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Abstract

A (n, 9)-elastic channel is a binary symmetric channel between a sender and a receiver
where the error rate of an honest receiver is § while the error rate of a dishonest receiver
lies within the interval [y,d]. In this paper, we show that from any non-trivial elastic
channel (ie, 0 < v < § < %) we can implement oblivious transfer with information
theoretic security. This was previously (Khurana et al., Eurocrypt 2016) only known for
a subset of these parameters. Our technique relies on a new way to exploit protocols for
information-theoretic key agreement from noisy channels. We also show that information
theoretically secure commitments where the receiver commits follow from any non-trivial
elastic channel.
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1 Introduction

In this paper we consider oblivious transfer (OT), a well known two-party cryptographic
primitive. In oblivious transfer, a sender has two messages and a receiver chooses to learn one
of them. The receiver gains no information about the other message, while the sender does
not know which of the messages the receiver has learned. Oblivious transfer is an important
primitive because it is sufficient for information-theoretic secure computation [Kil88].

However, information-theoretic secure computation and therefore oblivious transfer are
well known to be impossible if sender and receiver communicate in the plain model, with no
other additional resource available. Therefore, several alternative models have been stud-
ied where information-theoretically secure oblivious transfer is possible because we assume
additional resources.

One such assumption is the existence of a noisy channel between the sender and the
receiver. It was shown in [CK88] that binary symmetric channels are in fact enough to realize
oblivious transfer. A binary symmetric channel is one where each bit sent is flipped with a
certain probability, known as the error rate of the channel. More efficient constructions, and
different variants of noisy channels, were provided in subsequent papers, such as [BCS96,
Cré97, DKS99, DFMS04, CMWO05, CS06, PDMN11, IKO™11].

In particular, it was realised that it is problematic to assume that we are given a noisy
channel with known and fixed parameters, such that the OT protocol we construct is allowed
to depend on the parameter values. One reason for this is that it can be very hard to reliably
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estimate the parameters of a real channel. Another, more serious problem is that by fixing
the parameters we are implicitly assuming that the adversary cannot change them. This is
clearly unrealistic, and was the main motivation for introducing unfair noisy channels (UNC)
in [DKS99]. In this model, the channel is a binary symmetric channel where, however, an
adversary who corrupts one of the two parties can also choose the error rate to be within some
range [, d]. For § > 2v(1—+), the channel is easily seen to be trivial (it can be simulated from
noiseless communication). It was shown in [DKS99| that information theoretically oblivious
transfer follows from UNC for a certain subset of the possible non-trivial parameter choices,
while information theoretically secure commitments follow from any non-trivial UNC.

FElastic channels (EC), a relaxation of unfair noisy channels, have been introduced in
[KMS15]. For an EC, the noise can only be reduced by an adversary who corrupts the
receiver. More precisely, given 0 < v < § < 1/2, a (v, d)-elastic channel is one where the
communication between the sender and an honest receiver has error rate J, but a dishonest
receiver may reduce this to be in the interval [y, d]. Clearly, in this setting, 6 = 1/2 would
correspond to a channel where all information is lost for the honest receiver, while v = 0
would yield a channel where a dishonest receiver has full information about the messages
sent by the sender. Clearly we cannot implement oblivious transfer in either case, and hence
these channels are deemed trivial.

It was shown in [KMS15] that commitments where the sender commits follow from any
non-trivial EC, and that oblivious transfer follow from EC for a certain subset of parameters,
which is larger than in the case of a UNC. More specifically they show that 6 < ¢() where
0(y) = (1+ (4v(1 - 7))_1/2)71 is sufficient.

It is of course interesting that going from UNC to EC allows a larger range of parameters
from which we can get OT. However, for both channels, we are still left with a “grey area”
of parameter values where we do not know if OT is possible. One might say that we still do
not know if an EC is fundamentally and qualitatively different from a UNC as far as OT is
concerned. Moreover, for commitments, we know that we can have the sender commit, but
since an EC is asymmetric w.r.t what corrupted senders and receivers can do, it is not clear
that we can get commitments where the receiver commits for any non-trivial EC.

Our contribution. In this paper, we make progress on the above questions. First, we
close the gap left open in [KMS15] and show that information theoretically secure oblivious
transfer follows from any non-trivial EC. Along the way, we also construct commitments
where the receiver commits, from any non-trivial EC.

Our main technical contribution is a new way to exploit existing constructions of key
agreement protocols towards implementing OT. More specifically, we consider a key agree-
ment protocol between two parties (Alice and Bob) in the following model: Alice can send
messages to Bob through a binary symmetric channel C' with error rate §, and the adversary
Eve will receive what Alice sends via an independent binary symmetric channel with error
rate 7' € [v,4]. On top of this, Alice and Bob may also communicate via a public error-free
channel. Several key agreement protocols exist in this model [Mau93]. The main idea is
to use the public channel to identify transmissions where Alice and Bob are more likely to
agree on what was sent on the noisy channel. Because Eve’s channel is independent, this
may create a situation where Eve has a disadvantage compared to Bob, even if her noise rate
is initially smaller.

In this work, we consider key agreement protocols that are secure in the usual sense:
Alice and Bob agree on the output, and Eve gets essentially no information on the key. But
in addition, we require an extra property we call emulatability: We can replace Bob by a
“fake” Bob’, who gets no information on what Alice sends on the noisy channel (but Eve
gets information with error rate « as usual). Still, Bob’ can complete the conversation on



the public channel such that neither Alice nor Eve can distinguish Bob’ from Bob. As we
explain later, the key agreement protocol from [Mau93] happens to be emulatable. We show
that an oblivious transfer protocol secure against semi-honest adversaries can be constructed
from any emulatable key agreement protocol. Furthermore, by using information-theoretical
commitments where the committing party is the receiver (which can be constructed from
any non-trivial EC, as we will show) we can upgrade our protocol to achieve security against
a malicious receiver too. Finally, we show how to achieve security against a malicious sender
in the case where our emulatable key agreement protocol is that from [Mau93].

Technical overview. To give an intuition of how our protocol works, consider first the case
of semi-honest security where a semi-honest receiver reduces the error rate to the minimal
value 7 (which is without loss of generality).

We turn a emulatable key agreement (KA) protocol as described above into an OT
protocol as follows. The sender and the receiver engage in two independent instances (indexed
respectively by 0 and 1) of the key agreement protocol above. In both cases, the sender from
the OT protocol takes the role of Alice in the KA protocol, while the receiver does the
following: in the instance of the KA protocol corresponding to his selection bit b, he acts
as Bob would, while in the other instance, he acts as Bob’ (so in particular his actions
are independent of what he receives from the sender on the EC). Finally Alice sends her
messages mg, my one-time padded respectively with kg and k1, each of these keys obtained
in the corresponding key agreement protocol.

Now, an honest receiver will learn my as he should, which follows from correctness of the
KA protocol. Second, a corrupt sender cannot learn the choice bit b. This follows from the
emulatability property of the KA protocol: the sender cannot distinguish in which of the two
instances she is interacting with the real Bob. Finally, a corrupt receiver cannot learn mq_p.
This follows from the fact that, in the instance of the KA corresponding to 1 — b, the view of
the receiver is the same as the view of Eve, namely he sees everything Alice sends with error
rate v, and he sees the public discussion (the fact that he generates that discussion himself
by running Bob’ makes no difference). One can then show that emulatability implies that
this view is distributed identically to the case where Eve watches Alice interact with Bob,
and the usual definition of key agreement security guarantees that this is independent from
the exchanged key kq_p.

Security in the malicious case is more involved. First, we need to ensure that the malicious
receiver follows the protocol. It turns out to be sufficient that the receiver proves that for
one of the KA instances, the messages he sends on the public channel are generated by Bob’,
of course without revealing which one. To this end we can use the fact that commitments
where the committing party is the receiver also follow from any EC (see below) and, via a
known reduction, zero-knowledge proofs on committed values follow as well. Thus, we are
doing something very similar to the GMW compiler. As a result we get a protocol that is
secure against a semi-honest sender and a malicious receiver.

To further protect against a malicious sender, we execute many instances of the OT. The
receiver checks the statistics of what he receives on the EC and discards instances that are
too far from what he expects to see from an honest sender. This creates a protocol where
the sender will (at least sometimes) have non-trivial uncertainty about the choice bit. We
can now use standard techniques to clean this up to get a secure OT.

As for our construction on receiver commitments from any non-trivial EC, we observe
that the commitment protocol from [DKS99] (that was designed for a UNC) can be modified
to work for an EC. All we essentially have to do is to choose the parameters correctly. On
the one hand, handling an EC is harder because § and -y are much further apart than for
a UNC, however, on the other hand an EC is easier because one party has to live with the



large noise rate even if he is corrupt. Intuitively, the observation is that these two issues
balance each out so that (almost) the same protocol still works.

Outline. In Section 2 we define the basic functionalities we will deal with for the remainder
of the paper, namely oblivious transfer and the elastic channel. In Section 3, we introduce
the notion of emulatable key agreement, as well as a protocol that implements it. Emulatable
key agreement is used in Section 4 to implement an OT protocol that is secure against semi-
honest adversaries. this protocol is then used in Section 5 in the construction of a protocol
secure against a malicious receiver. Finally, in Section 6 we present a construction that
builds upon the one of Section 5 to obtain security against malicious adversaries.

2 Preliminaries

2.1 Security model

We prove our protocols secure in the Universal Composability framework introduced in [Can01].
This model is explained in Appendix A.

2.2 Oblivious transfer

Oblivious transfer is a two-party primitive where one party (the sender) inputs two messages
and the other party (the receiver) chooses to receive one—and only one—of them. Crucially,
the sender does not learn the receiver’s choice, and the receiver does not learn the message it
did not choose. This primitive is formalized in the primitive below. Note that the description
includes an adversary A, which can corrupt parties.

Functionality F,; (Oblivious transfer)

For runs with two parties: a sender and a receiver.

Send: Upon receiving (send, sid, mg, m1) from the sender: store (sid, mg, m;) and send
(sent,sid) to A.

Receipt: Upon receiving (choice,sid,b) from the receiver: if a message of the form
(sid, mg, m1) has been stored, send (receipt,my) to the receiver.

2.3 Elastic channel

A (v, 9)-elastic channel, as introduced in [KMS15], is a binary symmetric channel with
crossover probability § where a receiver that has been corrupted by the adversary can choose
to reduce the crossover probability to a level v with v < v < §. In the functionality below, we
define a more general version where the channel is composed by ¢ binary symmetric channels
(all with crossover probability v).

Functionality F:(7,d) (Elastic channel)

Fee runs with parties P;, P, and eavesdropper A as follows:

Initialization: v < §




Noise: Upon receiving (noise, 7) from A, if the receiver is corrupt and v < 7 < ¢ then
set v < 1.

Send: On (send, sid, m) from the sender, where m € {0, 1}¢, produce m by flipping each
bit of m independently with probability v. Then send the message (sent,sid) to
A and the message (sent,sid,m) to the receiver.

3 Emulatable key agreement

Key agreement is the problem where two parties, Alice and Bob, want to establish a common
key (a random element from {0,1}) so that an eavesdropper Eve has no information about
this key. In other words, the goal is to implement the following functionality F,.!

Functionality F;, (Key agreement)
F TUNS With security parameter ¢, parties P;, P, and eavesdropper A as follows:
Establish: Upon receiving (establish,sid, P;, P;j) from P;, store (sid, P;, Pj) and send

(sid, P;, Pj) to A. If there is already a stored (sid, Pj, ), choose k «x {0,1},
send (sent, 1¢) to A and send (key,sid, k) to Pp, Px.

In this section, we consider the scenario in which Alice can communicate to Bob via a
wiretap channel F; where each bit is flipped (independently) with probability 6. Eve can
obtain another noisy version of this communication, where each bit is flipped with probability
~ and this noise is independent from Bob’s. Furthermore, there is a feedback public channel
Fow through which Alice and Bob can communicate.

Functionality F. (Wiretap channel)

F. runs with parameters v,d € (0,1/2), message size ¢, parties P, P, and eavesdropper
A as follows:

Send: Upon receiving (send, sid, Py, Py, m) where m € {0,1}¢, for each k € {1,...,¢}:

1. Produce m by flipping each bit of m independently with probability d. Fur-
thermore, produce m by flipping each bit of m independently with probability

7.
2. Send (sent,sid) to Pi, (receipt,sid,m) to P, and (receipt,sid, m) to A.

Functionality F;,, (Public channel)

Few TUns with message size ¢, parties P;, P, and eavesdropper A as follows:

Send: Upon receiving (send, sid, P, Pj, m) where m € {0,1}¢, send (sent, sid) to P; and
(receipt,sid, m) to P; and A.

In the remainder of this section, we interchangeably call the parties Alice, Bob, Eve or respectively
Py, Py, A



In this setting, we are interested in key agreement protocols with an additional property
that we call emulatability. A key agreement protocol 7 is emulatable if, in addition to
implementing the key agreement functionality as it should, the role of Bob can be simulated
by some entity &£, the emulator, that learns no information about the messages transmitted
through F, other than their lengths, and neither Alice nor Eve can distinguish whether Alice
is interacting with Bob or with £.

We formalize this below. We first define a functionality /. that models a dummy channel
whose task is to erase every information sent through the channel F; except for the length
of the messages.

Functionality F,; (Dummy channel)

Foe Tuns with message size £ and parties P, P as follows:
Send: Upon receiving (send,sid, m) from P; where m € {0, 1}%
If no such command has already been sent, send (sent, sid, [1%) to P».

Otherwise, ignore the command.

DEFINITION 3.1 A key agreement protocol w between Alice and Bob using a wiretap channel
Fe and a public channel Fuy, is emulatable if:

1. It realizes the functionality Fy,. That is, there exists a simulator S such that for all

eavesdroppers A,
TOoFe 0 Fow =4 Frn ©S.

2. There exists an emulator £ such that the following happens: suppose that we consider
the protocol ' where we replace Bob by Fy. ¢ &, i.e., € is linked to F, via the dummy
channel Fy, and Alice acts as in protocol m, while in both cases the eavesdropper A
recetves information from Fe and Fey. Then from the point of view of Alice and all
eavesdroppers A, the protocol executions of m and 7' are indistinguishable.

That is, we have
— /
T Fe O Fow =Alice, A T 0 C o Fop.

We will need the following property later on.

PROPOSITION 3.2 Suppose that a key agreement protocol m is emulatable. Then for any
eavesdropper A, if Alice is executing the protocol ©' with the emulator £ as in the definition,
A obtains no information about Alice’s output.

This is because, if A could obtain any information about Alice’s output in the execution of
7', then either she would be able to obtain information about Alice’s output in the execution
of 7 (contradicting property 1 of emulatability) or she would be able to distinguish 7 and 7’
(contradicting property 2).

3.1 The emulatable key agreement protocol

We now describe an emulatable key agreement protocol for a wiretap channel F, with v < 9,
that is, for which the channel to the eavesdropper Eve is more reliable than the channel to
Bob.



This is a small modification of a key agreement protocol from [Mau93]. For each ~,d, the
protocol specifies large enough numbers s,#,n € N, to be determined below. The protocol
consists of two phases: advantage distillation and privacy amplification.

At the end of advantage distillation, Alice and Bob share a string about which Eve has
only partial information, despite the fact that the channel from Alice to Eve is more reliable
than the channel from Alice to Bob. This is done as follows. Alice encodes bits in a repetition
code and sends them to Bob. Bob then checks the messages he received and tells Alice (via
the public channel) which ones are valid codewords. They then use the encoded bits from
messages in this set as the shared string.

The intuition here is that, even though Eve has more information over messages sent
over the wiretap channel than Bob has, she has only partial information over the messages
accepted by Bob. Given this uncertainty, Alice and Bob can proceed by applying privacy
amplification and obtain a random string about which Eve has no information.

This description is formalized below. (For simplicity, we omit the description of the
“establish” step introduced in the functionality of Section 3.)

Protocol 7, (Emulatable key agreement)

Advantage distillation:

Alice:
bi,...,by €r {0,1}

Set m; = bf for i € {1,...,n}.
For i € {1,...,n}, send (send, Alice, Bob, sid;, m;) to Fe.

Bob:
For i € {1,...,n}, await (receipt, Alice, Bob, sid;, m;) from F.

Construct the set Z C {1,...,n} consisting of the indices i for which m; is a valid
codeword in the repetition code.

Encode the set Z as a bit string u and send (send, sid, Bob, Alice, 1) to Foy.

Alice:
Await (sent,sid, Bob, Alice, u) from Fp.

Alice < Bob:
Alice sets X* = (b;,,biy,...,b;,) and Bob sets Y* = (¢, ¢iy,...,¢i,), where
i1,...,%s are the first s indices in Z, and ¢; is the bit encoded by m; for j € Z.

Privacy amplification:

Alice:
Sample h; €r H, send (send, sid, Alice, Bob, h1) to Fpy,.
Output hy(X).

Bob:
Await (send, sid, Alice, Bob, hy) from Fpy,.

Output hy(Y).




THEOREM 3.3 The protocol my, is emulatable with respect to Alice.

ProoOF. Following [Mau93, Section V], we set ¢ to be large enough that, for messages
accepted by Bob (i.e., for which i € Z), the information Bob has about Alice’s input is
larger than the information possessed by Eve. We will not compute a lower bound for ¢
explicitly here, but we note that it only depends on the channel parameters v and . We
also set 1 = [$/Paccept |, WheET€ Dyceepr = §¢ + (1 — 9)! is the probability that Bob accepts a
message. This guarantees that for large enough s, Bob accepts s messages with overwhelming
probability. Additionally these messages will be correct, i.e., X* = Y*® (except with negligible
probability in /).

By the argument in [Mau93|, this guarantees that H(X?®|E®) > 0, where E® denotes
the information received by Eve. Privacy amplification can thus be performed. Concretely,
fixing 6 > O,2 if we set the output size k of hy to be k = H(X?*|E®) — s0 + Olog(1/¢) where

€ = 2_2");26(“3), then [Ren08, Corollary 5.6.1] combined with [HR11, Theorem 1] implies
that h1(X) = h1(Y) is e-close to a random bitstring of size k. (Note that we can adjust the
value of k by setting 6 appropriately.) Hence 7y, realizes Fy,.

To show that the protocol is emulatable, we have to construct an emulator £ that satisfies
Property 2 in Definition 3.1. We note that the only information Bob sends to Eve is the
description of the set Z of indices for which Bob accepted Alice’s message. We can construct
an emulator for Bob thus. After £ receives a message from the dummy channel Fy, it
samples a random index set Z C {0, 1}", where each index is chosen according to a Bernoulli
distribution with parameter p,..,.—the index is included in 7 if the trial succeeds. £ then
sends a description of Z to Alice via Fpy. It is clear that such an emulator satisfies Property
2.

A

4 Semi-honest protocol

Now we present an OT protocol over the elastic channel Fg(7, d) for semi-honest adversaries.
We show that such an oblivious transfer protocol can be constructed from any emulatable
key agreement protocol that works in the setting of Section 3 (where Alice, Bob and Eve
are connected by a wiretap channel F. with the noise parameters being § for Bob and ~ for
Eve).

The idea of the protocol is for sender and receiver to engage in two separate subproto-
cols. In one, they run the emulatable key agreement protocol with the sender acting as Alice
and the receiver acting as Bob. In the other subprotocol, the sender follows again the key
agreement protocol as Alice, whereas the receiver runs the emulator, according to Defini-
tion 3.1. The choice bit ¢ determines whether the receiver will follow the protocol or act as
the emulator. Here, the elastic channel is used as a conceptual wiretap channel F., where
an honest receiver gets the output of the legitimate (noisier) channel, whereas an adversarial
receiver gets the output of the less noisy channel.

To see why the protocol is secure, we note that since the key agreement protocol is
emulatable, the sender does not know whether she is interacting with Bob (that is, whether
she is engaging in the actual key agreement protocol) or with the emulator. Hence, she does
not learn any information about the choice bit ¢. This guarantees the receiver’s privacy.

On the other hand, by definition the emulator can generate the transcript for the key
agreement protocol without knowing anything about the exchanged key. Therefore in this
case the receiver has no information about the key output by Alice at the end of the key
agreement protocol.



This proof sketch is formalized in Theorem 4.1, below.

Protocol 7y (Semi-honest oblivious transfer)
Let my, be an emulatable key agreement protocol, as stated in Definition 3.1. We denote
the sender’s input as mg, m; and denote the receiver’s input as c.

Sender < Receiver:

Sender and receiver execute two copies mg, m; of 7y, where the sender behaves in
both as Alice. In 7., the receiver acts as Bob and in 7_., it acts as the emulator
& prescribed by T,.

Receiver:

On completion of mg, 1, record the output of 7. as k.

Sender:

Await kg, k1 from mg, 1.
Set m; :=m; ® k; for : =0, 1.
Send (send, sidg, mp) and (send,sid;, m1) t0 Fpy.

Receiver:

Await (sent,sidg, mg), (sent,sid;, m;) from Fpy.

Output m. := m. ® k.

THEOREM 4.1 The protocol wyey realizes Fyor. That is, there exists a simulator S such that
Totsu © Fec © oo =2 For © S
for all semi-honest environments Z.

ProoF. For each activation, the environment Z chooses mg, m1,c. When interacting
with the protocol, Z receives m., and when interacting with Fy,, it receives m.. We note
first that since 7. is an instance of m,, which implements Fy,, we have m/, = m.. All that
remains to be shown is that there exists a simulator for Fy; that can reproduce the view of
the environment.

First, assume P; is corrupted, so that Z gets access to P;’s internal state. During the
real execution, it gets access to ko, k1 (through Pj), mg,m; plus the leakage from 7y and
(through the adversary A, which interacts with Fy, and Fpy). At the end of the execution,
it gets P»’s output, which is given by m..

In the ideal process, the simulator & corrupts P;, so that it gets access to mg,mi. S
proceeds as follows. First, it executes two copies of Fy, ¢ S’, where S’ is the simulator for
the key agreement protocol. By assumption, this internal simulator replicates the leakage
from my and 7, which is relayed to Z. Additionally, at the end of F,’s execution, S gets
two random keys, which we denote by k{, k{. It then computes m; = m; ® k! for i = 1,2
and sends both to Z. Finally, it sends mg, m1 to Fur, which will then send m. to P». It is
easy to see that Fy; ¢ S provides Z with the same view as in the real protocol.

Now assume P, is corrupted. Throughout the real execution, Z gets access to k. (through
Py), mg,my, m. plus the leakage from my and 71 (through the eavesdropper A). In the ideal



process, S gets ¢ by corrupting P5. It proceeds as follows. It runs one copy of Fy ¢ S,
obtaining a random key k”, and relays ¢ to Fo,. After P, receives m, from Fy, S computes
me = m. ® k! and sends it to Z. Clearly, m. and m, have the same distribution as in the
real execution.

Finally, we look at the leakage from the execution of 7 _. (executing the instance of 7,
with the emulator £). Due to Proposition 3.2, m_. gives no information on kj_. to the
eavesdropper A. Therefore m_. gives no additional information to Z. Moreover, since the
execution of £ only depends on the outputs of the dummy channel F, its view provides Z
with no additional information, even given the rest of Z’s view. The view of Z is therefore
the same in both scenarios. JAN

5 OT protocol secure against a malicious receiver

In this section, we make our protocol secure against a malicious receiver. Note that in our
semi-honest protocol, we rely on the fact that the players will engage in two instances of
an emulatable key agreement protocol, where the receiver will play the role of Bob in one
of them and the emulator in the other. Of course, if the receiver is malicious, he will not
necessarily adopt this behaviour. We will use standard techniques to solve this problem.
Namely, we want to use the paradigm introduced in [GMWS86]: we will make the receiver
prove in zero knowledge that he is acting as in the semi-honest protocol.

To do this, we will need that the receiver can commit to bits. Recall that in [KMS15] it
was shown that commitments where the sender commits follow from any non-trivial EC, but
since an EC is asymmetric, it is not clear that this allows the receiver to commit. Therefore,
we solve this problem first.

5.1 Receiver commitment from any non-trivial EC

The solution in a nutshell is to observe that the commitment protocol from [DKS99] will work
for receiver commitments on any non-trivial EC, if we slightly tune some of the parameters.

First, note that we can reverse the direction of the EC, by simply having the sender
send a random bit x on the EC, the receiver chooses a bit b to send and sends x @ b back
on the public channel. This is clearly a noisy channel in the opposite direction. In this
subsection we will rename the sender and call him the verifier V, while the receiver will be
called the committer C'. What we just constructed is a “reversed EC” where the C' sends
and V receives. V always receives with noise rate d, but C' can reduce his noise rate to « if
he is corrupted (and hence get a better idea of what V' received). The goal is now to build
an unconditionally secure commitment scheme based on such a channel.

We define some constants as follows. dy is defined by § = (1 — dy) + do(1 — 7). That is,
dp is such that adding noise with rate v and then noise with rate dg produces total noise rate
. This means that dy = (§ —)/(1 —2v), and from it follows trivially that since § < 1/2, we
have 6 > dy. We can therefore choose constants d;, d and d* such that dy < di < d* < d < 0.
Finally, we define 8’ = v(1 — dy) + d1(1 — 7). Note that since d; > dy we have ¢’ > 4.

Furthermore, we define ¢ to be the logarithm of the number of elements in a Hamming
ball of radius d, and likewise £* the logarithm of number of elements in a Hamming ball of
radius d*.

We will need three families of universal hash functions H, H1, Ho that are 64k-wise inde-
pendent and map from {0, 1}* to {0,1},{0,1}*", {0, 1}~ respectively.

With these definitions in place, we can use the protocols from [DKS99] with no change.
We copy them here for completeness.
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Protocol Commit

Sample X € {0,1}*, send (send, sid, C,V, X) to Fr.

Await (send,sid, C, V, X') from Fy
Sample h; €r Hi, send (send,sidy, V,C, h1) to Fpy-

Await (send,sidy, V,C, hy) from Fpy,.
Set y1 := h1(X), send (send,sidy, C, V,y1) t0 Fpy.

Await (send,sidy, C,V,y;) from Fpy,.
Sample hy €r Ha, send (send,sids, V, C, ha) t0 Foy.

Await (send,sids, V,C, ho) from Fpy,.

Sample h € H, set y2 := ha(X) and b := h(X).

Send (send, sidy, C,V,y2) and (send, sids, C,V, h) t0 Fop.
Output b.

Await (send,sidy, C,V,y2) and (send, sids, C,V, h) from Fi.

Protocol Open

We define A as the Hamming distance.

C:

Send (send, sid, C, V, X) t0 Fpyp.

Await (sent,sid, C,V, X) from Fpy.

Check that y1 = h1(X), y2 = ho(X) and A(X, X’) < §k. If either condition is

false, then abort.

Output b := h(X).

We have defined our constants slightly differently from what was done in [DKS99], but
dp is defined in the same way, and the rest of the constants satisfy the same inequalities. It
therefore turns out that exactly the same proofs can be used to show this version secure. We
will not repeat the proofs here, but give some intuition why the protocol is secure. We let
A denote the Hamming distance, and by negligible we mean negligible as a function of k.
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Both parties are honest. In this case we expect X’ to be at distance dk from X. Since
8’ > ¢, the probability that the distance is greater than §’k is negligible, so V will
accept the opening.

C is corrupt. We want to argue that there is only one string C' can convincingly open after
commitment time. Suppose first that C tries to claim a string X* with A(X*, X) >
d*k. Then note than in his view, the received string X’ is expected to be such that
d(X, X') = vk. So we expect that A(X*, X') > (d*(1 —~) +~(1 —d*))k > §'k because
d* > di. So V would reject with overwhelming probability in this case. This means
that X™* must be in a Hamming ball with radius d* and center in X. But by sending
h1(X), ha(X), C reveals ¢ bits of information on X. Since ¢ > ¢* this is more than
required to identify uniquely an string in a ball of radius £*, so there is only one string
that can be opened.

V' is corrupt. We want to argue that V has essentially no information about h(X) before
opening. Note that in V’s view X is in a Hamming ball with radius § and center in
X'. Via the hashing V gets only ¢ bits of information, and since d < §, one can show
that there are exponentially many candidates left for X, even after hashing. Now by
a standard privacy amplification argument, it follows that the expected information V'
has on h(X) is negligible.

5.2 From commitment to security against malicious receiver

Recall that the GMW compiler [GMWS86] transforms a semi-honestly secure protocol into
a maliciously secure one by using the following three steps: in the first step, each party
commits to his input; in the second step, each party is forced to commit to a random tape,
where it is important that the tape is hidden from the other party and is chosen at random.
This is done by having the party that is committing to a random tape commit to a random
value. The other party then sends a random string. The tape is then defined to be the xor
of both strings. This technique is known as coin-tossing in the well. finally, in the third
step, each player follows the protocol with the committed inputs and their committed tape
and whenever they send a message, they also prove in zero-knowledge that this is the correct
message given their committed input, their committed random tape and the transcript of
the protocol.

In this section, we are only interested in achieving security against a malicious receiver,
so we apply the compiler to the receiver only. This results in the following approach: In the
first step, the receiver will commit to his choice of input ¢; this also indicates the instance
of the key agreement protocol where he will play the role of Bob. In the second step, the
receiver will be forced to commit to a random tape ¢ for the emulator using coin-tossing in
the well. Then the sender and receiver will run an augmented version of the semi-honest
protocol. Each instance of the key agreement protocol will be associated to an index b. Each
time a receiver sends a message, the receiver also proves in zero-knowledge: “Either the given
instance of key agreement has index b = ¢ or the message was produced by following the
description of the emulator with random tape ¢”.

There is, however, one difficulty: In [GMWS86], the commitments were computational. It
was therefore possible to prove statements about committed values directly. For a black-box
information-theoretically secure commitment, it is not directly possible to prove statements
that involve the committed values. To fix this problem, we use a commitment scheme which
can indeed be used for any number of zero-knowledge proofs. This is the commitment scheme
from [CvdGT95] which was later proven UC-secure in [Est04]. As shown in [CvdGT95],
this commitment scheme can be constructed in a black-box manner from any commitment
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schemes. Although this commitment scheme only allows proofs of xor relationships directly,
one can use use techniques such as [BCC88| to prove arbitrary statements involving the
committed values.

Functionality Feu (Commitment with zero-knowledge)
Feoze TUNS With two parties: a sender and a receiver.
Commit: On receiving (commit, cid, m) from the sender:
If such a command has already been sent, ignore the message.

Otherwise, record (cid, m) and send (committed,cid) to A and to the receiver.

Reveal: On receiving (reveal,cid) from the sender:
If no pair (cid,m) was recorded then ignore the message. Otherwise, send
(open, cid,m) to A and to the receiver.

Proof: On receiving (prove, x,cidy, ..., cid,, R) from the sender:

Check that for each cid;, there exists a m; such that the pair (cid;, m;) has been

recorded. If this is not the case then ignore the command. Let w = (mq,...,my).
Check that (z,w) € R. If this is not the case then ignore the command. Otherwise,
send (proven, z,cidy,...,cid,, R) to the receiver and A.

Protocol 7, (Oblivious transfer-malicious receiver)
We denote b as the index of the key agreement instance. We denote mg, m; as the
sender’s input and ¢ denotes the receiver’s input. We denote E(t, ), the next message
function of the emulator given transcript ¢ and random tape r. If the emulator is
awaiting a message for a given transcript t, we let £(t,7) = L. We define the following
two relationships: R{ and Rs.

1 a=bDc
Ri(a,(b,c)) :=
1(a, (b)) {O otherwise
1 ifb=c

Ry((t,m,b),(r,c)) =41 E(t;r)=m

0 otherwise

Receiver:
T €ER {0, 1}k
Send (commit, cid, ¢), (commit,ridy, 1) t0 Feoux
Sender:
Await (committed,cid), (committed,rid;) from Foguy
ro €r {0, 1}k

Send 79 to the receiver.

Receiver:

13



r < 11 @ ro (random tape)
Send (commit, rid, ) to Feux (commit to the random tape)

Send (prove,rg,ridy,rid, R1) to Feam (prove that the commited value associated
to rid is indeed a commitment to the random tape)

Sender:

Await (committed,rid) and (proven, ro,ridy, rid, Ry) from Fepy.

Sender < Receiver:

Sender and receiver run my as defined in Section 4 where the sender inputs mg, mq
and the receiver inputs ¢ with the following modification:

Whenever a receiver would send a message m in the semi-honest protocol, let b be
the instance of the key agreement protocol they are executing, and let ¢ be the tran-
script up to that point for that instance of the key agreement protocol. The receiver
sends m to the sender and also sends the command (prove, (¢, m, b), rid, cid, R2) to
Feuzx- Whenever the sender receives a message m from the the receiver, he awaits
that Feoux send him (proven, (¢, m,b),rid, cid, Ry) before proceeding.

THEOREM 5.1 7gne securely realizes For in the Feo-hybrid model against an environment that
can only semi-honestly corrupt the sender.

This theorem follows directly from the construction of XOR commitments from [CvdGT95,
Est04], the security of the GMW compiler [GMW&86] and the security of the zero-knowledge
protocol from [BCCS88, Kil92].

6 Secure protocol

In this section we consider our oblivious transfer protocol 7y from Section 5, which is
secure against a semi-honest sender and a malicious receiver and we show that, if myp, is
implemented with the key agreement protocol from [Mau93|, detailed in Section 3.1, we can
transform my, into a protocol my; secure against an malicious sender too.

Note that in the aforementioned key agreement protocol, the sender is supposed to send
some codewords of a repetition code through the noisy channel. However, when using this
key agreement protocol as a basis for our oblivious transfer protocol, a problem that arises
is that an active sender could use non-codewords to bias the distribution of indices and learn
the receiver’s choice. This is, in fact, the only point where the active sender can potentially
obtain some advantage by cheating in myg: the rest of the actions of the sender consist in
masking her input messages with the appropriate keys, but cheating in this step would be
equivalent to changing her inputs, and sending random values (both through the elastic? or
the public channel) in the steps at the beginning of the protocol that are used to ensure
the honest behaviour of the receiver, but cheating in this step clearly does not give her any
advantage.

We will prevent an active sender from using non-codewords in her advantage by combin-
ing cut-and-choose techniques, a typicality test and an OT-combiner. The protocol works

2Note that for our receiver commitments, we have the sender communicate random bits through the elastic
channel.
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essentially as follows: the sender and receiver will start to run NV instances of 7y, in parallel.
Right after the sender has sent the intended codewords through the channel F¢ in all these
instances, the receiver will then choose half of those instances and request the sender to open
her view (i.e., to reveal the information that she sent through the channel). The receiver
now runs a typicality test on those instances: he counts the number of differences between
what the sender claims to have sent and what he received for those instances. If this distance
is higher than what would be typically expected from the noisy channel then the receiver
aborts. If the test passes then it is guaranteed that, except with negligible probability, there
is at least one unopened instance where no bad codeword was sent. The sender and receiver
now apply an OT combiner on the half of the instances of 7y, that have not been opened.
Since the sender has behaved well in at least one of these instances, then we achieve a secure
oblivious transfer protocol.

6.1 Protocol

Before describing the protocol, we explain some details about the choice of parameters.
We denote by W (o) the expected number of bits that the noisy channel will flip during the
execution of the protocol my, With security parameter o, assuming that the receiver is honest
and he does not change the noise parameter of the channel. That is, if B(c) is the total
number of bits sent through the noisy channel during the protocol, we have W (o) = §B(0).
Note that W is polynomial in o.

Let k denote the security parameter that we want to adopt in our final protocol 7g;.
We will choose the parameters N (the number of instances of 7o that will be run), o (the
security parameter of mons) and 7 (a threshold parameter for the test, which is W (o) plus a
small offset) so that we have the following guarantees:

1. Tt holds that N -279 < 27", This means that the probability that at least one instance
of Tyme 1S broken is smaller than 277,

Consider the N/2 instances from the testing set. Let D be the total number of bits in
which the sent and received messages in these instances differ. Then

2. If the sender only sends valid codewords, the probability that D is greater than 7.N/2
is less than 27",

3. If the sender sends non-valid codewords in IV — k instances of 7y, the probability that
D is less than 7N /2 is less than 27",

Our oblivious transfer protocol works as follows.

Protocol 7, (Oblivious transfer)
The protocol involves two players: the sender and the receiver. The sender provides
inputs mg, m; € {0,1} and receives no output. The receiver provides ¢ € {0,1} and
outputs me.
We define the following parameters

32
Q(z) := mW(w)
o:=min{zr € Z: z —log Q(x) — logk > K}.
N = kQ(o).
T:=W(o)+ ! _225.
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(Note that, once « is fixed, o is well defined because Q(z) is polynomial in x and
hence x — log Q(x) > k + log k for sufficiently large x.)

Sender:
Sample A €r {0,1}.
Sample wg, ..., wd €g {0,1}.
Sample wi, ..., w) € {0,1}.
Let A; ::wé@w’i@A,izl,...,N.

Receiver:
Sample by,...,by €r {0,1}.

Sender < Receiver:

Sender and receiver run N instances of the protocol myu: as defined in Section 5.
Let (wd, w?) be the sender’s input and b; be the receiver’s input in the ith instance.
The sender records the bits that she sends through the elastic channel in each of
the instances as X = {(i,j,2; ) | 1 <i < N, 1 < j < B}. The receiver records the
noisy version of bits that he receives from each instance as Y = {(i,j,v:;) | 1 <
i <N,1<j<B}

Receiver:
Choose T €r{I | I C{1,...,N},|I| = N/2}.
Send T to receiver.
Set £:={1,...,N}\ T.
Sender:
Await T.
If |T] # N/2 then abort.

Set £:={1,...,N}\T,send S :={(i,A;) | i € L} and X := {(4,j,2:;) € X | i €
T }to the receiver.

Receiver:
Await X and S.

Check that X indeed corresponds to a set of bits that the sender should have
sent in 7o (i.e., that the appropriate parts of X correspond to codewords of the
repetition code). If not, abort.

Check that

T™N
Z |z — yijl < 5
i€T,1<j<B

If it fails, then abort.

Let b := @bi. Send d := b @ ¢ to the sender.
€L

Sender:
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Let wg = @wé, wy = wo ® A. Send (vo,v1) = (Mo ® wg, M1 B wigq) to the

€L
receiver.
Receiver:
Let w := @wgz @ (b; A A;). Output w @ v,.
€L

6.2 Remarks about cut-and-choose and typicality test in 7,

Before we prove that the protocol my; realizes Fy; securely, we need to make some observations
about the role played by our cut-and-choose technique and the typicality tests.

First of all, we note that for the sender to break security of the protocol, she must break
each instance in the evaluation set £, which is decided by the receiver. If, for more than x of
the N total instances of myng, the corrupt sender sends exclusively correct codewords then,
except with probability 27", at least one of those instances will end up in £ and the receiver
would be protected in that case. Therefore, we will assume that the testing set 7 contains
at least % — Kk instances where the receiver sent a bad codeword.

Define X[u] to be a binomial variable with expectation p. By abuse of notation, we
denote by Zf\i 1 X[p] the variable defined by sampling N independent random variables with
expectation 4 and adding the result.

6.2.1 Probability that an honest sender passes typicality test.

We show that the honest sender passes the typicality test with probability at least 1 — 27",
Let T = vaz/f X[W(o)]. An honest receiver does not pass the typicality test if and only if
T> }71']\7/2. Now let = E[T] = JW (o) and g = 2W1(0). We can apply Chernoff’s bound to
see that

Pr[T > 7N/2] =Pr[T > (14 B)u] < e #°/t < 275,

6.2.2 Probability that a malicious sender breaks the typicality test.

We show that if a malicious sender cheats in N/2 — k instances of the testing set, she passes
the typicality test with probability at most 27". Note that in order for the sender to send
something different from a codeword in a given instance, at least one of the bits she sent does
not correspond to the bit she communicates when she sends X. Now note that, for a given
bit z; ; communicated by the sender when she sends X , if this bit was indeed correct, then
x;j 7# ¥i,; with probability d, while if she sent 1—x; ; instead, then z; ; # y; ; with probability
1 — 6. Note that the difference between these probabilities is 1 — 2. This means that, in
expectation, if the sender assumes the cheating behaviour we just described, the distance
between the bitstrings (x; ;) and (y; ;) will grow by an additive factor of (1 —26)(N/2 — k)
with respect to the case where the sender would be honest. We want to show that in these
conditions, the malicious sender will fail the test with high probability. That is, again defining

T = Zf\]:/f X[W(o)], we need to show:

Pr Tg%—u—%) (J;f—mﬂ <97
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Let p=E[T] = SW(o) and 8 = %. Chernoff’s bound then says

Pr[T < (1— B)u] < e /2,

Now it is easy to see that, for the values of p and § detailed above, (1 —)u = & — (1 —
26) (5 — &) (so this probability is indeed what we want to bound) and that e —ub? / 2<o7R,

In the rest of the section we will prove the following statement.

THEOREM 6.1 7y securely realizes For tn Fee-hybrid model.

6.3 Correctness

If both players are honest, then the protocol is correct with probability at least 1 — 27F.
Indeed, with at least this probability the honest sender passes the typicality test and the
protocol is completed. Then, note that:

wé ,ifbi:(]

b @ ( ) {M@Afﬂ%@A,ﬁm:1

Hence w = wy if there is an even number of ¢ € £ such that b; = 1, i.e., if b = 0, and
w=wy®A =w if b= 1. In other words, w = wy.

On the other hand v, = m, ® wepqg = Me B wyp.

Therefore the output of the receiver equals w @ v. = mc, so the protocol outputs the
correct value.

6.4 Security against a malicious receiver

Simulation. The simulator S for m,; will first proceed by running N instances Si,...,Sn
of the simulator for myg. Upon receiving (choice, b;) from the environment, it will record
it and send a random w;. If any of the simulators aborts, then the simulator aborts.

In the next step, it awaits the test set 7 from Z. Now, the simulator must send a X
such that the view of Z for the test instances is the same as in the real world.

Each of the views produced by the simulators are statistically indistinguishable (within
277) from real instances of the OT protocol.

Therefore, there must be a distribution D for X that depends only on the transcript
between the simulators and Z that is (1/2")-close to one which would be produced in the
real world.

Indeed, if this was not the case, since

N  kQ(o) 1 1

20~ 90 = 90—log Q(o)—logk S 27’

then Z would be able to distinguish with probability larger than 1/27 between a run of the
simulated malicious-receiver OT and a run with the malicious-receiver OT protocol with the
elastic channel for at least one of the N instances, which contradicts the security of mypp.

S samples X €p D. Ssets £ ={1,...,N}\ 7. S samples A; € {0,1}, for i € £ and
sets S ={(i,A;) | i € L}.

S sends S, X to Z. S computes w = @ w; & (A; Ab;) and b : @ b;. S awaits

€L €L
that the environment inputs d. S samples a random x €r {0,1}, sets ¢ = b @ d and sends

(choice,c) to Fy. Upon receiving (receipt,m), S sets up = m @ w,u; = x and sends
(v, v1) = (ug, U1gq) to Z.
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Indistinguishability. This follows directly from the fact that the given robust OT-combiner
is universally composable and that the underlying OT protocol is secure against a malicious
receiver.

6.5 Security against a malicious sender

Simulation. The simulator S employs the following strategy. First, for each instance of
OT, S runs an instance S; of the simulator for the protocol mong (for the semi-honest sender)
for as long as Z does not send invalid codewords for that instance. If any S; aborts, then S
aborts.

When for a given instance, Z sends an invalid codeword, S takes the simulator S;, samples
a b; at random and samples a receiver R; whose input is b; and whose view is consistent with
what has been sent by the environment for the given instance.

From this point on, instead of running the simulator for the given instance, S runs R;
and whenever Z sends a message which is meant to be communicated through the elastic
channel, § simulates the channel and sends the result to R;.

Once the instances of OT (both simulated and run with honest receiver) have completed,
S samples a random test set 7 and sends it to Z. S awaits X, S from the environment.
S simulates the typicality test. S takes each instance of OT for the test that is still run
by the simulator for the test cases and replace it with a receiver in the same way that was
described above. Then once S has produced the given views, S takes these views and runs
the typicality test. If the test fails, the simulator aborts.

S denotes the set of instances Z that were only run by simulators and were not part of
the test set. Let J be the set of instances that were run by the receivers and were not part of
the test set. The simulators provided the values {(w{,w}) | i € Z} and the receivers provided
the values {wij |jeJ}

S samples a u € Z and, for each i € 7, selects a random b;. S selects b = @ b,
1€L,iFu
w = @ wzi @ (A; Aby). S sets m :==w B wy, m) :==wdw}®A,. Ssamples a random
i€LiFu
rand sends d = b® r to Z. S awaits vg,v; from Z. S sets mg := w D vpgr D mf)@r and
my := W D Vpgral © Myg,q,- S sends (send, sid, mo, m1) to For.

Indistinguishability. The real-world instances of OT where the sender did not send bad
codewords are indistinguishable from the instances run by local simulators in the ideal world.
This follows directly from the security of mye against semi-honest adversaries.

Next, we consider, the instances of OT where the sender sent bad codewords. These are
also indistinguishable from instances run by the simulator because, on seeing a bad codeword,
the simulator replaces the local simulator with a receiver R;, with random input b;, that acts
as in the real world (including the communication between the sender and this receiver,
which is simulated by imitating the behaviour of the channel). Furthermore, the receiver is
constructed so that it is consistent with what had been previously sent through the channel
and the given choice of inputs.

The last step of our simulation needs, however, to make sure that Z is non-empty, i.e.,
that there is at least one instance of the evaluation set where Z sends only correct codewords.
But notice that, as we have shown before, if Z would send a non-codeword in each instance,
it would result (except with probability 277) in an abort due to the typicality test.
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A Universal composability

Universal Composability is based on the simulation paradigm. Roughly, the idea is to com-
pare the execution of the actual protocol (the real world) with an idealized scenario (the
ideal world) in which the computations are carried out by a trusted third party (the ideal
functionality) which receives inputs from and hands in outputs to the players. The goal is
to show that these two worlds are indistinguishable. In order to formalize this goal, we in-
troduce a party called the environment Z, whose task is to distinguish between both worlds.
Furthermore, in the ideal world, we introduce a simulator S, its task being to simulate any
action of the adversary in the real protocol and thereby to make the two views indistinguish-
able for any environment. More precisely, in the real world execution of protocol m, with the
adversary A and environment Z, the environment provides input and receives output from
both A and 7. Call real 4 » z the view of Z in this execution. In the ideal world Z provides
input and receives output from S and the ideal functionality F. Call 1deals 7 z the view of
Z in the ideal execution. We can proceed to define what it means for a protocol to be secure.

DEFINITION A.1 A protocol m UC-implements a functionality F against a certain class of
adversaries C if for every adversary A € C there exists a simulator S such that for every
environment Z, Real A r, z ~ Ideals F z.

The cornerstone of the universal composability framework is the composition theorem,
which works as follows. Denote by ¢ G a protocol 7 that during its execution makes calls
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to an ideal functionality G. The composition proof shows that if 77 ¢ G securely implements
F and if 7, securely implements G' then 7y ¢ 7, securely implements F. This provides
modularity in construction of protocols and simplifies proofs dramatically. It is also shown
that proving security against a dummy adversary, one who acts as a communication channel,
is sufficient for proving general security.
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