
Farfalle: parallel permutation-based cryptography

Guido Bertoni1, Joan Daemen1,2, Michaël Peeters1, Gilles Van Assche1, and
Ronny Van Keer1

1 STMicroelectronics
2 Radboud University

Abstract. In this paper, we introduce Farfalle, a newmode for building a pseudorandom func-
tion (PRF) from a b-bit cryptographic permutation. The constructed PRF takes as input a b-bit
key and a sequence of variable-length data strings, and it generates a variable-length output. It
consists of a compression layer and an expansion layer, each of them involving the parallel appli-
cation of the permutation. The construction aims for simplicity and efficiency, among others
with the ability to compute it for incremental inputs and with its inherent parallelism. Thanks
to its input-output characteristics, Farfalle is very versatile. We specify concrete modes on top
of it, for authentication, encryption and authenticated encryption, as well as a wide block ci-
pher mode. Farfalle can be instantiated with any permutation. In particular, we instantiate it
with one of the Kђѐѐюј-p permutations, aĴach concrete security claims to it and call the result
Kџюѣюѡѡђ. To offer protection against aĴacks that exploit the low algebraic degree of the round
function of Kђѐѐюј-p, we do domain separation with a particular rolling function that aims at
preventing the construction of input sets that form affine spaces of large dimension.

Keywords: pseudorandom function, permutation-based crypto, Kђѐѐюј

1 Introduction

In symmetric cryptography, a pseudorandom function (PRF) is a function that takes as
input a key and a string (or a sequence of strings), and produces a variable-length output
that looks like independent uniformly-drawn random bits to an adversary not knowing
the key. It is regarded as an important component for its ability to build many other cryp-
tographic functions, such as message authentication codes (MAC), stream ciphers, key
derivation functions and even block ciphers.

In this paper, we introduce Farfalle, a new mode for building a PRF from a b-bit cryp-
tographic permutation. The constructed PRF takes as input a b-bit key and a sequence
of variable-length data strings, and it generates a variable-length output. It consists of a
compression layer and a expansion layer, each of them involving the parallel application of
the permutation. The compression layer, coined Far, applies the permutation to blocks
built from the key, transformed by a rolling function taking the block index, and from data
input, and it (bitwise) adds their outputs in a b-bit accumulator. The expansion layer, coined
Falle, applies for each output block the permutation to the accumulator transformed by
the rolling function taking the block index and adds the key to the result.

Depicted in Figure 1, the construction aims for simplicity and efficiency. It has some
features in common with the sponge construction [4]. As in sponges, the inverse of the
permutation is not used. Also, an interesting feature of sponges is the ability to compute
it for incremental inputs, as performed in the duplex construction [6]. For Farfalle, this is
achieved by reusing the accumulator already computed and adding to it the contribution
of the appended input strings.

Farfalle can be seen as a parallelizable counterpart of the sponge for keyed applica-
tions. Its inherent parallelism can be exploited on many platforms, in particular on mod-
ern processors with single-instruction multiple-data (SIMD) units. Moreover, it can be

made very efficient as the number of rounds in the permutation can be takenmuch smaller
than in sponge-basedmodes, thanks to the fact that in Farfalle an aĴacker never has access
to both the input and the output of a permutation call.

Thanks to its input-output characteristics, Farfalle is very versatile. We specify con-
crete modes on top of it, for authentication, encryption and authenticated encryption, as
well as a wide block cipher mode.

Farfalle can be instantiated with any cryptographic permutation. In particular, we in-
stantiate it with one of the Kђѐѐюј-p permutations, aĴach concrete security claims to it
and call the result Kџюѣюѡѡђ. To offer protection against aĴacks that exploit the low al-
gebraic degree of the round function of Kђѐѐюј-p, we define the caracolle() rolling func-
tion that aims at preventing the construction of input sets that form affine spaces of large
dimension. Reference and optimized code for Kџюѣюѡѡђ will be soon made available in
KђѐѐюјTќќљѠ and in the Kђѐѐюј code package, respectively [8,12].

1.1 Overview of the paper
After introducing notation and conventions in Section 1.2, we specify the Farfalle con-
struction, its immediate application as a PRF and its security claim in Section 2. Then,
in Section 3, we define (authenticated) encryption modes: a synthetic initial value (SIV)
mode for authenticated encryption (AE), a session-supporting AEmode and awide block
cipher. Section 4 gives a rationale for the basic construction and these modes. Section 5
is dedicated to caracolle(), the rolling function that we use in Kџюѣюѡѡђ and that can be
used in conjunction with any permutation that has low algebraic degree. Finally, in Sec-
tion 6 we specify Kџюѣюѡѡђ, a concrete instantiation of Farfalle making use of Kђѐѐюј-p,
the permutation underlying Kђѐѐюј, make a security claim and provide some rationale.

1.2 Notation
The length of a string X is denoted |X|. The concatenation of strings X and Y is wriĴen
as X||Y. The set of bit strings of length n is Zn

2 and the set of strings of any length is Z∗2 .
We denote the first l bits of a string X as ⌊X⌋l . The number of r-bit blocks of a string X is
defined as

|X|r = max
(⌊
|X|
r

⌋
, 1
)

.

A sequence, or chain, of m strings M(0) to M(m−1) is denoted M(m−1) ◦ · · · ◦ M(1) ◦M(0).
The notation deliberately reminds the composition of functions. The set of all chains of at
least one string is (Z∗2)+.

When applied to bit strings, the+ operator is the bitwisemodulo-2 addition (or exclusive-
or). When adding two strings of different lengths, the length of the result is that of the
shorter string. In other words, for X = (x0, . . . , x|x|−1) and Y = (y0, . . . , y|y|−1), the result
Z = X + Y satisfies |Z| = min(|X|, |Y|) and zi = xi + yi in Z2 with 0 ≤ i < |Z|.

We use uppercase characters for variable-length strings and lowercase characters for
fixed-length strings (e.g. b-bit blocks).

2 Specification of the Farfalle construction, PRF and security claim

We define Farfalle as the composition of two auxiliary constructions, called Far and Falle.
The three of them are based on:
– a b-bit permutation f ;
– a rate r in bits;
– a rolling function roll(k, i).

2

k f

M0

k f

M1

k fi

Mi

… …

f

k

Z0

f

k

Z1

f

k

j Zj

Fig. 1. The Farfalle construction

2.1 Rolling function

A rolling function maps Zb
2 ×Rroll to Zb

2, with Rroll = Znroll the set of integers from zero
to some specified limit nroll. We require that for any k ∈ Zb

2, the mapping from i ∈ Rroll to
rollend(k, i) is injective, where rollend(k, i) is equal to roll(k, i) restricted to its last b− r− 2
bits.

The purpose of the rolling function is to yield a sequence of distinct state values, hence
properly domain-separating the different blocks of input and of output. This prevents in
particular an aĴack that would reorder blocks.

In practice, the rolling function can be a function that,when going from i to i+ 1, leaves
the first b− e bits unchanged and applies some invertible transformation to the last e bits,
with e ≤ b− r− 2. The state values restricted to their last e bits form a sequence without
repetition of length at least nroll. This is what we are going to assume in the sequel.

In addition,we informally require that roll(k, i) is as unpredictable as k, so that roll(k, i)
can effectivelywhiten the b-bit state before being input to the permutation f . Furthermore,
it is desired that for any given i ̸= i′, the difference ∆ = roll(k, i) + roll(k, i′) is hard to
predict without knowing k (except of course that ∆ is limited to the last e bits).

2.2 Far-Falle-Farfalle

Far builds a keyed compression function y = Hk(M . . .) that takes as input a key k ∈ Zb
2 and

a chain of at least one string, and that returns a b-bit string. The definition of Far is given
in Algorithm 1. Its output is called the accumulator.

The Far construction enjoys the incremental property: When doingmultiple Far compu-
tations with the same key and on chains with same prefix, the computation on that prefix
can be factored out, i.e.,

Hk

(
M(m) ◦M(m−1) ◦ · · · ◦M(0)

)
= H′k

(
M(m), αm

)
+ Hk

(
M(m−1) ◦ · · · ◦M(0)

)
.

In addition, for any string that keeps its value and stays in the same position, the value of
H′k (M, α) can be reused.

Similarly, we define an auxiliary construction called Falle for building a keyed ex-
pansion function Z = Sk(y, n) based on the same ingredients as Far. The input is a b-bit

3

string and the output is a string of some length n as requested by the caller. There are two
flavours of Falle indicated by an option in the definition: one that truncates the outputs
of f to r bits before concatenating them and one that just concatenates the b-bit outputs.
In the former option, processing on input in Far and output in Falle have equal block-
length and it is therefore called Aligned. In the laĴer option the permutation outputs are
fully used and it is called Full. The construction Falle is defined in Algorithm 2. In our
notation we omit the output length if it is clear from the context. In particular, if we write
X + Sk(y), we assume that the desired output length is |X|.

Farfalle is simply defined as applying Falle to the output of Far, both defined with the
same parameters.We provide the definition in Algorithm 3 and an illustration in Figure 1.

2.3 Pseudorandom function with variable key length

We define a PRF with variable key length making use of Farfalle. It takes as input a secret
key K of variable length, a chain of data strings, and it returns an output of desired length.
It first derives a Farfalle key k ∈ Zb

2 from the key K, making use of Far, and then just
applies Farfalle with k to the chain of data strings. We provide a formal specification in
Algorithm 4. The PRF can be readily used for MAC computation, key derivation and
keystream generation. It naturally inherits the incremental property of Farfalle.

2.4 Expressing security claims

We now give two security claims, one for instances of Farfalle and another for combined
instances of Far and Farfalle. Both are parameterized by the value of the claimed capacity
cclaim and address the case where the key is derived as k = H0b(K).

The first claim is for Farfalle-PRF. It applies also to all modes defined in terms of it.
This includes all modes defined in this document, with the exception of the wide block
cipher mode.

Definition 1. We say that a given Farfalle instance F = Farfalle[f , r, roll,Full] is Farfalle-
secure with claimed capacity cclaim if the following condition is satisfied. Let K = (K0, . . . , Ku−1)
be an array of u secret keys, each with a min-entropy of at least κ bits and with a probability of
collision of at most (u

2)2
−κ, and let ki = H0b(Ki) for 0 ≤ i ≤ u − 1. Then, the advantage of

distinguishing the array of functions Fki(·) with i ∈ Zu fromRO(i, ·), is at most

uN + (u
2)

2κ
+

MN
2cclaim

+
M2

2cclaim+1 . (1)

Here,

– N is the computational complexity expressed in the number of calls to f , and
– M is the online or data complexity expressed in the number of calls to f when computing
the queries to F.

We formulate an additional claim for Far for modes making use of both Farfalle and
Far, such as the wide block cipher defined in Section 3.3.

Definition 2. We say that a pair of Far and Farfalle instances H = Far[f , r, roll] and F =
Farfalle[f , r, roll,Full] is jointly Farfalle-secure with claimed capacity cclaim if, in the same cir-
cumstances as in Definition 1, the probability of distinguishing

(
RO1(∆ + Hki(·)), Fki(·)

)
from

(RO2(i, ·, ∆),RO(i, ·)), with i ∈ Zu and ∆ ∈ Zb
2, is at most the expression given in Eq. (1).

4

Algorithm 1 Definition of Far[f , r, roll]
Single-input: H′ : Zb

2 ×Z∗2 ×N→ Zb
2

Input: key k ∈ Zb
2, data string M ∈ Z∗2 and start index α ∈N (α = 0 by default)

Split M in n = |M|r blocks of r bits M0 to Mn−1, with |Mi| = r for i < n− 1 and |Mn−1| ≤ r
Define pi = Mi||10, for 0 ≤ i < n− 1
Define pn−1 = Mn−1||10∗1, with |pn−1| = r + 2
return H′k(M, α) = ∑0≤i<n f (pi + roll(k, α + i))

Chaining on multiple input strings: H : Zb
2 × (Z∗2)

+ → Zb
2

Input: key k ∈ Zb
2 and data strings M(m−1) ◦ · · · ◦M(1) ◦M(0) ∈ (Z∗2)

+

return Hk

(
M(m−1) ◦ · · · ◦M(1) ◦M(0)

)
= ∑m−1

i=0 H′k
(

M(i), αi

)
, with αi = ∑j<i |M(j)|r

Algorithm 2 Definition of Falle[f , r, roll, option]
S : Zb

2 ×Zb
2 ×N→ Z∗2

Input: key k ∈ Zb
2, secret y ∈ Zb

2, and requested output length n
Initialize Z← empty string, and i← 0
while |Z| < n do

z = k + f (roll(y, i))
if option = Aligned then z← ⌊z⌋r
Z ← Z||z
i← i + 1

end while
return Sk(y, n) = ⌊Z⌋n

Algorithm 3 Definition of Farfalle[f , r, roll, option]
Definitions
H = Far[f , r, roll]
S = Falle[f , r, roll, option]

F : Zb
2 × (Z∗2)

+ ×N→ Z∗2
Input: key K ∈ Zb

2, data strings M(m−1) ◦ · · · ◦M(1) ◦M(0) ∈ (Z∗2)
+ and requested output length n.

y← Hk(M(m−1) ◦ · · · ◦M(1) ◦M(0))

return Fk(M(m−1) ◦ · · · ◦M(1) ◦M(0), n) = Sk(y, n)

Algorithm 4 Definition of Farfalle-PRF[f , r, roll, option]
Definitions
H = Far[f , r, roll]
F = Farfalle[f , r, roll, option]

Key Schedule taking key K ∈ Z∗2 and returning k ∈ Zb
2

k← H0b (K)

Data Path taking key k ∈ Zb
2 and sequence of input strings M(m−1) ◦ · · · ◦M(1) ◦M(0) ∈ (Z∗2)

+, requested
length n and returning Z ∈ Z∗2
return Fk(M(m−1) ◦ · · · ◦M(1) ◦M(0), n)

5

In (1), the first term accounts for the effort to find one of the u secret keys by exhaustive
search, and for the probability that two keys are equal. The second term expresses that
the complexity of recovering the accumulator should be as hard as recovering cclaim secret
bits, when the adversary has access to M output values it can compare to. The third term
expresses that the effort of finding a collision in the accumulator should be as hard as
finding a collision for a random oracle with a cclaim-bit output.

Clearly, the second claim implies the first one.While Definition 1 is a simple PRF claim
on Farfalle-PRF, Definition 2 claims in addition that Far is a PRF after filtering through a
random oracle. To succeed in distinguishing RO1(∆ + Hki(M)) from RO2(i, M, ∆), the
adversary is limited to observing equality in the expression ∆ + Hki(M) for chosen in-
puts (i, M, ∆). In other words, she is successful if she can find outputs with a predictable
difference ∆, i.e., Hki(M) + Hk j(M′) = ∆ for (i, M) ̸= (j, M′).

3 Encryption modes

We now define three (authenticated) encryption modes that make use of Farfalle. Like in
Farfalle-PRF, the key is derived as k = H0b(K) and this step cannaturally be pre-computed
for several uses with the same key.

3.1 SIV authenticated encryption scheme

We define a so-called synthetic initial value (SIV) authenticated encryption scheme [30,24]
making use of Farfalle. It takes as input a secret key K of variable length, plaintext P
and metadata A, all variable-length, and returns a ciphertext C with the same length as
the plaintext and a fixed-length tag T. It first derives a Farfalle key k from a user key K
making use of Far, then computes the tag by applying Farfalle with k to P ◦ A and finally
performs the encryption by adding to P the output of Farfalle with k to T ◦ A. We provide
a formal specification in Algorithm 5.

Algorithm 5 Definition of Farfalle-SIV[f , r, roll, t] with t the tag length
Definitions
H = Far[f , r, roll]
F = Farfalle[f , r, roll,Aligned]

Key Schedule taking key K ∈ Z∗2 and returning k ∈ Zb
2

k← H0b (K)

Wrap taking metadata A ∈ Z∗2 and plaintext P ∈ Z∗2 , and returning ciphertext C ∈ Z
|P|
2 and tag T ∈ Zt

2
T ← 0t + Fk(P ◦ A)
C ← P + Fk(T ◦ A)
return C, T

Unwrap taking metadata A ∈ Z∗2 , ciphertext C ∈ Z∗2 and tag T ∈ Zt
2, and returning ciphertext C ∈ Z

|P|
2

or an error
P← C + Fk(T ◦ A)
T′ ← 0t + Fk(P ◦ A)
if T’ = T then
return P

else
return error!

end if

6

Note that the compression of A in common to both calls to Fk must be done only once,
thanks to the incremental property.

The security of this mode relies on Farfalle-PRF to be a PRF. In addition, it depends on
the length t of the tag T. In general, if the value of A can repeat, then T must be long enough
to make the probability of colliding tags negligible. A collision in T implies that the same
keystream is used to encrypt two different plaintexts, resulting in a confidentiality break.
If the value of A is guaranteed to be a nonce, then the keystream is repeated only if there
is a collision in Hk(T ◦ A).

3.2 Session-supporting authenticated encryption scheme

Wedefine a session-supporting authenticated encryption scheme based on Farfalle, similar to
theMotorist mode [10]. The session keeps track of a history that is presented to an instance
of Farfalle with the key k for generating tags and keystream for encryption/decryption.
Starting a session initializes the history to a nonce N. From then on, messages consist-
ing of metadata A and plaintext P are presented. The wrapping of a message consists
of appending the metadata to the history and encrypting the plaintext by adding to it
the output of Farfalle-PRF applied to the history. Then the ciphertext is appended to the
history and the tag is the output of Farfalle-PRF applied to the history. Unwrapping is
similar. We provide a formal specification in Algorithm 6.

Algorithm 6 Definition of Farfalle-SAE[f , r, roll, t] with t the tag length
Definitions
H = Far[f , r, roll]
F = Farfalle[f , r, roll,Aligned]

Initialization taking key K ∈ Z∗2 and nonce N ∈ Z∗2 , and return tag T
k← H0b (K)
T ← 0t + Fk(N)
history← N
return T

Wrap taking metadata A ∈ Z∗2 and plaintext P ∈ Z∗2 , and returning ciphertext C ∈ Z
|P|
2 and tag T ∈ Zt

2
C ← P + Fk(A ◦ history)
T ← 0t + Fk(C ◦ A ◦ history)
history← C ◦ A ◦ history
return C, T

Unwrap taking metadata A ∈ Z∗2 , ciphertext C ∈ Z∗2 and tag T ∈ Zt
2, and returning ciphertext C ∈ Z

|P|
2

or an error
T′ ← 0t + Fk(C ◦ A ◦ history)
if T′ = T then

P← C + Fk(A ◦ history)
history← C ◦ A ◦ history
return P

else
return error!

end if

Naturally, thanks to the incremental property, an implementation does not have to
maintain the history as a chain of string, but only as a b-bit accumulator. In every call to
Farfalle-PRF only the recently appended string must be compressed.

7

Like in Motorist, the initialization returns a tag that can be sent along with the nonce
(sender) or verified at the beginning of a session (receiver).

3.3 Wide block cipher

We define a tweakable wide block cipher based on Farfalle. The global construction is an in-
stantiation of the HHFHFHmode as presented by Dan Bernstein at the Symmetric Cryp-
tography Dagstuhl seminar in January 2016 [2], that is in turn based on work of Naor and
Reingold [28], that is based on a paper by Stefan Lucks [26], that builds further on work
of Luby and Rackoff [25].

It takes as input a secret key K a plaintext P and a tweak W, all variable-length, and
returns a ciphertext C of same length as the plaintext. It first derives a Farfalle key k from
the key K making use of Far, and then performs a 4-round Feistel network to the plaintext.
The laĴer is split in a left and right part. The functions used in the first and last round apply
Far to a part of the state and the two middle rounds apply Farfalle to part of the state and
the tweak. We provide a formal specification in Algorithm 7.

The function split() splits the plaintext P into a left part L and a right part R in the
following way. Let us denote the length of P in bits by n, the length of the left part by nL
and the length of the right part by nR. split() operates as follows:

– If n < 2r, nR = ⌊n/2⌋ and nL = n− nR.
– If n ≥ 2r, nL = 2xr with x =

⌊
log2

n−r
r

⌋
the largest exponent such that n− 2xr ≥ r. So

L gets the first 2x r-bit blocks of P and R gets the remainder, containing at least one
r-bit block.

Algorithm 7 Definition of encryption in Farfalle-WBC[f , r, roll]
Definitions
H = Far[f , r, roll]
F = Farfalle[f , r, roll,Aligned]

Key Schedule taking key K ∈ Z∗2 and returning k ∈ Zb
2

k← H0b (K)

Encipher taking key k ∈ Z∗2 , tweak W ∈ Z∗2 and plaintext P ∈ Z∗2 and returning plaintext C ∈ Z
|P|
2

(L, R)← split(P, r)
R0 ← R0 + Hk(L ◦ 0), with R0 the first min(b, |R|) bits of R
L← L + Fk(R ◦W ◦ 1)
R← R + Fk(L ◦W ◦ 0)
L0 ← L0 + Hk(R ◦ 1), with L0 the first min(b, |L|) bits of L
return C← L||R

The values of Hk(0) and Hk(1) can be pre-computed together with the key schedule,
at the cost of 2b extra bits of memory. Similarly, the contribution H′k(W, 1) of W to the
accumulator can be shared among the computations of Fk(R ◦W ◦ 1) and of Fk(L ◦W ◦ 0).

4 Rationale and comparison with prior art

We give a rationale for the Farfalle construction in Section 4.1, for the pseudorandom
function mode in Section 4.2, for the SIV authenticated encryption mode in Section 4.3,
for the session-supporting authenticated encryption mode in Section 4.4 and finally for
the wide block cipher in Section 4.5.

8

4.1 Farfalle

A Farfalle function loaded with a secret key k can be distinguished from a random func-
tion in several ways, among others:

– accumulator collision: finding two inputs leading to identical accumulators, or with val-
ues differing only in the last b− r− 2 bits, without guessing k;

– accumulator retrieval: reconstructing its value from the output, without guessing k;
– key retrieval: finding the value of k from input-output pairs.

Finding two inputs M and M′ leading to the same value of the accumulator yields
identical outputs. If the values y, y′ of the accumulator differ only in the last b − r − 2
bits, then there may be some indexes i and i′ such that roll(y, i) = roll(y′, i′) and this
equality results in output block i for input M colliding with output block i′ for input M′.
Clearly, the indexes i and i′ depend on the particular difference in the accumulator and its
absolute value and are hence not known by the aĴacker. It follows that the adversary can
only observe the equality of output blocks if both i and i′ are smaller than the requested
output length for M and M′ respectively.

The difficulty of finding collisions in the accumulator is mostly a security property of
Far and the fact that the accumulator cannot be directly observed in Farfalle. Before being
subject to f , each input blocks pi is whitened with the key k. One may try to apply two
inputs differing only in two blocks. Each of these blocks defines an input differential. The
probability of a collision is then the probability that the output difference is of the form
0r+2||∆. This is directly linked to the differential propagation probabilities of the permu-
tation f with output truncated to its first r + 2 bits. Note that this aĴack involves two
differentials over f , one for each input block. If the input differences are δ and δ′, then the
probability of success is ∑γ DP(δ, γ)DP(δ′, γ)with DP(x, y) the differential probability of
the differential (x, y) over f with output truncated to its first r + 2 bits. One can choose the
input blocks Mi, Mj and M′i , M′j in such a way that they differ very liĴle. In this way, one
can make sure that the difference propagation is synchronous in both differentials. How-
ever, the unpredictability of the difference due to the rolling function makes this difficult
to implement. Another approach would be the application of higher-order differentials.
For this we refer to Section 5.1.

Retrieving the accumulator from the output could bedone by comparing output blocks
for different block indices. The aĴacker does not know the difference between roll(y, i)
and roll(y, i′), but knows that it is limited to the last b− r− 2 bits. A strategy could be to
observe the output difference and to try to reconstruct the accumulator value. This strat-
egy is also directly linked to the difference propagation properties of f , where the input
difference is limited to the last b− r − 2 bits of the input. Determining the accumulator
by other means is made difficult by the fact that the key k is added bitwise to the result of
f before being output.

Finally, finding the value of k from input-output pairs can be seen as a variant to doing
key retrieval in an Even-Mansour [19] cipher, where the permutation consists of two iter-
ations of f . The main difference is that in Farfalle an aĴacker has the additional degree of
freedom of exploiting roll(y, i) to alter the last b− r− 2 bits of the accumulator that forms
the intermediate state in the middle of the permutation.

Informally, the propertieswe require from f are good differential propagation proper-
ties, especially for input differences restricted to the last b− r− 2 bits of the state and some
minimum resistance against higher-order differential aĴacks. Interestingly, between any
input and output, there are two iterations of f . The aĴacker has some additional degrees
of freedom provided by the rolling function in between, but a good choice of the rolling

9

function can greatly limit its exploitability. Furthermore, the use of a rolling function, as
compared to simply bitwise adding the binary encoding of the block index, makes dif-
ferential aĴacks harder since the differences at the input of Falle depend on the absolute
value of the accumulator.

The Farfalle construction reminds of the keyed sponge construction, ofwhich themost
efficient version is the full-width keyed sponge [5,1,27]. It differs in that the keyed sponge
is strictly serial while Farfalle consists of two phases that are by themselves parallel. The
keyed sponge can be duplexed, i.e., incremental inputs can be processed, with conse-
quence that the partial input and output to an underlying permutation f are available
to the adversary. Duplexing works in Farfalle too but in a slightly different manner and
never leads to the input and output of a single call to f being available to the adversary.
This implies that for equal safety margins in Farfalle one can afford to take a permuta-
tion with less rounds than in the keyed sponge. Moreover, in the sponge construction the
(squeezing) rate is limited to b − c with c the capacity. As the capacity determines the
security strength, the sponge construction tends to become less efficient for small permu-
tation widths. In Farfalle one can plug much smaller permutations for the same target
security strength. The rate is limited to b − 2− e with e the number of bits used by the
rolling function. By limiting e, i.e., limiting the total number of blocks that can be pro-
cessed in a single call to a Farfalle function, one can use a large part of b for the rate and
applying Farfalle to permutations as small as 200 bits can still be quite efficient.

4.2 Pseudorandom function

Pseudorandom functions based on Farfalle-PRF can readily be used for MAC compu-
tation, keystream generation, key derivation and as building blocks in more elaborate
schemes. Its computational cost is a single permutation f for seĴing up the key and then
one permutation call per input block and one per output block. We compare to some sim-
ilar MAC modes (seĴing aside the fact that these modes do not support arbitrary-length
outputs):

– Alred [16,18] was one of the first permutation-based modes proposed for MAC com-
putation and is mostly known for the instance Pelican-MAC based on AES [17]. The
main difference with Farfalle-PRF is that it is strictly serial and can therefore not take
advantage of available parallelism (e.g., pipelining in the AES-NI instructions) in re-
sources. On the other hand, it shares with Farfalle-PRF that never an input and output
to a permutation f is available and uses that to reduce the number of rounds in f dras-
tically compared to more generic modes such as CBC-MAC or C-MAC.Moreover, the
output length of Alred is limited to the width of the underlying block cipher and it
does not support multiple input strings.

– PMAC [13] is essentially a block cipher mode for MAC computation. However, Far
is similar to it as it performs the block cipher calls in parallel and (bitwise) adds their
outputs. The input blocks are b bits and before applying the block cipher, their value is
offset by a rolled version (with rolling function based on a Gray code) of a b-bit secret
k derived from the user key K with a block cipher call. The tag is obtained by offseĴing
the accumulator with a rolled version of k and applying the block cipher to the result.

– MARVIN [22,21] is a mode for MAC computation that was inspired at the same time
by Alred and by PMAC and uses a block cipher and a permutation. Far is similar to
the compression phase of MARVIN that applies a permutation to the input blocks in
parallel and (bitwise) adds their outputs in an accumulator. The input blocks to the
permutation calls are formed in a way similar to PMAC, but here a variant of Hugo

10

Krawczyk’s cryptographic CRC [23] is used for rolling. In MARVIN all input blocks
pass through the permutation before being added into the accumulator.Moreover, the
tag is obtained by applying the block cipher to the accumulator offset with the secret
k and some constants coding message and tag lengths.

We can also compare to some stream cipher modes (seĴing aside the fact that these
modes do not support variable-length inputs):

– The counter mode of a block cipher: no distinction is made between the long-term
nonce and the short term block index. Depending on the size of the nonce, an aĴacker
can apply differences of large choice and observe corresponding outputs.

– The mode underlying Salsa and ChaCha [3]: this is very close to counter mode of a
block cipher, where the block cipher is rather of type Even-Mansour. Again the at-
tacker has more degrees of freedom than in Farfalle-PRF. By instantiating Farfalle-
PRF with the Salsa or ChaCha permutation, it is likely that less rounds are needed for
the same safety margin. Due to the fixed cost of two permutation calls (one permuta-
tion call for deriving k from K and one for absorbing the nonce), for short keystreams
Farfalle-PRF would be less efficient. However, starting from a few blocks, this would
be compensated for by the lower number of rounds.

Finally, we can compare to the pseudorandom function HS1 that is used in the CAE-
SAR submissionHS1-SIV [24]. This pseudorandom permutation uses two strongly differ-
ent functions for compression and for expansion: a differentially uniform hash function
for compression andChaCha (in a non-standardmode) for expansion. The expansion part
is purely parallel but the compression part has only limited parallelizability. Farfalle-PRF
has the advantages that it requires only a single permutation, it is in generalmuch simpler
and it takes sequences of input strings rather than a single one, simplifying modes built
on top of it.

4.3 SIV authenticated encryption mode

Our mode Farfalle-SIV is a close variant of the SIV construction [30], mostly for the pur-
pose of keywrapping and thatwas later adopted in theCAESAR submissionHS1-SIV [24].
Themain advantage of Farfalle-SIV in comparison to its two examples is the following. In
the SIV construction, the input consists of onlymetadata A and plaintext P. These are sub-
ject to a first keyed PRF that results in a tag (called IV), which serves as input to a second
keyed PRF for generating the keystream. In case the two inputs have colliding tags, the
same keystream is used to encipher two different plaintexts. In HS1-SIV this is addressed
by having an additional nonce that is input to both PRFs and having a tag collision is only
problematic if also the same nonce is used for both messages.

In Farfalle-SIV there is no dedicated nonce, but themetadata A are input in both PRFs.
So now there is only a problem if there is a tag collision and if the two message have the
same metadata A. This comes no extra cost thanks to the incremental property of Far.

4.4 Session-based authenticated encryption mode

For Farfalle-SAE a comparison with duplex-based session-supporting authenticated en-
cryption seems appropriate. The most recent mode realizing that is the Motorist mode
underlying KђѦюј [10]. Functionally, Farfalle-SAE andMotorist are almost the same. The
difference is in the way this is realized. Motorist supports parallelism but it is limited and
must be determined or negotiated at session setup. Farfalle-SAE on the other hand is fully
parallel for each plaintext P or metadata A.

11

When considering protections against side channel aĴacks, Motorist is at the advan-
tage. The key is only applied at session setup. From that point on, the state evolves and
its value depends on all input received. If nonce uniqueness is respected, state values
for different sessions will be completely decorrelated and a differential power (or elec-
tromagnetic) analysis (DPA/DEMA) aĴack can only be conducted to the session setup
phase. In Farfalle-SAE the key k is applied for each call to f and hence the aĴack surface
for DPA/DEMA is much larger.

4.5 Wide block cipher

The novelty of Farfalle-WBCwith respect toHHFHFH [2] is that thanks to the incremental
property of Far, the compression of the tweak must be done only once.

Anotherwell-known tweakablewide block cipher construction isAEZ-Core proposed
in the CAESAR submission AEZ [20]. It is not easy to compare Farfalle-WBC with AEZ-
Core, as the former is based on permutations and the laĴer on tweakable block cipher.
Although it is hard to measure simplicity, we feel that Farfalle-WBC is a significantly
simpler construction than AEZ-Core.

5 The caracolle() rolling functions

A rolling function takes a b-bit state and transforms its last e bits according to an index i
in a rangeRroll. In this section we propose caracolle(), a type of rolling function for use in
Farfalle if instantiatedwith permutations of relatively low algebraic degree. It can be seen
as variant of the cryptographic CRC introduced in [23], however, with slightly different
objectives. We give some background on higher-order differential aĴacks in Section 5.1,
present the basicmechanism in Section 5.2 and estimate its desired nonlinearity properties
in Section 5.3.

5.1 Impact of the rolling function on higher-order differential aĴacks

For the permutation, we have in mind an iterated permutation with a round function
consisting of a non-linear layer and a linear layer. We wish to limit the algebraic degree
of the non-linear layer to 2 to minimize the overhead due to countermeasures against
side channel aĴacks such as masking or threshold sharing. This has as side effect that an
nr-round permutation only has degree at most 2nr . Permutations of low algebraic degree
are vulnerable to cube and other aĴacks exploiting higher-order differentials. In a higher-
order differential aĴack, one exploits the fact that the (bitwise) sum of the output of a
function of algebraic degree d over a set of inputs ⟨a + vi⟩, with ⟨vi⟩ a vector space of
dimension m, is a function of algebraic degree at most d−m. Often, one can even reduce
this degree by choosing the vector space appropriately.

If there was no rolling function, the input to the permutation f could be chosen freely
modulo the secret key k. The adversary could apply an input of 22nr blocks that forms a
vector space. The resulting value of the accumulator would be a degree-0 function of the
key k and hence a constant independent of it. Naturally, there must be some influence of
the block index in the input of the permutation. We could have simply encoded the index
i in binary form as part of the block pi. In that case too, the adversary could easily form a
vector space with 22nr input blocks. Similarly, if in Falle one could find an affine space of
dimension 2nr in the encodings of the indices, summing the corresponding output blocks
would result in a constant value allowing to mount a distinguishing or keystream predic-
tion aĴack. Clearly, by taking sufficientlly many rounds nr and by limiting the maximum

12

number of blocks in Farfalle these aĴacks can be prevented. On the other hand, techniques
exist to peel off some rounds in the beginnning and the end, so it is appropriate to take
some safety margin.

An interesting countermeasure against higher-order algebraic aĴacks is a rolling func-
tion that prevents forming affine spaces at the input of the permutations in Farfalle. The
property that we wish to have is that {roll(k, i)|i ∈ Rroll} does not contain affine spaces
that have dimension above some limit dimension dlim. The achievable limit dimension
depends on e, the number of bits that roll works on and on nroll = |Rroll|.

We consider the minimum length of a sequence of values {roll(k, j)|i ≤ j < i + n}
starting from some index i that contains an affine space of dimension d and want this to
be high for all i. If a rolling function is injective over n = 2e, then the code comprises all
possible codewords and for n = 2e it contains an affine space of dimension e. However,
if we limit the range of the index to some value nroll < n, it is reasonable to expect the
minimum length of sequences to grow much faster than 2d. We investigate how much
faster in Section 5.3.

5.2 Definition of the caracolle() rolling functions

It turns out that the cryptographic CRC of [23], when applied to the last e bits of a state
is a rolling function with low implementation cost and excellent nonlinearity properties.
We call it caracolle(). For a given rolling function block length e, we limit the index range
Rroll to [0, nroll − 1] with nroll = 2e−x and x a small constant, e.g., x = 4.

Our rolling function simply applies exponentiation in GF(2e): rolling by an index i
corresponds with interpreting the last e bits of the state as a binary polynomial k(x) and
multiplying it with the polynomial xi modulo a primitive polynomial p(x) of degree e.
Hence, the output of the rolling function is

(
k(x)× xi) mod p(x). In order to avoid the

case k(x) = 0, leading to a sequence of equal state values, we set the value of the constant
term in k(x) to 1. We provide a formal specification in Algorithm 8.

Algorithm 8 Definition of caracolle[p(x)], with e the degree of p(x)
Input: state k ∈ Zb

2 and index i ∈ Rroll
Output: state k′

Map last e bits of k to bitstring s: ∀0 ≤ j < e : sj = kb−e+j
Force the first bit of s to 1: s0 ← 1
Convert s to a binary polynomial s(x) = ∑0≤j<e sjxj

s(x)← s(x)× xi mod p(x)
Convert binary polynomial s(x) to bitstring s with sj the coefficient of xj in s(x)
Set k′ = ⌊k⌋b−e||s
return k′ = caracolle(k, i)

The exponentiation can be implemented by a simple Galois-type linear feedback shift
register (LFSR), where the feedback polynomial p(x) is the minimal polynomial of x. The
cells of the feedback register contain the representation of the element with respect to the
basis given by elements 1, x, x2 up to xe−1. For Farfalle, the implementation typically needs
to evaluate roll(k, i) sequentially starting from i = 0. Computing caracolle(k, 0) comes
down to seĴing a bit to 1, and generating caracolle(k, i + 1) given caracolle(k, i) amounts
to a single shift and a bitwise XOR instruction. In implementations that use masking to
protect against side channel aĴacks, thanks to the linearity of this operation it can be
performed on shares separately.

13

5.3 Nonlinearity properties of caracolle()

In this sectionwe estimate theminimum length of sequences of values {caracolle(k, j f)|i ≤
j < i + n} that contain an affine space of dimension d. We start by proving the following
lemma.

Lemma 1. The probability that a random set of 2d vectors of dimension e forms an affine space is

∏0≤i<d 2e − 2i

(2e−1
2d−1)∏0≤i<d 2d − 2i

.

Proof. The total number of possible vector spaces of dimension d of e-bit vectors is (see
e.g. [14])

∏0≤i<d 2e − 2i

∏0≤i<d 2d − 2i .

An affine space is a vector space shifted over an offset. If we select the offset from the
space orthogonal to the vector space, each choice will give another affine space. So we
choose the offset from a space with dimension e− d and hence the total number of affine
spaces of dimension d of e-bit vectors is:

2e ∏0≤i<d 2e − 2i

2d ∏0≤i<d 2d − 2i

The total probability is this expression divided by the total number of different sets of
e-bit vectors of cardinality 2d, namely (2e

2d).

2e ∏0≤i<d 2e − 2i

(2e

2d)2d ∏0≤i<d 2d − 2i
=

∏0≤i<d 2e − 2i

(2e−1
2d−1)∏0≤i<d 2d − 2i

.

⊓⊔

For the sake of our estimationwe assume a sequence of successive LFSR states behaves
like a sequence of different random independent values. A subsequence of length n of the
LFSR states has (n

2d) subsets. These can however not be considered independent. Namely,
the element at position a is xa. The four elements in positions a, b, c, d, form an affine space
if xa + xb + xc + xd = 0. From this it follows that the four elements in positions a + i, b +
i, c + i, d + i for any i also form an affine space as xa+i + xb+i + xc+i + xd+i = xi(xa + xb +
xc + xd. In general, if 2d elements in positions {a0, a1, . . .} form an affine space, this is also
the case for the elements in positions {a0 + i, a1 + i, . . .}. This partitions the (n

2d) subsets of
the length-n in classes and in each class all subsets are affine spaces or none are. Each class
has exactly one member with smallest index equal to 0 and hence we can fix the smallest
index to 0. The total number of classes is hence (n−1

2d−1).
If we assume that modulo this symmetry property, a sequence of LFSR states behaves

like a sequence of different random independent values, the expected number of affine
spaces of dimension d in a subsequence of length n of an e-bit LFSR is:

(n−1
2d−1)∏0≤i<d 2e − 2i

(2e−1
2d−1)∏0≤i<d 2d − 2i

=
(n− 1)(2d−1) ∏0≤i<d 2e − 2i

(2e − 1)(2d−1) ∏0≤i<d 2d − 2i .

14

To get some intuition, we simplify this expression by making a number of approxima-
tions, namely (n − 1)(2d−1) ≈ n2d−1, (2e − 1)(2d−1) ≈ 2e(2d−1) and ∏0≤i<d 2e − 2i ≈ 2ed.
These approximations are justified as long as 2d ≪ 2e and 2d ≪ n. This yields

n2d−1

2(2d−1−d)e ∏0≤i<d 2d − 2i
. (2)

We now define Lmin(p(x), d) as theminimum length of a sequence {caracolle(k, i)|0 ≤
i < n} containing an affine space of dimension d. As explained above, despite this expres-
sion, Lmin(p(x), d) only depends on p(x) and d and is hence independent of both k and
i.

A set of n random vectors is likely to contain an affine space of dimension d if the
expected number as expressed in Equation (2) equals 1.We can nowestimate Lmin(p(x), d)
for some dimensions d and e. We have

Lmin(p(x), d) ≈ 2
(

1− d
2d−1

)
e
(

∏
0≤i<d

(
2d − 2i

)) 1
2d−1

(3)

If we express Lmin(p(x), d) by its logarithm with base 2: Lmin(p(x), d) = 2ν we obtain a
simple expression:

ν ≈
(

1− d
2d − 1

)
e + ϵ(d) ,

with ϵ(d) the binary logarithm of the rightmost term of Equation (3). Clearly, we agree
with John von Neumann that assuming a sequence of successive LFSR states behaves
like a sequence of different random independent values puts us in a state of sin. How-
ever, we have conducted some experiments and it turns out that when we take for p(x)
polynomials that are not too sparse, Equation (3) does a very good job in predicting the
values of Lmin(p(x), d). This can be seen in Table 1 that lists the coefficients for computing
Equation (3) and compares some predicted values with experimental ones.

d 2 3 4 5 6 7(
1− d

2d−1

)
1
3

4
7

11
15

26
31

57
63

120
127

ϵ(d) 0.86 1.06 0.95 0.75 0.54 0.37

e = 13, estimated Lmin(p(x), d) 25.2 28.5 210.5 211.7 212.3 212.7

e = 13, measured Lmin(p(x), d) 25.5 28.5 210.5 211.6 - -

e = 17, estimated Lmin(p(x), d) 26.5 210.8 213.4 215 215.9 216.4

e = 17, measured Lmin(p(x), d) 26.9 210.4 213.3 - - -

e = 29, estimated Lmin(p(x), d) 210.5 217.6 222.2 225 226.8 227.8

e = 29, measured Lmin(p(x), d) 210.2 217.4 - - - -

e = 61, estimated Lmin(p(x), d) 221.2 236 245.7 252 255.7 258

e = 61, measured Lmin(p(x), d) > 219.5 - - - - -

Table 1. Coefficients for estimating Lmin(p(x), d), predicted and estimated values. The
lower bound “> 219.5” is where the scanning program was at the time of writing.

15

6 Kџюѣюѡѡђ: Farfalle based on Kђѐѐюј-p

In this section we present a Farfalle instantiation based on Kђѐѐюј-p, the permutation
underlying Kђѐѐюј, KђѦюј and Kђѡїђ and standardized in FIPS 202 [7,9,10,29].

Kџюѣюѡѡђ is defined as Farfalle[f , r, roll] with the following parameters:

– f = Kђѐѐюј-p[1600, nr = 6],
– r = 1536 bits,
– roll = caracolle[p(x)] with e = 61,
– p(x) = x61 + x60 + x57 + x56 + x53 + x52 + x48 + x45 + x44 + x41 + x40 + x39 + x36 +

x35 + x34 + x33 + x31 + x30 + x29 + x28 + x27 + x25 + x23 + x20 + x18 + x17 + x16 + x13 +
x12 + x11 + x8 + x7 + x2 + x + 1,

– nroll = 256.

We define Kџю and Vюѡѡђ as the compression and expansion layers of Kџюѣюѡѡђ re-
spectively. Functions and schemes based on Kџюѣюѡѡђ follow the same naming conven-
tions as for Farfalle, e.g., Kџюѣюѡѡђ-PRF, Kџюѣюѡѡђ-WBC, etc. The option Full/Aligned is
determined by the mode and otherwise can be chosen by the user.

We aim for at least 128-bit security, with the following claim:

Claim 1 Kџю and Kџюѣюѡѡђ are jointly Farfalle-secure with claimed capacity cclaim = 256 bits.

The choice of r = 1536 aims at maximizing the block size and at allowing the align-
ment of memory addresses on 29 bits, while leaving enough bits for the rolling function.

Since e ≤ b− r − 2 = 62 bits, we have preferred to take e = 61 because 261 − 1, the
order of the multiplicative group of GF(261) and hence the length of LFSR sequences of
primitive polynomials of degree 61, is a prime. We feel this minimizes the risk of regular
structures in the LFSR sequence.

With e = 61, this concretely means that the rolling function caracolle() works on bits
z = 3 (coefficient of 1) to z = 63 (coefficient of x60) in the last lane (at x = y = 4) of the
Kђѐѐюј-p state. In particular, when computing caracolle(k, 0), the bit at z = 3 is set to 1.
The bits at z = 0 and z = 1 in that lane get the padding bits, and the bit at z = 2 is left
alone.

We have chosen the particular polynomial p(x) as follows. We started with the irre-
ducible binary pentanomial of degree 61 with the smallest degree terms: q(x) = x61 +
x5 + x2 + x + 1 (there are no irreducible binary trinomials of degree 61). Then, for α a root
of q(x), we took for p(x) the minimal polynomial of α61.

By taking nroll = 256, Table 1 suggests that the largest affine subspaces that can occur
in the sequence are likely to have dimension 6. The value nroll limits the size of the input in
a call to Kџюѣюѡѡђ to 256 blocks, 3× 265 bits or 12 exbibytes (=12× 10246 bytes). We are not
aware of a practical use casewhere thiswould be limiting. Note that this limit applies only
to the input of a single call. The global limit on data complexity is much higher, bound by
the security claim and captured by the value of M in Definition 1. With cclaim = 256 bits,
the data complexity can go as high as 2128 blocks.

The choice of the number of rounds in the permutation f = Kђѐѐюј-p[1600, nr = 6]
is driven by the rationale of Section 4.1. Between any input and any output of Kџюѣюѡѡђ,
there are always 2nr = 12 rounds,which should be enough to resist against known aĴacks
and in particular against cube aĴacks. Regarding the exploitation of differential proper-
ties, note thatwe showed lower bounds on theweight of any trail inKђѐѐюј-p[1600, nr = 6]
[15].With the unknowndifference induced by the rolling function in the lane at x = y = 4,
we expect its propagation to be very fast since it is outside of the so-called column parity
kernel [7].

16

We do not have performance figures available yet. One can nevertheless look at the
performance of KюћєюџќќTѤђљѣђ for the cost of 12 rounds when exploiting parallelism
on modern processors [11], and to extrapolate it to 6 rounds. Of course, this gives a crude
estimation, as on top of the time needed to compute the 6 rounds of Kџю (per input block)
and the 6 rounds of Vюѡѡђ (per output block), there is also the time needed to evaluate the
rolling function. Also, the block size is different and at the advantage of Kџюѣюѡѡђ, i.e.,
r = 1536 vs r = 1344 for KюћєюџќќTѤђљѣђ.

7 Conclusions

Farfalle is a versatile new construction for keyed functions in symmetric cryptography
based on a permutation. It can be seen as an inherently parallelizable counterpart of
sponge/duplex. It can beĴer exploit resources available on high-end CPUs such as SIMD
instructions. Yet, the sponge remains the best choice for unkeyed hashing and full-state
keyed duplex for keyed applications in embedded platforms where dedicated hardware
can be afforded or where DPA/DEMA-type side-channel aĴacks are a threat.

Acknowledgements:We would like to thank Monika Seidlová for her investigations
on higher-order differential aĴacks, Kay Lukas for his investigations of rolling functions
and Joost Renes for his help on finite fields.

References

1. E. Andreeva, J. Daemen, B.Mennink, andG. VanAssche, Security of keyed sponge constructions using a mod-
ular proof approach, Fast Software Encryption - 22nd International Workshop, FSE 2015, Istanbul, Turkey,
March 8-11, 2015, Revised Selected Papers (Gregor Leander, ed.), Lecture Notes in Computer Science,
vol. 9054, Springer, 2015, pp. 364–384.

2. D. Bernstein, Some challenges in heavyweight cipher design, 2016, Presented at Dagstuhl seminar on Sym-
metric Cryptography. Schloss Dagstuhl.

3. D. J. Bernstein, The Salsa20 family of stream ciphers, 2007, Document ID:
31364286077dcdff8e4509f9ff3139ad, http://cr.yp.to/papers.html#salsafamily.

4. G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, On the indifferentiability of the sponge construction,
Advances in Cryptology – Eurocrypt 2008 (N. P. Smart, ed.), Lecture Notes in Computer Science, vol.
4965, Springer, 2008, http://sponge.noekeon.org/, pp. 181–197.

5. , Cryptographic sponge functions, January 2011, http://sponge.noekeon.org/.
6. , Duplexing the sponge: single-pass authenticated encryption and other applications, Selected Areas in

Cryptography (SAC), 2011.
7. , The Kђѐѐюј reference, January 2011, http://keccak.noekeon.org/.
8. G. Bertoni, J. Daemen, M. Peeters, G. Van Assche, and R. Van Keer, KђѐѐюјTќќљѠ software, September

2015, https://github.com/gvanas/KeccakTools.
9. , CAESAR submission: Kђѡїђ v2, September 2016, http://ketje.noekeon.org/.
10. , CAESAR submission: KђѦюј v2, document version 2.2, September 2016, http://keyak.noekeon.

org/.
11. , KюћєюџќќTѤђљѣђ: fast hashing based on Kђѐѐюј-p, Cryptology ePrint Archive, Report 2016/770,

2016, http://eprint.iacr.org/2016/770.
12. , Kђѐѐюј code package, June 2016, https://github.com/gvanas/KeccakCodePackage.
13. J. Black and P. Rogaway, A block-cipher mode of operation for parallelizable message authentication, Advances

in Cryptology - EUROCRYPT 2002, International Conference on the Theory and Applications of Crypto-
graphic Techniques, Amsterdam, The Netherlands, April 28 - May 2, 2002, Proceedings (L. R. Knudsen,
ed.), Lecture Notes in Computer Science, vol. 2332, Springer, 2002, pp. 384–397.

14. C. Bouillaguet, Etudes d’hypothèses algorithmiques et aĴaques de primitives cryptographiques, thèse de doctorat,
Université Paris Diderot, 2011.

15. J. Daemen and G. Van Assche, Differential propagation analysis of Kђѐѐюј, Fast Software Encryption 2012,
2012.

16. J. Daemen and V. Rijmen, A new MAC construction ALRED and a specific instance ALPHA-MAC, Fast Soft-
ware Encryption (H. Gilbert and H. Handschuh, eds.), Lecture Notes in Computer Science, vol. 3557,
Springer, 2005, pp. 1–17.

17

http://cr.yp.to/papers.html#salsafamily
http://sponge.noekeon.org/
http://sponge.noekeon.org/
http://keccak.noekeon.org/
https://github.com/gvanas/KeccakTools
http://ketje.noekeon.org/
http://keyak.noekeon.org/
http://keyak.noekeon.org/
http://eprint.iacr.org/2016/770
https://github.com/gvanas/KeccakCodePackage

17. , The Pelican MAC function, IACR Cryptology ePrint Archive 2005 (2005), 8.
18. , Refinements of the ALRED construction and MAC security claims, IET information security 4 (2010),

149–157.
19. S. Even and Y. Mansour, A construction of a cipher from a single pseudorandom permutation, J. Cryptology 10

(1997), no. 3, 151–162.
20. Viet Tung Hoang, Ted Kroveĵ, and Phillip Rogaway, Robust authenticated-encryption AEZ and the problem

that it solves, Advances in Cryptology - EUROCRYPT 2015 - 34th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings,
Part I (ElisabethOswald andMarc Fischlin, eds.), LectureNotes in Computer Science, vol. 9056, Springer,
2015, pp. 15–44.

21. Marcos A. Simplício Jr. and Paulo S. L. M. Barreto, Revisiting the security of the ALRED design and two of
its variants: Marvin and leĴersoup, IEEE Trans. Information Theory 58 (2012), no. 9, 6223–6238.

22. Marcos A. Simplício Jr., Pedro d’Aquino F. F. S. Barbuda, Paulo S. L. M. Barreto, Tereza Cristina M. B.
Carvalho, and Cintia B. Margi, The MARVIN message authentication code and the LETTERSOUP authenti-
cated encryption scheme, Security and Communication Networks 2 (2009), no. 2, 165–180.

23. H. Krawczyk, LFSR-based hashing and authentication, Advances in Cryptology - CRYPTO ’94, 14th Annual
International Cryptology Conference, Santa Barbara, California, USA, August 21-25, 1994, Proceedings
(Y. Desmedt, ed.), Lecture Notes in Computer Science, vol. 839, Springer, 1994, pp. 129–139.

24. Ted Kroveĵ, HS1-SIV (v2), 2015, Submission to CAESAR competition.
25. Michael Luby and Charles Rackoff, How to construct pseudorandom permutations from pseudorandom func-

tions, SIAM J. Comput. 17 (1988), no. 2, 373–386.
26. Stefan Lucks, Faster Luby-Rackoff ciphers, Fast Software Encryption, Third International Workshop, Cam-

bridge, UK, February 21-23, 1996, Proceedings (Dieter Gollmann, ed.), Lecture Notes in Computer Sci-
ence, vol. 1039, Springer, 1996, pp. 189–203.

27. B. Mennink, R. Reyhanitabar, and D. Vizár, Security of full-state keyed sponge and duplex: Applications to
authenticated encryption, Advances in Cryptology - ASIACRYPT 2015, New Zealand, 2015 (T. Iwata and
J. H. Cheon, eds.), LNCS, vol. 9453, Springer, 2015, pp. 465–489.

28. M. Naor and O. Reingold,On the construction of pseudorandom permutations: Luby-Rackoff revisited, J. Cryp-
tology 12 (1999), no. 1, 29–66.

29. NIST, Federal information processing standard 202, SHA-3 standard: Permutation-based hash and extendable-
output functions, August 2015, http://dx.doi.org/10.6028/NIST.FIPS.202.

30. Phillip Rogaway and Thomas Shrimpton, Deterministic authenticated-encryption: A provable-security treat-
ment of the key-wrap problem, IACR Cryptology ePrint Archive 2006 (2006), 221.

18

http://dx.doi.org/10.6028/NIST.FIPS.202

	Farfalle: parallel permutation-based cryptography

