Superscalar Encrypted RISC

A Secret Computer in Simulation

Peter T. Breuer! and Jonathan P. Bowen?

! Hecusys LLC, Atlanta, GA; Peter.T.Breuer@gmail.com
2 London South Bank University, London, UK

Abstract. It suffices to change the arithmetic embedded in a processor
in order to cause data to remain in encrypted form throughout. The the-
ory has been embodied in a prototype design for a superscalar pipelined
general purpose processor that ‘works encrypted’, a new approach to
encrypted computation.

The prototype runs encrypted machine code on encrypted data in regis-
ters and memory and on buses. The aim is to protect user data against
the operator, and so-called ‘lago’ attacks in general, for those comput-
ing paradigms that entail trust in data-oriented computation in remote
locations, overseen by untrusted operators, or embedded unattended.
The architecture is 32-bit OpenRISC, admitting any block cipher com-
patible with the physical word size chosen for implementation. We are
reporting performance from cycle-accurate behavioural simulations of the
design running AES-128 (symmetric, keyed; the US Advanced Encryp-
tion Standard) and Paillier-72 (asymmetric, additively homomorphic, no
key in-processor) encryptions in a 128-bit word, and RC2-64 encryption
(symmetric, keyed) in a 64-bit word.

1 Introduction

If the arithmetic in a conventional processor is modified appropriately, then,
given certain provisos, the processor continues to operate correctly, but all its
states are encrypted [14]. It can be impossible for even the privileged operator
to infer data or to intentionally alter the result of encrypted programs running
in such a processorAPP* A4 The theory opens a path towards engineering a pro-
cessor that may run ‘profoundly encrypted’ at near the speed of a conventional
processor, because in principle only one piece of stateless logic in the processor,
the arithmetic logic unit, need be changed with respect to a standard design.
Data and data addresses in memory, registers and on buses, etc., start encrypted
and stay encrypted.

That account should seem counter-intuitive to an engineer who knows that
a tiny change in a computer program, or a minor bug in a hardware unit, can
give rise to catastrophically wrong program results. Changing all the arithmetic
should be inherently dangerous: in a processor that works encrypted, not even
4 may be added as-is to a memory address to get the address of the next word
along. Indeed, the encryption of a given value is not unique, but varies during

processing, and that should give rise to unease, because adding even an encrypted
0 to an encrypted memory address may mutate its encrypted value, and the —
here entirely conventional — memory has no knowledge of the encryption that
may be employed in order to discount that change.

A sequence of cycle-accurate behavioural models of encrypted processors have
been designed, built and tested in order to (i) demonstrate that the theory is
right, and (ii) explore the limits of applicability. With respect to (ii), a priori it
was not known if any conventional instruction set architecture would be com-
patible with encrypted running, and now it is known, it is still certain not every
program can run encrypted — compilers and other programs that arithmetically
transform the addresses of program instructions (as distinct from addresses of
program data) are theoretically impossible [15], and exploration of which appli-
cations can run encrypted has only begun. So far the largest application suite
ported is 22000 lines of C 3, but it and every other application ported (now
approx. fifty) has worked well.

The models have provided measures for guidance and feedback throughout,
and some are reported in Section 5. Performance-driven development has enabled
the identification of inefficiencies and the derivation of an architecture that works
measurably well. There are obstacles — for example, encrypted code is longer, and
byte and half-word accesses are implemented arithmetically — that mean that
encrypted running should be slower than unencrypted, and the question is by
how much. Numbers help a potential user of the technology decide between speed
and security, which means designing for speed from a secure starting point. But
prototyping has also encouraged the articulation of design principles that cause
the hardware to behave securely independently of the expression [18], without
which an encrypted processor would be full of bugs and vulnerabilities.

Simulation. The OpenRISC ‘Orlksim’ simulator (http://opencores.org/orik/
Orlksim) has been modified to run our processor models. It is now a cycle-
accurate simulator, 800,000 lines of finalised C code having been added over
two years real time (25 years SE effort), through a sequence of eight pro-
totype processor models. The source code archive and history is available at
http://sf.net/p/oriksim64kpu.

Instruction set. The current design runs the 32-bit OpenRISC instruction set
(see openrisc.org) encrypted (opcodes are not encrypted), leaving no doubt
that the design is capable of general purpose computation, which might be ques-
tioned if the instruction set were less conventional.

Encryption. The processor has been adapted for Rijndael-64 and -128 sym-
metric ciphers (the latter is the US Advanced Encryption Standard (AES) [3]),
as well as RC2-64 [21] and Paillier-72 [28], an additively homomorphic cipher
that runs without keys in the processor. In principle any block cipher with a
compatible block size is feasible.

3 The IEEE floating point test suite from http://www.jhauser.us/arithmetic/
TestFloat.html.

Toolchain. Existing GNU ‘gec’ v4.9.1 compiler (github.com/openrisc/orlk-gcc)
and ‘gas’ v2.24.51 assembler (github.com/openrisc/orik-src/gas) ports for
the OpenRISC 1.1 architecture have been adapted. The modified code is at
sf .net/p/orik64kpu-gcc and sf.net/p/orlk64kpu-binutils.

Limits. The designs tested have 64-bit and 128-bit physical word sizes, which
means 64/128-bit registers, buses, memory accesses and encryption block size,
but that is not a limit. Word widths up to 2048 bits are contemplated with
current technology, if memory accesses are paralleled to maintain the transfer
rates that are tested with the 64/128 designs (nominally 15ns per memory access
and 3ns cache access).

Configuration. Tests are centered about a 15-stage pipeline configuration, 10
stages of which are for the modified arithmetic, but between 1 and 20 arithmetic
stages have been explored. Simulations run a nominal 1GHz clock. The mem-
ory and cache access times in the parenthesis above are arbitrarily adjustable for
testing. For Paillier-72 encryption the arithmetic is 72-bit multiplication modulo
a 72-bit number, feasible in 7 to 20 stages. But at 2048 bits Paillier arithmetic
would seem to need improbably long pipes — nevertheless, the closest contem-
porary design to ours is HEROIC [33, 34], a stack machine running encrypted
with a ‘one instruction’ machine code (the ‘OI’) prototyped with 2048-bit words
encrypting 16 bits of data each. It does do the 2048-bit Paillier arithmetic in
hardware, so it is possible.

Key management. There is no circuit to read keys once in the processor (if
keys are needed for the encrypted arithmetic, which is the case for AES), where
they configure hardware function. Keys will be embedded at manufacture, as
with Smart Card technologies [22] or introduced via a Diffie-Hellman circuit [2]
or equivalent that loads the key in public view without revealing it to even a
privileged observer.

Key management is then a business question, because there are no conse-
quences of running with the wrong key: if user A runs with user B’s key, user
A’s program will produce rubbish, as the processor arithmetic will be meaning-
less with respect to it; if user A runs user B’s program with user B’s key, then
the output will be encrypted for user B’s key, and the input will need to be
encrypted in user B’s key, which user A can neither supply nor understand. The
situation is at its worst when one of A and B is the privileged operator, and the
other is an ordinary user, but that is precisely what the platform is intended to
defend the user against. So the consequences of key mismanagement are already
defended.

The organisation of this article is as follows. After reviewing the competition
in Sections 2&3, the architecture is described in Section 4 and performance in
Section 5.

2 Related work

The only comparable contemporary is HEROIC [33, 34], running 16-bit arith-
metic in Paillier-2048 encryption on a stack machine architecture. While stack

machines are different from conventional von Neumann architectures, there have
been hardware prototypes [11,30] as recently as a decade ago in connection
with Java bytecode, though apparently none in the interval. HEROIC replaces
the standard 16-bit addition by multiplication of 2048-bit encrypted numbers
modulo a 2048-bit modulus m. The Paillier encryption £ fits with that be-
cause it has the ‘homomorphic’ property that multiplying the encrypted numbers
E(z)*&(y) mod m is the same as adding the unencrypted numbers z +y mod 2*¢:

E(x) * E(y) mod m = E(x + y mod 2'%) (1)
In generalised form, as

E(z) op' E(y) = E(x op y) (2)

for some equivalence relation ‘=, that is the property required in [14] of a mod-
ified arithmetic operation op’ for correct working of an encrypted processor, so
the theory of [14] also covers HEROIC. Both arithmetic and encryption may be
varied when (2) governs the design, which is why our architecture may work with
very different block encryptions, ranging from AES to Paillier. Also, while the
HEROIC encryption £ as per (1) is deterministic (one-valued), (2) admits non-
deterministic (many-valued) encryptions £, which is best practice for encryption,
and followed in our design.

There are intrinsic complications with Paillier, however. A lookup table is re-
quired to detect signed overflow, and while that is very feasible for the HEROIC
16-bit arithmetic and deterministic encryption, it is less so for our 32-bit arith-
metic and nondeterministic encryption, requiring design tradeoffs to make it
possible. And while HEROIC does encrypted subtraction with a second lookup
table, it is done dynamically in our design, exchanging the table size burden for
slower subtraction.

Encrypted multiplication (and other operations) must be replaced by (en-
crypted) software under Paillier. The selling point of Paillier, however, is that
(1) means that the modified arithmetic in the processor needs no keys. There is
nothing to hide, and nothing to be seen even by a physical probe. Customers
will trade-off processor speed for that.

3 Other work

Intel. Intel’s SGX™ (‘Software Guard eXtensions’) processor technology [1] is
often cited in relation to secure or encrypted computation in the Cloud, because
it enforces separations between users. However, the mechanism is key manage-
ment to restrict users to different memory ‘enclaves’. While the enclaves can
be encrypted because there are codecs (encryption/decryption units) available
on the memory path, that is encrypted and partitioned storage rather than en-
crypted computing, a venerable idea [12,13].

Nevertheless, SGX machines are often used [31] by cloud service providers
where the assurance of safety is a selling point. But the assurance is founded

ALU = |
< ‘ Read |Execute| Write }7
. . User
' User Codec/Homomorphic arith. }» ’ Mode
PC Instruction |0 Data Cache |Data
Cache Cache L. Cache
F Hash : T
t — [User
Shadow - ¥[ﬁ)§é
Instruction Registers | Registers Data < TLB
Memory Memory -

Fig. 1. Pipeline integration with functional units.

in the customer’s trust in electronics designers ‘getting it right’ rather than
mathematical analysis and proof, as with our and HEROIC’s technologies. There
are subtle ways for engineering to give away the secret of an encryption.

IBM. IBM’s efforts at making practical encrypted computation using very long
integer lattice-based fully (i.e., additively and also multiplicatively) homomor-
phic ciphers based on Gentry’s 2009 discovery [5] also deserve mention. Such
ciphers £ extend the equation (1) true for Paillier to cover multiplication as well
as addition. However, it is single bit arithmetic, not 16- or 32-bit arithmetic
under the encryption. The single bit operations currently take of the order of a
second each [6] on customised vector mainframes with a million-bit word size,
but it may be that newer fully homomorphic ciphers based on matrix addition
and multiplication [7] will eventually turn out to be more amenable. This is not
going to be capable of full-blown general purpose computation in any case, just
certain finite calculations.

Cloud. Processors aimed at ‘encrypted computation’ (meaning homomorphi-
cally encrypted calculation, usually) in the Cloud (e.g., Ascend [4]) exist too,
but their computation is not encrypted but obfuscated, partly as described be-
low.

Moat electronics. Classically, information may leak indirectly via processing
time and power consumption, and ‘moat technology’ [20] to mask those channels
has been developed for conventional processors. The protections may be applied
here (and to HEROIC) too, but there is really nothing to protect in terms
of encryption as encrypted arithmetic is done in hardware, always taking the
same time and power. There are separate user- and supervisor-mode caches, and
statistics are not available to the other mode, so side-channel attacks based on
cache-hits [35,36], are not available.

Oblivious RAM. At the component level, ‘oblivious RAM’ [24, 26, 27] and
its recent evolutions [23,25]) is often cited as a defense against dynamic mem-
ory snooping. That is in contrast to static snooping, so-called ‘cold boot’ at-

tacks [8,9,32] — essentially, physically freezing the memory to retain the memory
contents when power is removed, against which HEROIC, SGX and our tech-
nology automatically defend because memory contents end up encrypted; the
address distribution is also uncorrelated in our case. An oblivious RAM remaps
the logical to physical address relation dynamically, taking care of aliasing, so ac-
cess patterns are statistically impossible to spot. It also masks the programmed
accesses in a sea of independently generated random accesses. However, it is no
defense against an attacker with a debugger, who does not care where the data
is stored, and therefore provides no defense against the operator and operating
system, which our technology can be proved to do. However, some ‘oblivious’
behaviour is already in our design, because data addresses are (nondeterminis-
tically) encrypted and will vary (indeed, the logical to physical translation may
be deliberately remapped at every write to an address). Compiling correctly in
part means taking account of that [15,16].

4 Architecture

Modes. In user mode, the processor runs on encrypted data and executes the
32-bit part of the OpenRISC 32/64-bit instruction set. In supervisor mode it
runs unencrypted and may execute all instructions. Here ‘64-bit’ refers to the
arithmetic; instructions are 32 bits long. A 64-bit instruction raises an ‘illegal
instruction’ exception in user mode. User mode has access to 32 general pur-
pose registers (GPRs), and some special purpose registers (SPRs). Attempts to
write ‘out of bounds’ SPRs are silently ignored in user mode, and zero is read.
User mode (encrypted) coverage of OpenRISC 32-bit integer and floating point
instructions is complete.

In supervisor mode access to available registers is unrestricted. There is no
division of memory into ‘supervisor’ and ‘user’ parts, so a supervisor mode pro-
cess can read user data in memory, but the user data will be in encrypted form.
The same holds with respect to registers.

Prefix. A prefiz instruction has been added to the instruction set to carry en-
crypted immediate data that would otherwise not fit in a 32-bit instruction. Two
prefixes are needed for encryptions with 64-bit (and 72-bit) block size, and four
prefixes for encryptions with a 128-bit block size, such as AES-128. Compiler
strategy should differ with encryption to deprecate storing data in the instruc-
tion in favour of reading it from memory, and that it does not makes comparison
between encrypted and unencrypted running difficult.

Pipeline. The instruction pipeline in (unencrypted) supervisor mode is the stan-
dard short 5-stage fetch, decode, read, execute, write pipeline expected of a RISC
processor [29]. In (encrypted) user mode that is embedded in a longer pipeline
containing the encrypted arithmetic stages.

The pipeline is configured in two ways, ‘A’ and ‘B’, for encrypted running as
shown in Fig. 2 (stage hardware is doubled where required). The reason is that,
for AES and other symmetric encryptions, a multi-stage codec (configured by an
encryption key) is required for the arithmetic. In order to reduce the frequency

@ f o

Read < Write

A ‘ Fetch ‘ Decode

Execute

B Fetch Decode| < ‘ Read | Execute

S

Fig. 2. The pipeline is configured in two different ways, ‘A’ and ‘B’, for two different
kinds of user mode instructions during encrypted working.

Write

with which the codec is used, ALU operation is eztended in the time dimension,
so that it covers a series of consecutive (encrypted) arithmetic operations in user
mode. The first of the series is associated with a decryption event and the last
with an encryption event. Longer series mean less frequent codec use. The ‘A’
configuration is for when codec use must follow arithmetic, the ‘B’ configuration
for codec before arithmetic.

The ‘A’ configuration is used for store instructions (put an encrypted result
into memory) and load instructions (decrypt incoming data from memory). The
‘B’ configuration is used for instructions with immediate data, which must be
decrypted before use. Load and store do not contain immediate data in this
variety of OpenRISC, the displacement value from the base address is always
zero. Instructions that do not need the codec at all pass through in ‘A’ con-
figuration, because the early execution is advantageous for pipeline forwarding,
avoiding stalls. For AES, the codec covers 10 stages, meaning 10 clock cycles per
encryption/decryption.

Shadow. In support, the ALU has a private set of user-mode-only registers that
‘shadow’ the GPRs (and the few SPRs accessible in user mode) (Fig. 1). These
cache the decrypted version of the encrypted data in the ‘real’ GPRs and SPRs,
enabling arithmetic to be carried out unencrypted. The shadow registers are
aliased-in for user mode instructions, and aliased out for supervisor mode in-
structions, so they are unavailable to supervisor mode. Changing the encryption
key (if there is one) empties the shadow registers. Otherwise there is no harm in
changing from user A to user B without emptying the shadow registers across
an interrupt, as argued in Section 1: on output the data is always in user A’s
encryption, which user B cannot read. The protocol is proved in [18] to prevent
supervisor mode accessing data unencrypted that originated in user mode, and
vice versa.

Some supervisor-mode only SPRs have shadow registers. On interrupt GPRs
may be copied to these by the supervisor-mode handler and copied back on
handler exit, resulting in user-mode context being saved and restored invisibly.

User-mode status flags in the processor status register are treated similarly, so
supervisor mode never sees user-mode flags.

User data cache. A small user-mode-only data cache retains the unencrypted
version of any encrypted data that is written to memory during user mode oper-
ation. On load from memory, the cache is checked first. The cache is physically
within the processor boundary, so is covered by the processor chip protections
from spying or interference (e.g., Smart Card-like fabrication [22], and ‘moat’
electronics [20]).

User instruction cache. Instructions treated in ‘B’ configuration have had
their immediate data decrypted (for AES and symmetric encryptions in general).
The decrypted instructions are cached in a user-mode-only instruction cache, so
on a second encounter no decryption is required. The same trick is worked in [10],
except cache is shared with supervisor mode there. The caches are flushed on
key change.

Address convention. Program addresses are unencrypted (it is data addresses
that are encrypted), which potentially is a source of confusion in design. A
convention handles the issue: unencrypted 32-bit addresses zero-filled to full
length are the ‘encrypted’ form, and they are ‘decrypted’ to an ‘unencrypted’
form consisting of the same data with the top bits rewritten to Ox7fff An
instruction such as jump-and-link (JAL) in user mode, which fills the return
address (RA) register with the program address of the next instruction, writes
the zero-filled address to the real RA register, and the 7fff form to the shadow
RA register. The padding or blinding associated with encryption avoids both
forms.

TLB. A ‘translation look-aside buffer’ (TLB) organised by pages is not appro-
priate in user mode, because encrypted addresses do not cluster, so the user
mode TLB (unavailable in supervisor mode) is organised with unit granularity,
which means 128 extra bits of location data for each encrypted word. Further,
all encrypted addresses are first remapped internally by the TLB to a pre-set
range with the allocation ordered by ‘first-come, first-served’. Since data that
will be accessed together tends also to be addressed together for the first time,
this allows cache readahead to be effective.

Addressing hacks. It has turned out to be possible for AES and other sym-
metric ciphers to pass the unencrypted data address to the memory unit for load
and store instructions, with no additional processing. We are nervous of the se-
curity implications, so we do not suggest that that should be done. However, the
bare 32-bit address can be hashed or encrypted differently, and hashing is being
experimented with. The advantage is that global data can then easily be loaded
into memory from file by a program loader running in supervisor mode using
the hash as address. It is stored in-file with the encrypted data. If the encrypted
address were kept instead, the loader would have to run partly in user mode,
as a program ‘prequel’, and it is not clear how that could work. The problem is
avoided by not allocating any global (‘heap’) data in high-level program source,
allocating it on the stack instead. That solution is currently preferred.

5 Performance

The original Orlksim OpenRISC test suite codes (written mostly in assembler)
have established solid benchmarks for encrypted running across years of develop-
ment now. Most modern performance suites are practically infeasible to compile
because they rely on external library support such as linear programming pack-
ages and maths floating point libraries, as well as standbys such as ‘printf’ that
must be written and debugged. If those could be ported to compilable code in
good time, debugging would take months more (the original OpenRISC gce com-
piler has its known bugs, such as sometimes not doing switch statements right,
sometimes not initialising arrays right, etc.). Some standard but less evolved
benchmarks are running, such as Dhrystone 2.1.

Table 1 details performance in the instruction set add test of the suite, with
RC2 64-bit symmetric encryption, repeating the 2016 test in [18] for comparison.
The 64:16:20 mix for arithmetic:load/store:control instructions in user mode
(no-ops and prefixes discarded) is approximately the 60:28:12 in the standard
textbook [19], so the results are not atypical.

At the time of the earlier test, the program spent 54.8% of the time in user
mode, and 52.7% now, which is a 4% (i.e., 2.1/54.8) speed-up in the encrypted
running. At the nominal 1GHz clock, pipeline occupation is now 1—20.7/52.7 =
60.7%, for 607Kips (instructions per second). That counts no-ops and prefixes
too, which are not functional.

The same test with Paillier-72 on the 128-bit architecture shows much worse
performance (Paillier does some arithmetic in software, hence the column 2 dif-
ferences here):

add test cycles instructions
RC2 (64-bit)|296368 222006
Paillier-72 [438896 226185

The difference is due to more pipeline stalls, not the longer word: running RC2-
64 on the 128-bit model gives near the same figures. Paillier arithmetic takes the
length of the pipeline to complete, stalling following instructions that need the
result as much as 11 stages behind. The disparity is more marked on multipli-
cation, which Paillier does in software:

mul. test cycles instructions
RC2 (64-bit)|235037 141854
Paillier-72 |457825 193887

Performance with symmetric encryptions is very sensitive to data-forwarding
in the pipeline. This table shows that 33% of processor speed is due to forwarding,
while on-the-fly instruction reordering gives only another 3%:

add test forwarding
RC2 (64-bit) cycles] v [X
v 296368 412062
X 315640 441550

reordering

Table 1. Baseline RC2 (64-bit symmetric encryption) performance, Orlksim ‘add test’:
proportion finishing per cycle.

’ RC2: cycles 296368, instructions 222006 H per cycle

mode user| super

. . register instructions 0.2%| 0.2%
arithmetic {

immediate instructions 7.8%| 9.8%
load instructions 1.0%| 3.0%
aemory { store instructions 1.0%| 0.0%
branch instructions 1.1%| 5.2%
control

jump instructions 1.2%| 5.1%

sys/trap instructions 0.5%| 0.0%

no-op instructions 7.3%| 16.8%

prefix instructions|| 11.8%| 0.0%

move from/to SPR instructions 0.1%| 2.8%

wait states|| 20.7%| 4.4%
(stalls) || (17.4%)|(3.7%)
(refills) || (1 3-3%)[(0.7%)

total|| 52.7%| 47.3%

Branch Prediction Buffer
hits|10328 (55%)|| misses|8219 (44%)
right| 8335 (44%)|| right|6495 (35%)
wrong| 1993 (10%)|| wrong| 1724 (9%)
User Data Cache

read hits| 2942 (99%)|| misses 0 (0%)
write hits| 2933 (99%)|| misses 9 (0%)

In contrast, Paillier shows little sensitivity to forwarding: expected because an
arithmetic result is not available before the penultimate stage. The only way to
speed up Paillier appears to be to compile multithread programs, so there may
be instructions behind that can overtake a stalled instuction.

Since the 2016 account (a) instructions with trivial functionality in the exe-
cute phase (e.g., ‘cmov,” the ‘conditional move’ of one register’s data to another)
but stalled in read stage have been allowed to proceed and pick up the data via
forwarding later; (b) the fetch stage has been doubled to get two per cycle and
catenate prefixes to the instruction instead of taking pipeline slots; (c) a second
pipeline has been introduced to speculatively execute both sides of a branch.

‘Flexible staging’ (a) takes the cycle count down from 296368 to 259349 cycles
on its own. Innovations (b) and (c¢) then contribute as follows:

400000

350000 - } : IR, aae
300000 | : e : -
250000 [t : : -

200000 - ? ? § -

Cycles

150000 : : : e
100000 | f f f .

50000 | | | | -

0 i i i i
0 5 10 15 20

Codec stages

Fig. 3. Number of executed cycles with symmetric encryption against number of stages
(cycles) taken up by the codec. Table 1 is with 10 stages.

add test deprefixing (b)
RC2 (64-bit) cycles| v | x
v |237463 257425

branch both (€)= 11999 250349

Branching both ways is not very effective in this test because only 3717 branches
were predicted wrongly.

Those tables provide baselines for the AES-128 encryption too via the fol-
lowing Dhrystone 2.1 benchmark equivalences:

Dhrystone v2.1 [RC2 (64-bit)|AES (128-bit)
Dhrystones per second 246913 183486
VAX MIPS rating 140 104
Dhrystone v2.1 || Pentium M 32-bit 1GHz
(gee 4.9.2) 00 02 06

Dhrystones per second || 735294 1470588 2777777
VAX MIPS rating 418 836 1580

According to the table at http://www.roylongbottom. org.uk/dhrystone’20results.
htm, a Pentium M at 1GHz does 523 MIPS. But the results are compiler-sensitive,

as shown by optimisation level O0-O6 for Pentium M, and our compiler is rudi-
mentary. The slowdown for 128-bit AES over 64-bit RC2 is due to 4 prefixes

per immediate constant instead of 2. Immediates ought to be deprecated by the
compiler.

Results may be extrapolated for longer codecs/more complex encrypted arith-
metic in the pipeline. Fig. 3 shows each extra pipeline stage costs approximately
2.5% more cycles.

6 Conclusion

A superscalar pipelined design prototype for a 32-bit profoundly encrypted pro-
cessor RISC has been described, embedding RC2 64-bit encryption, the 10-round
(Rijndael) AES 128-bit encryption, and Paillier 72-bit additively homomorphic
encryption. Registers, memory and buses contain encrypted data in this archi-
tecture, which runs an encrypted version of the OpenRISC instruction set.

References

1. I. Anati, S. Gueron, S. P. Johnson, and V. R. Scarlata. Innovative technology
for CPU based attestation and sealing. In Proc. 2nd International Workshop on
Hardware and Architectural Support for Security and Privacy. 2013.

2. M. Buer. CMOS-based stateless hardware security module, Apr. 6 2006. US Pat.
App. 11/159,669.

3. J. Daemen and V. Rijmen. The Design of Rijndael: AES — The Advanced Encryp-
tion Standard. Springer Verlag, 2002.

4. C. W. Fletcher, M. v. Dijk, and S. Devadas. A secure processor architecture for
encrypted computation on untrusted programs. In Proc. 7th ACM Workshop on
Scalable Trusted Computing (STC ’12), pages 3-8, New York, NY, 2012. ACM.

5. C. Gentry. Fully homomorphic encryption using ideal lattices. In Proc. 41st Annual
ACM Symposium on Theory of Computing (STOC’09), pages 169-178, New York,
NY, 2009.

6. C. Gentry and S. Halevi. Implementing Gentry’s fully-homomorphic encryption
scheme. In Proc. 30th Ann. Intl. Conf. on Theory and Applications of Crypto-
graphic Techniques (EUROCRYPT’11), number 6632 in Lecture Notes in Com-
puter Science, pages 129-148. Springer, Heidelberg, 2011.

7. C. Gentry, A. Sahai, and B. Waters. Homomorphic encryption from learning with
errors: Conceptually-simpler, asymptotically-faster, attribute-based. In R. Canetti
and J. A. Garay, editors, Advances in Cryptology — Proc. 33rd Ann. Cryptology
Conf. (CRYPTO ’18), number 8042 in Lecture Notes in Computer Science, pages
75-92. Springer, Heidelberg, Aug. 18-22 2013.

8. M. Gruhn and T. Miller. On the practicability of cold boot attacks. In Proc.
8th International Conference on Availability, Reliability and Security (ARES’13),
pages 390-397. IEEE, Sept. 2013.

9. J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J. A. Ca-
landrino, A. J. Feldman, J. Appelbaum, and E. W. Felten. Lest we remember:
cold-boot attacks on encryption keys. Commun. ACM, 52(5):91-98, 2009.

10. B. Hampson. Digital computer system for executing encrypted programs, July 11
1989. US Patent 4,847,902.

11. D. Hardin. Real-time objects on the bare metal: An efficient hardware realization
of the JavaTM virtual machine. In Proc. 4th IEEE Intl. Symposium on Object-
Oriented Real-Time Distributed Computing (ISORC ’01), pages 53-59, Washing-
ton, DC, USA, 2001. IEEE Computer Society.

12

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

R. Hartman. System for seamless processing of encrypted and non-encrypted data
and instructions, June 29 1993. US Patent 5,224,166.

M. Hashimoto, K. Teramoto, T. Saito, K. Shirakawa, and K. Fujimoto. Tamper
resistant microprocessor, 2001. US Patent 2001/0018736.

P. T. Breuer and J. P. Bowen. A Fully Homomorphic Crypto-Processor Design:
Correctness of a Secret Computer. In Proc. Intl. Symp. on Engineering Secure
Software and Systems (ESSoS 2013), number 7781 in Lecture Notes in Computer
Science, pages 123-138, Heidelberg, Feb. 2013. Springer.

P. T. Breuer and J. P. Bowen. Avoiding Hardware Aliasing: Verifying RISC Ma-
chine and Assembly Code for Encrypted Computing. In Proc. 2nd IEEE Work-
shop on Reliability and Security Data Analysis (RSDA 2014), IEEE International
Symposium on Software Reliability Engineering Workshops (ISSREW) 2014, pages
365-370. IEEE Computer Society, Los Alamitos, CA, Nov. 2014.

P. T. Breuer and J. P. Bowen. Certifying Machine Code Safe from Hardware Alias-
ing: RISC is not necessarily risky. In S. Counsell and M. Nufez, editors, Software
Engineering and Formal Methods, number 8368 in Lecture Notes in Computer
Science, pages 371-388, Heidelberg, 2014. Springer.

P. T. Breuer and J. P. Bowen. Towards a working fully homomorphic crypto-
processor: Practice and the secret computer. In J. Jorjens, F. Pressens, and
N. Bielova, editors, Proc. Intl. Symp. on Engineering Secure Software and Sys-
tems (ESSoS 2014), number 8364 in Lecture Notes in Computer Science, pages
131-140. Springer, Heidelberg, Feb. 2014.

P. T. Breuer, J. P. Bowen, E. Palomar, and Z. Liu. A Practical Encrypted Mi-
croprocessor. In C. Callegari, M. van Sinderen, P. Sarigiannidis, P. Samarati,
E. Cabello, P. Lorenz, and M. S. Obaidat, editors, Proc. 13th Intl. Conf. on Secu-
rity and Cryptography (SECRYPT 2016), volume 4, pages 239-250, Portugal, July
2016. SCITEPRESS.

K. Hwang. Advanced Computer Architecture. Computer Science. Tata McGraw-
Hill Education, India, 2011. 2nd ed.

K. Kissell. Method and apparatus for disassociating power consumed within a
processing system with instructions it is executing, Mar. 9 2006. US Patent App.
11/257,381.

L. R. Knudsen, V. Rijmen, R. L. Rivest, and M. J. B. Robshaw. On the design
and security of RC2. In S. Vaudenay, editor, Proc. 5th Intl. Workshop on Fast
Software Encryption (FSE ’98), pages 206—221, Heidelberg, Mar. 1998. Springer.
O. Kémmerling and M. G. Kuhn. Design principles for tamper-resistant smartcard
processors. In Proc. USENIX Workshop on Smartcard Technology, pages 9-20.
USENIX Association, Berkeley, CA, May 1999.

C. Liu, A. Harris, M. Maas, M. Hicks, M. Tiwari, and E. Shi. Ghostrider: A
hardware-software system for memory trace oblivious computation. In Proc. Intl.
Conference on Architectural Support for Programming Languages € Operating Sys-
tems (ASPLOS’15), 2015.

S. Lu and R. Ostrovsky. Distributed oblivious RAM for secure two-party com-
putation. In Proc. Theory of Cryptography, pages 377-396. Springer, Heidelberg,
2013.

M. Maas, E. Love, E. Stefanov, M. Tiwari, E. Shi, K. Asanovic, J. Kubiatowicz,
and D. Song. Phantom: Practical oblivious computation in a secure processor.
In Proc. ACM Conf. Computer & Communications Security (SIGSAC’13), pages
311-324, New York, NY, 2013. ACM.

R. Ostrovsky. Efficient computation on oblivious RAMs. In Proc. 22nd annual
ACM symp. on Theory of Computing, pages 514-523. ACM, ACM, 1990.

27

28.

29.

30.

31.

32.

33.

34.

35.

36.

R. Ostrovsky and O. Goldreich. Comprehensive software protection system,
June 16 1992. US Patent 5,123,045.

P. Paillier. Public-key cryptosystems based on composite degree residuosity classes.
In Proc. Intl. Conf. on Theory and Application of Cryptographic Techniques (EU-
ROCRYPT’99), number 1592 in Lecture Notes in Computer Science, pages 223—
238. Springer, Heidelberg, Apr. 1999.

D. A. Patterson. Reduced instruction set computers. Commun. ACM, 28(1):8-21,
Jan. 1985.

M. Schoeberl. Java technology in an FPGA. In J. Becker, M. Platzner, and
S. Vernalde, editors, Proc. 14th Intl. Conf. on Field-Programmable Logic and its
Applications (FPL 2004), pages 917-921, Heidelberg, Aug. 2004. Springer.

F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M. Peinado, G. Mainar-Ruiz,
and M. Russinovich. VC3: Trustworthy data analytics in the cloud using SGX. In
IEEE Symp. Security € Privacy, pages 38-54, May 2015.

P. Simmons. Security through amnesia: A software-based solution to the cold boot
attack on disk encryption. In Proc. 27th Annual Computer Security Applications
Conference (ACSAC’11), pages 73-82, New York, NY, 2011. ACM.

N. Tsoutsos and M. Maniatakos. Investigating the application of one instruction
set computing for encrypted data computation. In Proc. Intl. Conf. on Security,
Privacy & Applied Cryptography Eng., pages 21-37. Springer, 2013.

N. G. Tsoutsos and M. Maniatakos. The HEROIC framework: Encrypted com-
putation without shared keys. IEEE Trans. on CAD of Integrated Circuits and
Systems, 34(6):875-888, 2015.

Z. Wang and R. B. Lee. Covert and side channels due to processor architecture. In
Proc. 2nd Annual Computer Security Applications Conference (ACSAC’06), pages
473-482. IEEE, 2006.

Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart. Cross-VM side channels
and their use to extract private keys. In Proc. ACM Conference on Computer
and Communications Security (CCS 2012), pages 305-316, New York, NY, 2012.
ACM.

A Unreadability and Unwritability of encrypted
programs

For the convenience of readers, some theory mentioned in Section 1 is sketched
here: consider a program C' that has been written using only the machine code
instructions for addition of a constant y<—x+k and branches based on comparison
with a constant x<IK. Those two, together with control instructions, are sufficient
to perform any computation, evidenced by the single combined instruction that
does x1+x1+ky if 29<K5 ... in the ‘one instruction computer’ of [34] (and also
as evidenced by Conway’s well known ‘Fractran’ language, in which it is also the
only instruction):

Proposition 1. No method of observation exists by which the privileged opera-
tor may decrypt the output y of the program C.

Proof. Suppose for contradiction that the privileged operator has some method
f(T, C) of knowing what the output y of the program is, although it is encrypted,
having observed the trace T'. Imagine, however, that every number has ‘7’ added
to it under the encryption. The additions y<—z+k in the program still make
sense, adding k£ to a number that is 7 more than it used to be to get a number
that is 7 more than it used to be. The comparisons <K in the program need
changing, however, because the new numbers, which are 7 more than they used
to be, need to be compared with K’ equal to K+7 for the program to still
make sense. So we modify the branches in the program to compare with K’
instead of K. To the privileged operator, the new program code C’ ‘looks the
same,” C' ~ C, because one encrypted number is as meaningful as another (we
take care that there are no collisions between the encrypted values k and K
used in the program code by padding or blinding appropriately, so the operator
cannot tell either by means of a new collision or lack of an old one that the
K have changed underneath), and the program trace 7" is the same up to the
encrypted numbers that occur, which the operator cannot read, so it looks the
same, T ~ T, and the operator must see the same outcome from the method
f(T,C") = f(T,C) and deduce that the output is f(7”,C") = f(T,C) = y. Yet
the output is not y but y + 7.

There are many ways to read the output of a program that is written using
an unrestricted set of instructions. For example, if the program ends ‘return
x —x’, then the result is readably (an encryption of) zero. But binary operations
are out above.

An elaboration of the proof establishes the proposition for plural outputs y
too. Now consider program C' again. For definiteness suppose that the K and
k come from disjoint subspaces of the cipherspace, so do not collide, and both
subspaces are disjoint from data circulating in-processor. That can be arranged
by incorporating two type bits in the padding under a symmetric encryption or
in the blinding factor of a homomorphic encryption.

Proposition 2. There is no method by which the privileged operator can alter
program C' using the restricted set of instructions to produce intended outputs y.

Proof. Suppose for contradiction that the operator produces a new program
C’ = f(C) that returns (encrypted) y. Then its constants k are found in C' and
its constants K likewise, because f has no way of arithmetically combining them
(the disjoint subspaces condition means they cannot be combined arithmetically
in the processor and the operator does not have the encryption key). Proposi-
tion 1 (plural y) says the operator cannot read outputs y of C’, yet knows what
they are.

These results may be extended to cover arbitrary additions, subtractions,
multiplications, left shifts, provided each instruction is followed by addition of
some constant k. The idea is that an observer cannot know if the k is 0 or some
other value that compensates for a ‘47’ in the circulating data. The reasoning
also applies for arbitrary comparison operations, not just < K’. But knowing
0 and that some value is not 0 permits reading/writing — see [17] for a generic
defence via typed arithmetic.

The status of division, remainder, right shift and the bitwise logical oper-
ations with respect to the above is currently unknown. However, right shift is
distinguished from left shift by the sign of the operand under the encryption, so
the two kinds of instruction are not distiguishable to an observer, and one may
follow [4] and claim the result ‘by virtue of obfuscation’.

If the observer may construct their own program using arbitrary instructions,
and run it through the processor, then that constitutes a different avenue of
attack. The attacker may, for example, construct an encrypted zero with the
program ‘return x — x’, using any observed z as seed. That may possibly be
leveraged in an attack on writability, because knowing a zero contravenes the
statement of Proposition 1, on which Proposition 2 relies.

But suppose 0/0 = 0 and 0%0 = 0, and unary bitwise inversion and logical
negation are deprecated in favour of ~x = Oxfiffffff "z and !z = x70:1. Then all
operations, plus, minus, mutiplication, shift, etc., produce 0 when all inputs are
0.

Proposition 3. Zero is the only value of encrypted results y that a privileged
attacker can produce intentionally and certainly by creating a program D using
arbitrary instructions and inputs x extracted from or results from an observed
program C built from a restricted set of instructions as decribed above.

Proof. Proposition 1 (in plural form) shows that the inputs = can be anything
at all as far as an observer knows. Set all z to (encrypted) 0, and all independent
variables and constants in program D to zero too, which may be the case as far as
the attacker knows. Then the output is (encrypted) 0 through every arithmetic
operation in program D, and every branch chooses between different values that
are all 0. Since 0 is what the outputs can be and the outputs y are produced
with certainty, 0 must be what the attacker intended as y.

Proposition 4. Zero is the only value for encrypted results y that a privileged
attacker can read with certainty from a program D built from arbitrary instruc-
tions, plus its runtime traces.

Proof. If the results y could be read, then the attacker could (by copying) write
the program D that produced y, contradicting Proposition 3.

