, 6, 7, 8, 9, 11,
12, 13, 14], and are pair-wise distinct in the bytes Pi[0, 5, 10, 15]. Assigned to each
set is a concrete tweak T . A structure L consists of 28 sets, where each set in L
differs only in the tweak byte T [0]. We can build pairs of plaintext-tweak inputs
(Pi, Ti) and (Pj , Tj) only inside the same structure. Though, since we want that

6

SB

SB

SR

SR

MC

MC

SB

SB

SR

SR

MC

MC

K0 K1

K2

K̂6

K̂7

K8

T T

T

T

T

T

S0 S1
AK

S1S1
MC

S2

S6
SR

S6
MC

S6
AK

S6

S7
MC

S7
AK

S7

S8
SB

S8
AK

S8

Impossible Differential

Fig. 4: 8-round impossible-differential attack trail.

pairs differ in their tweaks, we have to build pairs across different sets in a
structure. Moreover, their bytes 0, 5, 10, and 15 after the initial tweak addition
must differ, i.e. (Pi[0] ⊕ Ti[0]) 6= (Pj [0] ⊕ Tj [0]). Given two distinct sets S and
S ′, we obtain 232 · (28 − 1)4 ≈ 263.98 ≈ 264 pairs. Since there are 28 sets in a

structure, we can build in total
(
28

2

)
· 263.98 ≈ 278.97 ≈ 279 pairs per structure.

Step 1) Choose 2n structures, which yields about 2n+79 possible pairs. For each
structure, do the following steps:

1. Ask for the corresponding ciphertexts Ci ← ETi

K (Pi) of the structure.
2. Invert the final tweak XOR and insert all states S8

AK
into a hash table L,

indexed by bytes S8
AK

[1, 2, 4, 5, 8, 11, 14, 15].
3. For each bucket in the hash table that contains more than one entry, consider

every combination of pairs therein. We can expect 2n+79 ·2−8·8 = 2n+15 such
pairs that are equal in bytes S8

AK
[1, 2, 4, 5, 8, 11, 14, 15].

Step 2) The straight-forward approach would be to guess 32 bits of K8[3, 6, 9,
12] and partially decrypt these bytes for the remaining pairs to obtain S7

MC
[12,

13, 14, 15]. Though, we can use an improvement by Lu et al. [25] to speed up the
search. The improvement is based on the following observation: given a random

7

pair of differences ∆X,∆Y ∈ F8
2 over the AES S-box, there is on average one

pair of X,X ′ ∈ F8
2 with X ⊕X ′ = ∆X such that S(X)⊕ S(X ′) = ∆Y .3

For any pair (S8
AK

[3, 6, 9, 12], S′
8
AK[3, 6, 9, 12]), their difference ∆S8

SB
[12, 13, 14,

15] is known. Hence, the knowledge of ∆S7
AK

[12, 13, 14, 15] can be used to de-
rive the values of S8

SB
[12, 13, 14, 15] and S′8

SB
[12, 13, 14, 15] and thus to derive

K8[3, 6, 9, 12]. There exist only 28 − 1 possible values of ∆S7
AK

[12, 13, 14, 15]
with exactly one active Byte 13. So, one can perform this step as follows:

1. Initialize 232 empty lists, one for each guess of K8[3, 6, 9, 12].

2. For each pair (S8
AK

[3, 6, 9, 12], S′
8
AK[3, 6, 9, 12]), and for each of the 255 pos-

sible differences ∆S7
AK

[12, 13, 14, 15] = (0, ∗, 0, 0), derive K8[3, 6, 9, 12] that
leads this pair to ∆S7

AK
[12, 13, 14, 15] and add this pair to the list corre-

sponding to that key guess.

For each pair and difference guess, we expect one key suggested on average due
to the S-box property observed above. These 2n+15 ·255 ≈ 2n+23 suggestions are
distributed over the 232 possible keys. So, we expect about 2n−9 pairs for each
guess of K8[3, 6, 9, 12].

Step 3) In this step, one could guess 32 bits of K8[0, 7, 10, 13] and partially
decrypt these bytes for the remaining pairs to obtain S7

AK
[0, 1, 2, 3]. Though,

this step can be improved in a similar fashion as Step 2):

1. Initialize 232 empty lists, one for each guess of K8[0, 7, 10, 13].

2. For each pair (S8
AK

[0, 7, 10, 13], S′
8
AK[0, 7, 10, 13]) and for each of the 255 pos-

sible differences ∆S7
AK

[0, 1, 2, 3] = (∗, 0, 0, 0), derive the key K8[0, 7, 10, 13]
that leads this pair to ∆S7

AK
[0, 1, 2, 3] and add this pair to the list corre-

sponding to that key guess.

Again, we expect one key suggested on average for each pair and each difference
guess. These 2n−9 · 255 ≈ 2n−1 suggestions are distributed over the 232 possible
keys. So, we expect about 2n−33 pairs for each guess of K8[0, 7, 10, 13].

Step 4) The goal of the adversary in this step is to check for all remain-
ing pairs and for the current guess of K8[0, 3, 6, 7, 9, 10, 12, 13] if the difference
∆S6

AK
[0, 1, 2, 3] is zero in exactly one byte, and if the zero byte is Byte 1, 2, or

3. Note that we do not want a zero difference in S6
AK

[0] since it could render
the impossible differential possible. The straight-forward approach would be to
guess the bytes K̂7[0, 13] and decrypt the states S7[0, 13] of all remaining pairs
to obtain S6[0, 1]. Again, we use the improvement by Lu et al. [25] instead.
There are 3 · 2553 possible differences ∆S6

AK
[0, 1, 2, 3] with exactly three active

bytes such that the zero-difference byte is not Byte 0. Among those, 3 · 255 dif-
ferences map to a difference ∆S6

MC
[0, 1, 2, 3] where only Bytes 0 and 1 are active.

So, the adversary has to check for each pair and each guess of K̂7[0, 13] whether

3 More precisely, 129 out of 256 trails ∆X → ∆Y are impossible, about half (126)
propose two solutions, and 1 trail proposes four solutions.

8

∆S6
MC

[0, 1, 2, 3] belongs to these 3 · 255 differences. Again, given the input/out-
put differences of the SubBytes operation, i.e., ∆S6

MC
[0, 1] and ∆S7

AK
[0, 13],

one can efficiently determine the values S6
MC

[0, 1] and S′6
MC

[0, 1] and therefore

determine the value of K̂7[0, 13].

The 2n−33 pairs and the 3 · 255 differences yield 3 · 2n−25 candidates K̂7[0, 13]
distributed over the 216 possible values. Thus, we expect for a given guess of
K̂7[0, 13] about 3 ·2n−25/216 = 3 ·2n−41 pairs which yield the input difference to

the impossible differential for each guess of the considered bytes in K8 and K̂7.

Step 5) This step eliminates wrong values of K0[0, 5, 10, 15] using the precom-
puted hash table Hprecomp. For this purpose, initialize a list K for the 232 values
of K0[0, 5, 10, 15]. For each of the remaining 3 · 2n−41 pairs (Pi, Pj):

1. Compute ∆i,j [0, 5, 10, 15] = (Pi[0, 5, 10, 15]⊕ Ti)⊕ (Pj [0, 5, 10, 15]⊕ Tj) and
∆Ti,j [0] = Ti[0]⊕ Tj[0].

2. Access the bucket indexed by ∆i,j [0, 5, 10, 15] ‖∆Ti,j[0] in Hprecomp. For

each tuple (S1
AK

[0, 5, 10, 15], S′
1
AK[0, 5, 10, 15], ∆S1

MC
[0]) in that bucket, re-

move from K the key entry K0[0, 5, 10, 15] = Pi[0, 5, 10, 15]⊕ (Ti[0, 1], 0, 0)⊕
S1
AK

[0, 5, 10, 15].

Finally, if K is not empty, output the remaining value(s) in K along with the

current key guess of K̂7[0, 13] and K8[0, 3, 6, 7, 9, 10, 12, 13].

Wrong-Key Elimination. We can determine the data complexityD such that
the following inequality is fulfilled:

(
1− 2−(cin+cout)

)D

<
1

2|kin∪kout|
,

where cin and cout denote the number of bit conditions to be fulfilled at the
top (in) and bottom (out) parts of the cipher that wrap the impossible dif-
ferential. kin ∪ kout denote the number of combined top and bottom key bits
that are guessed. Consider that the probability to filter wrong key is 2−32 for
K0[0, 5, 10, 15], 2−48 forK8[0, 3, 6, 7, 9, 10, 12, 13], and 3·2−8 forK7[0, 13]. Hence,
we have cin+cout = log2(2

−32−48 ·3 ·2−8) ≈ 86 bit conditions. So, the probability
that a wrong key passes is about (1 − 2−86) per tested pair. The guessed key
material sums up to kin ∪ kout = 32 + 64 + 16 = 112 bits. So, we need

(
1− 2−86

)D
≤ 2−112

which is true for D ≥ 293 pairs. Since we can expect about 2n+15 pairs from 2n

structures, this method yields also that 278 structures, i.e., 2118 chosen plaintexts,
are required for the attack.

Complexity Analysis. The time complexity is composed of the following steps:

0. The precomputation requires≈ 2·240·4/16 = 236 single-round decryptions,
which is equivalent to 236/8 = 233 eight-round decryptions.

9

1. Step 1 requires 2n+40 encryptions.
2. Step 2 can be implemented by a look-up table, as suggested by Lu et al.

[25]. By storing the results efficiently, one can fetch a key in one access even
if several keys are suggested. Lu et al. state that most queries fail, whereas
about 1/16 (on average) of the queries return 16 options of 32-bit keys each,
and a smaller fraction can return more options. In total, this step requires
255 · 2n+15 ≈ 2n+23 memory accesses (MA).

3. Step 3 requires 255 · 255 · 2n+15 ≈ 2n+31 memory accesses, since for all 255
differences for the first 32-bit guesses of K8[3, 6, 9, 12], we consider another
255 differences for the second 32 guessed bits K8[0, 7, 10, 13].

4. Step 4 requires 2n−33 ·3·255 ≈ 3·2n−25 memory accesses in a lookup table to
determine from the differences ∆S6

MC
[0, 1, 2, 3] the guess for K̂7[0, 13]. Since

we have to perform this step for each of the 264 guesses of K8[0, 3, 6, 7, 9, 10,
12, 13], this step requires in total 264 · 2n−33 · 3 · 255 ≈ 3 · 2n+39 MA.

5. Step 5 analyzes 3 ·2n−41 remaining pairs, leading in average to one memory
access to Hprecomp plus one memory access to K. This step is repeated 280

times (for each guess of K8[0, 3, 6, 7, 9, 10, 12, 13] and K̂7[0, 13]). So, the time
complexity of this step is 3 · 2n−41 · 2 · 280 = 3 · 2n+40 memory accesses.

6. In an exhaustive step, we can identify the remaining key bytes. This step
requires negligible time regarding the total computational complexity.

So, for n = 78, the overall time complexity of the attack results from

T ≈ (2n+40 + 233) Enc + (2n+23 + 2n+31 + 3 · 2n+39 + 3 · 2n+40) MA

≈ 2118 Enc + 2120.2 MA.

The precomputation table requires 2 · 240 · (4 + 4 + 1) < 245 bytes to store
the values S1

AK
[0, 5, 10, 15], S′1

AK
[0, 5, 10, 15], and the difference ∆S1

MC
[0] for each

entry. The simple approach would further use 28·(4+2+8) = 2112 bytes of memory
for storing the deleted values of the four bytes of K0, the two bytes of K̂7, and
the eight bytes of K8. Instead, Lu et al. [25] proposed to perform the attack
separately for each key guess, and to immediately append an exhaustive search
for the remaining bytes of each guess that is not discarded. So, we have to store
instead the about 2n+23 = 2101 suggestions which remain after Step 2, which
consist of two plaintexts and two ciphertexts of 16 bytes each. So, the memory
complexity of the attack requires 245 + 2106 ≈ 2106 bytes of memory, which is
equivalent to 2102 states.
Several optimizations seem possible to further reduce the attack complexities.
For instance, Boura et al. [11] propose to use multiple impossible differentials in
order to reduce the data complexity. There are

(
4
2

)
= 6 options which two bytes

can be chosen to be active in the difference ∆S6[0, 1, 2, 3]. Each option requires

to consider a different set of guessed bytes in K̂7 and K8, and a different set
of output differences. Moreover, the attack could be executed also with shifted
versions of the state differential and tweak difference, or several times in parallel.
We omit their description for simplicity.

10

P

P ′

Q

Q′

αα

ββ

γ

γ

δ

δ

E1

E1

E1

E1

E2 E2

E2E2

U

U ′

V

V ′

C

C′

D

D′

p̂

q̂

SBSB

α

β γ

δ

. . .

. . .

Fig. 5: Left: Schematic illustration of a rectangle quartet. Right: Example trails in
a ladder switch. Highlighted cells represent active bytes. Hatched bytes are not traced
through the SubBytes operation at the transition between upper and lower trail.

4 Boomerang and Rectangle Attacks

This section briefly recalls the concepts of boomerang and rectangle attacks.

The Boomerang Attack. Boomerang attacks [35] allow to analyze a given
cryptographic transform that lacks long differentials with sufficient probability,
but for which short differentials with high probabilities exist. Say, E : {0, 1}k×
{0, 1}n→ {0, 1}n is a cipher that can be decomposed into parts E = E2◦E1 such
that there exist a differential α→ β with probability p over E1 and a differential
γ → δ with probability q over E2. These differentials are usually called upper
and lower trail, respectively. A boomerang distinguisher follows the procedure:

1. Choose a plaintext pair (P, P ′), with P ′ = P ⊕α, and ask for its correspond-
ing ciphertext (C,C′) through E.

2. Compute D = C ⊕ δ and D′ = C′ ⊕ δ to obtain the ciphertext pair (D,D′),
and ask for its corresponding plaintext (Q,Q′). This is also called a δ-shift.

3. If it holds that Q⊕Q′ = α, then (P, P ′, Q,Q′) forms a correct quartet.

Proposition 1. For a correct quartet (P, P ′, Q,Q′), with P ′ = P ⊕ α, Q′ =
Q⊕ α, U ′ = U ⊕ β, V ′ = V ⊕ β, and V = U ⊕ γ, it follows that V ′ = V ⊕ β =
(U ⊕ γ)⊕ β = (U ⊕ β)⊕ γ = U ′ ⊕ γ.

Correct quartets are found with probability (pq)2 since the trails must hold for
both pairs. The probability can be increased by considering all possible internal

11

trails α → β′ and γ′ → δ as long as both pairs in the quartet have differences
β′ and γ′ in the middle and it holds that β 6= γ. So, the probability of a correct
quartet increases to (p̂q̂)2 with

p̂ =

√∑

β′

Pr2 [α→ β′] and q̂ =

√∑

γ′

Pr2 [γ′ → δ].

It must hold that p̂q̂ ≫ 2−n/2 for the attack to work. So, for N plaintext pairs,
one expects about N ·(p̂q̂)2 correct quartets in an attack, but only N ·2−n correct
quartets for an ideal primitive.

The Rectangle Attack. In boomerang attacks, the adversary needs to query
its oracles with chosen plaintexts and adaptively with chosen ciphertexts. The
rectangle attack [5] developed from the amplified boomerang [20], both of which
transform the boomerang into a pure chosen-plaintext attack. The main idea
is to encrypt many pairs (P, P ′) with difference P ′ ⊕ P = α in the hope that
some of those will form a quartet with the desired differences in the middle.
Given N plaintext pairs, the number of correct quartets is reduced to N2 · 2−n ·
(p̂q̂)2 by a birthday argument. The left part of Figure 5 illustrates a quartet
schematically. Biham et al. presented further improvements to the technique in
[6]. The disadvantages of rectangle compared to boomerang attacks are the large
data complexity and the large number of potential quartets.

Ladder Switch. The ladder switch [7] exploits that the transition between
upper and lower trail can be positioned not only between arbitrary operations
inside rounds, but also at different steps for different parts of the state, when
the parts are processed independently. The right part of Figure 5 illustrates an
example for the SubBytes operation of the AES/Kiasu-BC. Since SubBytes

processes each byte independently of the others, we can choose to trace only
bytes which are inactive in SubBytes through the upper trail with probability
one. The other bytes, which are inactive in the lower trail in our example, are
processed through SubBytes in the lower trail, again with probability one. So,
the probability of the trail transitions does not decrease by the active S-boxes.

5 Boomerang Attack on 8-Round Kiasu-BC

In the following, we describe a boomerang attack on the final eight rounds of
Kiasu-BC, which is an extension of a seven-round rectangle attack and a seven-
round boomerang attack. For interested readers, we provide those in the Appen-
dices A and B. The upper and lower trails are depicted in Figure 6. We append
a key- guessing phase over the final round. Again, we use the fact that the final
round omits the MixColumns operation so that only four key bytes have to be
considered. Figure 7 shows the steps that wrap the upper and lower trails.

12

SB

SB

SB

SR

SR

SR

SR

MC

MC

MC

K1

K2

K3

T

T

T

S1
SB

S1

S2

S3

S4
SR

SB

SB

SB

SR

SR

SR

MC

MC

MC

MC

K4

K5

K6

K7

T

T

T

S5
SB

S4
SR

S4

S5

S6

S7
AK

Fig. 6: Upper (left) and lower (right) trails of our boomerang attack on Kiasu-BC.

5.1 Attack Procedure

Differentials. Both trails share the same idea: start from a state directly after
the SubBytes operation with a difference ∆Si

SB
wherein only the bytes on the

main diagonal are active, and choose it in a way such that the differences in the
state ∆Si

MC
and in the tweak ∆T will cancel each other after the first round, i.e.,

∆Si = 0. Then, it follows that ∆Si+1 = ∆T contains only one and ∆Si+2 only
four active bytes. In the upper trail, only Bytes Si+2[0, 1, 2, 3] are traced through
the final SubBytes operation after Round 3. The lower trail then adds the rest
of Round 4, i.e. it starts from a fully active state difference ∆S4

SR
such that it

yields a difference only in the main diagonal after Round 4 with probability one.
The remaining Rounds 5-7 follow the same trail as the first three rounds.
Assuming a correct quartet, both its pairs pass the S-box in Round 7 with
probability (2−6)2. The pairs need not have a specific difference after the final
S-box, but only the same difference γ′ in the middle. So, the four S-boxes in
Round 5 are passed with probability about (2−3.5·4)2 = 2−28. Concerning the
four S-boxes at the bottom of the upper trail, the second pair has a probability
of about (2−7)4 = 2−28 to pass them with the same trail as the first pair. The
final S-box at the beginning of Round 3 is then passed by the second pair with
probability 2−7. So, for the correct guess of K8[0, 7, 10, 13], the probability of a
correct pair to follow our trails is about 2−12 · 2−28 · 2−28 · 2−7 = 2−75. Each

structure yields
(
240

2

)
·2−32 ≈ 247 pairs which collide after the first round. Hence,

for 231 structures, we can expect 231 · 247 · 2−75 = 23 correct quartets, and
recover 32 bits of K8, K8[0, 7, 10, 13] and/or 32 bits of K0, K0[0, 5, 10, 15]. The
remaining 96 bits of either round key can be found e.g. by exhaustive search.

Structures and Sets. We build in total 2n structures consisting of 240 plain-
texts each. For every structure, we choose an arbitrary base plaintext P̂ and
derive 232 plaintexts from it by iterating over all values of Bytes 0, 5, 10, and
15, and leaving all other bytes constant. We use the same 232 plaintexts in each
of 28 sets T i in the structure, for 0 ≤ i < 28, where the sets differ only in the

13

SB SR

SB

K0

K8

T

T

T

S0 S1
SB

S7
AK

S7

S8

Boomerang

Fig. 7: 8-round boomerang attack trail.

first tweak byte. This means, we derive 28 tweaks T i = (〈i〉, T̂ [1], . . . , T̂ [7]), for

0 ≤ i < 28, from T̂ and assign T i to all texts in T i.

Steps. Choose δ′ ∈ {0, 1}8 so that there exists a differential 0x01 → δ′ with
probability 2−6 through the S-box. Derive δ = MC((δ′, 0, 0, 0)). Then:

1. Choose 2n structures of 240 plaintext-tweak tuples (P, T) each. Ask for their
ciphertexts C.

2. Initialize a list for all possible values of K0[0, 5, 10, 15] and K8[0, 7, 10, 13].
3. For each of 2n structures and for each key guess K8[0, 7, 10, 13]:

a) For each ciphertext and corresponding tweak (C, TC), derive a tweak
TD with TD[1, . . . , 7] = TC [1, . . . , 7] and TD[0] = TC [0] ⊕ 0x1. Then,
partially decrypt C under TD through the inverse final round to ob-
tain S7

AK
[0, 1, 2, 3]. Compute S′

7
AK[0, 1, 2, 3] = S7

AK
[0, 1, 2, 3]⊕ δ[0, 1, 2, 3]

and determine D[0, 7, 10, 13] by reencrypting S′
7
AK[0, 1, 2, 3] over the fi-

nal round, again under TD. Copy the 12 bytes D[1, 2, 3, 4, 5, 6, 8, 9, 11, 12,
14, 15] from the corresponding bytes of C.

b) Ask for the plaintexts Q of all 2n+40 shifted ciphertexts (D,TD).
c) Sort the 240 plaintexts Q together with their tweaks TQ (we define

TQ = TD), corresponding ciphertext D, and the original plaintext P
from which D was derived as tuples (Q, TQ, D, P) into 296 buckets
indexed by Q[1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14]. Since we search for pairs
(Q,Q′) with Q ⊕ Q′ = α and TQ 6= TQ′ from the same structure, we

expect in average 2n ·
(
240

2

)
· 2−96 ≈ 2n−17 false-positive colliding pairs

(Q,Q′) for each candidate K8. Since Pr[TQ 6= TQ′] = 255/256, we still
have about 2n−17 · 255/256 ≈ 2n−17 colliding pairs per key.

d) For each potential quartet (P, P ′, Q,Q′), we want to identify the key
valuesK0[0, 5, 10, 15] which could create the state collisions after the first
round. Let S1

P , S
1
P ′ , S1

Q, S
1
Q′ denote their corresponding states after the

first round. For a correct quartet, it holds that S1
P = S1

P ′ and analogously,
S1
Q = S1

Q′ . There is a unique mapping from the tweak difference S1
SR,P ⊕

S1
SR,P ′ backwards to S1

SB,P ⊕ S1
SB,P ′ . Since the S-box has two solutions

14

on average, there are on average two key values per byte K0[0, 5, 10, 15]
such that P and P ′ are mapped to the correct difference ∆S1

SB
which

yields S1
P ⊕ S1

P ′ = 0. So, we derive those values for K0[0, 5, 10, 15] for P
and P ′. We derive those key values analogously for Q and Q′. For each
key byte, we have 2 · 2 combinations on average, i.e., four pairs among
which any pair matches with probability about 4 · 2−8 = 2−6. So, an
invalid quartet survives this four-byte filter with probability (2−6)4 =
2−24. For each surviving pair, we increment the counter for the values of
the current K0[0, 5, 10, 15] and K7[0, 7, 10, 13]. Over all 232 keys K8, we
expect 232 · 2n−17 · 2−24 = 2n−9 (false-positive) quartets on average.

e) For n = 31, we expect 23 correct quartets, and 222 false positives. While
23 can be expected on average, at least three correct quartets occur
with significant probability. Correct quartets suggest the same 64 bits
K8[0, 7, 10, 13] and K0[0, 5, 10, 15]. Assuming that the key suggestions
from the 222 false-positive quartets are uniformly distributed, we can
expect only the correct 64 bits of K0[0, 5, 10, 15] be suggested at least
four times. So, we output the candidate(s) with the highest counters.

5.2 Complexity.

The time complexity of the attack consists of the following:

– Step 1 requires 2n+40 full encryptions.
– Step 3a requires 232 · 2n+40 · 4/16 = 2n+70 single-round decryptions of

four bytes for each ciphertext and key candidate to derive S7
AK

and the
same amount of single-round encryptions to derive the shifted ciphertexts
D, which is equivalent to 2 · 2n+70 · 1/8 = 2n+68 eight-round encryptions.

– Step 3b requires 232 · 2n+40 = 2n+72 full decryptions.
– Step 3c requires 232 · 2n+40 = 2n+72 MAs with an efficient data structure.
– Step 3d requires 232 ·4·2n−17 ·4/16 = 2n+15 single-round decryptions (equiv-

alent to 2n+12 eight-round encryptions) of one column backwards through
the first round for each text in each potential quartet (P, P ′, Q,Q′) and each
key. It requires 2n−9 + 2n+3 memory accesses for the false-positive and the
correct quartets, which are negligible in the total computational complexity.

– An exhaustive search step requires 296 full encryptions.

The time complexity is given by approximately

(2n+40 + 2n+68 + 2n+72 + 2n+12 + 296) Enc + 2n+72 MA

≈ 2103.1 Enc + 2103 MA.

The data complexity consists of 2n+40 = 271 chosen plaintexts and 232 ·271 = 2103

adaptively chosen ciphertexts. The attack can be run with memory for 240 states
plus 264 single-byte key counters, which is equivalent to about 260 states.

15

Table 2: Probabilities of correct quartets from experiments with our 6- and 7-round
boomerang distinguishers on Kiasu-BC and Mini-Kiasu-BC with 100 random keys
per experiment. Probability deviations after subtracting/adding the standard deviation
to the average #correct quartets are given in square brackets. Rds. = #rounds; str. =
#structure(s).

6-round distinguisher 7-round distinguisher

Kiasu-BC Mini-Kiasu-BC Mini-Kiasu-BC

Rds. 216 texts, 28 sets, 1 str. 216 texts, 24 sets, 1 str. 216 texts, 24 sets, 210 str.

3 2−12.00 [2±0.01] 2−4.00 [2±0.01] –

4 2−19.00 [2±0.03] 2−5.88 [2±0.01] 2−14.61 [2±0.01]

5 2−25.42 [2−0.22, 20.19] 2−7.14 [2±0.01] 2−26.94 [2−0.17, 20.16]

6 – 2−7.14 [2±0.01] 2−30.65 [2−0.83, 20.53]

7 – – 2−30.12 [2−0.71, 20.47]

5.3 Experimental Verification

Murphy [28] showed that boomerangs and rectangles base on oversimplified con-
ditional systems. He stressed that the techniques need a revised foundation,
which is clearly beyond the scope of this work. While the complexity of our
attacks prohibits to implement full versions of them at the moment, we imple-
mented variants of our boomerang distinguishers to support our analysis:

1. the 6-rd. distinguisher under our 7-rd. boomerang attack with Kiasu-BC,
2. the 6-rd. boomerang distinguisher with a downscaled version of Kiasu-BC,

called Mini-Kiasu-BC hereafter,
3. the 7-rd. distinguisher under our 8-rd. attack, again with Mini-Kiasu-BC.
4. the 7-rd. boomerang key-recovery attack with Mini-Kiasu-BC.

We defined Mini-Kiasu-BC as a nibblewise-operating variant of Kiasu-BC

that employs the same high-level structure as Kiasu-BC in downscaled man-
ner, i.e., the same number and order of operations, equal number of rounds and
key schedule, the same ShiftRows, AddKey, and AddTweak operations, the
same MDS matrix, though, with multiplications in GF(24) under the irreducible
polynomial x4 + x+ 1, operating on nibbles instead of bytes, and with the Pic-
colo S-box instead of that of the AES. Note that the Piccolo S-box has a maximal
probability of 2−2 for differential trails. Moreover, for differences δ, γ′ ∈ {0, 1}4,
it holds for differential trails δ → γ′ through the inverse Piccolo S-box that√∑

γ′∈{0,1}4Pr
2[δ

S−1

−−→ γ′] is 2−1 for two values of δ, 2−1.5 for five, and about

2−1.21 for the remaining eight non-zero values of δ.
To verify the intermediate probabilities of our trails, we studied several round-
reduced versions of the distinguishers.4 Since building structures was unnecessary

4 The source code is freely available at https://github.com/medsec/kiasubc.

16

https://github.com/medsec/kiasubc

for this purpose, we omitted the first round for those, and started directly from
the state S1 after the first round. Thereupon, we (1) chose a random base plain-
text, (2) created plaintexts by iterating over the values of the first column and
all possible values of the first tweak byte, (3) encrypted the resulting plaintext-
tweak pairs over the remaining rounds, (4) applied the δ-shift, and (5) decrypted
3, 4, 5, or 6 rounds. For each of our experiments, we chose the base plaintexts
of our structures and 100 keys randomly from /dev/urandom. The results of our
experiments are summarized in Table 2.

Distinguishers. Concerning the 6-round distinguisher for Mini-Kiasu-BC,
the active S-box in Round 6 of the lower trail is passed with probability ≈ (2−2)2

for both pairs. The S-box in Round 4 is passed with probability about 2−2, and
that at the beginning of Round 3 is passed with probability about 2−1.21, both
for the second pair only. Concerning the 6-round trail for Kiasu-BC, the active
S-box in Round 6 of the lower trail is passed with probability ≈ (2−6)2 for
both pairs; the active S-box at the end of the upper trail with probability about
2−7; the S-box at the beginning of Round 3 multiplies a factor of 2−6.5. From
our intuition, this factor results from the matter that some quartets pass the
S-box with probability 2−6 and some with 2−7. So, the obtained differential
probabilities are slightly higher than expected.
Concerning the 7-round trail for Mini-Kiasu-BC, the five active S-boxes in the
lower trail are passed with a probability about (2−2)2 ·(2−1.21·4)2. The four active
S-boxes at the bottom of the upper trail in Round 4 are passed with slightly
lower probability than expected, i.e., 2−12.3 ≈ (2−3)4. Again, we anticipate this
to result from quartets that pass the lower trail with lower probability. The
final S-box in Round 3 is passed with probability between 2−2 and 2−3 for the
second pair. So, while we do not have figures for Kiasu-BC over the 7-round
distinguisher yet, the analysis with Mini-Kiasu-BC provides us with at least
a good indication that we can expect for Kiasu-BC that the corresponding
probabilities are close to (2−6)2 for the S-box in Round 7, about (2−3.5·4)2 for
those in Round 5, (2−7)4 for those in Round 4, and about 2−7 for that in Round 3,
as in our theoretical analysis.

Key-Recovery. In addition, we implemented the 7-round boomerang attack
with the key-recovery stage for Mini-Kiasu-BC, which yielded practical com-
plexity. For this purpose, we created a structure of 216 sets of 24 texts each by
choosing a random base plaintext P and base tweak TP , and iterated over all val-
ues of P [0, 5, 10, 15] and T [0]. We collected the corresponding ciphertexts C. For
all 220 ciphertexts and for all 216 candidates K7[0, 7, 10, 13], we derived D from
the δ-shift and the corresponding shifted tweak TD = TP [0]⊕δ, obtained the cor-
responding plaintexts Q in a sorted list, and searched for matching quartets. For

the correct key, we obtained always more than 55, 000 ≈ 22·16 ·
(
24

2

)
·2−16 ·2−7.14 ≈

215.77 quartets. We sorted the list lexicographically and used the first 16 quar-
tets in order for subkey recovery. In total, we tested 100 randomly chosen keys
with independently random base plaintext and base tweak. Each run identified
the single correct key candidate with more than 55, 000 quartets, whereas the

17

second highest candidate was suggested by only about 1/4 of that amount. So,
we consider our experiments to show that K0[0, 5, 10, 15] and K7[0, 7, 10, 13] can
reliably be recovered for Mini-Kiasu-BC and similar results can be expected
for the full Kiasu-BC.

6 Biclique-Based Accelerated Exhaustive Search

This section describes a biclique-based accelerated exhaustive search on full
Kiasu-BC, similar to the attacks in [10] on the full AES-128. Prior, we briefly
recall the concept of such attacks before we explain how to tweak and extend
the existing bicliques for the AES-128. Thereupon, we describe our attack in
detail and give a complexity analysis for the individual steps.

6.1 Biclique-Based Accelerated Exhaustive Search

From Splice-and-Cut to Bicliques. Biclique cryptanalysis [22] originally
developed as a generalization of initial structures [3,32] in the splice-and-cut
meet-in-the-middle (MitM) attack framework by Aoki and Sasaki [2]. While the
first applications of bicliques targeted hash functions, Bogdanov et al. demon-
strated that they can also serve as a generic tool for accelerating the exhaustive
search on keyed primitives [10], including but not limited to the full AES. Since
then, bicliques have seen numerous applications on block ciphers. While being
not directly a differential technique, they can be efficiently constructed from
related-key differential trails under a few restrictions, which renders it senseful
to consider them in a series of differential-based attacks.

Bicliques. A biclique is a bipartite graph between two sets of states X and Y
such that every node xi ∈ X is connected with every node yj ∈ Y. A biclique
is called balanced if |X | = |Y|, and possesses a dimension d iff |X | = |Y| = 2d.
In the context of cryptanalysis, the sets X and Y represent start and end states
of a part in a given primitive, respectively. In the following, assume we are
given a cipher E : {0, 1}k × {0, 1}n → {0, 1}n, which can be split into parts
E = B◦E2 ◦E1, where we will construct a biclique over part B. In an attack, the
adversary divides the k-bit key space K into 2k−2d distinct groups of 22d distinct
elements each. Then, a biclique can efficiently test all keys of one group.
Among the techniques for constructing bicliques, independent bicliques [10] repre-
sent the most intuitive approach. Therein, the adversary searches for related-key
differential trails ∆K

i and ∇K
j in forward and backward direction, respectively.

Assume a starting state x0. In each group of keys, the adversary chooses a base
key K0,0 and computes y0 = B(K0,0, x0). Then, she uses the 2d − 1 forward
key differences ∆K

i , derives the forward keys Ki,0 = K0,0 ⊕ ∆K
i , and com-

putes yi = B(Ki,0, x0), for 1 ≤ i < 2d. In decryption direction, she uses the
2d − 1 backward key differences ∇K

j , derives K0,j = K0,0 ⊕ ∇
K
j , and computes

xj = B
−1(K0,j , y0), for 1 ≤ j < 2d.

18

K0,0

Kδ−1,δ−1

Ki,0

Kδ−1,0

K0,j

K0,δ−1

x0

xj

xδ−1

y0

yi

yδ−1

...

...

Fig. 8: Schematic illustration of a d-dimensional biclique. δ = 2d − 1.

Let denote Ki,j = K0,0 ⊕ ∆K
i ⊕ ∇

K
j . Bogdanov et al. [10] showed that, if the

forward and backward differential trails over B share no active non-linear com-
ponents, then one can derive 22d trails with only the 2 · 2d computations above
by combining any start state xi with any end state yj under key Ki,j :

xj
Ki,j

←−→
B

yi, for 0 ≤ i, j < 2d.

Figure 8 depicts a d-dimensional biclique schematically. Alternatively, one can
start the computations from y0. Moreover, bicliques do not have to be balanced.

Matching. In splice-and-cut attacks, the remaining parts E2 ◦ E1 are covered
by a usual MitM matching procedure, whereas in a biclique-based accelerated
exhaustive search, the biclique is combined with a partial matching over the
remaining parts of the cipher wherein every key is tested.
Assume the biclique has been constructed over the last part of the cipher, here B.
The adversary obtains 2d ciphertexts Ci (the states yi above) and asks a decryp-
tion oracle for their corresponding plaintexts Pi. From each Pi, the adversary
precomputes 2d forward matchings states −→v i,0 = E1(Ki,0, Pi). For all further
keysKi,j = Ki,0⊕∇

K
j , she computes −→v i,j = E1(Ki,j , Pi), where only those parts

over E1 have to be recomputed, where the key differences ∇K
j affect the state.

Similarly, from each state Sj (the states xj above), the adversary precomputes
2d matching states←−v 0,j = E−12 (K0,j , Sj). For all further keys Ki,j = K0,j⊕∆K

i ,
she computes ←−v i,j = E−12 (Ki,j , Sj) similarly, where again only those parts over
E2 have to be recomputed, where the key differences ∆K

i affect the states. The
setting is shown in Figure 9. Evaluating only a part of the states −→v i,j and ←−v i,j

suffices for matching; if such a pair matches, the corresponding key candidate
Ki,j is verified, e.g. by the encryption of a different plaintext-ciphertext pair.

Complexity Calculation. The computational complexity comprises (1) the
costs for constructing the biclique with 2 · 2d · CB computations, Cbiclique, (2)
the costs for the 2d · CE2◦E1

precomputations, Cprecomp, (3) the costs for 22d −
2d recomputations, Crecomp, and (4) the costs for checking false-positive keys,
Cfalsepos, for each of the 2k−2d key groups:

C = 2k−2d · (Cbiclique + Cprecomp + Crecomp + Cfalsepos) .

19

K0,0K0,0 K0,0

Ki,j

Ki,j

Ki,0

K0,j

Ki,δ Kδ,j Kδ,δ

S0

Sj

Sδ

C0

Ci

Cδ

...
...

...

P0

Pi

Pδ

Decryption oracle

E1 E2 B

−→v i,j
←−v i,j

Fig. 9: Biclique-based attack setting with a biclique constructed over B. δ = 2d − 1.

The attack needs about 2d states stored in memory at a time. For the AES,
the number of S-boxes that have to be recomputed per key has established as
the standard metric [9,10]; in total, the AES-128 computes 200 S-boxes: 10 · 16
S-boxes in its message schedule and 10 · 4 S-boxes in its key schedule.

6.2 Tweaked Bicliques

For the analysis of a given tweakable primitive Ẽ : {0, 1}k× {0, 1}t× {0, 1}n→
{0, 1}n, the tweak provides a second parameter to the computations. Similarly

as in the previous section, we assume that Ẽ can be decomposed into parts
Ẽ = B ◦ Ẽ2 ◦ Ẽ1, and for illustration, we construct a biclique over B. 5

For each group of keys, the adversary chooses a base key K0,0 and an additional
base tweak T0,0 to compute y0 = B(K0,0, T0,0, x0). For each further forward
computation, she can choose a tweak difference ∆T

i , derive Ti,0 = T0,0 ⊕ ∆T
i ,

and compute yi = B(Ki,0, Ti,0, x0), for 1 ≤ i < 2d. Similarly, she can choose
2d − 1 further tweak differences ∇T

j and use T0,j = T0,0 ⊕ ∇
T
j as tweaks for

the backward computations xj = B−1(K0,j, T0,j, y0), for 1 ≤ j < 2d. Like the
keys, we compose the tweaks by XORing their forward and backward differences
Ti,j = T0,0 ⊕∆T

i ⊕∇
T
j . Again, if the differential paths of forward and backward

computations share no active non-linear components, then it holds that

yi = B(Ki,j, Ti,j , xj) and xj = B
−1(Ki,j , Ti,j, yi), for 0 ≤ i, j < 2d.

Matching. When considering tweaks as an additional parameter in the biclique,
the matching procedure becomes more involved.When the biclique is constructed
at the end of Ẽ as in our imagined setting, each ciphertext Ci = yi in the group
must be requested from the decryption oracle for every tweak Ti,j . So, one has 2

2d

5 Note that using the tweak as parameter in biclique-based attacks has already been
used in the attacks on Skein/ThreeFish in [21] to obtain local collisions.

20

K0,0, T0,0
K0,0, T0,0

K0,0, T0,0

K0,δ, T0,δ

Ki,j , Ti,j

Ki,j , Ti,j

Ki,0, Ti,0

K0,j , T0,j

Kδ,0, Tδ,0

Kδ,δ, Tδ,δ

K0,δ, T0,δ

Kδ,δ, Tδ,δ
Kδ,δ, Tδ,δ

S0

Sj

Sδ

C0

Ci

Cδ

(C0, T0,0)..(C0, T0,δ)

(Cδ, Tδ,0)..(Cδ , Tδ,δ)

(P0,0, T0,0)..(P0,δ , T0,δ)

(Pδ,0, T0,δ)..(Pδ,δ , Tδ,δ)

...
...

...
...

...

P0,0

Pi,0

Pδ,δ

Decryption oracle

Ẽ1 Ẽ2 B

−→v i,j
←−v i,j

Fig. 10: Attack setting with a tweaked biclique constructed over B. δ = 2d − 1.

ciphertexts Ci,j and their related plaintexts Pi,j for one key group, as illustrated
in simplified manner in Figure 10. By fixing C0 and T0,0 over all key groups,
one can manage that the total data complexity increases by only a factor of 2d

compared to the tweakless setting.
In the following, the adversary computes 22d forward matchings states −→v i,j =

Ẽ1(Ki,j , Ti,j , Pi,j). So, if E is not terribly weak, the precomputation approach is
most likely inapplicable for the forward computations of the matching phase. In
the backward phase, the adversary can precompute 2d matching states ←−v 0,j =

Ẽ−12 (K0,j , T0,j , Sj). For all further computations←−v i,j = Ẽ−12 (Ki,j , Ti,j , Sj), she

still needs to recompute only those parts over Ẽ2, where the key differences ∆K
i

and tweak differences ∆T
i affect the internal states.

Optimizations. The calculation of the computation costs is similar to that in
the tweakless setting. Though, if the bicliques are constructed over the final part
of the cipher as in our example, it is useful to employ only tweak differences ∆T

i

and fix all tweak differences ∇T
j to 0, for 0 ≤ j < 2d. Then, the data complexity

remains the same as in the tweakless setting, and the precomputation approach
can be applied over the full matching parts. Yet, the effect of the tweak differences
on the state and the number of recomputed parts has to be taken into account
for the backward recomputations.
Similarly, if the bicliques are constructed at the beginning part of the cipher, it
is useful to employ only tweak differences ∇T

j and fix all tweak differences ∆T
i

to zero, for 0 ≤ j < 2d. Then, the tweak differences ∇T
j have to be considered

only in the forward computations of the matching phase.

21

K7

0,0

K8

0,0

K9

0,0

K10

0,0

T0,0

T0,0

T0,0

T0,0

S6

0S6

0 S6

j

S7S7 S7

S8S8S8

S9S9S9

S10

i S10

0S10

0

∆i-Modification

∇j-Modification

Base Computation ∆-Differentials ∇-Differentials

∆K7

i

∆K8

i

∆K9

i

∆K10

i

∆T
i

∆T
i

∆T
i

∆T
i

∇
K7

j

∇
K8

j

∇
K9

j

∇
K10

j

∇
T
j

∇
T
j

∇
T
j

∇
T
j

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SB

SR

SR

SR

SR

SR

SR

SR

SR

SR

SR

SR

SR

MC

MC

MC

MC

MC

MC

MC

MC

MC

Fig. 11: Independent biclique over the final four rounds of Kiasu-BC. Active bytes in
the differences are highlighted.

6.3 Biclique-Based Attack on Full Kiasu-BC

We construct bicliques of dimension d = 8 over the Rounds 7 through 10 of
Kiasu-BC, where we fix C0 over all bicliques. We partition the key space into
2k−2d = 2112 groups, where we choose the base keys K0,0 of the groups from K10.
Concerning the forward key differentials, we derive the key differences ∆K

i by
iterating over the 28 values of K7[4] and deriving the corresponding differences
in K10. For the backward key differentials, we derive the key differences ∇K

j

directly from K10 by iterating over the 28 values of K10[0].
Additionally, we choose a base tweak T0,0 arbitrarily as long as it is identical for
all key groups. We derive tweak differences ∆T

i by iterating over the 28 values
of T [2] (which represents Byte 4 in states and keys) such that ∆T

i [2] = ∆Kr

i [4]
holds, for 0 ≤ i < 28, for r ∈ {7, 8, 9, 10}, i.e. the round keys K7, K8, K9, and

22

∇
T
j ∇

T
j ∇

T
j ∇

T
j

∆T
i ∆T

i ∆T
i

S0 S1 S2

−→v i,j

←−v i,j

S3

S3

S4 S5 S6

AK S6

Super-Box

∇
K0

j ∇
K1

j ∇
K2

j ∇
K3

j

∆K4

i ∆K5

i ∆K6

i

SBSBSB

SBSBSB

SRSRSR

SRSRSR

MCMCMC

MCMCMC

Backward recomputations

Forward recomputations

B
ic
li
q
u
e

D
ec
ry
p
ti
o
n
O
ra
cl
e

Fig. 12: Matching part of the accelerated-exhaustive-search attack on Kiasu-BC.
Hatched active bytes need not be recomputed.

K10. Note that this property depends in non-trivial manner on the difference
propagation through the AES key schedule. Our choice is motivated by the goal
to have key and tweak difference cancel each other in the XOR at the end of
Round 7, so that the forward differentials in our bicliques have no active bytes
in the states in Round 8. We do not introduce tweak differences ∇T

j in the

backward trails of the biclique, i.e. ∇T
j = 0 for 0 ≤ j < 2d. The resulting four-

round biclique trails are shown in Figure 11. Due to the choice of key and tweak
differences, we could increase the length of the biclique by one round compared
to the independent bicliques on the AES-128 [10]. Note that only 12 bytes are
active in the ciphertexts. Moreover, the difference in bytes ∆S10

i [10] = ∆S10
i [14]

is always equal due to the key schedule. So, by fixing C0 over all key groups, we
obtain at most 288 different ciphertexts.

Matching. The matching covers the Rounds 1 through 6. We match in Byte 0
of the state S3. For each group, the 28 ciphertext-tweak pairs (Ci, Ti,0) are
given to a decryption oracle to obtain the corresponding plaintexts Pi. Since
we fixed all tweak differences ∇T

j to zero, these requests suffice and we can
apply the recomputation approach in the forward and backward steps of the
matching procedure. In the following, one precomputes and stores the states
−→v i,0 = Ẽ1(Ki,0, Ti,0, Pi). For each further key Ki,j = Ki,0 ⊕ ∇

K
j , one partially

computes −→v i,j = Ẽ1(Ki,j , Ti,0, Pi) where only those parts have to be recom-
puted where the key differences ∇K

j affect the states. In backward direction,

one precomputes the states ←−v 0,j = Ẽ−12 (K0,j, T0,0, Sj); for each further key

23

Ki,j = K0,j⊕∆K
i and tweak Ti,0 = T0,0⊕∆T

i , one partially computes the states
←−v i,j = Ẽ−12 (Ki,j , Ti,0, Sj) where only those parts have to be recomputed where
the key differences ∆K

i and tweak differences ∆T
i affect the states.

The bytes that have to be recomputed in forward and backward direction are
highlighted in Figure 12. Hatched active bytes in the keys and tweaks need not
be recomputed for our partial matching in S3[0]. In forward direction, we have
to recompute only five S-boxes in the first, 14 in the second and four S-boxes
in the third round, in addition to one S-box in the key schedule, ∇K1

j [14].
6 In

backward direction, we have to recompute one S-box in Round 4, four S-boxes
in Round 5, and four S-boxes in Round 6, in addition to one S-box in the key
schedule, ∆K5

i [12]. Note that the choice of ∆T
i [2] = ∆K

i [4] implies that it also
holds that ∆T

i [2] = ∆K5
i [4] = ∆K6

i [4]. As a result, the differences in these bytes
cancel, which saves one active byte in S6

AK
[4]. Thus, we do not have to recompute

the four S-boxes S5[3, 4, 9, 14]. In total, the number of S-boxes that we have to
recompute sums up to 5 + 14 + 4 + 1 + 1 + 4 + 4 + 1 = 34.

Attack Complexity. The costs for constructing a biclique are upper bounded
by 28 backward computations of four rounds each and 28 − 1 forward compu-
tations of two rounds each, or 27.26 full encryptions of Kiasu-BC. The pre-
computation costs are given by at most 2 · 28 computations of three rounds or
29 · 3/10 ≈ 27.26 full encryptions. The recomputation costs are given by at most
216 · 34/200 ≈ 213.44 encryptions. Since we match in a single byte, we can ex-
pect 216 · 2−8 = 28 false positive keys per key group on average. The encryption
costs for 288 ciphertexts by the decryption oracle is negligible. Therefore, the
computational complexity is about

C ≈ 2112 ·
(
27.26 + 27.26 + 213.44 + 28

)
+ 264 ≈ 2125.51 encryptions.

The memory complexity is upper bounded by storing 28 states at a time.

Improvement from the Sieve-in-the-Middle Approach. One can apply
the sieve-in-the-middle approach by Canteaut et al. [12] to further reduce the
computational complexity. Concerning the backward recomputations over the
fourth round, we are interested only in the first column. The column is similar
to an AES Super-box [14], mapping a 32-bit input S4[0, 1, 2, 3] together with a
32-bit (twea)key K4[0, 1, 2, 3]⊕ (T [0], T [1], 0, 0) to a 32-bit output S3[0, 5, 10, 15].
In an offline phase before the attack, one can construct 232 lookup tables (one
table per value of K4[0, 1, 2, 3]), which require 232 · 232 · 4 = 266 bytes of mem-
ory in total. In the recomputation phase, one can then lookup for each value
S4[0, 1, 2, 3], if there exists a valid transition from S4[0, 1, 2, 3] to S3[0] in the
table for the current value K4

i,j [0, 1, 2, 3]. This approach allows to save the costs
of the five S-boxes in Rounds 4 and 5 of the backward recomputation part for a
single lookup, which reduces the recomputation costs from 34 S-boxes to 29 + 1
lookups compared to 200 S-boxes in the full Kiasu-BC. So, in contrast to [8,12],

6 The AES key schedule uses the rightmost column of the round keys K0 through K9

as inputs to S-boxes.

24

we include the table lookup in the recomputation costs. Consequently, the com-
putational complexity becomes about

C ≈ 2112 ·
(
27.26 + 27.26 + 213.26 + 28

)
+ 264 ≈ 2125.34 encryptions.

The required memory increases to 28·16+266 ≈ 266 bytes, or 262 state equivalents.
Yet, as mentioned in [12], this improvement is beneficial only on platforms on
which a lookup in a table of 232 elements is faster than recomputing five S-boxes.

7 Conclusion

This work proposed differential-based attacks on eight rounds of Kiasu-BC,
which share the idea that the tweak input allows to construct a local collision.
While the designers already indicated that there exist boomerangs on at most
seven rounds, they had to consider attacks in the single- as well as in the related-
key setting. Our described boomerang and rectangle attacks do not violate their
claims, but concretize the security threats in the single-key model and illustrate
that Kiasu-BC possesses one round less security than the AES-128. Moreover,
the claim that the bounds of existing attacks on the AES for other attacks than
boomerangs, conventional differentials, and meet-in-the-middle can be translated
without modification to Kiasu-BC does not hold in general, which was already
observed by [15] and was confirmed by our impossible-differential attack.

Acknowledgments. The authors thank Ralph Ankele, Christof Beierle, and
Maria Eichlseder for the fruitful discussions at the DISC workshop in March
2016 at Bochum, and the reviewers for their helpful comments.

References

1. Ahmed Abdelkhalek, Mohamed Tolba, and Amr M. Youssef. Impossible Differen-
tial Cryptanalysis of 8-round Kiasu-BC, 2016. To appear.

2. Kazumaro Aoki and Yu Sasaki. Preimage Attacks on One-Block MD4, 63-Step
MD5 and More. In Roberto Maria Avanzi, Liam Keliher, and Francesco Sica,
editors, Selected Areas in Cryptography’08, volume 5381 of LNCS, pages 103–119.
Springer, 2008.

3. Kazumaro Aoki and Yu Sasaki. Meet-in-the-Middle Preimage Attacks Against
Reduced SHA-0 and SHA-1. In Shai Halevi, editor, CRYPTO’09, volume 5677 of
LNCS, pages 70–89. Springer, 2009.

4. Behnam Bahrak and Mohammad Reza Aref. Impossible differential attack on
seven-round AES-128. IET Information Security, 2(2):28–32, 2008.

5. Eli Biham, Orr Dunkelman, and Nathan Keller. The Rectangle Attack - Rect-
angling the Serpent. In Birgit Pfitzmann, editor, EUROCRYPT, volume 2045 of
LNCS, pages 340–357. Springer, 2001.

6. Eli Biham, Orr Dunkelman, and Nathan Keller. New Results on Boomerang and
Rectangle Attacks. In Joan Daemen and Vincent Rijmen, editors, FSE, volume
2365 of LNCS, pages 1–16. Springer, 2002.

25

7. Alex Biryukov and Dmitry Khovratovich. Related-Key Cryptanalysis of the Full
AES-192 and AES-256. In Mitsuru Matsui, editor, ASIACRYPT, volume 5912 of
LNCS, pages 1–18. Springer, 2009.

8. Andrey Bogdanov, Donghoon Chang, Mohona Ghosh, and Somitra Kumar Sanad-
hya. Bicliques with Minimal Data and Time Complexity for AES. In Jooyoung Lee
and Jongsung Kim, editors, ICISC, volume 8949 of LNCS, pages 160–174. Springer,
2014.

9. Andrey Bogdanov, Elif Kavun, Christof Paar, Christian Rechberger, and Tolga
Yalcin. Better than Brute-Force - Optimized Hardware Architecture for Efficient
Biclique Attacks on AES-128. In ECRYPT Workshop, SHARCS - Special Purpose
Hardware for Attacking Cryptographic Systems, 2012.

10. Andrey Bogdanov, Dmitry Khovratovich, and Christian Rechberger. Biclique
Cryptanalysis of the Full AES. Cryptology ePrint Archive, Report 2011/449, 2011.
http://eprint.iacr.org/.

11. Christina Boura, Maŕıa Naya-Plasencia, and Valentin Suder. Scrutinizing and
Improving Impossible Differential Attacks: Applications to CLEFIA, Camellia,
LBlock and Simon. In Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT (1),
volume 8873 of LNCS, pages 179–199. Springer, 2014.

12. Anne Canteaut, Maŕıa Naya-Plasencia, and Bastien Vayssière. Sieve-in-the-Middle:
Improved MITM Attacks. In Ran Canetti and Juan A. Garay, editors, CRYPTO
(1), volume 8042 of LNCS, pages 222–240. Springer, 2013.

13. Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Advanced
Encryption Standard. Springer, 2002.

14. Joan Daemen and Vincent Rijmen. Understanding Two-Round Differentials in
AES. In SCN, volume 4116 of LNCS, pages 78–94, 2006.

15. Christoph Dobraunig, Maria Eichlseder, and Florian Mendel. Square Attack on
7-Round Kiasu-BC. In Mark Manulis, Ahmad-Reza Sadeghi, and Steve Schneider,
editors, ACNS, volume 9696 of LNCS, pages 500–517. Springer, 2016.

16. Niels Ferguson, Stefan Lucks, Bruce Schneier, Doug Whiting, Mihir Bellare, Ta-
dayoshi Kohno, Jon Callas, and Jesse Walker. The Skein Hash Function Family.
Submission to NIST (Round 3), 2010.

17. Jérémy Jean, Ivica Nikolić, and Thomas Peyrin. KIASU v1.1, 2014. First-
round submission to the CAESAR competition, http://competitions.cr.yp.to/-
caesar-submissions.html.

18. Jérémy Jean, Ivica Nikolic, and Thomas Peyrin. Tweaks and Keys for Block Ci-
phers: The TWEAKEY Framework. In Palash Sarkar and Tetsu Iwata, editors,
ASIACRYPT (2), volume 8874 of LNCS, pages 274–288, 2014.

19. Jérémy Jean, Ivica Nikolic, and Thomas Peyrin. Tweaks and keys for block ciphers:
the TWEAKEY framework. Cryptology ePrint Archive, Report 2014/831, 2014.
http://eprint.iacr.org/.

20. John Kelsey, Tadayoshi Kohno, and Bruce Schneier. Amplified Boomerang Attacks
Against Reduced-Round MARS and Serpent. In Bruce Schneier, editor, FSE, vol-
ume 1978 of LNCS, pages 75–93. Springer, 2000.

21. Dmitry Khovratovich, Christian Rechberger, and Alexandra Savelieva. Bicliques
for Preimages: Attacks on Skein-512 and the SHA-2 Family. Cryptology ePrint
Archive, Report 2011/286, 2011. http://eprint.iacr.org/.

22. Dmitry Khovratovich, Christian Rechberger, and Alexandra Savelieva. Bicliques
for Preimages: Attacks on Skein-512 and the SHA-2 Family. In Anne Canteaut,
editor, FSE, volume 7549 of LNCS, pages 244–263. Springer, 2012.

26

23. Ted Krovetz and Phillip Rogaway. The Software Performance of Authenticated-
Encryption Modes. In Antoine Joux, editor, FSE, volume 6733 of LNCS, pages
306–327. Springer, 2011.

24. Moses Liskov, Ronald L. Rivest, and David Wagner. Tweakable Block Ciphers. In
Moti Yung, editor, CRYPTO, volume 2442 of LNCS, pages 31–46. Springer, 2002.

25. Jiqiang Lu, Orr Dunkelman, Nathan Keller, and Jongsung Kim. New Impossi-
ble Differential Attacks on AES. In Dipanwita Roy Chowdhury, Vincent Rijmen,
and Abhijit Das, editors, INDOCRYPT, volume 5365 of LNCS, pages 279–293.
Springer, 2008.

26. Hamid Mala, Mohammed Dakhilalian, Vincent Rijmen, and Mahmoud Modarres-
Hashemi. Improved Impossible Differential Cryptanalysis of 7-Round AES-128. In
Guang Gong and Kishan Chand Gupta, editors, INDOCRYPT’10, volume 6498 of
LNCS, pages 282–291. Springer, 2010.

27. Kazuhiko Minematsu. Building blockcipher from small-block tweakable blockci-
pher. Designs, Code and Cryptography, 74(3):645–663, 2015.

28. Sean Murphy. The Return of the Cryptographic Boomerang. IEEE Trans. Infor-
mation Theory, 57(4):2517–2521, 2011.

29. Yusuke Naito. Full PRF-Secure Message Authentication Code Based on Tweakable
Block Cipher. In Man Ho Au and Atsuko Miyaji, editors, ProvSec, volume 9451
of LNCS, pages 167–182. Springer, 2015.

30. National Institute of Standards and Technology. FIPS 197. National Institute of
Standards and Technology, November, pages 1–51, 2001.

31. Thomas Peyrin and Yannick Seurin. Counter-in-Tweak: Authenticated Encryption
Modes for Tweakable Block Ciphers. In Matthew Robshaw and Jonathan Katz,
editors, CRYPTO I, volume 9814 of LNCS, pages 33–63. Springer, 2016.

32. Yu Sasaki and Kazumaro Aoki. Finding Preimages in Full MD5 Faster Than
Exhaustive Search. In Antoine Joux, editor, EUROCRYPT, volume 5479 of LNCS,
pages 134–152. 2009.

33. Richard Schroeppel and Hilarie Orman. The Hasty Pudding Cipher. AES candidate
submitted to NIST, 1998.

34. Mohamed Tolba, Ahmed Abdelkhalek, and Amr M. Youssef. A Meet in the Middle
Attack on Reduced Round Kiasu-BC. IEICE Transactions on Fundamentals of
Electronics, Communications and Computer Science, E99-A(10):21–34, Oct 2016.

35. David Wagner. The Boomerang Attack. In Lars R. Knudsen, editor, FSE, volume
1636 of LNCS, pages 156–170. Springer, 1999.

Supplementary Material

A Rectangle Attack on 7-Round Kiasu-BC

This section describes a rectangle attack on the final seven rounds of Kiasu-BC.

Differentials. The upper and lower trails used in our attack are illustrated
in Figure 13. Both trails share the same idea: start from a state directly after
the SubBytes operation with a difference ∆Si

SB
wherein only the bytes on the

main diagonal are active, and choose it in a way such that the differences in the
state ∆Si

MC
and in the tweak ∆T will cancel each other after the first round,

i.e., ∆Si = 0. Then, it follows that ∆Si+1 = ∆T contains only one and ∆Si+2

27

SB

SB

SB

SR

SR

SR

MC

MC

MC

K1

K2

K3

T

T

T

S1
SB

S1

S2

S3

S4
SB

SB

SB

SB

SR

SR

SR

MC

MC

MC

K4

K5

K6

T

T

S3

S4
SB

S4

S5

S6
AK

Fig. 13: Upper (left) and lower (right) trails of our boomerang attacks on 7-round
Kiasu-BC. Hatched bytes are not traced through the middle SubBytes operation.

only four active bytes. We employ a ladder switch in the transition phase: in the
upper trail, only Bytes Si+2[0, 4, . . . , 15] are traced through the final SubBytes

operation after Round 3, of which only Byte 0 is active. So, only the inactive
Bytes Si+2[1, 2, 3] are traced through SubBytes in Round 4.

Attack Procedure. We append a key-guessing phase over the final round. We
use the fact that the final round omits the MixColumns operation so that only
four key bytes have to be considered. Figure 14 depicts the steps that wrap the
upper and lower trails. In the following, we detail the individual steps of the
attack.

Upper Trail. The texts in each set T i in a structure cover all values in
Bytes S0[0, 5, 10, 15]. Since T i is equal for all texts in a set, and since Add-

Tweak, AddKey, SubBytes, and ShiftRows are permutations, the texts in
the set cover all values in the first column also at S1

SR
[0, 1, 2, 3] (see Figure 13).

Since our upper trails need pairs with non-zero tweak difference ∆ T [0], we can-
not form pairs (P i

j , P
i
j′) from the same set, but have to form pairs across sets

instead. Consider two distinct sets T i and T j in the same structure. Their tweak
difference in Byte 0 is given by ∆ Ti,j [0] = 〈i〉 ⊕ 〈j〉 6= 0. Since MixColumns

is linear, there exists a unique difference ∆S1
SR

[0, 1, 2, 3] that is mapped by
MixColumns

−1 to (∆Ti,j [0], 0, 0, 0). So, a pair that shall follow our upper trail
must have that difference ∆S1

SR
[0, 1, 2, 3].

Consider two texts P i and P j from two distinct sets T i and T j , and let S1
SR,i

and S1
SR,j denote their corresponding states after ShiftRows in the first round.

For each state S1
SR,i ∈ T

i, there is exactly one text S1
SR,j ∈ T

j such that

S1
SR,i[0, 1, 2, 3] ⊕ S1

SR,j [0, 1, 2, 3] = ∆S1
SR

[0, 1, 2, 3]. So, we have 232 valid pairs

between any two distinct sets T i, T j in a structure, with 0 ≤ i < j < 28. Since

there are
(
28

2

)
≈ 215 pairs of sets, we obtain approximately 215 · 232 = 247 pairs

28

SB SR

SB

K0

K7

T

T

T

S0 S1
SB

S6
AK

S7
AK

S6

S7

Rectangle

Fig. 14: The trail in our 7-round rectangle attack.

per structure which collide at State S1. We call them valid pairs, hereafter. So,
we obtain 2n+47 valid pairs from 2n structures.
After the SubBytes operation in Round 3, all valid pairs will have only Byte 0
active in their difference ∆S3

SB
. So, at most 255 possible differences can occur in

the first column ∆S3
AK

[0, 1, 2, 3]. From the tweak addition in Round 3, Byte 0
can be affected by any of 256 different tweak values T [0]. So, a valid pair can
have at most 255 · 256 ≈ 216 differences after E1. From one structure, we obtain
247 valid pairs, each of which have one of the 216 possible differences after E1.

Transition Phase. For two pairs (P, P ′) and (Q,Q′), we denote their corre-
sponding states after the upper trail by (U,U ′) and (V, V ′), respectively. More-
over, we denote their corresponding tweaks as (TU , TU ′) and (TV , TV ′), respec-
tively. We search for pairs (U,U ′) and (V, V ′) that form quartets (U , U ′, V , V ′)
such that it holds U ⊕ V = U ′ ⊕ V ′ = γ.
At the beginning of the lower trail, we trace only inactive bytes through the
SubBytes operation in Round 4. For a quartet, we need to have exactly the
difference ∆S4

AK
[0] = TU [0]⊕ TV [0] at the end of Round 4. Since all considered

operations in Round 4 are linear, there is a unique mapping from ∆S4
AK

[0, 1, 2, 3]
backwards to the diagonal difference ∆S4

SB
[0, 5, 10, 15]. Thus, it must hold for a

quartet that (U ⊕ V) = ∆S4
SB

for ∆T [0] = (TU [0]⊕ TV [0]). From Proposition 1,
it follows then also that (U ′ ⊕ V ′) = ∆S4

SB
. However, the second pair (U ′, V ′)

will follow our lower trail only if their tweaks share the same difference, i.e. only
if ∆T = (TU ⊕ TV) = (TU ′ ⊕ TV ′).
So, the 2n+47 pairs (U,U ′) after E1 distribute over at most 224 possible buck-
ets, concerning the 216 possible differences ∆S4

SB
and the 28 possible tweak

differences ∆TU,U ′ [0] = TU [0] ⊕ TU ′ [0]. So, we can expect about 2n+23 pairs
per bucket.7 Pairs from the same bucket can be combined with each other to
22n+45 quartets. Though, since we need a non-zero tweak difference in the lower
trails, we require that TU [0] 6= TV [0] and TU ′ [0] 6= TV ′ [0]; we still have about
22n+45 · 255/256 ≈ 22n+45 quartets per bucket. From 224 buckets, there are in
total 224 · 22n+45 = 22n+69 quartets. Since a matching quartet has the differ-

7 Note that any other than the uniform distribution allows to build more quartets.

29

ence γ after E1 with probability 2−128, we expect about 22n+69 · 2−128 = 22n−59

matching quartets.

Lower Trail. All matching quartets have a local collision after Round 4 in
both pairs; since we required that (TU ⊕ TV) = (TU ′ ⊕ TV ′), matching quartets
share the same difference ∆S5 in both their pairs. The 255 possible differences
∆S5 imply at most 255 possible differences ∆S6

AK
where only the first column is

active. We restrict the lower trails to quartets whose pairs produce a difference δ
that is among the 255 possible ones, fixed over all quartets. Since the AES S-box
can produce only 127 ≈ 27 input-output trails, the probability that both pairs
in one quartet have the same difference ∆S6

SB
is about (2−7)2. Since all further

operations in the lower trail are linear, both pairs in a matching quartet also
possess the same difference ∆S6

AK
= δ. We call those correct quartets, hereafter.

Thus, we expect 22n−59 · 2−14 = 22n−73 correct quartets with difference δ.

Steps. The attack consists of the following steps:

0. Precompute a hash table Hprecomp containing all possible 4-byte transitions
of values x and x′ = x⊕ δ[0, 1, 2, 3]⊕ (∆T [0], 0, 0, 0) through SubBytes and
ShiftRows and their output values y and y′ after SubBytes and Shift-

Rows. Index the table by the output difference y ⊕ y′ = ∆S7
SR

[0, 7, 10, 13]
and (∆T [0], 0, 0, 0). There are 232 values x and 28 tweak differences ∆T [0]; so,
Hprecomp will contain 28 · 232 = 240 buckets, each with 1274 valid transitions.

1. Choose 2n structures of 240 plaintext-tweak tuples (P, T) each and ask for
their ciphertexts C. Invert the final tweak addition.

2. Insert the 2n+40 ciphertexts C together with the index of their corresponding
structure into a hash table with 296 buckets indexed by the ciphertext Bytes
1-6, 8, 9, 11, 12, 14, and 15.

3. For each ciphertext pair (C,C′) which fell into the same bucket, denote
their corresponding structures by S and S′, respectively. Attach to C also
the index of S′, and attach to C′ also the index of S. There are about
(2n+40)2/2 ≈ 22n+79 pairs distributed over 296 buckets. So, we expect about
22n+79 · 2−96 = 22n−17 collisions from pairs that fell into equal buckets.

4. For each colliding pair, lookup in Hprecomp if there exists a valid transition
through the inverse Round 7 to δ. Since there are four active S-boxes, and
127 possible transitions, 1274 of them are valid among the 2564 possible
ones. This gives approximately a four-bit filter which reduces the number of
collisions to about 22n−21.

5. Initialize a list for all possible values of K0[0, 5, 10, 15] and K7[0, 7, 10, 13].
6. For each of the remaining 22n−21 colliding pairs (C,C′), use (C[0, 7, 10, 13]⊕

C′[0, 7, 10, 13], ∆T [0]) to lookup in Hprecomp the possible values y = S6
SR

[0,

7, 10, 13] and y′ = S′
6
SR[0, 7, 10, 13] that could map C and C′ to δ. We expect

one suggestion one average (i.e. two in 126 out of 255 cases, four in 1 out
of 255 cases, and none in 129 cases); derive the value of K7[0, 7, 10, 13] =
C[0, 7, 10, 13] ⊕ S6

SR
[0, 7, 10, 13]. This yields a 32-bit filter that reduces the

number of remaining pairs from 22n−17 to 22n−49.

30

7. To identify correct quartets, we search for pairs of pairs (C,D) and (C′, D′),
where the corresponding structure indices SC = SC′ and SD = SD′ match,
where we denote by SC the structure index of C, by SC′ that of C′ and
so on. Otherwise, their corresponding plaintexts (P, P ′) and (Q,Q′) cannot
have difference α. We can model the search for matching structures by a
probabilistic experiment from graph theory: given an undirected graph with
n̂ = 2n nodes (corresponding to the 2n structures), we add uniformly at
random m̂ = 22n−49 edges. The end points of an edge correspond to the
structure indices of a pair SC and SD. It is a well-known fact that when
throwing M balls into N bins, one expects

(
M
2

)
/N collisions on average.

Since our graph has n̂2 possible edges (C and D can be part of the same
structure, i.e. the same node in the graph), this yields for M = m̂ = 22n−49

and N = n̂2 = (2n)2 an expected number of

(
22n−49

2

)

(2n)2
=

24n−98

2 · 22n
= 22n−99

collisions of two edges in our graph model. Since each edge corresponds to
a pair (C,D), we obtain about 22n−99 quartets whose structures indices
SC = SC′ and SD = SD′ match per key candidate for K7.

8. For each potential quartet (C,C′, D,D′), we consider their corresponding
plaintexts (P, P ′, Q,Q′) next. Let S1

P , S
1
P ′ , S1

Q, S
1
Q′ denote their correspond-

ing states after the first round. For a correct quartet, it holds that S1
P = S1

P ′

and analogously, S1
Q = S1

Q′ . There is a unique mapping from the tweak differ-

ence S1
SR,P⊕S

1
SR,P ′ backwards to S1

SB,P⊕S
1
SB,P ′ . Since the S-box has two solu-

tions on average, there are on average two key values per byte K0[0, 5, 10, 15]
such that P and P ′ are mapped to the correct difference ∆S1

SB
which yields

S1
P ⊕S1

P ′ = 0. So, we derive those values for K0[0, 5, 10, 15] for P and P ′. We
derive those key values analogously for Q and Q′. For each key byte, we have
2 · 2 combinations on average, i.e., four pairs among which any pair matches
with probability about 4 · 2−8 = 2−6. So, an invalid quartet survives this
four-byte filter with probability (2−6)4 = 2−24. For each surviving pair, in-
crement the counter for the current K0[0, 5, 10, 15] and K7[0, 7, 10, 13]. Over
all 232 keys K7, we expect 232 · 22n−99 · 2−24 = 22n−91 quartets.

9. For n = 38, we expect 22n−73 = 23 correct quartets. So, the probability is
significant to obtain at least two correct quartets and the counter for the
correct subkey will be at least two. The probability for a false-positive count
is about 22n−91 = 2−15 over all 232 keys on average. So, we output the
candidate(s) with the highest counters.

The above attack recovers 32 bits of K0, K0[0, 5, 10, 15], and 32 bits of K7,
K7[0, 7, 10, 13]. We propose to conduct an following, similar attack with shifted
differential trails consisting basically of the same steps. The shifted differen-
tial trails are given in Supporting Material C for the sake of completeness.
The attack requires again 2n structures of 240 texts, iterating over plaintext
bytes P [3, 4, 9, 14] and tweak byte T [2], and can recover another 32 bits of K0,

31

K0[3, 4, 9, 14], and 32 bits of K7, K7[1, 4, 11, 14] with the same probability as
above. The remaining 64 bits of K0 and/or K7 can be found e.g. exhaustively.

Complexity Analysis. The total computational complexity of the attack re-
sults the following step complexities:

– The precomputations require about 240 ·4/16 ≈ 238 single-round decryptions.
– Step 1 requires 2n+40 full encryptions.
– Step 2 requires 2n+40 memory accesses (MAs) with an efficient data struc-

ture.
– Step 3 requires 2n+40 MAs to the buckets and 2 · 22n−17 MAs to attach the

structure indices.
– Step 4 requires 22n−17 MAs.
– Step 6 requires 22n−21 MAs into Hprecomp.
– Step 7 requires 232 · 2 · 22n−49 = 22n−16 MAs of the remaining pairs into a

hash table according to their structure indices.
– Step 8 requires 232 ·4 ·22n−99 ·4/16 = 22n−67 single-round decryptions of the

first round for each remaining quartet (P, P ′, Q,Q′). Moreover, it requires
232 · 22n−99 · 2−24 + 23 = 22n−91 + 23 MAs to insert key candidates.

So, for n = 38, the overall complexity of one execution of the attack is about

T ≈ 2n+40 + (238 + 22n−67) ·
1

7
Enc +

2n+40 + 2n+40 + 22n−16 + 22n−17 + 22n−21 + 22n−16 + 22n−91 + 23 MA

≈ 278 Enc + 279 MA.

Since we propose to execute the attack once again in shifted form, and to sub-
sequently recover 64 keys bits with exhaustive search, we obtain approximately
279 encryptions and 280 memory accesses. The data complexity is 2 · 278 = 279

chosen plaintexts. The attack requires memory for 2n+40 states for the cipher-
texts, 240 eight-byte values in Hprecomp, 2

2n−21 · 2 pairs for the remaining pairs
after Step 4, and 264 single-byte key counters. All remaining steps require less
memory. The second execution of the attack can reuse existing memory. So, the
attack needs memory for at most

M ≈
(
278 · 16

)
+
(
240 · 8

)
+
(
255 · 16 · 2

)
+ 264 ≈ 282 bytes or 278 states.

B Boomerang Attack on 7-Round Kiasu-BC

We can transform the rectangle attack from Supporting Material A into a boomerang
attack with lower computational complexity. For this purpose, we reuse the same
differentials and final round, but change the attack procedure.

32

Differentials. Similar as before, we choose 2n structures, with 28 tweak-dep-
endent sets of plaintexts each; for efficiency reasons, let us consider not 28× 232

texts, but let denote the number of distinct texts in a structure by 2p and assume
uniform distribution over the tweaks. From our texts, we obtain 2n ·

(
2p

2

)
·2−32 =

2n+2p−33 pairs (P, P ′) which collide after the first round. The remaining steps in
the upper trail are passed with probability one. Next, we trace the pairs (C,D)
and (C′, D′) with their associated tweaks (TC , TD) and (TC′ , TD′) backwards
through the lower trail. The probability that the active S-box in Round 6 yields
the correct tweak difference ∆S5 = TC ⊕ TD is 2−6 for each pair. In contrast to
our rectangle attack, we can choose the tweak difference in our ciphertexts here.
So, we have a probability of 2−12 for the lower trail. The four active S-boxes at
the transition phase are not traced through SubBytes in the lower trail.
Next, we trace both pairs backwards through the upper trail. The S-box at S4

SB

needs to have only the same difference for both pairs. The second pair matches
the difference of the first one with probability about 2−7. For equal differences
∆S3

AK
in both pairs, we need TP [0]⊕ TP ′ [0] = TQ[0]⊕ TQ′ [0]. We XOR a fixed

tweak difference of TP [0]⊕TQ[0] = TP ′ [0]⊕TQ′[0] = 0x01 to all ciphertext tweaks
to ensure that this event holds with probability one. Here, we only have to care
about the active S-box in Round 3. The probability that it maps ∆S3

SB
through

the S-box to TQ ⊕ TQ′ is about 2−7. Then, the second pair (Q,Q′) follows the
remaining Rounds 2 and 1 to difference α with probability one. Note that we
can consider any α where only the main diagonal is active. Summing up, the
lower trail has probability (2−6)2 = 2−12, and the upper trail a probability of
approximately 2−7 · 2−7 = 2−14. Given 2n+2p−33 pairs per structure, we expect
2n+2p−33 · 2−26 = 2n+2p−59 correct quartets on average. So, a single structure
with p = 232 texts suffices to obtain 25 correct quartet on average.

Steps. Choose the difference δ′ ∈ {0, 1}8 such that there exists a differential
0x01 → δ′ with probability 2−6 through the S-box. Derive the difference δ =
MC((δ′, 0, 0, 0)). The further steps are as follows:

0. Precompute a hash tableHprecomp, which performs the δ shift, i.e. derives the
shifted ciphertext bytes D[0, 7, 10, 13] for given C[0, 7, 10, 13],K7[0, 7, 10, 13],
and tweak (T [0], 0, 0, T [7]). For the creation of Hprecomp, take S7

AK
[0, 7, 10,

13] together with its corresponding tweak TC [0] and partially decrypt the
final round to obtain S6

AK
[0, 1, 2, 3]. Derive a tweak TD with TD[1, . . . , 7] =

TC [1, . . . , 7] and TD[0] = TC [0]⊕ 0x1. Compute S′
6
AK[0, 1, 2, 3] = S6

AK
[0, 1, 2,

3] ⊕ δ[0, 1, 2, 3] and determine D[0, 7, 10, 13] by reencrypting S′
6
AK[0, 1, 2, 3]

over the final round using TD.
1. Choose 2n structures of 2p plaintext-tweak tuples (P, T) each, following the

procedure of our rectangle attack. Ask for their ciphertexts C.
2. Initialize a list for all possible values of K0[0, 5, 10, 15] and K7[0, 7, 10, 13].
3. For each key guess K7[0, 7, 10, 13]:

a) For each structure and ciphertext C with its corresponding tweak TC ,
apply the δ-shift by computing S7

AK
[0, 7, 10, 13] and look up the value

D[0, 7, 10, 13] it is mapped (together with T [0]) to by Hprecomp. Copy

33

the 12 bytes D[1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 14, 15] from C. Derive the tweak
TD with TD[1, . . . , 7] = TC [1, . . . , 7] and TD[0] = TC [0]⊕ 0x1.

b) Ask for the plaintexts Q of all 2n+p shifted ciphertexts (D,TD).
c) Sort the 2n+p obtained plaintexts Q (we define TQ = TD) together with

their tweaks TQ, their associated structure index SQ, their corresponding
ciphertext D, and the original plaintext P from which D was derived
as tuples (Q, TQ, SQ, D, P) into 296 buckets according to the value
of Q[1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14]. Since we search for pairs (Q,Q′)
with Q ⊕ Q′ = α, TQ 6= TQ′ , and SQ = SQ′ , we expect in average

2n ·
(
2p

2

)
· 2−96 ≈ 2n+2p−97 false-positive colliding pairs (Q,Q′) for each

key candidate K7. Since Pr[TQ 6= TQ′] = 255/256, we still have about
2n+2p−97 · 255/256 ≈ 2n+2p−97 colliding pairs per key.

d) We could discard all pairs (Q,Q′) whose structure indices SQ and SQ′ dif-
fer since these cannot have difference α. Since a single structure suffices,
we skip this step and note it only for the sake of consistency.

e) For each potential quartet (P, P ′, Q,Q′), we want to identify the key
values K0[0, 5, 10, 15] which could create the state collisions after the
first round. So, for a correct quartet, their states after the first round
match for both pairs, i.e., S1

P = S1
P ′ and S1

Q = S1
Q′ . Using the same

arguments as in our rectangle attack, each byte in a pair gives four key-
byte suggestions which hold for both pairs with probability 2−8. Hence,
an invalid quartet survives this filtering step with probability at most
(2−6)4 = 2−24 for all four bytes ofK0[0, 5, 10, 15]. For each surviving pair,
increment the counter for the current K0[0, 5, 10, 15] and K7[0, 7, 10, 13].
Over all 232 keys K7, we expect 232 ·2n+2p−97 ·2−24 = 2n+2p−89 quartets.

f) For n = 0 and p = 32, i.e. a single structure with 28 sets of 224 texts
each, we expect 25 correct quartets, and have a small probability of
2n+2p−89 = 2−25 for false positives. So, we output the key candidate(s)
with the highest counters.

The attack recovers K0[0, 5, 10, 15] and K7[0, 7, 10, 13]. Again, one can repeat
the attack with shifted differentials (see Supporting Material C), which requires
again 240 texts, iterating over plaintext bytes P [3, 4, 9, 14] and tweak byte T [2],
and can recover another 32 bits of K0, K0[3, 4, 9, 14], and 32 bits of K7, K7[1,
4, 11, 14] with the same probability as the attack above. The remaining 64 bits
of K0 and/or K7 can be found e.g. by exhaustive search.

Complexity Analysis. The computational complexity results from:

– The precomputations require about 4 · 28 · 28 · 28 = 226 single-round de-
cryptions and single-round re-encryptions (we have one ciphertext byte, one
tweak byte, and one key byte as parameters) since we can create four inde-
pendent tables, one for each byte of D[0, 7, 10, 13].

– Step 1 requires 2n+p full encryptions.
– Step 3a requires 2 · 232 · 2n+p memory accesses (MA) for each ciphertext

pair and key candidate to lookup the shifted pairs D.
– Step 3b requires 232 · 2n+p full decryptions.

34

– Step 3c requires 232 ·2n+p memory accesses with an efficient data structure.
– Step 3e requires 232 · 4 · 2n+2p−97 · 4/16 = 2n+2p−65 single-round decryp-

tions of one column backwards through the first round for each text in each
potential quartet (P, P ′, Q,Q′) and each key. It requires a few memory ac-
cesses for false-positive and 25 memory accesses for correct quartets, which
are negligible in the total effort.

For n = 0 and p = 32, the complexity of one execution of the attack is

T ≈ 226/7 + 2n+p + 2n+p+32 + 2n+2p−65 Enc + 2n+p+33 + 2n+p+32 MA

≈ 264 Enc + 265.6 MA.

Since we propose to execute the attack once again in shifted form, and to
subsequently recover 64 keys bits with exhaustive search, we obtain T ≈ 265

Enc +266.6 MA. The data complexity is 2 · 232 = 233 chosen plaintexts and
2 · 232 · 232 = 265 adaptively chosen ciphertexts. The attack requires memory
for 226 bytes for Hprecomp, 2

32 states for the ciphertexts, a few remaining pairs,
and 264 single- byte key counters. All remaining steps require less memory. The
second execution can reuse existing memory. So, the attack can be implemented
with memory for at most 264 bytes or 260 states.

C Shifted Differentials for the 7-Round Rectangle Attack

SB

SB

SB

SR

SR

SR

MC

MC

MC

K1

K2

K3

T

T

T

S1
SB

S1

S2

S3

S4
SB

SB

SB

SB

SR

SR

SR

MC

MC

MC

K4

K5

K6

T

T

S3

S4
SB

S4

S5

S6
AK

Fig. 15: Shifted upper (left) and lower (right) trails of our boomerang attacks on
7-round Kiasu-BC. Hatched bytes are not traced through SubBytes in Round 4.

35

SB SR

SB

K0

K7

T

T T

S0 S1
SB

S6
AK

S7
AK

S6 S7

Boomerang

Fig. 16: 7-round boomerang attack trail.

36

	Impossible-Differential and Boomerang Cryptanalysis of Round-Reduced Kiasu-BC

