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Abstract. We first prove the truthfulness of a conjecture on the nonlinearity of
monotone Boolean functions in even dimension, proposed in the recent paper “Cryp-
tographic properties of monotone Boolean functions”, by D. Joyner, P. Stanica, D.
Tang and the author, to appear in the Journal of Mathematical Cryptology. We prove
then an upper bound on such nonlinearity, which is asymptotically much stronger
than the conjectured upper bound and than the upper bound proved for odd dimen-
sion in this same paper. This bound shows a deep weakness of monotone Boolean
functions; they are too closely approximated by affine functions for being usable as
nonlinear components in cryptographic applications. We deduce a necessary criterion
to be satisfied by a Boolean (resp. vectorial) function for being nonlinear.
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1 Introduction

The present paper is a continuation (and deepening) of the main results of [9]. We
shall then use the same notation as in [9]. A function from the n-dimensional vector
space Fn2 over F2, and valued in F2 is called a Boolean function on n variables. The
set of all Boolean functions on n variables is denoted by Bn. Any element x ∈ Fn2 is
an n-tuple (x1, . . . , xn), where xi ∈ F2 for all i = 1, . . . , n. The support supp(x) is
the set of all positions i where xi = 1. The (Hamming) weight of x ∈ Fn2 is the size∑n

i=1 xi of its support and is denoted by wH(x). The Hamming weight wH(f) of a
Boolean function f is the weight of its output vector, that is, the size of its support
{x ∈ Fn2 ; f(x) = 1}. The additions over F2 and Fn2 , are denoted by ‘+’. We denote
the (vector) complement (x1 + 1, . . . , xn + 1) of x by x, and the (Boolean function)
complement by f(x) = f(x) + 1, for f ∈ Bn. The cardinality of a set S is denoted
by |S|.

For x = (x1, . . . , xn),y = (y1, . . . , yn) ∈ Fn2 , we consider the usual inner product:

x · y = x1y1 + x2y2 + · · ·+ xnyn.

For u = (u1, . . . , un),v = (v1, . . . , vn) ∈ Fn2 , we define the partial order on Fn2 :

u � v if and only if ui ≤ vi, for every i.

Any f ∈ Bn can be expressed in algebraic normal form (ANF) as

f(x1, x2, . . . , xn) =
∑

a=(a1,...,an)∈Fn2

µa

(
n∏
i=1

xaii

)
,



for some coefficients µa = µa(f) ∈ F2. Any term
∏n
i=1 x

ai
i is called a monomial. The

ANF of any Boolean function satisfies µa =
∑

x�a f(x) and f(x) =
∑

a�x µa.
The algebraic degree of f , deg(f), equals maxa∈Fn2 {wH(a) | µa 6= 0}. Boolean

functions having algebraic degree at most 1 are affine functions. For any two func-
tions f, g ∈ Bn, we define the (Hamming) distance dH(f, g) = wH(f + g).

The (unnormalized) Walsh–Hadamard transform of f ∈ Bn at any point u ∈ Fn2
is defined by

Wf (u) =
∑
x∈Fn2

(−1)f(x)+u·x. (1)

The multiset [Wf (u) | u ∈ Fn2 ] is called the Walsh–Hadamard spectrum of function f .
The nonlinearity of f is its distance from the set An of all n-variable affine functions:

nl(f) = min
g∈An

dH(f, g) = 2n−1 − 1
2

max
u∈Fn2

|Wf (u)|.

Function f ∈ Bn is called bent if its nonlinearity achieves the optimum 2n−1−2n/2−1.
A Boolean function f is monotone (increasing) if whenever u � v, then f(u) ≤

f(v). It is easy to see that any monomial Boolean function is monotone. Other
examples are the majority function in odd dimension n, defined by M(x) = 1 if
wH(x) > n/2 and the strict (resp. large) majority functions in even dimension
defined by M(x) = 1 if wH(x) > n/2 (resp. wH(x) ≥ n/2), and more generally the
functions whose supports are the sets of vectors of Hamming weights bounded by
some number from below.

Monotone Boolean functions have applications in voting theory, reliability the-
ory, hypergraphs, learning, etc. (a non-exhaustive list of papers and monographies
devoted to these connections is [2–4, 12, 15, 18]). So, it is natural to inquire about
their cryptographic properties, as well.

In [9] are studied the balancedness, nonlinearity and algebraic immunity of mono-
tone Boolean functions. It is shown that, for every even n ≥ 4, there exists no n-
variable monotone bent function and that, for n odd at least 5, every n variable
monotone function has nonlinearity at most 2n−1 − 2

n−1
2 . It is also conjectured in

[9] that, for n even sufficiently large, every n variable monotone function has non-
linearity at most 2n−1 − 2

n
2 , but the proof in this case is more complex and needs

stronger tools as we shall see. In the present paper, we prove that the conjecture
is true. Moreover, we prove another upper bound valid for every n; for n even, this
bound is asymptotically much stronger than the conjectured upper bound; for n
odd, it is also much larger than the upper bound 2n−1 − 2

n−1
2 .

2 On the nonlinearity of monotone functions

Let us first recall what is proved in [9]. Let f be any n-variable monotone Boolean
function. For every y ∈ Fn2 such that f(y) = 0, we have, according to the Poisson
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summation formula (which is recalled e.g. in [7]):∑
u∈Fn2 ;u�y

Wf (u) = 2n,

and this implies that maxu∈Fn2 ;u�y |Wf (u)| ≥ 2wH(y). Similarly, for every y such
that f(y) = 1, we have: ∑

u∈Fn2 ;u�y

(−1)(1,...,1)·uWf (u) = −2n,

and this implies that maxu∈Fn2 ;u�y |Wf (u)| ≥ 2n−wH(y). Since the majority function
in odd dimension n has nonlinearity 2n−1 −

(
n−1

(n−1)/2

)
, this allowed [9] to derive the

upper bound:

Theorem 2.1 For every odd n ≥ 5 and every monotone n-variable function f , we
have nl(f) ≤ 2n−1 − 2(n−1)/2.

But no general upper bound for n even could be shown. Indeed, only the case where
f(x) differs from the majority function for at least one input x of Hamming weight
different from n/2 can be easily handled thanks to the observations above. The
case where f(x) coincides with the majority function for every input x of Hamming
weight different from n/2 must be handled by other means. Then [9] only conjectured
the upper bound nl(f) ≤ 2n−1 − 2n/2 for n even large enough.

2.1 Proof of the conjecture

As explained above, we only need to handle the case, for n even, of those functions
equal to the majority function at every input x of Hamming weight different from
n/2. So let f be such function, that we can assume different from the strict and
large majority functions, since the nonlinearity of these two functions, equal to
2n−1−

(
n−1
n/2

)
, is larger than 2n−1−2n/2 for an even number of variables large enough.

We shall use the second-order Poisson summation formula1, introduced in [5] and
given as Equality (28) in [7]: given two supplementary vector subspaces E and E′

in Fn2 , we have:

∑
u∈E⊥

W 2
f (u) = |E⊥|

∑
a∈E′

(∑
x∈E

(−1)f(a+x)

)2

. (2)

For a given y of Hamming weight n/2 and such that f(y) = 0, let us take
E = {x ∈ Fn2 ; x � y}. Then E⊥ = {u ∈ Fn2 ; u � y} is supplementary of E and we

1 It is rare that this formula needs to be used rather than the simpler Poisson formula; it is
interesting to find such situation (here and in the next section as well).
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can then take E′ = E⊥; we obtain, f being null on E since it is monotone:

∑
u∈Fn2 ;u�y

W 2
f (u) = 2n/2

∑
a∈Fn2 ;a�y

 ∑
x∈Fn2 ;x�y

(−1)f(a+x)

2

= 23n/2 + 2n/2
∑

a∈Fn2 ;a�y;a6=0

 ∑
x∈Fn2 ;x�y

(−1)f(a+x)

2

.

Since the maximum of a sequence is at least equal to its mean, we deduce the

inequality maxu∈Fn2 ;u�yW
2
f (u) ≥ 2n +

∑
a�y;a 6=0

(∑
x∈Fn2 ;x�y(−1)f(a+x)

)2
.

We first show that, for every a � y with a 6= 0, say of Hamming weight j > 0, the
value of

∑
x∈Fn2 ;x�y(−1)f(a+x) lies between

∑n/2−1−j
i=0

(
n/2
i

)
−
∑n/2

i=n/2+1−j
(
n/2
i

)
−( n/2

n/2−j
)

and
∑n/2−1−j

i=0

(
n/2
i

)
−
∑n/2

i=n/2+1−j
(
n/2
i

)
+
( n/2
n/2−j

)
. Indeed, if x � y has

Hamming weight strictly less than n/2− j then a + x has Hamming weight strictly
less than n/2 and f(a + x) equals 0, and if x � y has Hamming weight strictly
larger than n/2 − j then a + x has Hamming weight strictly larger than n/2 and
f(a+x) equals 1. If x � y has Hamming weight n/2− j, then a+x has weight n/2
and the value of f(a + x) is unknown.

We replace now
(
n/2
i

)
by
( n/2
n/2−i

)
in the sum

∑n/2
i=n/2+1−j

(
n/2
i

)
. We obtain

∑j−1
i=0

(
n/2
i

)
.

Then for j < n/4,
(∑

x∈Fn2 ;x�y(−1)f(a+x)
)2
≥
(∑n/2−1−j

i=j

(
n/2
i

)
−
( n/2
n/2−j

))2
=(∑n/2−1−j

i=j+1

(
n/2
i

))2
, since we have n/2 − 1 − j ≥ j, and if j > n/4, then we have(∑

x∈Fn2 ;x�y(−1)f(a+x)
)2
≥
(∑j−1

i=n/2−j
(
n/2
i

)
−
( n/2
n/2−j

))2
=
(∑j−1

i=n/2−j+1

(
n/2
i

))2
,

since j − 1 ≥ n/2− j. We then deduce that:

max
u∈Fn2 ;u�y

W 2
f (u) ≥

2n+
∑

1≤j<n/4

(
n/2
j

)n/2−1−j∑
i=j+1

(
n/2
i

)2

+
∑

n/4<j≤n/2

(
n/2
j

) j−1∑
i=n/2−j+1

(
n/2
i

)2

=

2n + 2
∑

1≤j<n/4

(
n/2
j

)n/2−1−j∑
i=j+1

(
n/2
i

)2

+

n/2−1∑
i=1

(
n/2
i

)2

=

2n + 2
∑

1≤j<n/4

(
n/2
j

)(
2n/2 − 2

j∑
i=0

(
n/2
i

))2

+
(

2n/2 − 2
)2
.
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It is easily seen that for every n ≥ 10, we have 2
∑

1≤j<n/4
(
n/2
j

) (
2n/2 − 2

∑j
i=0

(
n/2
i

))2
+(

2n/2 − 2
)2 ≥ 3 · 2n. Indeed, the expression of n equal to

2−n

2
∑

1≤j<n/4

(
n/2
j

)(
2n/2 − 2

j∑
i=0

(
n/2
i

))2

+
(

2n/2 − 2
)2


is clearly non-decreasing and is larger than 3 for n = 10. We deduce then:

Theorem 2.2 For every even n ≥ 10 and every monotone n-variable function f ,
we have nl(f) ≤ 2n−1 − 2n/2.

Observe that Theorem 2.1 provides an alternative proof, for n ≥ 10, of the inexis-
tence of monotone bent functions (originally proved in [9]).

2.2 A stronger bound, valid for every n

The inequalities maxu∈Fn2 |Wf (u)| ≥ 2wH(y) for y ∈ Fn2 such that f(y) = 0 and
maxu∈Fn2 |Wf (u)| ≥ 2n−wH(y) for y ∈ Fn2 such that f(y) = 1 can be refined by using
Equality (2) again. For every y ∈ Fn2 such that f(y) = 0, we have, since f(x) is null
on E = {x ∈ Fn2 ; x � y}:

∑
u∈Fn2 ;u�y

W 2
f (u) = 2n−wH(y)

∑
a∈Fn2 ;a�y

 ∑
x∈Fn2 ;x�y

(−1)f(a+x)

2

= 2n+wH(y) + 2n−wH(y)
∑

a∈Fn2 ;a�y;a6=0

 ∑
x∈Fn2 ;x�y

(−1)f(a+x)

2

,

which implies

max
u∈Fn2 ;u�y

W 2
f (u) ≥ 22wH(y) +

∑
a∈Fn2 ;a�y;a6=0

 ∑
x∈Fn2 ;x�y

(−1)f(a+x)

2

. (3)

1. If there exist vectors of Hamming weight strictly larger than n/2 whose image
by f is null, let then y have maximal Hamming weight among all vectors sat-
isfying f(y) = 0 and denote this Hamming weight by w. For every a � y (of
Hamming weight j ≤ n − w), we have f(a + x) = 1 for every x � y such that
a + x has Hamming weight at least w + 1 (that is, for every x � y of Ham-
ming weight at least w − j + 1), and we deduce

∑
x∈Fn2 ;x�y(−1)f(a+x) ≤ 2w −

2
∑w

i=w−j+1

(
w
i

)
. Note that we have 2w−2

∑w
i=w−j+1

(
w
i

)
≤ 0 if and only if w−j+1 ≤

w
2 , that is, j ≥ w

2 + 1. We have then
∑

a∈Fn2 ;a�y;a6=0

(∑
x∈Fn2 ;x�y(−1)f(a+x)

)2
≥
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∑n−w
j=dw2 e+1

(
n−w
j

) (
2
∑w

i=w−j+1

(
w
i

)
− 2w

)2
=
∑n−w

j=dw2 e+1

(
n−w
j

) (
2w − 2

∑w−j
i=0

(
w
i

))2
.

We deduce then from (3) that:

max
u∈Fn2 ;u�y

W 2
f (u) ≥ 22w +

n−w∑
j=dw2 e+1

(
n− w
j

)(
2w − 2

w−j∑
i=0

(
w

i

))2

.

Denoting 2w = n+ k (where k > 0 has the same partity as n), we have then:

max
u∈Fn2 ;u�y

W 2
f (u) ≥ 2n+k +

n−k
2∑

j=dn+k
4 e+1

(n−k
2

j

)2
n+k

2 − 2

n+k
2
−j∑

i=0

(n+k
2

i

)2

.

Hence, we have:

nl(f) ≤ 2n−1 − 1
2

√√√√√√2n+k +

n−k
2∑

j=dn+k
4 e+1

(n−k
2

j

)2
n+k

2 − 2

n+k
2
−j∑

i=0

(n+k
2

i

)2

. (4)

2. Assume now that there exist vectors of Hamming weight smaller than n/2 and
whose image by f equals 1. Let y have minimal Hamming weight w such that
f(y) = 1 (w < n/2). Applying the upper bound (4) to the monotone function
f(x) + 1, whose nonlinearity equals that of f , and denoting w′ = n − w = n+k′

2 ,
where k′ > 0 has the same partity as n, we have:

nl(f) ≤ 2n−1 − 1
2

√√√√√√√2n+k′ +

n−k′
2∑

j=
l
n+k′

4

m
+1

(n−k′
2

j

)2
n+k′

2 − 2

n+k′
2
−j∑

i=0

(n+k′

2

i

)
2

.

3. If none of the two cases above happens, this means that f coincides with the
majority function at every input x of Hamming weight different from n/2 and we
have seen above in Subsection 2.1 that either (i) f is a majority function and nl(f)
equals then 2n−1 −

(
n−1
n/2

)
if n is even and 2n−1 −

(
n−1

(n−1)/2

)
if n is odd, or (ii) n is

even and nl(f) ≤ 2n−1 − 1
2

√
A where A equals:

2n + 2
∑

1≤j<n/4

(
n/2
j

)(
2n/2 − 2

j∑
i=0

(
n/2
i

))2

+
(

2n/2 − 2
)2
.

We deduce:
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Theorem 2.3 For every n and every monotone n-variable function f , we have
nl(f) ≤ 2n−1 − 1

2

√
M , where M = min(A,B,C) if n is even and M = min(B,C) if

n is odd, with

A = 2n + 2
∑

1≤j<n/4

(
n/2
j

)(
2n/2 − 2

j∑
i=0

(
n/2
i

))2

+
(

2n/2 − 2
)2
,

B = min
1≤k≤n/2
n+k even

2n+k +

n−k
2∑

j=dn+k
4 e+1

(n−k
2

j

)2
n+k

2 − 2

n+k
2
−j∑

i=0

(n+k
2

i

)2 ,

and C =


[
2
(
n−1
n/2

)]2
if n is even[

2
(

n−1
(n−1)/2

)]2
if n is odd.

Let us study the asymptotical behavior of A, B and C when n tends to infinity:

– for j ≤ n
4λ, where λ is any number strictly smaller than 1, we know, see e.g. [1],

that
∑j

i=0

(
n/2
i

)
is negligeable with respect to 2n/2. Indeed, we have 2

n
2H2(λ2 )√
nλ(2−λ)

≤∑
0≤i≤n

4
λ

(n
2
i

)
≤ 2

n
2
H2(λ

2
) < 2

n
2 e−

n
4
(1−λ)2 , where H2(x) = −x log2(x) − (1 −

x) log2(1−x) is the binary entropy function. Asymptotically and for every λ < 1,

A is then larger than 2n
(

2 + 2
∑

1≤j≤n
4
λ

(
n/2
j

))
, which is larger than 2n+n

2H2(λ2 )√
nλ(2−λ)

;

– for n+k
2 − j ≤ n+k

4 λ, where λ is any number strictly smaller than 1, that is,

for j ≥ n+k
4 µ, where µ is any number strictly larger than 1,

∑n+k
2
−j

i=0

(n+k
2
i

)
is

negligeable with respect to 2
n+k

2 and, for every µ > 1, B is then asymptotically
larger than:

min
1≤k≤n/2
n+k even

2n+k

1 +

n−k
2∑

j=n+k
4
µ

(n−k
2

j

)
 =

min
1≤k≤n/2
n+k even

2n+k

1 +

n−k
2
−n+k

4
µ∑

j=0

(n−k
2

j

) ,

which is between 2
n+k+(n−k2 )H2

( 1− n+k
2(n−k)µ

2

)
q

(n−k)(1− n+k
2(n−k)µ)(1+ n+k

2(n−k)µ)
and 2n+k+(n−k

2
)H2

( 1− n+k
2(n−k)µ

2

)
;

–
(
n−1
n/2

)
and

(
n−1

(n−1)/2

)
are both equivalent to 1√

2πn
2n, according to the Stirling

formula; hence, C is equivalent with 22n+1

πn .
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Hence, min(A,B,C) is asymptotically equivalent to an expression of n at least equal
to 2

3nλn
2 for some λn tending to 1.

In the tables below, we indicate for each value of n between 4 and 31 the value
given by the upper bound of Theorem 2.3 and of λn such that this upper bound
equals 2n−1 − 2

3nλn
4 , with the indication whether it is A,B or C which is minimal,

and in the case it is B, the value of k for which the minimum is achieved.

n 4 5 6 7 8 9 10 11 12

Upper bound: 5.8 12 27 55.5 114.4 237.1 478.5 977.6 1975.1

λn: 0.39 0.53 0.52 0.59 0.63 0.63 0.68 0.67 0.69

min(A,B,C): 20 64 100 292 740 1424 4496 8596 21284

Minimum: A B, k = 1 A B, k = 1 A B, k = 1 B, k = 2 B, k = 1 B, k = 2

n 13 14 15 16 17 18 19 20

Upper bound: 3975.2 8013.1 16046.0 32298.1 64575.1 129723.8 259354.3 520377.3

λn: 0.71 0.71 0.75 0.74 0.78 0.77 0.80 0.80

min(A,B,C): 58328 128060 456948 883072 3693520 7271104 31129636 61175140

Minimum: B, k = 1 B, k = 2 B, k = 1 B, k = 2 B, k = 1 B, k = 2 B, k = 1 B, k = 2

n 21 22 23 24 25 26

Upper bound: 1040509.3 2085531.4 4170870.5 8354450.6 16709542.2 33453505.5

λn: 0.82 0.82 0.84 0.84 0.86 0.85

min(A,B,C): 260285480 540151100 2196515260 4666906924 18318973664 40744645256

Minimum: B, k = 1 B, k = 2 B, k = 1 B, k = 2 B, k = 1 B, k = 2
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n 27 28 29 30 31

Upper bound: 66913246.3 133922618.2 267872592.2 536007586.2 1072122368.7

λn: 0.87 0.87 0.88 0.88 0.89

min(A,B,C): 153065065624 348359171016 1267262490224 2981325910789 10490542374645

Minimum: B, k = 1 B, k = 2 B, k = 1 B, k = 2 B, k = 1
Table 1. Values of the upper bound of Theorem 2.3 and of λn

These tables seem to confirm that the nonlinearity of any monotone Boolean
function in n variables is bounded above by 2n−1 − 2

3nλn
4 for some λn tending to 1.

The nonlinearity of monotone functions is then much worse than what was suggested
by the upper bounds obtained (resp. conjectured) in [9].

A part of the interest of Theorem 2.3 is to give knowledge on the nonlinearity of
those functions differing with the majority function at vectors of weight n/2 only.
Some observations were made in [14] about these functions.

3 Characterization of a class of weak Boolean functions and
vectorial functions

Theorem 2.3 shows that for having a reasonably large nonlinearity, a Boolean func-
tion f should not be linearly equivalent to a monotone function (that is, there should
not exist a monotone function g and a linear automorphism L such that f = g ◦L).
And a vectorial function F : Fn2 7→ Fm2 should not have a component function ` ◦ F
linearly equivalent to a monotone function (where ` is a nonzero linear form over
Fm2 ). Let us try to characterize such weak functions.

3.1 Characterization of Boolean functions linearly equivalent to
monotone functions

A Boolean function g is monotone if, for every x,y ∈ Fn2 such that supp(x) ⊂
supp(y), we have g(x) ≤ g(y). Denoting by B0 the natural basis {e1, . . . , en} of Fn2
(that is, the family of all vectors of Hamming weight 1) and by x⊥ the orthogonal
space of {0,x}, we have B0 ∩ x⊥ = {ei, i 6∈ supp(x)}. Then g is monotone if and
only if, for every x,y ∈ Fn2 , we have (B0 ∩ y⊥ ⊂ B0 ∩ x⊥) =⇒ (g(x) ≤ g(y)). If
g′ = g ◦ L where L is a linear automorphism, the condition on g is equivalent to:
(B0 ∩ [L(y)]⊥ ⊂ B0 ∩ [L(x)]⊥) =⇒ (g′(x) ≤ g′(y)). Denoting by L∗ the adjoint
operator of L, we have [L(x)]⊥ = (L∗)−1(x⊥) and the condition on g is equivalent
to: (L∗(B0) ∩ y⊥ ⊂ L∗(B0) ∩ x⊥) =⇒ (g′(x) ≤ g′(y)). We deduce:

Proposition 3.1 Let f be any n-variable Boolean function. Then, f is linearly
equivalent to a monotone function if and only if there exists a basis B of the F2-
vector space Fn2 such that

∀x,y ∈ Fn2 , (B ∩ y⊥ ⊂ B ∩ x⊥) =⇒ (f(x) ≤ f(y)).
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Equivalently:

∀x,y ∈ Fn2 , (f(x) = 1 and f(y) = 0) =⇒ (B ∩ (y⊥ \ x⊥) 6= ∅).

Corollary 3.2 A Boolean function f is linearly inequivalent to monotone Boolean
functions if and only if, for every basis B of the F2-vector space Fn2 , there exists
x,y ∈ Fn2 such that f(x) = 1 and f(y) = 0 and B ∩ (y⊥ \ x⊥) = ∅.

3.2 Characterization of vectorial functions with a least one component
function linearly equivalent to monotone functions

Given a vectorial (n,m)-function F : Fn2 7→ Fm2 , according to Proposition 3.1, the
component function c ·F , c 6= 0, is linearly equivalent to a monotone function if and
only if:

∀x,y ∈ Fn2 , (B ∩ y⊥ ⊂ B ∩ x⊥) =⇒ (c · F (x) ≤ c · F (y)),

that is

∀x,y ∈ Fn2 , (c · F (x) = 1 and c · F (y) = 0) =⇒ (B ∩ (y⊥ \ x⊥) 6= ∅).

Then:

Proposition 3.3 Lert F be any a vectorial (n,m)-function. Then there exists a
component function of F which is linearly equivalent to a monotone function if and
only if:

∀x,y ∈ Fn2 , ∃c ∈ Fn2 , (c ∈ (F (y))⊥ \ (F (x))⊥) =⇒ (B ∩ (y⊥ \ x⊥) 6= ∅).

Corollary 3.4 A vectorial (n,m)-function F has all its component functions lin-
early inequivalent to monotone Boolean functions if and only if, for every basis B
of Fn2 and every nonzero c ∈ Fm2 , there exists x,y ∈ Fn2 such that (F (y))⊥ \ (F (x))⊥

contains c and B ∩ (y⊥ \ x⊥) = ∅.
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