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Abstract—Appropriately modifying the arithmetic in a pro-
cessor causes data to remain in encrypted form throughout
processing. That principle is the basis for the design re-
ported here, extending our initial reports in 2016. The design
aims to prevent insider attacks by the operator against the
user. Progress and practical experience with the prototype
superscalar pipelined RISC processor and supporting software
infrastructure is reported. The privileged, operator mode of
the processor runs on unencrypted data and has full access to
all registers and memory in the conventional way, facilitating
operating system and infrastructure development. The user
mode has restricted access rights, as is conventional, but the
security barrier that protects it is not based on access but on
the fact that it runs through-and-through on encrypted data. It
has been formally shown impossible for operator mode to read
(or write to order) data originating from or being operated on
in the user mode of the processor in this context.

Cycle-accurate measures based on our stable toolchain for
AES-128 encrypted computation on a 128-bit architecture, and
RC2-64 on 64-bit, show 104-140 Dhrystone MIPS respectively
for a nominal 1 GHz base clock, equivalent to a 433-583 MHz
classic Pentium. This paper aims to alert the secure hardware
community that encrypted computing is both possibly practical
and theoretically plausible.

1. Introduction

IF the arithmetic in a conventional processor is modified
appropriately, then the processor continues to operate

correctly, but all its states are encrypted [3], which means
that encrypted data is read and written at encrypted ad-
dresses, and both data and addresses pass through the in-
ternal registers of the machine in encrypted form. Memory
(RAM) is not part of a processor, but since the processor’s
outputs to as well as its inputs from RAM and other periph-
erals are encrypted, memory content is encrypted too.

Running an appropriate machine code instruction set, it
turns out that it is mathematically impossible for the operator
to infer from a user’s computation either statistically or
logically or even by experiment what the user’s encrypted
data means, despite having read and write access to the
user’s data and program code (see Section 6). Those recent
theoretical results have put on a firm footing the security of

processor designs that depend on a modified arithmetic and
encrypted working, where before they were only intuitively
safer. It was always probable from an engineering point of
view, however, that such a processor would run fast or could
be made to with current technology. That is because, in
principle, only one piece of stateless logic, the arithmetic
logic unit (ALU), needs to be changed from a conventional
design – the rest remains the same.1 This paper provides
experimental data from our prototype to support that view.

If the reader is to take away one thing from this paper,
it should be the understanding that in supervisor mode2

this processor runs unencrypted, while in user mode it runs
encrypted. Encryption, not access, is the security barrier and
it protects the user against the operator. If successful, it
protects code running on behalf of a user in user mode on
the processor against ‘insider’ attacks that may reveal what
the user data is underneath the encryption from a human or
program with access to the operator mode of running. The
agent behind an attack may be a subverted operating system,
or a bribed system administrator in the computer room. The
operator mode is the mode in which the processor starts up
in when it is switched on, it is the mode in which it loads
its operating system code, and it is the mode it momentarily
switches to when servicing hardware interrupts or system
calls while a program runs in user mode. It is the mode
your processor switched to just now in order to read from
disk the bytes that you are reading in your PDF viewer.

The successful operation of any modern computer sys-
tem depends on a continuous and close cooperation between
code running in user and operator modes on the same
processor, so ‘protecting’ the user from the operator is ap-
parently a difficult concept. In operator mode, for example,
the processor must alter the mapping of virtual to physical
memory addresses and the access rights for each section
of memory – it is ‘all-powerful’ in concept, except for the
single line item that in this processor it ‘runs unencrypted’,
with unencrypted inputs, outputs and intermediate states,
while user mode ‘runs encrypted’. It is not claimed that user
mode running cannot be interfered with by the operator – it
can. The operator can wipe memory completely, for exam-

1. Other minor changes follow from encrypted working. Section 4 dis-
cusses changes to the RAM addressing hardware subsystem in particular.

2. Supervisor/operator are synonyms for ‘unrestricted access’ mode here.



ple. The formal result is that the operator cannot know what
user data is beneath the running encryption (Section 6). That
also logically implies it cannot be rewritten deliberately to a
value beneath the encryption that is defined independently,
such as π, or the key for the encryption (same section).

This approach is simple, and its aim, as well as fast
running, is to permit a clear security analysis, which has
come out favourably [7], [6] albeit only in the context
of an appropriately designed processor instruction set and
a compiler that varies machine code in such a way that
it eliminates statistical biases (Section 6). Otherwise there
would be simple known plaintext attacks (KPAs) [2] based
on the principle that x−x=0, for example, however it is
encrypted, or on the statistical fact that human programmers
use 0, 1 more than any other constants in their code.

The medium-term goal is a secure platform for remote
computing in the cloud [35], perhaps also for embedded
systems such as automobiles or uranium centrifuges. Ex-
perience guides the understanding of what is possible for
this system. Remote (‘batch’) computing is an initial target
because predetermined codes with a fixed number and depth
of iterations are involved – ‘encrypted matrix multiplication’
is a fashionable example [37]. Batch working allows the
encryption to be changed between runs, which would make
attacks formally much harder. It is more difficult to change
the code or the encryption or its key, securely and reliably,
in a continuously running and critical environment such as
a driving automobile, but we believe it will be possible. In
the batch mode, the remote user compiles and encrypts the
program, sends it for remote execution along with encrypted
inputs, and receives back encrypted outputs. In this scenario
The key is either already in the machine or loaded in public
view via secure hardware, but that is not the concern of this
paper on computation (see Section 2.10 for a discussion).

The studies here are based on an extensive sequence of
behavioural models, beginning in 2009 with a demonstration
that dropping a changed ALU into a detailed model in
Java of a pipelined processor (http://sf.net/p/jmips/) gave rise
to encrypted running (http://sf.net/p/kpu/). The confirming
theory was not published until 2013 [3]. From 2014 to 2016,
the existing simulator or1ksim (http://opencores.org/or1k/
Or1ksim) for the OpenRISC standard processor architecture
was modified to 64-bit and now 128-bit operation and cycle-
accurate simulation covering a full processor pipeline. The
aim has been to (i) demonstrate that the principle of working
is correct to engineers who often do not understand or
accept mathematical proofs or formally-oriented computer
science, and (ii) explore its limits. With respect to (ii), it
was unknown beforehand if conventional instruction sets
and processor architectures would be compatible, and that
may now be taken to be confirmed in great part. It has
also become clearer, however, that not every program can
run encrypted in this context – compilers and programs that
arithmetically transform the addresses of program instruc-
tions (as distinct from addresses of program data) must run
unencrypted because program addresses are unencrypted.
That prevents what would otherwise be a KPA on encrypted
but predictable address sequences. The largest application

suite3 ported so far is 22,000 lines of C, but it and every
application ported (now about fifty), has worked well, sur-
prising the authors.

Our accurate models have provided good metrics via
the burgeoning software infrastructure and the measures
are reported here. The standard Dhrystone v2.1 benchmark
shows 104-140 MIPS running encrypted, matching a 433-
583 MHz classic Pentium. But the paper’s particular objec-
tive here is to summarise the state of knowledge in a secure
hardware engineering forum and convince that it does work,
encouraging the community’s focus and scrutiny in future.

The organisation of this article is as follows. Section 2
encapsulates the processor design and working in bullet
points for the reader. The aim is to address early on what
experience tells us are common misconceptions based on
analogies with other security devices. There should be no
relevant analogies. In particular, encrypted memory (‘obliv-
ious RAM’, ‘ORAM’ [27]) has nothing to do with this
device – memory is not part of a processor. Nor does Intel’s
‘SGX’TM range of machines, which use keys to control ac-
cess to different (encrypted) memory regions but do not run
encrypted, have to do with it. There is no relevance for key-
management here – why is discussed in 2.10 – and this paper
does not discuss it. Security engineers may later design
key management as they wish. The closest contemporary
related experimental processor architectures are discussed in
Section 3. Security engineering considerations in putting the
computational principle into workable practice are described
in Section 4 and this is the most relatable section for an
engineer, but those details are not crucial as they can and
should be changed to suit newer technologies. In particular
two ‘tricks’ of implementation are described (first written
down in 2016 in [4] and [5]) that are intended to restore
good performance in this context to what is intentionally an
old-fashioned processor architecture. The intention is that
designers will do better than us by applying the principles
expressed here to more contemporary architectures. Further
hardware optimisations are described in Section 5. Section 6
sets out the modified RISC [29] instruction set that makes
encrypted computation secure, in combination with an ‘ob-
fuscating’ compiler, briefly described.

2. Summary of design and working

This section summarises the processor design and work-
ing in ‘touchstone points’ for the reader to take forward and
also refer back to as necessary.
2.1 Architecture. The basic layout, described in [4], is the
classic single pipelined RISC processor of [29], clocked
at a nominal 1 GHz with 3 ns cache. Register layout and
functionality follows the OpenRISC v1.1 specification (see
openrisc.org), with 32 general purpose registers (GPRs) and
up to 216 special purpose registers (SPRs). Some SPRs
with control/monitor functions are modified for security as
described in Section 4. Registers and buses are 64 or 128

3. IEEE floating point test suite at http://jhauser.us/arithmetic/TestFloat.html32-
bit OpenRISC floating .



bits wide (it differs per model) for encrypted 32-bit or
unencrypted 64-bit data.

The prototypes have all incorporated speculative branch
execution/prediction, and data forwarding along the pipeline
in the same clock (bypassing registers). Successive design
iterations have incorporated extra features, such as on-the-
fly instruction reordering.
2.2 Modes. The processor operates in two modes: user and
supervisor (aka ‘operator’), as per the OpenRISC specifi-
cation. User mode works encrypted on data that is 32-bit
beneath the encryption and supervisor mode works unen-
crypted on 32- or 64-bit data.
2.3 Adversaries. The operator is the adversary who tries
to read the user’s data, and/or rewrite it. The notion of
‘operator’ is conflated with the supervisor mode of operation
of the processor, in which instructions have access to every
register and memory location. The idea is that, as the most
privileged user, ‘operator’ stands in for all, in that user data
that is secure from the operator is secure from all.
2.4 Simulation. The open source OpenRISC ‘Or1ksim’ sim-
ulator, available from http://opencores.org/or1k/Or1ksim,
has been modified to run the processor models. It is now a
cycle-accurate pipeline simulator, 800,000 lines of C code
having been written over 2 years real time and 25 years
estimated software engineering effort, through 8 processor
prototypes. The source code archive and development his-
tory is available at http://sf.net/p/or1ksim64kpu.
2.5 Instruction set. In user mode, the processor runs the
32-bit OpenRISC instruction set modified for encrypted
operation. Opcodes and register indices are not encrypted,
but a prefix instruction has been introduced that allows
a following instruction to contain an encrypted constant,
which otherwise would not fit in the 32-bit long instruction.
In supervisor mode, the (32-bit long) OpenRISC instructions
for 64-bit arithmetic on unencrypted data are available.
2.6 Security of computation. Adapting all the standard
OpenRISC instruction set for encrypted working has con-
firmed that it is possible to write (unencrypted, supervisor
mode) operating system support for user programs (running
encrypted). The operating system generally does not need
the decryption of a user datum to do what is required (e.g.,
output it, encrypted, as is). But the experience has clarified
that conventional instruction sets are inherently insecure
with respect to the operator as adversary, who may steal an
(encrypted) user datum x and put it through the machine’s
division instruction to get x/x, which is an encrypted 1.
Then any encrypted y may be constructed by repeatedly
applying the machine’s addition instruction. By comparing
the encrypted 1, 2, 4, etc. obtained with an encrypted z using
the instruction set’s comparator instructions (testing 231≤z,
230≤z, . . . in turn and subtracting whenever it succeeds),
the value of z can be efficiently deduced. This is a chosen
instruction attack (CIA) [31]. Part of the novel contribution
of this paper is a ‘FxA’ instruction set for encrypted RISC
against which every attack fails, in that it is no better than
guessing (Section 6).
2.7 Encryption. The prototypes models have been tested

fitted with Rijndael-64 and -128 symmetric encryption (the
latter is the US advanced encryption standard (AES) [9]),
RC2-64 [23] and Paillier-72 [28]. The last is an additively
homomorphic4 cipher that runs without keys in the pro-
cessor. In principle any ‘reasonable’ block cipher with a
block size that fits in the machine word may be integrated
in the pipeline. For symmetric encryptions, multistage en-
/decryption hardware is fitted in the pipeline.5 For homomor-
phic encryptions a multistage arithmetic unit occupies the
same space. All encryptions are one-to-many. For symmetric
encryptions, pseudo-random padding under the encryption
is generated by hashing operands. For Paillier, ‘blinding’
multipliers are generated instead.6

The choice of encryptions has been dictated by the
development path. The open source Or1ksim simulator had
to be expanded from 32 bits to 64 (as well as made cycle-
accurate and pipelined) and at that point 64-bit ciphers could
be handled. The OpenRISC instructions require two 32-bit
prefixes per instruction for 64 bits of encrypted data. Two
prefixes is also sufficient for 72 bits of encrypted data, so
Paillier-72 could be accommodated without further toolchain
changes, but it meant doubling processor path widths from
64 to 128 bits to hold 72-bit data. AES-128 then became
possible, requiring four 32-bit prefixes per instruction.

Paillier-72 is insecure in practical terms but has served
to investigate use of a homomorphic encryption in this
setting. Paillier does not become as secure as AES-128
until 2048 bits, but 2048-bit Paillier arithmetic would use
too many pipeline stages for practicality. Nevertheless, the
closest competing design is HEROIC [34] (see Section 3),
a stack machine running encrypted with a ‘one instruction’
machine code and 2048-bit words encrypting 16 bits of data.
It does 2048-bit Paillier arithmetic in hardware, so it is
possible (HEROIC runs 4000 cycles of 200 MHz hardware
per arithmetic operation).
2.8 Toolchain. The existing GNU gcc v4.9.1 compiler
(github.com/openrisc/or1k-gcc) and gas v2.24.51 assem-
bler (github.com/openrisc/or1k-src/gas) ports for OpenRISC
v1.1 have been adapted for the encrypted instruction set.
Executables are standard ELF format. The source codes are
at sf.net/p/or1k64kpu-gcc and sf.net/p/or1k64kpu-binutils.
Only the assembler needs to know the encryption key.
2.9 Limits. Word width (i.e., encryption block size) up to
2048 bits is contemplated with current technology. Mem-
ory paths would need to be appropriately broadened and
accesses paralleled.
2.10 Key management. There is no means to read keys
once they have been embedded in the processor, where
they configure the hardware functions. In a design nearer
production, keys may be embedded at manufacture, as with
Smart Cards [25] or introduced via a Diffie-Hellman circuit

4. ‘Homomorphic’ in the Paillier encryption means that multiplication
of encrypted numbers corresponds to addition of unencrypted numbers.

5. An AES round is budgeted at 1ns in the models. That is 10 pipeline
stages occupied by the encryption/decryption hardware. The Intel/AMD
‘ASENC’ AES round instruction takes 0.95 ns (4 cycles at 4.2 GHz) on
Skylake cores (Table C-9 of [21]), so this is realistic.



[8] that securely loads the key in public view.
Note there is no direct consequence of running with the

wrong key because if user A runs with user B’s key, then
user A’s program will produce rubbish, as the processor
arithmetic will be meaningless; if user A runs user B’s
program while user B’s key is in the machine, then the
output will be encrypted for user B’s key, and the input
will need to be encrypted in user B’s key, and user A can
neither supply nor understand that. Security depends not
on access but on whether A, who may be the operator, can
leverage observations of B’s computations to learn about the
encryption, and that is answered in Section 6 – negatively,
for the right instruction set.
2.11 Security guarantees. A hardware protocol described
in [5] guarantees that data originating in user mode can
never be seen in unencrypted form in supervisor mode, and
conversely (see 4.3A1).

3. Related platforms

HEROIC [34] is the most comparable contemporary
platform, running a 16-bit machine in Paillier-2048 en-
cryption [28] on a stack-based architecture. Its core does
encrypted 16-bit addition in 4000 cycles and 20µs on the
foundation of 200 MHz programmable hardware, equivalent
to a 25 KHz Pentium (one 32-bit addition in 40µs).

Stack machines are different from conventional von
Neumann architectures and are not manufactured, but there
have been hardware prototypes in connection with Java [17].
HEROIC works by substituting 16-bit addition by multipli-
cation of 2048-bit encrypted numbers modulo a 2048-bit
modulus m. Multiplying above the Paillier encryption E is
the same as adding beneath the encryption:

E (x) ∗ E (y) mod m = E (x+ y) (+)

A difficulty is that the addition on the right is not mod
216, so the sum has to be renormalised mod 216 under the
encryption, which accounts for half the cycles taken. It is
done by subtracting 216 via (+) and looking up a ‘table of
signs’ for encrypted numbers to see if the result is negative
or positive. To facilitate that, HEROIC encryption is one-to-
one, not one-to-many,6 or the table would be too large. It is
already 16M bytes in size (216×2048 bits). The same table
is also used for comparison operations (less than, etc).

That technique is also used with Paillier in our models,
except that the table of signs is too large to site locally
with current technology (at 232×72 bits times the number
of aliases per encryption), so signs are calculated outside
the simulation and cached.

Encrypted multiplication and other operations are sub-
routines under Paillier. The ‘selling point’ is that (+) means

6. Paillier may embed ‘blinding factors’ in the encryption. Those are
multipliers rn mod m, where n=pq and m=n2 is the public mod-
ulus. Paillier decryption involves raising to the power of the order
φ=(p−1)(q−1) of the multiplicative group mod n, so rn becomes
rφn = (1+kn)n=1+kn2+ . . .=1 mod n2 and does not affect the
decrypted value. HEROIC’s one-to-one encryption does not use different
blinding factors.
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that the modified arithmetic in the processor needs no keys.
But despite the headline, the table of signs amounts to a key
that must be changed per user.
3.1 Ascend [10] protects instructions and data from the oper-
ator by both cryptographic and physical means. Code on the
way to the processor is encrypted, data I/O is encrypted and
the processor runs in ‘Fort-Knox’-like isolation, matching
pre-defined statistics on observables. Communication with
memory is encrypted.

Physical isolation plus encrypted memory has emerged
many times (e.g., [19]) and success means doing it as well
as Ascend does. Otherwise side-channels such as cache-hit
statistics [36] and power drain [24] can leak information.
Ascend runs RISC MIPS instructions [30] and slows down
by 12-13.5× in encrypted mode with AES-128 (absolute
speeds are not given in [10]), as compared to 10-50%
slowdown for our models (Section 5).
3.2 Intel’s SGXTM (‘Software Guard eXtensions’) processor
technology [1] is often cited in relation to secure computa-
tion in the cloud, because it enforces separations between
users. However, the mechanism is key management to re-
strict users to memory ‘enclaves’. While the enclaves may be
encrypted because there are encryption/decryption units on
the memory path, that is encrypted and partitioned storage,
a venerable idea [18], not encrypted computing.

SGX machines are used [32] by cloud service providers
where assurance of safety is a marketing point. But that is
founded in customer belief in electronics designers ‘getting
it right’ rather than mathematical analysis and proof, as for
our and HEROIC’s technologies (see Section 6). Engineer-
ing may leak secrets via timing variations and power use
and SGX has recently fallen victim [15].
3.3 IBM’s efforts at making practical encrypted computation
using very long integer lattice-based fully homomorphic
encryptions (FHEs) based on Gentry’s 2009 cipher [11]
deserve mention. An FHE E extends the Paillier equation
(+) to multiplication on the right. But it is 1-bit, not 16-
or 32-bit arithmetic under the encryption. The 1-bit logic
operations take of the order of 1s [12] on customised vector
mainframes with a million-bit word, about equivalent to a
0.003 Hz Pentium, but it may be that newer FHEs based
on matrix addition and multiplication [13] will be faster.
The obstacle to computational completeness is that which
HEROIC overcomes with its ‘table of signs’: encrypted
comparison with plain 1/0 output is needed, as well as



the encrypted addition (and multiplication), but HEROIC’s
solution is not feasible for a million-bit encryption.
3.4 Moat electronics. Classically, information may leak
indirectly via processing time and power consumption, and
‘moat technology’ [22] to mask those channels has been
developed for conventional processors. The protections may
be applied here too, but there is really nothing to protect
in terms of encryption as encrypted arithmetic is done in
hardware, always taking the same time and power. There are
separate user- and supervisor-mode caches in our models,
and statistics are not available to the other mode, so side-
channel attacks based on cache hits [36] are not available.
3.5 Oblivious RAM (ORAM) [27] and its evolutions [26] is
often cited as a defense against dynamic memory snooping.
That is in contrast to static snooping, so-called ‘cold boot’
attacks [16] – physically freezing the memory to retain the
contents when power is removed – against which HEROIC,
SGX and our technology defend because memory content
is encrypted. Also, in our technology, data addresses are
encrypted and vary during running. ORAM extends that
by continuously remapping the logical to physical address
translation, taking care of aliasing, so access patterns are
masked. It also hides programmed accesses among randomly
generated accesses. But it is no defense against an attacker
with a debugger, who does not care where the data is stored.
So it does not defend against the operator and operating
system, as the technology here does.

4. Engineering for security

Two major ‘tricks’ of implementation for good perform-
ance were described in [4] in 2016 and are summarised
below in 4.1, 4.2.
4.1 Dual pipeline configuration. There are two configura-
tions of the pipeline, ‘A’ and ‘B’, for encrypted running with
symmetric encryption (Fig. 2). There is only space for one
(multi-stage) encryption/decryption unit and some instruc-
tions need encryption after the execute stage (‘A’), some
need decryption before (‘B’). A variant ‘A’ configuration is
used for Paillier (Fig. 2 top).
4.2 The arithmetic logic unit (ALU) operation is extended
in the time dimension to cover a series of consecutive
(encrypted) arithmetic operations in user mode. The first of a
series is associated with a decryption event and the last with
an encryption event (note that by ‘arithmetic operations’ is
meant the arithmetic stages of individual instructions, not the
whole instructions). That reduces the frequency with which
the encryption/decryption unit is used.
4.3 ALU operation is supported by a hardware protocol de-
scribed in [5]. Shadow registers/caches (Fig. 1) are managed
as follows:

Protocol Shadow units are aliased-in for user mode.
Invariant In user mode, each instruction expects and

puts encrypted values (or a neutral place-
holder) in non-shadow registers and unen-
crypted values in shadow registers. The re-
verse is true in supervisor mode.

(*)
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Figure 2. The pipeline is configured in different ways, ‘A’ and ‘B’, for
different kinds of user mode instructions.

In [5] the protocol (*) plus the invariant is provedA1 to guar-
antee (2.11) that supervisor mode never sees in unencrypted
form data that originated (encrypted) in user mode, and vice
versa. It is also proved in [5] to guarantee user data is stored
encrypted in memory.
4.4 Multiuser. Changing the encryption key signals a
change of user and empties the shadow registers, so one
user cannot gain access to another’s unencrypted data in
registers, but in any case the argument in 2.10 says that
access is not be an issue in itself and the instruction set is
the actual danger (fixed in Section 6).
4.5 Further modifications to conventional design include
an address translation look-aside buffer (TLB) in two parts.
The conventional TLB is now a back-end that remaps ad-
dresses page-wise, and a new front-end maps individual en-
crypted addresses to a physically backed range in first-come,
first-served order. As data that will be accessed together
tends to be accessed together for the first time too, this
enables cache readahead to continue to be effective though
encrypted addresses are spread randomly over the whole
cipherspace. The TLB front-end will eventually be limiting,
but it does not affect programs whose footprint is designed
to fit in cache.

5. Performance

The original Or1ksim OpenRISC test suite codes (writ-
ten mostly in assembler) established benchmarks for early
prototypes, when no or very rudimentary code (C) compi-
lation was available. Most modern performance suites still
cannot be compiled because they rely on support such as
linear programming and math floating point libraries, as
well as system support such as ‘printf’. If those could
be ported in good time, debugging would take months
(the original OpenRISC gcc compiler has bugs, such as
sometimes not doing switch statements right, sometimes
not initialising arrays right, etc.). In particular the well-
known ‘spec’ benchmark suite is unavailable because its
source code is commercially protected. Some less evolved
benchmarks are running, in particular Dhrystone v2.1.



TABLE 1. BASELINE V. OPTIMISED PERFORMANCE WITH 64-BIT RC2
ENCRYPTION, OR1KSIM ‘ADD TEST’: % FINISHING PER CYCLE.

RC2 cycles 296368 237463

222006 instructions mode user super user super

arithmetic
{ register instructions 0.2% 0.2% 0.3% 0.2%

immediate instructions 7.8% 9.8% 9.6% 12.1%

memory
{ load instructions 1.0% 3.0% 1.2% 3.7%

store instructions 1.0% 0.0% 1.2% 0.0%

control

{
branch instructions 1.1% 5.2% 1.3% 6.4%

jump instructions 1.2% 5.1% 1.5% 6.3%
sys/trap instructions 0.5% 0.0% 0.7% 0.0%

no-op instructions 7.3% 16.8% 4.4% 20.8%
prefix instructions 11.8% — 5.5% —

move from/to SPR instructions 0.1% 2.8% 0.1% 3.5%
wait states 20.7% 4.4% 18.6% 2.4%

(stalls) (17.4%) ( 3.7%) ( 7.4%) ( 0.0%)
(refills) ( 3.3%) ( 0.7%) (11.2%) ( 2.4%)

total 52.7% 47.3% 44.5% 55.5%

Branch Prediction
(18547 tot.)

right/wrong X ×
hit 55% 44% 10%

miss 44% 35% 9%

User Data Cache
(2933 tot.)

hit miss
read 100.0% 0.0%

write 99.7% 0.3%

User Mode Crypto.

Encryptions 639
Decryptions 12326

Table 1 shows baseline performance (red) in the instruc-
tion set add test of the suite, with RC2 64-bit symmetric
encryption, repeating the 2016 test in [5] so progress can
be seen. The 64:16:20 mix for arithmetic:load/store:control
instructions (no-ops and prefixes ignored) is close to the
60:28:12 mix in the standard textbook [20]. At the time of
the 2016 test, the program spent 54.8% of the time in user
mode, and 52.7% now, which is 2.1/54.8 = 4% better en-
crypted running. Pipeline occupation is now 1−20.7/52.7 =
60.7% in encrypted mode, for 607Kips (instructions per
second) with the 1 GHz clock.

The top right subtable shows that individual branch
records (hits) gain little (44/10) over aggregated data
(misses; 35/9). The middle right subtable shows all data
is write-before-read (read hits 100%) and near all (99.7%)
writes are repeats to a few (0.3%) locations. The crypto
table shows that most en-/decryptions are elided via write-
back caching. The raw numbers would be 2942 (store) and
25995 (load+immed).

The same test with Paillier-72 (128-bit architecture)
shows worse performance, as some arithmetic is done in
software (Table 2):

Ta
bl

e
2 add test cycles instructions

RC2 (64-bit) 296368 222006
Paillier-72 438896 226185

Paillier arithmetic takes the length of the pipeline to com-
plete. That stalls following instructions that need the result
until the instruction ahead has finished, leaving the pipeline
mostly empty. The disparity is greater on multiplication,
which is done in software (Table 3):

Ta
bl

e
3 mul. test cycles instructions

RC2 (64-bit) 235037 141854
Paillier-72 457825 193887

Performance with symmetric encryptions, but not with Pail-
lier, is sensitive to data-forwarding along the pipeline. Turn-
ing off forwarding and instruction reordering shows 33% of
processor speed is due to forwarding, while reordering gives
another 3% (Table 4):

Ta
bl

e
4 add test forwarding

RC2 (64-bit) cycles X ×

reordering X 296368 412062
× 315640 441550

Paillier’s insensitivity is expected because arithmetic results
are not available before the penultimate stage of the pipeline.
A work-around may be to create hyperthreaded programs,
so instructions from an independent thread may overtake a
stalled instruction.

Since the 2016 account in [4] three solutions tailored
to the architecture and the bottlenecks noted above have
been implemented: (a) instructions with trivial functionality
in the execute phase (e.g., ‘cmov,’ the ‘conditional move’ of
one register’s data to another) but stalled in read stage have
been allowed to speculatively proceed on the assumption
that they will be able to pick up the data via forwarding
later during their progress through the pipe7; (b) the fetch
stage has been doubled to get two instructions per cycle and
catenate the prefix instruction to the instruction they prefix
instead of taking up pipeline slots in their own right; (c) a
second pipeline has been introduced to speculatively execute
both sides of a branch.

‘Flexible staging’ (a) drops cycle count from 296368 to
259349 cycles and then innovations (b), (c) contribute as
follows (Table 5):

Ta
bl

e
5 add test deprefixing (b)

RC2 (64-bit) cycles X ×
branch both (c) X 237463 257425

× 241992 259349

Branching both ways was ineffective because only 3717
branches mis-predicted, but harder-to-predict code benefits.

Those RC2-64 tables can also provide approximate num-
bers for AES-128 via the following Dhrystone v2.1 bench-
marks (Table 6):

Ta
bl

e
6

Dhrystone v2.1 RC2 AES None
(64-bit) (128-bit) (32-bit)

Dhrystones per second 246913 183486 350877
VAX MIPS rating 140 104 199

Dhrystone v2.1 Pentium M 32-bit 1GHz
(gcc 4.9.2) O0 O2 O6

Dhrystones per second 735294 1470588 2777777
VAX MIPS rating 418 836 1580

By that measure, the AES-128 prototype is running as a
433 MHz classic Pentium, or 250 MHz Pentium M.8 The
results are compiler-sensitive, as shown by variation through
optimisation levels O0-O6 for the Pentium M in Table 6, and

7. The ‘assumption’ is logically impeccable: the data needed is supplied
by an instruction ahead, which will finish before this instruction does and
therefore furnish the data while this one is still moving through the pipeline.

8. See Dhrystones table at http://www.roylongbottom.org.uk/dhrystone\
%20results.htm.
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Figure 3. Number of executed cycles with symmetric encryption for the
‘add test’ of Table 1 (red/blue) against number of stages occupied by the
encryption/decryption unit (‘codec’).

TABLE 7. FXA MACHINE CODE INSTRUCTIONS FOR ENCRYPTED
RUNNING.

fields semantics

add r0 r1 r2[k]E add r0←[[r1]D + [r2]D + k]E
sub r0 r1 r2[k]E subtract r0←[[r1]D − [r2]D + k]E
mul r0 r1 r2[k0]E [k1]E [k2]E multiply r0←[([r1]D−k1)∗([r2]D−k2)+k0]E
div r0 r1 r2[k0]E [k1]E [k2]E divide r0←[([r1]D−k1)/([r2]D−k2)+k0]E
xor r0 r1 r2[k0]E [k1]E [k2]E excl. or r0←[([r1]D−k1)ˆ([r2]D−k2)+k0]E
. . .

mov r0 r1 move r0← r1
beq r1 r2 j [k]E skip j instructions if [r1]D = [r2]D + k
bne r1 r2 j [k]E skip j instructions if [r1]D 6= [r2]D + k
blt r1 r2 j [k]E skip j instructions if [r1]D < [r2]D + k
bgt r1 r2 j [k]E skip j instructions if [r1]D > [r2]D + k
ble r1 r2 j [k]E skip j instructions if [r1]D ≤ [r2]D + k
bge r1 r2 j [k]E skip j instructions if [r1]D ≥ [r2]D + k
b j skip j instructions unconditionally
. . .

Legend: r is a register index or memory location, k is a 32-bit
integer, j is an instruction address increment, ‘←’ is assignment.
The function [ · ]E represents encryption, [ · ]D decryption.

our compiler is rudimentary. The slowdown for 128-bit AES
over 64-bit RC2 is due to the 4, not 2, prefixes for an im-
mediate constant in an instruction carrying immediate data.
That illustrates that compilers for encrypted instruction sets
must avoid inline data in instructions. The RC2 prototype
equates to a 433 MHz classic Pentium, 266 MHz Pentium M.

The results may be extrapolated as required to more
pipeline stages: Fig. 3 shows that each stage costs 3.1%
in the baseline, but 1.7% with hardware optimisation.

6. FxA Instruction Set

Standard instruction sets are insecure for encrypted
working (recall the chosen instruction attack of 2.6), but
the minimal ‘one instruction’ HEROIC instruction set is
immune to the problem.

Denote by a fused anything and add (FxA) instruction
set one where arithmetic instructions add constants −k1,
−k2 to operands x1, x2 and adds a constant k0 to the result.
So FxA multiplication does:

x0 ← (x1 − k1) ∗ (x2 − k2) + k0

TABLE 8. RUNTIME TRACE FOR ACKERMANN(3,1), RESULT 13.

PC instruction update
. . .

35 add t0 a0 zer E[-86921031] t0 = E[-86921028]
36 add t1 zer zer E[-327157853] t1 = E[-327157853]
37 beq t0 t1 2 E[240236822]
38 add t0 zer zer E[-1242455113] t0 = E[-1242455113]
39 b 1
41 add t1 zer zer E[-1902505258] t1 = E[-1902505258]
42 xor t0 t0 t1 E[-1734761313] E[1242455113] E[1902505258]

t0 = E[-17347613130]
43 beq t0 zer 9 E[-1734761313]
53 add sp sp zer E[800875856] sp = E[1687471183]
54 add t0 a1 zer E[-915514235] t0 = E[-915514234]
55 add t1 zer zer E[-1175411995] t1 = E[-1175411995]
56 beq t0 t1 2 E[259897760]
57 add t0 zer zer E[11161509] t0 = E[11161509]
. . .

143 add v0 t0 zer E[42611675] v0 = E[13]
. . .

147 jr ra
STOP

An FxA instruction set for encrypted working is shown in
Table 7. Some instructions, e.g. addition, need only one
constant, as

(x1 − k1) + (x2 − k2) + k0 = x1 + x2 + (k0 − k1 − k2)

HEROIC’s instructions are a (tiny) subset. The processor
enforces no collisions between (i) encrypted constants that
appear in instructions and (ii) runtime encrypted data val-
ues in registers or memory. The implementation introduces
different types of padding/blinding factors for (i), (ii). Then:

Fact 1. There is no deterministic method by which the
operator can read a program C built from FxA instruc-
tions, nor alter it to give an intended encrypted output.

The supporting argumentA2 depends on the operator not
being able to interpret anything from changes in encrypted
data or instruction constants. However, HEROIC’s one-to-
one encryption maps collisions to equalities underneath the
encryption, invalidating the assumption. The objection is
met by an obfuscating compiler [7] that itself varies the
runtime data under the encryption.

Fact 2. There is a strategy for compiling to FxA code
such that the probability across different compilations
that any particular runtime 32-bit value x for [x]E is
in register or memory location l at any given point in
the trace is uniformly 1/232.

‘The (obfuscating) compiler did it’ is a valid cover for
runtime cipherspace collisions. The compiler uses constants
in FxA instructions to vary the runtime data at location l by
a different offset each time the source code is recompiled.A3

For example, the paradigmatic Ackermann function [33]
compiles to FxA code that runs with the trace shown in Ta-
ble 8 for arguments (3,1). Although the source contains only
the constants 0, 1, the trace shows that the FxA instructions
have instead been compiled with random-looking embedded
constants (the decrypted form is shown in the table, with
E[-] indicating encryption). The runtime trace also shows



(encrypted) random-looking data values are written to reg-
isters before the return value (encrypted) 13 is written. Fact 2
formally impliesA4 semantic security of runtime data from
the operator [14]. I.e., no attack does better than guessing.

It is planned to accept FxA instructions via a pre-decode
stage that splits them into OpenRISC instructions.

7. Conclusion

This paper aims to communicate to the secure hardware
community that encrypted working in a near conventional
processor is a real possibility. A simple superscalar pipelined
32-bit OpenRISC architecture is described, but the expert
community should be able to apply the design principle
more generally: it is that an appropriately modified arith-
metic generates encrypted working.

AES-encrypted computing here has benchmarked as a
433 MHz Pentium, on a 1 GHz clock, using our compila-
tion toolchain. The ‘FxA’ modified RISC instruction set is
introduced here, in which every program and trace may be
interpreted arbitrarily. That makes encrypted computing as
safe mathematically as the encryption key is physically.
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Appendix A

In order to facilitate the referees’ work, proofs of the claims in the
text are sketched here. This appendix is not for publication and is
provided strictly as a courtesy to, aid and convenience for referees.
There is no obligation to read or consult it. Longer versions of these
proofs are to be found in the cited refereed publications (‘longer’
does not equal better).

Please note that, in common with all scientists, early versions
of our submitted papers, including this one, are archived as techni-
cal reports on our own institutions’ web pages and other sites, and,
particularly in the case of security-relevant papers such as this, on
the IACR electronic archive http://eprint.iacr.org/ where they also
have the status of technical reports.

The Cryptology ePrint Archive provides rapid access to
recent research in cryptology. Papers have been placed
here by the authors and did not undergo any refereeing
process other than verifying that the work seems to be
within the scope of cryptology and meets some minimal
acceptance criteria and publishing conditions.
. . .

Posting a paper to the Cryptology ePrint Archive does
not prevent future or concurrent submission to any
journal or conference with proceedings: the papers
in the Cryptology ePrint Archive have the status of
technical reports in this respect.

The academic principle is that unrefereed work does not count.

A1. The (*) protocol
To show that the protocol (*) of Section 4 separates user and
supervisor mode data, one shows that the design establishes three
invariants at processor startup, and then maintains them forever via
the implemented semantics of each individual instruction (this is
a reprise of the argument in [5])). The idea may be understood as
a design principle for each and every instruction’s logic, resolving
‘what should it do in this case’ questions.

Begin by naming five kinds of data:
i 32-bit unencrypted data that originated as encrypted user

data; an example is the number ‘1’, provided (encrypted) as
a program constant;

E encrypted user data occupying 64 or 128 bits, an example is
‘10 . . . 2048358178690568206’, a 128-bit encryption of ‘1’;

D 32-bit plaintext data that originated in supervisor mode, an
example is the number ‘6’, the ‘fabrication stepping number’
of the processor, obtained from a special register;

A 64-bit program addresses that notionally originate in su-
pervisor mode, an example is the (hexadecimal) number
0x7000000015E8CC48.

* a placeholder that stands for pending decryption (i) or
encryption (E) but physically looks like program address zero
(A), 0x7000000000000000.

The invariants for individual instruction semantics are as follows:
1) In supervisor mode, real/shadow registers contain types E/i

or E/* or */i or D/A respectively.
2) In user mode, real/shadow registers contain types i/E, or

*/E or i/* or A/D respectively.
3) Memory contains E or D or A (hence *), but not i .

The invariant (1) says that type i unencrypted user data is not
exposed in supervisor mode. i/?, where ‘?’ stands for ‘anything’,
is missing from all of the allowed combinations. Invariants (1)
and (2) are mutually maintained by the protocol (*), as it swaps
real/shadow registers on mode change.

Within the processor, two ‘tag bits’ inaccessible to the binary
interface identify the kind of data. So registers are in fact 130 or

66 bits wide.
Every instruction is designed to preserve those invariants in

both processor modes. User mode addition, for example, does
i/?+i/?=i/*, requiring type i in both addend registers, other-
wise it raises a ‘range’ exception. That is, user mode addition
expects decrypted data, properly tagged in both ‘shadow’ registers
(which are swapped into ‘real’ position in user mode), otherwise
it will not work. Moreover, when it ‘does not work’ the semantics
is such that the result register content still satisfies the invariant.
‘Leaving it alone’ is a valid implementation strategy, since it would
have already satisfied the invariant before the instruction ran, but
other implementations are possible. All that is required is that the
partner value in the other register of the aliased pair either be the
placeholder * or the encrypted value. That makes ‘leave it alone’
the easiest option on error, but a random result may be preferred. It
is important for the security properties that each instruction should
have an atomic action, leaving no observable trace via the binary
interface of its internal states, and ‘leave it alone’ may give a view
of that. The 2017 publication [7] states that and three more security
conditions for the action of each instruction in user mode:

(1) each instruction is a black box;
(2) each instruction reads and writes encrypted data;
(3) each instruction supports adjustment via its embedded (en-

crypted) constants to support arbitrary given linear shifts to
its inputs and outputs as they are beneath the encryption;

(4) there may be no collisions between the encrypted constants
embedded in (some) instructions and the runtime encrypted
data values that occur in registers and memory.

Those conditions are satisfied by the FxA instructions of , and with
them the proofs of the next section become possible.
The start condition is D in memory and real/shadow registers
appropriately configured for (1). Then all invariants are maintained
through every instruction execution sequence – a program trace.

A2. Proofs
Proof of Fact 1. First consider programs C constructed from the
HEROIC (equivalent) instructions: assignments x←[y+k]E and
branches based on a test [x<K]E .

Suppose for contradiction that the operator has a method
f(T,C) = y of knowing that the output [y]E of C encrypts y,
having observed the trace T . Now imagine that every number has
h 6=0 added to it under the encryption. The additions y←[x+k]E
in C still make sense, adding k under the encryption to a number
that is h more than it used to be to get a number that is h more
than it used to be. Comparisons [x<K]E in C need changing,
however, because the x, which are h more than they used to be,
now need to be compared with K′ equal to K+h for the program
to make sense. So the branch instructions in the program must be
modified to contain [K′]E instead of [K]E . To the operator, the
new program code C′ ‘looks the same’, C′ ∼ C, because one
encrypted number is as meaningful as another without the key (by
the ‘no collisions’ hypothesis, the operator cannot tell either by
a new collision or lack of an old one that the K have changed),
and the program trace T ′ looks the same up to the encrypted
numbers in it, which the operator cannot read, so it looks the
same, T ′ ∼ T , and the method f must declare the output of C to
be f(T ′, C′)=f(T,C)=y. But it is not [y]E but [y+h]E , so the
method fails. It does not exist.

Now suppose for contradiction that the operator builds a new
program C′=f(C) that returns [y]E . Then its constants [k]E are
found in C and its constants [K]E likewise, because f has no
way of arithmetically combining them (the ‘no collisions’ condition
means they cannot be combined arithmetically in the processor and
the operator does not have the encryption key). The first half of
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this proof shows the operator cannot read outputs [y]E of C′, yet
knows what they are. That is a contradiction.

The proof applies with minor adaptations when arbitrary
FxA arithmetic assignment instructions are considered in place
of simple assignments x←[y+k]E . Changing the constants in the
instruction by h under the encryption allows the change by h
under the encryption of the data entering and exiting the instruc-
tion. That is, replace every FxA instruction of the form r0 ←
[(r1−k1) Θ(r2−k2)+k0]E with r0 ← [(r1−k′

1) Θ(r2−k′
2)+k′

0]E
where k′

i = ki + h, i = 0, 1, 2.

A3. Obfuscating compilation
Though we appreciate that a speciality in computer science is
required to understand how a compiler works or even to properly
read the standard kind of semi-formal presentation of its working,
we feel obligated to explain something and not just insist it works.

The reader should apprehend that the compiler works to create
code that at runtime deliberately always ‘misses its target’ by
a controlled amount beneath the encryption. We refer to that
amount as an ‘offset’. So, for example, instead of running code
doing ‘2+2=4’ beneath the encryption, it may instead run as
‘7+13=19’, because the compiler has arranged for offsets of 5 and
11 respectively on the inputs, and 15 on the output (all ‘beneath
the encryption’).

To stay in control of all this, the compiler works with a
database of offsets that formally has a type expressed as

D : DB = Loc→ Int

which is to say that one may look up in the database D a register or
memory location and will get back the compiler’s current plan for
its (32-bit) integer ‘offset’ at runtime. Floating point numbers are
represented at runtime as 32-bit integers via the IEEE-754 standard
encoding, so this technique works to handle them too. The database
is an ‘obfuscation scheme’, also known as an ‘offset scheme’.

As the compiler works through the source code, its obfuscation
scheme changes. All that we really need to do is to show that (i) the
scheme can be controlled as required, and then subsequently (ii) an
information-theoretic argument can be made that the distribution
of possible offsets is uniformly flat across compilations. That is,
we can cause the obfuscation scheme at each point in the program
to be arbitrarily different from recompilation to recompilation of
the same source code.

That is ‘within reason’. There are points in the program code
(either source or object code) between which the obfuscation
scheme cannot vary, because no write to any memory location
or register takes place. A trivial example is the program consisting
of just a ‘no-op’ instruction. The obfuscation scheme planned for
just before the no-op must be exactly the same as that planned for
just after. Loops and gotos occasion similar restrictions. And the
obfuscation scheme down two branches of a conditional must end
up the same where the branches join together again.

The compiler also maintains a database that maps the source
code variables to register and memory locations at each point in
the program, but there is nothing special about that - all compilers
do that. This database has type:

L : Var→Loc

signifying precisely that if it is give a variable (name), it returns
the location in registers or memory where it is mapped to.

The whole compiler, producing FxA machine code, has type:

CL[ : ] : DB× source code→ DB×machine code

which means that it takes source code to object (‘machine’) code,
updating the D database as it goes.

As syntactic sugar in the following semi-formal description of
its working, a pair in the cross product will be written D : s, rather
that (D, s), as it is easier to read without parentheses.

Details of the management of database L are omitted here.
They are entirely standard.
A3.1 Sequence: The compiler works left-to-right through a source
code sequence s1; s2, which formally is expressed as follows:

CL[D0 : s1; s2] = D2 : m1;m2

where D1 : m1 = CL[D0 : s1]

D2 : m2 = CL[D1 : s2]

Read that as ‘the database D1 that results from compiling the left
source code sequent s1, emitting machine code m1, is passed in
to the subsequent compilation of the right sequent s2, emitting
machine code m2 that follows on directly from m1 in the object
code file’ (and in its image when loaded into memory).
A3.2 Assignment: An opportunity for varying an offset arises at
any assignment to a source code variable x. An offset ∆x = D1Lx
for the data in the target register or memory location Lx will be
generated randomly by the compiler, replacing the old offset D0Lx
that previously held for the data at that location.

The compiler first emits code m1 for the expression e which at
runtime puts the result in a designated temporary location t0 with
offset ∆e = D1t0. The compiler next emits code to transfer it
from there to the location Lx intended for source code variable x.
That code is an add instruction, as follows. We will use the abstract
semantics of Table 7 rather than the machine code instruction in
order to make the formal expression easier to read:

CL[D0 : x=e] = D1 : m1; Lx ← [[t0]D+i]E

where i = ∆x −∆e

D1 : m1 = CLt0[D0 : e]

The t0 subscript for the expression compiler told it to aim at
location t0 for the result of expression e. There are several registers
reserved for temporary values. The rule is that the compiler may
use t1, t2, . . . too for workspace, nothing ‘lower’. The point here is
that the compiler freely selects the obfuscation scheme for source
variable x at this point. The offset ∆x is defined by the compiler.
A3.3 Return: Likewise, the compiler at a ‘return e’ from function
f gets to freely select a final offset ∆fret for the return value. It
emits an add instruction with target the standard function return
value register v0 prior to the conventional function trailer (ending
with a jump back to the address in the return address register
ra). The add instruction adjusts to the offset ∆fret from the offset
∆e = D1t0 with which the result from e in t0 is computed by
the code m1 compiled for e:

CL[D0 : return e] = D1 : m1;v0 ← [[t0]D + i]E
. . . # restore stack
jr ra # jump return

where i = ∆fret −∆e

D1 : m1 = CLt0[D0 : e]

For completeness, the offset for v0 is also updated in D1 to
D1v0=∆fret , though there is no real point to it as the function
body ends at the return and the database is used no further by
the compiler (down this branch of the source code). Although the
compiler is constrained to use the same offset scheme ∆fret for the
return value register v0 at every return in the body of the function,
it freely chose what that value would be at the start.

The remaining source code control constructs are treated much
like return. For an if statement, for example, the final offsets of
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every affected variable in each branch must match at the join, but
what those offsets are is freely chosen by the compiler at the point
where it started compiling the statement.

The offsets ∆l at each point in the program are effectively
inputs to the compilation from a random distribution. They are
chosen with flat probability across the whole 32-bit range, which
is to say, with possible entropy. There is no statistical bias in any
direction as to what the offsets are.

The runtime environment (the remote encrypted computing
platform, the system adminsitrator and so on) has no knowledge
of the offset scheme chosen by the compiler. The remote user is
the instigator of the compilation in the safety of their own home
environment, and they know the obfuscation scheme.

With all this information one can now prove Fact 2.

Proof of Fact 2. Suppose that at the point just before the FxA
instruction I in the program, for all locations l the value x+∆x

with [x+∆x]E in l varies randomly across recompilations with re-
spect to a nominal value x with probability p(x+∆x=X)=1/232,
and I writes value [y]E in one particular location l. That y has
an additive component k that is generated by the compilation
so as to offset y from the nominal functionality f(x + ∆x) by
an amount ∆y that is uniformly distributed across the possi-
ble range. Then p(y=Y )=p(f(x+∆x)+∆y=Y ) and the latter
probability is p(y=Y ) =

∑
Y ′

p(f(x+∆x)=Y ′ ∧ ∆y=Y−Y ′).

The probabilities are independent (because I is only generated
once by the compiler and ∆y is newly introduced for it), so
that sum is p(y=Y )=

∑
Y ′

p(f(x+∆x)=Y ′)p(∆y=Y−Y ′). That

is p(y=Y )= 1
232

∑
Y ′

p(f(x+dx)=Y ′). Since the sum is over all

possible Y ′, the total of the summed probabilities is 1, and
p(y=Y )=1/232. The distribution of x+∆x in other locations is
unchanged.

A helpful intuition is that the offset ∆y introduced by the compiler
is a maximal entropy signal, and adding it in in (sic) an instruction
swamps any information the instruction might have exposed.

The obfuscating C compiler project aimed at FxA instructions
is open source, available from http://sf.net/p/obfusc/. It is written
in Haskell. The current state is that it is lacking long long and
double (floating point) types, unions, multi-dimensional arrays,
some forms of array and struct initialization, computed gotos, and
all labels must be declared with ‘ label ’ (the gcc convention for
locally scoped labels). It has gotos, interior functions (at least one
level), global, static and automatic variables, 1-D arrays, structs, as
well as the gcc statements-as-expressions extension and (limited)
inline assembler. All standard C statements are compiled, including
minor extensions such as gcc case ranges (‘case 1...10:’).

The major difficulty is that pointers must be declared as
pointing to somewhere (a base array, earlier or higher up in scope),
via ‘int foo[100]; restrict foo int *fooptr’, for example. Array ‘foo’
is the zone into which ‘fooptr’ points, announced with the ‘restrict
foo’ qualifier in the declaration.

This is necessary because the compiler keeps track of one
offset scheme per zone/array, and an unqualified pointer could
point into any of them at runtime. The extended type system
appears consistent, but we do not yet have a formal soundness
proof for it (‘soundness’ means that if the type system says at
compile-time that the pointer will point there, then it will be so).

Unfortunately, library functions that take pointers as arguments
are impossible. That is because the library compilation does not
know what zone in the programmer’s code the pointers will point
to when called. We are currently using macros instead (they are
compiled in the context of the program in which they are used)

and are evaluating what further steps to take.
The FxA toolchain includes, as well as the compiler, an assem-

bler, linker and virtual machine, plus a disassembler. Referees are
welcome to examine it and try it out. It was not known before
attempting the project how far this kind of machine-code-level
obfuscation could be taken. But apart from the strong restriction
on pointers discussed above (which could be argued to improve
C), it appears that almost all C code will be compilable (about
a quarter of the gcc test-suite is compiling and running correctly
at this point). It was suspected that gotos would be impossible,
as runtime would not be able to jump from a context with one
obfuscation scheme to a context with another, but it turns out that
the receiving label may be equiped with a nontrivial action (a
‘come from’) that realigns the obfuscation scheme on the drop-
through control flow path to the way it was at the point of the lto
abel’s delaration, while the goto establishes the same scheme.

A similar compilation technique solves a problem with side-
effecting function calls, in that the caller does not know what the
callee does to global variables’ obfuscation schemes, so would be
‘wrong’ at its next attempt to access them after a call. The callee
function simply takes care on return to restore the obfuscation
scheme as it was at the point of its own definition, and the caller
expects it to do that and aims at the same obfuscation scheme in
the setup and recovery from the call.

There is some inefficiency there, but it may be optimised away
in future. A larger and inescapable inefficiency derives from a
single obfuscation scheme for a whole array. That means that
every write into the array must either respect the existing scheme,
or change it, triggering a flood of rewrites across the array – the
beahaviour is reminiscent of ORAM. We have decided on the latter
approach as more secure. Array initialisations are regarded as all
taking place at once in order to keep to linear order complexity (a
vector write instruction is needed in the FxA instruction set).

Arrays of records (‘structs’) are more efficient than plain
arrays in that respect, because a different obfuscation scheme is
maintained by the compiler for each record field, per array. That
limits the flood of rewrites to the whole array after a single write
to a field to just the corresponding fields of other records.

A4. Semantic security
Fact 2 provides a probabilistic setting in which ‘semantic

security’ (no attack is more successful than chance) can be demon-
strated, as follows.

Proof. Consider a probabilistic method F that guesses for a partic-
ular runtime value beneath the encryption ‘the top bit is 1, not 0’,
with probability pC,T for program C with trace T . By Fact 2,
1 and 0 are equally likely across all possible compilations C,
and the probability F is right is p(bitC,T = 1 and F (C, T ) =
1) + p(bitC,T = 0 and F (C, T ) = 0). Splitting the conjunctions,
that is p(bitC,T = 1)p(F (C, T ) = 1 | bitC,T = 1) + p(bitC,T =
0)p(F (C, T ) = 0 | bitC,T = 0). But the method F cannot dis-
tinguish the compilations it is looking at as the codes and traces
are the same to look at, modulo the (encrypted) values in them.
The method F applied to C and T has nothing to cause it to give
different answers but incidental features of encrypted numbers and
its internal spins of a coin. Those are independent of if the bit is 1
or 0 beneath the encryption, supposing the encryption is effective.
So p(F (C, T ) = 1 | bitC,T = 1) = p(F (C, T ) = 1) = pC,T and
p(F (C, T ) = 0 | bitC,T = 0) = p(F (C, T ) = 0) = 1− pC,T , and
the probability F is right reduces to 0.5pC,T+0.5(1−pC,T ) = 0.5.
That is no better than chance.
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