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Abstract—In this paper, we study the problem of existence of attack [13]. Moreover every AB function is APN and therefore
almost perfect nonlinear (APN) functions of algebraic degeen s optimal against differential attacks as well. HoweveB A

over Fon. We characterize such functions by means of derivatives functions exist only over binary fields of odd dimensions/ehi
and power moments of the Walsh transform. We deduce some . : . .
APN functions exist for even dimensions too.

non-existence results which imply, in particular, that for most of

the known APN functions F' over 2 the function z*" ! 4 F(z) When choosing S-boxes, functions with high algebraic de-

is not APN. grees are preferable in order to resist higher order difiteak
Index Terms—almost perfect nonlinear, almost bent, Boolean Cryptan_aIyS|s [21]. In this sense flndlng upper bounds for

function, differential uniformity, nonlinearity algebraic degrees of APN and AB functions and constructing

such functions reaching these upper bounds are of panticula
interest. On the other hand, finding restrictions on algebra
|. INTRODUCTION degrees naturally reduces the set of functions when seaychi

A substitution box (S-box) in a block cipher is a mappinéPr new APN or AB functions, and, therefore, facilitates the
that takesn binary inputs and whose image is a binany Problem of constructing these functions. The problem of an
tuple, for some positive integers and m. The security of upper bound for algebraic degree is completely settled for
most modern block ciphers importantly relies on cryptogiap AB functions and wide open for APN functions. Algebraic
properties of their S-boxes, since these are the only nealin degree of any AB function over the finite field of dimension
elements of these cryptosystems. It is therefore significah IS upper bounded byn + 1)/2 and the inverses of Gold
to employ S-boxes with good cryptographic properties su@®wer AB functions have this algebraic degree [12], [25].

as high nonlinearity, low differential uniformity and highThere is no known upper bounds for algebraic degrees of
a|gebraic degree, in order to resist |inear, differentiat a APN functions. Fom Odd, the known APN function over the

higher order differential attacks. finite field F2» with the highest algebraic degree is the inverse

Differential attacks introduced by Biham and Shamir if\PN function [25] which has algebraic degree- 1. Forn
[1] are one of the most efficient cryptanalyst tools for blocRVen the known APN functions with high algebraic degrees
ciphers. The differential attack is based on the study of had€ Dobbertin function [16] with algebraic degregs + 3 (n
differences in an input can affect the resulting differemte Mmust be divisible by 5 then) and Kasami functions [20] with
the output. Thus, in order to resist differential attacks; f algebraic degreé+ 1 for i < (n —1)/2, ged(n, i) = 1.
each S-box in the cipher, the difference between two outputsThis paper is dedicated to the problem of existence of APN
corresponding to inputs whose nonzero difference is anligr functions overfy. with maximal algebraic degree. Solving
fixed should be as uniformly distributed as possible. Amorffjis pProblem would provide complete answer to the upper
S-boxes almost perfect nonlinear (APN) functions have tR&und problem fom odd case. Besides, this would indicate
best resistance to differential attacks [25]. Due to thasom, Whether it is possible to preserve APN property by changing
much work has been dedicated to the notion of APN functior1€ Pointin a given APN function. This natural question has
Constructing APN functions is a difficult problem. Up to nownot been addressed in publications, even if it has beenmtrese
there are, up to CCZ-equivalence, only six known infinitd the minds of many researchers on APN functions. For this
classes of APN monomials and a few known infinite class€al. throughout this paper, lét be any function fronify-

of quadratic APN multinomials (see [10]). to itself of algebraic degree strictly less thapnand define a
Another powerful attack on block ciphers is linear cryptfunction G overF,. as follows:
analysis by Matsui [23] which is based on finding affine G(z) — 2" + F(). (1)

approximations to the action of a cipher. Almost bent (AB o _ ) )
functions are S-boxes providing optimal resistance to thlden, the objective of this paper is to characterize the A6Sn
of the functionG in order to find new APN functions with the
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known cases of APN function8 and supports the following at the point(a, b) € Fon x F3.. is the Walsh transform of its

conjectures. component functioAry" (bF(x)) at the pointa. That is,
Conjecture 1. There exists no APN function oveéf,. of We(a,b) = Z (—1) D" (bF (@) + T (az)
algebraic degree for n > 3. rEFyn

This conjecture is true fom € {3,4,5} (see [4]). If | emma 1 (see e.g. [10])Let F be an(n,n)-function. Then
Conjecture 1 is proven to be true then the following conjeetu - js APN if and only if

would be true too.
> Y Wilab) =231 (2n — 1),

Conjecture 2. Let ' be an APN function oveF,» withn > 3
a€lFan bE]F;n

and I a function obtained fron¥' by changing the values of
F in one point. ThenF” is not APN. APN functions have also a natural characterization by means
of its derivatives. Thederivativesof a given (n, n)-function

Note that, similar to Conjecture 1, Conjecture 2 is obviouﬁ are functions

when reformulated for AB functions. That is, i is AB and
F’ is obtained fromF' by changing a single point theR’ is D.F(z) = F(x 4+ a) + F(z), a€cTF;..
not AB.

The remainder of this paper is organized as follows. SectionA Boolean functionf in n variables is calledbent if
Il introduces the preliminaries. Section Il charactesizee Wy(a) € {£2"/?} for all @ € Fan. An (n,m)-function
APN functions of the form (1) by means of the derivative$’ is called bent if all its component functions are bent,
and of the power moments of the Walsh transform, and thé#at is, We(a,b) € {£2"/2} for all a € Fyn and b €
some non-existence results on APN functions of the form (f}~. Bent functions have optimum resistance against lin-
are obtained in Section IV. In Section V we study equivalen@ar attacks because thefonlinearity has optimal value

classes of maximum degree functions. Section VI conclud®s ' — 2"/>~. The nonlinearityNr of an (n,n)-function
the paper. F is the minimum Hamming distance between its component

functions and affine functions. It equalfy = 2"~ ' —
3 MaXaer,n bers, |Wr(a,b)|. Nyberg in [24] proved that
o ) .. (n,m)-bent functions exist if and only if» is even and
For positive integersy andm, an S-box is a vectorial ,,, — , /9 Whenn is odd, there exists nor, m)-bent function.
function /= I3 — Fy', also called an(n,m)-function. \when'y is odd andn = m, the optimal functions from

Whenn = m it has a unique representation as a univariajfie yiewpoint of nonlinearity are almost bent functions. An

Il. PRELIMINARIES

polynomial overk,- of the form (n,n)-function F is calledalmost bent(AB) if Wx(a,b) €
2m_1 {0,42»+1D/2} for all a € Fyn and b € Fj.. Any AB
F(z) = Z a;iz’,a; € Fan. function is APN, but not vice versa. However, foiodd, every
i=0 qguadratic APN function is also AB, and, more generally, gver

plateaued APN function is also AB.

A plateaued Boolean function is a function fron¥s.
to F» whose Walsh transform takes values froffl, +x}
for some positive integep (. is called theamplitude of
deg(F) = max{ws(i):a; #0,0<qi<2" -1} the plateaued Boolean function). Plateaued Boolean fomsti
were introduced by Zheng and Zhang and were shown to
possess various desirable cryptographic characterii2igls
More generally, for ar{n, m)-function, Carlet introduced the
following two notions in [10], [11].

Let wy(i) = Y1, i denote the2-weight of i, where0 <
i < 2" — 1 has binary expansioh= 22;01 2%is. Then, the
algebraic degreef F' is equal to

Clearly deg(F') < n.

For an (n,n)-function F and anya,b € Fs., define
Ap(a,b) = {z € Fan : F(xz + a) + F(z) = b}|. Then,
the differential uniformity ofF" is defined as

Definition 1. An (n,m)-function F' is calledplateauedif all
Ap = max{Ar(a,b):a,b € Fan,a # 0} its component function3r}" (uF'(z)), u # 0, are plateaued,

F is calleddifferentially 5-uniformif Ap = 6. If § = 2, then With possibly different amplitudes.

F'is calledalmost perfect nonlineaAPN). Definition 2. An (n,m)-function F' is calledplateaued with

_APN functions overlF;» can be characterized in severakingle amplitudsf all its component functions are plateaued
different ways. In this paper, we focus, in particular, oe thyjith the same amplitude.

characterization by means of power moments of the Walsh ) )
transform. For a Boolean functiofin n variables (that is, an Notice that the amplitude for a plateaued Boolean function

(n, 1)-function) the Walsh transform is defined by f should be a power of two whose exponent is at legast
' . due to the well-knowrParseval's identity) " . W7(a) =
Wia) = Z (—l)f(””)JrTrl (@x) g € Fon, 22" Moreover, the distribution of its Walsh transform can be
zEFon determined as follows.

where TrY (z) = Z?;Ol 22" is the absolute trace function ofLemma 2. Let f be a plateaued Boolean function ov#és.
Fon. For an(n, m)-function F its Walsh transforni?Vx(a,b)  with amplitude2*. Then the distribution of its Walsh transform



values is given by [12], EA-equivalence is a particular case of CCZ-equiveéen

Walsh Transform Value Frequency and every permutation is C_CZ-_eq_uiyaIent to_its i_nv_erse._The
0 9 9Zn—2X algebraic degree of a function (if it is not affine) is invatia

under EA-equivalence but, in general, it is not preserved by

2>\ 2271—2)\—1 i (_1)f(0) 2n—>\—1 )
3 T HOr e CCZ-equivalence. Let us recall why the structure of CCZ-
—2 2 —(=1) 2 equivalence implies this: for a functiof from Fy» to Fom
and we have ., Wia) = (-1)/®2+2* and and an affine permutatiofi(z,y) = (L1(z,y), L2(z,y)) of
_an2" n ™m h L']FnX]Fm—)]FnandL'FnX
Za€F2n W]‘}(a) =92 +2>\. Forn x Fom, wWherelL; : Fy 2 2 2 Ity

]Fgm — ]Fgm, we haVeE(GF) = {(Fl((E),FQ(l’)) LT E ]an}
Proof. Let us denote byN, (resp. N_) the nl_meer of where Fy (z) = Ly(z, F(z)), Fo(z) = La(z, F(z)). Hence,
occurences of2* (resp. —2%), we have according to the /(¢ ) is the graph of a function if and only if the function
Parseval identity that*}(N, + N_) = 22", and according p is a permutation. The function CCZ-equivalentffonhose
to the inverse Walsh transform formule, ., Wy(a) = graph equal€(Gy) is thenF’ = Fyo F; '. The composition
2*(-1)70), that 2X(Ny — N-) = 2*(=1)/(O. This py the inverse of; modifies in general the algebraic degree,
directly gives the table above. The two other relations caxcept, for instance, wheh, (z, y) depends only om;, which

be deduced either from this table, or from (again) th€orresponds to EA-equivalence #fand F’ [9].

inverse Walsh transform formula and the Parseval identitlx, . , ] .

since we havey_, . . Wia) = 92 > uer,. Wr(a) and 't ro|20§_|tt1|or:c 2. t[_9] zl:“?t' FEan F ble T?Cttlﬁnsf fro?jIFm27 to
: itself. The functionF” is EA-equivalent to the functiod’ or

DVacrn Wia) =22 50 g, Wi(a). .

to the inverse off (if it exists) if and only if there exists an
Since the algebraic degree of a Boolean plateaued funct flqne permutaﬂon@ = (L1, L») on F3" such thatC(QF) -

in 7 variables with amplitude is upper bounded by— A+ 1 r and the functionL; depends only on one variable, i.e.

[22] then algebraic degree of a plateauedn)-function F' is Li(z,y) = L() or Li(z,y) = L(y).

upper bounded bynaxycr:, (n — A\, + 1) where2* is the  Let functionsF and F’ be CCZ-equivalent. Then

amplitude of Tr} (bF(x)), b # 0. Since the minimum value 4 {Ap(a,b) : a,b € Fon,a # 0} = {Ap(a,b) : a,b €

for the amplitude of a plateaued function28/? there exists Fon,a # 0};

no bent(n, n)-function then this maximum is less or equal to o if 7 is APN thenF’ is APN too;

n—n/2+1=n/2+ 1. Hence a plateaued function can have o if F is AB then F’ is AB to0;

algebraic degree only if n < 2. e if I is plateaued with single amplitude then F’ is
Proposition 1. Let F be an (n,n)-function satisfying plateaued with the same single amplitude _
deg(F) # n andG be defined by (1). The@ is not plateaued ~ ® if F'is platez_slued with d|ffe_rent amplitudes thétl is
for n > 3. In particular, if F is AB or, more generally, not necessarily plateaued, it can happen thahas no
plateaued, thed is not AB. plateaued components at all. HoweverFifand F’ are
EA-equivalent therF” is plateaued with the same set of

A. Equivalence Relations of Functions amplitudes.

There are several equivalence relations of functions for |||. CHARACTERIZATIONS OF THEAPNNESS OF
which differential uniformity and nonlinearity are invarit. MAXIMUM DEGREEFUNCTION (&

Due to these equivalence relations, having only one APN
(respectively, AB) function, one can generate a huge class

APN (respectively, AB) functions. . . . .
) F%,. and some functio” of algebraic degree strictly less than
/ 2

Two functions” and I from F» to Fyn are called ) “qpiously ¢ is APN if and only if the function (x) —

e affine equivalent(or linear equivalent if F' = A; o 271 +u'F(z) = 221 + F'(z) is APN sinceG and
[0 Ay, where the mappingd; and A, are a_fflne.(resp. G’ are EA-equivalent. Hence, when studying the problem of
linear) perml.Jtatlons_oFQm and FQ’?’ respepuv/ely, existence of APN functions of maximum degree it is sufficient

» extended affine equivaletEA-equivalent) if £ = A1 o 4 consider functions' of the form (1) where” is any(n,n)-

[ oAy + A, where the mappings : Fa» — Fam, A1 fynction of algebraic degree strictly less than
Fom — Fam, Az : Fan — Fon are affine, and where  considering the problem of preserving APN property when
Ay, A, are permutations; , _ changing a single point in an APN function also leads to

* Carlet-Charpin-Zinoviev equivaleriCCZ-equivalent) if ynctions of the form (1). Indeed, if afn, n)-function G is
for some affine permutatiod of Fzn x Fam the image gpiained from a functior by changing its value at a point
of the graph ofF" is the graph off”, thatis,L(Gr) = |, ¢ Fou t0 u € Fan \ {F(v)}, then
Gp whereGp = {(z,F(z)) | ¢ € Fan} and Gpr = r . .

{(I,F/(I)) | T e ]FQTL}. G(I) — { ((E) If T S on \ {'U} _ F/(.CC)+UI(I+U)2n_1,

Although different, these equivalence relations are con- w ho=v

nected to each other. It is obvious that linear equivalescevihere F'(z) = F(z) + v + F(v) andv’ = u + F(v) # 0.
a particular case of affine equivalence, and that affine equilearly, G is EA-equivalent toG’(z) = F”(z) + 22"~ =
alence is a particular case of EA-equivalence. As shown iffu/F'(x + v) + 22"~ which has the form (1).

Letn be a positive integer an@ be a function ovefy» of
acfgebraic degree. ThenG (z) = ua?®"~'4F(z) for someu €



Below we present necessary and sufficient conditions onFor characterization ofy by means of the Walsh trans-
derivatives and Walsh coefficients of &n, n)-function F so form we shall use Lemma 1. For this reason first we

that the functionG defined by (1) is APN. calculate the fourth power ofiW;(a,b). Observe that
(=) O Wp(a,b) = Wryi(a,b). Then, by (2) one obtains
A. Characterization by means of derivatives that
For anya € T, Z Wi(a,b) = Z (1= (=1)™'®) 4+ Wpyy(a, b))4
D,G(z) = G(z + a) + G(x) = Do F(x) + 140,43 (), Zgﬁ%ﬁf bﬁ%ﬁ
wherely .y (x) denotes the indicator of the p&jif,a} (that _ 44 B b
is, 10,q)(2z) = 1if € {0,a} and 1y 4 () = 0 otherwise). aezF:n (6b wWr1(a,0)
Hence,Ag < Ap 42, and, in particularAg < 4 when F' is beJan
APN.
Obviously,G is APN if and only if, for everya € F5,. and e o 5 .
everyb € Fan, the equationD, F(z) + 1 4} (z) = b has 0 + 66, Wiy (a,0) + 46 Wiy (a,b) + WF+1(aab))v

or 2 solutions. This implies that’ can be APN only if F* —_— o
is either APN or differentially 4-uniform. Another necessa Wheree, = 1 — (~1)™1(") equals0 if Tr}(b) = 0, and 2
condition is thatD,, F () + D, F (0) never takes value 1 (sinceotherwise. This leads to

otherwise, the equatio®,F'(x) + 1{0,q}(z) = Do F'(0) + 1 4 ol _ 2043
would have 4 solutions). WheR' is APN, this condition is Z €% = Z -
also sufficient forG' to be APN. e Ty

Proposition 3. Let ' be a function oveF,. andG be defined gjnce the trace function is balanced and
by (1). ThenG is APN if and only if the following three

conditions are satisfied: b€ F5, : Try(b) =1 =2""1.
1) for any nonzera € Fs., the functionD, F'(x) is 2-to-1 ) .
on Fa. \ {0, a}, Similarly, for any functionf over Fsy», by the inverse Walsh
2) for any nonzeroa € Fs., the equationD,F(z) = transform formula and Parseval’s identity, both recalledve,
D,F(0) + 1 has no solutions. and using that; = 4¢;, one has:
Corpllary 1. Let F be an APN f_unction ove]!fgn and G be Z 4€§>WFH(Q,1;)
defined by (1). TherG is APN if and only if D, F(z) = aEFyn
D,F(0) + 1 has no solutions for any nonzetoc Fy:. beFsn
= Y 20— (-1)"MO)We iy (a,b)
B. Characterization by means of the Walsh transform a€hyn
€Fin
For anya € Fy» andb € F3,. we calculate the values of ntd T (b Intd
the Walsh transform ofx = ) 2HEDTO — 1) = 22
n beFL,
Wg(a,b) _ Z (_1)Tr7f(bac2 71+bF(m)+am) (2) 2
zEFgon SII’ICG
= 1- (_1)Tr?(b) + (_1)Tr?(b)WF(a7 b) Z WF+1(CL, b) — 2n(_1)Tr1l(b)’
Hence, W¢(a,b) € { Wr(a,b),2 — Wg(a,b) } and Np — a€Fan
1 < Ng < Np + 1. Since AB functions have highest Z (_1)Tr1‘(b) = 0,
possible nonlinearity and since there exists no AB fundion bEFqn
of algebraic degree then for an AB functionF' the function 2712 3n+2
. n— . 6 W 7b - 3 . 2 .
G is not AB andNg = 27— — 2" — 1. This fact together GGZF: Wrs1(a,b)
with other straightforward observations are summarizetthén bewfn

proposition below. The last claim there follows from resticn

on algebraic degree of plateaued functions. Then, by a simple calculation, we arrive at

Proposition 4. Let F' be a function oveF,. andG be defined > Wé(a,b) = > (Wi (a,b) + 46, Wi, (a,b))
by (l) Then a€lfan a€lFyn
. . beFsn beFSn
1) G is not a permutation whedeg(F') # n; o3 i
2) Ag < Ap +2, in particular,A¢ < 4 whenF is APN; +27(3 -2 ),

3) Wa(a,b) € { Wg(a,b),2 — Wg(a,b) } for anya,b €
Faon, b # 0, and thenNp — 1 < Ng < Np + 1;

4) forn > 3 if F is plateaued odeg(F') # n thenG is
not plateaued, in particqllar, if" is AB then G is not 5 0 it Te"(b)=0
AB and Ng = 271 — 2”3 — 1. deWira(a,b) = { —8Wp(a,b)®  if  T(b) =1

Again by the fact thatVr 1 (a,b) = (—1)™1 O Wk (a,b), we
haveW}, (a,b) = Wi(a,b) and



Thus, the above equality can be written as Then, the APNness of the functi@n defined by (1) can be
characterized in terms of the valuesiaf), Ny, N, defined by

Z We(abu) = Z Wi(a,b) -8 Z Wi (a,b) (4) and (5) as follows.

acFon a€Fon a,beFan

beFzn beFsn Tey (b)=1 Theorem 2. Let F' be any function oveFs. with F(0) =0,
+22nH3(3. 9771 1), andG be defined by (1). Thed is APN if and only if

Therefore, we can obtain the following result about the My —4(Ng — Np) = (3-2" — 2)(2" — 4),

APNness ofG according to Lemma 1. , )
where My, Ny, Ny are defined by (4) and (5) respectively.

Theorem 1. Let F' be any function oveFy» with F'(0) = 0,

and G be defined by (1). Thet is APN if and only if Proof. This result follows from the above discussion, Theorem
1 and the fact,cp,, Ypers, Winla,b) = 22" M — 2% is
Z Wi(a,b) -8 Z Wi(a,b) = (25" based on a simple computation. O
acFon a,beFaon
bEFS, Tr7 (b)=1

oty N When F' is APN the characterizations of APN functions
=2 (2" — 1) — 2772, (3) @ defined by (1) can be further simplified, and some non-
Theorem 1 characterizes the APNness of the function EXStence results about APN functions with maximal algebra

defined by (1) in terms of the power sums of the Walsglegree are obtained. Indeed fifis APN, then by Theorem 1

. o . and Lemma 1 we have:
transform values off'. Sometimes it is more convenient to

express the power sums of Walsh transform values by t@erollary 2. Let F' be APN with F(0) = 0 andG be defined
numbers of solutions to certain equations over finite fields. by (1). ThenG is APN if and only if
According to the definition, one can obtain that
> Wila,b)=2""(3-2""" —1).

Z Wé‘ (a7 b) a,beFon
a,beFon Tr;l(b):l
= Z (=1) T CF@)+F )+ F(2)+F(w)+a(ztytztw) On the other hand, for an APN functiafi, the values of
a,bEFan M, and Ny defined by (4) and (5) respectively are well-known
j_»ﬂngzz (see [11] for example):
- 9n Z (_1)Tr1‘(b(F(z)+F(y)+F(Z)+F(z+y+Z))) My=2"(3-2"—2),Ng=3-2" —2.
22;]’;%%%" Then, by Theorem 2, we have:
- 05
Corollary 3. Let F be APN with F(0) = 0 andG be defined
where by (1). ThenG is APN if and only if N, = 0, i.e.,
— 3 .
Mo = H(z,y,2) € Fau : F(z) + F(y) {(z,y) € F2. : F(z) + F(y) + F(z +y) = 1} = 0.
+F(z)+ F(z+y+z)=0}. 4)
Similarly to above, one also has: IV. SOME NON-EXISTENCERESULTS
Z W (a,b) A. WhenF' is a Power Function
a,bCTgn e Let Fi(z) = z?. According to Proposition 3, it7 is APN,
ey (b)=1 then the equatio®, F'(z) + D, F(0) = 1, that is,z? + (z +

= Z (—=1) T3 CE@)+F (@) +F () Fa(ety+2) a)? + a? = 1 has no solution for any nonzewo € Fa.. In
particular, takingz = 1 we get that the equatiofi /= +1)% =

a,b,x,y,z€Fn

Try (b)=1 1 (with = # 0) has no solution. Hencged(d, 2™ — 1) = 1 and
—9on Z (—1) BT CF@+F@)+F(z+y)) F must be a permutation. Denoting= z/a, we rewrite the
bz.yeFan equation above as
Tr} (b)=1

d d __ d
:227171(]\]0_]\71)7 Yy +(y+1) —1/(1 “rl

Note now that the right side of this equation ranges @er\
{1} whena ranges oveF3,.. Hence, a necessary condition for
N; = |{(z,y) € F2. : F(z) + F(y) + F(z +y) =14} (5) G being APN is thay+ (y+1)? equals the constant function
1 andz? + (z + a)? equals the constant functiarf, which

Indeed, for any fixed (z,y) € F3. we have onradictsa bein
o . o ) g APN whenn > 3.
ZTY?(b):l(_l)Tl(b(F( )+F(y)+F(z+y))) = 0 if We deduce:

F(z)+F(y)+ F(z+y) ¢ {0,1} due to the two-tuple-balance

property of the trace function (i.e(Ti"(z), Te"(dz)) for Proposition 5. Letn >3,1<d <2"—2, andF(z) = ¢
§ # 0,1 takes each pair0,0),(0,1),(1,0),(1,1) exactly be a power function oveFs.. Then the functionG(z) =
272 times whenz runs throughFs.). F(x) 42> ~" overFa. is not APN.

where



Remark 1. (1) Let u,v € Fan, u # 0. If v # 0 then there
exists somew € F3, such thatu(z + v)2"~! + z? is EA-
equivalent t()w(:c+1)2n*1+:cd. Indeedu(z+v)2" '+ =

u(z/v+1)2" 1 + o d(z/v)? and replacingy = x/v we get

that D, F(x) = D,F(0) + 1 has solutions inFy. for some
nonzeroa € Fon.

2):v=1.

By a simple calculation, for this case frol,F(z)

w(y+1)*" "' +y* wherew = u/v?. Hence when considering p, #(0) + 1 we can obtain that

a functionu(z +v)?" ! 4z we can restrict the study to the

cases € Fs.

(2) In general, for a functiod(z) = u(z +1)%"~* + ¢ with
u € 5, there does not necessanly exidte F;, such thatG
is CCZ-equivalen ta&’ (z) = v/z?"~! + 2¢. For example i
n € {5,6} andd is the inverse exponent then for anyu’ €
F3.. functionsG andG’ are CCZ-inequivalent. O

Consider the general case whEfw) = u(x+v)? for some
1<d<2"-2andu € Fi., v € Fy, andG(x) = F(z) +
2" ~1 . According to the second condition in Proposition
if G is APN, then the equatio®, F'(z) + D,F(0) = 1, that
is, u(z +v)? +u(r +v+a)? =uw? +u(v+a)?+1 has no
solution for any nonzera € Fan. Denotingy = (x + v)/a
we can rewrite the latter equation

d 1
G
a a ua

In the particular case ofcd(d,2" — 1) = 1 andv = 0 the
right hand side of this equation ranges o¥er \ {1} whena
ranges ovei;., and, if it has no solutions for all # 0 then
ur? + u(z + 1)% cannot be 2-to-1 offs. \ {0, 1}. HenceG

Y+ (y+1)

cannot be APN according to the first condition of Proposition

3.

Corollary 4. Letn > 3 and F(z) = uxz? be a function over which implies thata|u(a) and thena?|u(a)?

Fan with v € F5., 1 <d < 2" —2 andged(d,2" — 1) = 1.
Then the functiorG(z) = F(z)+x2" ! overF,. is not APN.

For particular case of the inverse function we get the

following proposition.

Proposition 6. Let n > 3 and F(z) = u(z 4+ v)?" 2 be a
function overFan with w € F3,., v € Fan. Then the function
G defined by (1) is not APN.

Proof. The equationD, F(x) =
be written as

D,F(0)+ 1, a € F3,., can

wz+v)+ulz+a+0) =w? +ula+v)? +1.

for d = 2"—2. If we find a solution forD, F'(z) = D, F(0)+
for somea € F3, then the functionG is not APN by

Proposition 2. According to Remark 1 (1) we can restrict

the cases € ;. Besides, we can consider only> 4 since
n = 3 is easy to check with a computer.

D:v=0.

In this caseD F( ) = D,F(0) + 1 is reduced tor? +
(z + a)? = a? + u?. Multiplying both sides byz(z + a), i
gives

a2u

x2+a:c—|—

a—+u

Notice that (6) has solutions . if and only if Tr (T) =
0. Clearly, there exists somee F2» such thatlr}(;55) =0

hLemma 3

glosure ofF2.. Let f(z2),

2 a
1 = 7
¥ +ar+a+ +1+(a+1)d+ud (7)
Then, (7) has solutions iff;» if and only if Tr} (%5 L
) = 0. ke
" 1
Ty ( ) =0, ®)

a(l+ (a+1)% 4 ud)

Ivherea #0,1, (u+ 1)% For simplicity, define

1 ua + u

- (u+1)a?2+a

9la) = a1+ (a+ 1) +ud)

In what follows, we prove that there exists at least one nanze
a € Fan With @ # 0, 1, (u+1)? such thaflr} (¢(a)) = 0. First,
we show thatp(a) # h(a)? + h(a) for any rational function
h(a) € Fanla], whereFy. denotes the algebraic closure of
Fon. Assume thatp(a) = vla) 4 va) fop somepu(a), v(a) €

_ w(@)? T u(a)
Fan[a] with ged(p(a),v(a)) = 1, then one gets
u(a +1)u(a)? =

((u+1)a® + a)(v(a)® + p(a)r(a))

. However,a? ¢
(u+1)a? +a)(v(a)? + pla)v(a)) sinceged(u(a), v(a)) =1
and a|u( ). This leads to a contradiction. Thereforga) #

+ h(a) for any rational functionh(a) € Fan[a]. By
presented below, we have

(~1)TT@@) < (242 -2)v2n +1.

DY

a€Fan,a#0,(u+1)"1

Thus, if Tr](¢(a)) = 1 for any a € Fon with a # 0,1, (u +
1)4, then we have™ —3 < (2+2-2)v2"+1,i.e.,2" < (1+

v/5)? < 16. This shows that there exists at least one nonzero

a € Fyn with a # 0,1, (u + 1) such thatTr! (¢(a)) = 0 if
n > 4. O

Lemma 3. ([19, Lemma 2]) LetF,. denote the algebraic
g(z) € Fan[z], wheredeg f < r =
degg andg(z) is a polynomial witht distinct zeros inf.. If
Hz) o h(z)? + h(z) for any rational functiom(z) € Fax[z],

(=)
then

D (D)™EE) < 4+ —2)v2r 41,

acL
where L consists of all elements dfy» except the zeros of
9(2).

We checked with a computer that f8r< n < 13 there
are no APN functions of the form?" ! + u(z + v)¢ where

whena runs through the nonzero elementdin.. Thismeans 1 <d < 2" — 2, u,v € Fon, u # 0.



B. WhenF' is a Plateaued Function The valuess;, are even for alb # 0, and2® — 1 and2™ — 1

Majority of the known APN functions are plateaued. W&re divisible by 3. Hence using (9)-(11) we get

prove nonexistence of APN functions of the form (1) for Z 2% = 2(2" — 1)+ T" (12)
plateaued:” by applying Theorem 1. beFr,

Theorem 3. Let ' be a plateaued function ovéfy. with  \yhereT’ — T/27=3,0 < T’ < 7. Then
n > 3 andG be defined by (1). The is not APN. T
dEr-n=2"-1+T1

Proof. Let n be odd. Let 2 be the amplitude of o

the component functionTy} (bF(z)) for b € TF3.. o
We have \, Z ";Fl, According to Lemma 2, we and7” is divisible by 3. Henc&” € {0,3,6}.
have 3, cx,. Wi(a,b) = (=1)TrCFO) 420 gnd Using (11) and (12) we get
S yern Whia,b) = 22724 Hence, Y, . Wi(a.b) is O
divisible by 227+ and Scry, Wi, b) is divisible by XF: Wr(a,b)® = 2 sz; 2 =272 )
2371 and therefore by@2"** sincen > 3. Then Relation ZgFSZ o
(3) cannot be satisfied since the term on the left hand side is = gintl y 93n, (13)
divisible by 22"** and the term on the right hand side is not.
Let now n be even. This case is more technical. Withowherev = —2if 7" = 0 andv = 1if 7" = 3 andv = 4 if
loss of generality we can assume ti#&i0) = 0. Suppose that T' = 6.
G is APN. Then, by Proposition 3, we get for any# 0: ( ;lnceG is APN then (3) holds by Theorem 1 and using
13):
> Ap(a,b)? = (20! —2) 2% 47 1
bEFn Z Wg‘(avb) = g Z Z Wé‘(avb)
. . a,beFon a€Fan bEFT,
if D,F(x)= D,F(0) has 4 solutions and T} (b)=1

_(2371—2 _ 2211)(277, _ 1) + 23n—1

Ap(a,b)? = (2771 —2).2% 2. 22
Z F ) _ 2271(7.271—2_’_271—3,0_1)

bEFon

_ _ 22n(3.27—1 1) if v=—2
2n n—2 i —
Z AF(a,b)2 — 2n+l + 8ta, 2 (9 . 2 — 1) |f v = 4
bEF2n By Lemma 2 and using (13), we get:
wheret, = 1 if D,F(z) = D,F(0) has 4 solutions and Z W3 (a,b) = 22" Z 250 = 227(27+1 1 y)). (15)
t, = 0 otherwise. Indeed, we know thd?,F' is 2-to-1 on a€Fyn beFs,,
F2.\{0, a}; we deduce thab, F(F2.\ {0, a}) has size" 1 — bEF3n
1 and includes the elemefi?, /'(0) in the first case and doespesides,
not include it in the second case. X )
BecauseA (0, b) = 0 for any b # 0 then > Wia,h) = 220 Y 2w
a€Fan bEF3n bEFLn
Z AF(G, b)2 _ (277. _ 1)2n+1 +8 Z ta Try (b)=0 TrT (b)=0
(a,0)%£(0,0) a€Fs, > 22n(an—l ). (16)
= (2" —1)2"" 48T, (9)  Hence by (14)-(16):
where0 < T < 2" — 1. 222" fu) = >0 N Wi(a,b) > 272" - 1)
Since Ar(0,0) = 2", Wg(0,0) = 2" and Wg(a,0) = 0 a€Fn beFy,
for a # 0 then the equality from [13] 92n(3.9n=1 _ 1) it »— _9
1 +{ 2%m(15-2n73 — 1) if v=1
2 _ 4
> Arlab) =g > Welab) 209202 1) ify=4
a,beFan a,bEFgn
Clearly, this inequality does not hold whem > 4 and
leads to

v € {1,4}. Whenv = —2 this corresponds to the case Bf
1 an APN function and the last inequality becomes an equality.
A b — w b 10 . )
( b)goo r(ab)” = 22"( b)éjoo r(a0)%. (10) That is, we get thaflr} (bF(z)) is bent for allb € F3.
“ “ satisfying Tr? (b) = 0. However, this is impossible i, > 2,
Let 2" be again the amplitude 6fr (bF(x)) for b € F5,. since otherwise we would have dn,n — 1)-vectorial bent

Then ), = % for 0 < s, < n and by Lemma 2 function. Indeed, take a bas(i, .., b,_1) of the hyperplane
of equationTr!(b) = 0 and define the vectorigh,n — 1)-
% Z Wr(a,b)* = 2" Z 255 (11) function whose coordinates arg(z) = Try(b;F(z)) for

(@,6)£(0,0) beFs, i =1,.,n—1. Then all its component functions are bent



and, by definition, the function is then bent. This contreglicthat F'(z) = A1 o F o As(x) + A(x). Without
the fact recalled above thdt:, m)-vectorial bent functions loss of generality we can assumg;(0) = 0. Then
exist only for2m < n [24]. O G(z) = 227! 4+ A, o F o Ay(z) + A(z) and it
is EA-equivalent to A7'((A7'(2))2""Y) + F(x)
Note that Theorem 3 does not hold when < 2. For A;'(1)(z + A2(0))"~! + F(z) = u(z +v)*" "' + F(x
examplez® is a plateaued APN function ovEs- of algebraic with v = A7 ' (1) # 0 andv = A5(0).
degree2.
Theorem 3 leads to a nonexistence result for APN functionsUsing Proposition 8 we can deduce an important non-
G with F' quadratic or AB. existence result on APN functions of the form (1).

I:I\_/

Corollary 5. Let F' be a quadratic function and be defined Corollary 7. Let F and F’ be EA-equivalent functions over
by (1). ThenG is not APN. Fan. If for any v € Fy and any nonzera € Fsy» the function
22"~ 4+ uwF(z + v) is not APN then for any’ € Fy. and
any nonzerau’ € Fy. the functionz®"~1 4+ u/F'(z + ') is
not APN either.

Corollary 6. Let F' be an AB function and~ be defined by
(2). ThenG is not APN.

V. CHARACTERIZATIONS OF EQUIVALENCE CLASSES OF Further we describe CCZ-equivalence classes via CCZ-
MAXIMUM DEGREEFUNCTIONS equivalence classes df.

In this section we study the connection between EA- aritfoposition 9. Let F' be a function oveF,. andG be defined
CCZzZ-equivalence classes of a functidhover Fy» and the by (1). If a functionG’ is CCZ-equivalent t@~ then there exist
respective classes of the functi@h given by (1). We also somew,v € Fon, u # 0, and a functionF” CCZ-equivalent
deduce some non-existence results for functions of the fotmF such thaiG’(z) = u(z + v)2" = + F'(z).

(1) whereF' is CCZ-equivalent to known APN functions.

Next proposition describes EA-equivalence classes ofa
EA-equivalence classes @f.

Proof. Since G and G’ are CCZ-equivalent then for some
affine permutation

Proposition 7. Let F' be a function oveify. and G(z) = Lley) = (La(z.y) La(z,y)

2¥" =1 4+ F(z). If a function G’ is EA-equivalent toG then = (Au(2) + A2(y), As() + Aa(y)),

there exist somes, v € Iy, u # 0, and a functiont™ EA- - where A;, Ay, As, A, are affine, we haves’(z) = G» o

equivalent toF' such thatG’(z) = u(x + v) + F'(x). G (2) with

Proof. For EA-equivalent fu_nction@ andG’ there exist affine G1(z) = Li(z, G(x)) = Ay (z) + Az 0 G(2)

permutationsd;, A, and affineA such thatG’(z) = A1 0Go _

As(z) + A(zx). Note that a permutation and

A10GoAs(x)+A(z) = AjoFoAy(z)+A(x)+ A ((Ax(z)* 1) Ga(7) = La(7,G(z)) = As(z) + As 0 G().

and denotingF’(:c) — A oFo Ag(x) + A(CL‘) + Al(O) and Note thatGi(x) = Ai(x) + As o F(x) + Ag(x%,l) and

Al (z) = Ay (z) + A1 (0) we get since it is a permutation theA;(0) = Ay(1) and Gy (x) =

, , , . - Aq ($)+A20F($)+A2(O) Take I, (.%') =Gy (m) anng(x) =

G'(z) = F'(z) + A1(1)(z + Ay 7(0)) As(x) + Ay o F(z). Then, obviously,F’(z) = Fy o F{ ()

since A} ((As(x))* 1) takes valued}(1) if = £ Ay'(0) 'S CCZ-equivalentta” and

(that is, Ax(x) # 0) and O otherwise, and we can rewrite it G'(x) = F'(z)+ As((Fy (m))Q"—l)

as A} (1)(z + A;1(0))?" 1) (which takes the same values). _ A1 10

HenceG'(z) = F'(x) + u(z +v)?" ! for u = Aj(1) # 0 ,(I> + A1) ;711 )

andv = A, '(0) and the functionF” is EA-equivalent taF. (] = Fl(z) +ulz+v)

with « = A,(1) andv = F,;'(0). Note thatu # 0 since
Note that if I and I" are EA-equivalent then it does nototherwise the system

necessarily mean that functiod®(z) = 22" ! + F(z) and
G'(z) = u(z +v)*>"~!' + F'(z) are EA-equivalent for any Ar(z) + As(y) = Ai(0) + A2(0)
u,v € Fan, u # 0. However, there exist some,v € Fan, As(x) + As(y) = As(0) + A4(0)
u # 0 (in some cases these elements are unique) givi\rll\%
EA-equivalent functiong? and G’ according to the following be
proposition.

uld have two solutiong0,0) and (0,1) and £ would not
a permutation. O

Proposition 10. Let F' and I’ be CCZ-equivalent functions
overFyn, that is,£(Gr) = Gy for some affine permutation
L(x,y) = (L1(z,y), La(z,y)) of F4.. If L1(0,y) is not a per-
mutation ofFy.. then there exist some v, w € Faon, u, w # 0,
Proof. For EA-equivalent functionsF and F’ there such that functionsz?"~'+ F(z) andu(z+v)?" ~' + F'(x)
exist affine permutationsA;, A, and affine A such are CCZ-equivalent.

Proposition 8. If F and F’ are EA-equivalent functions over
Fyn then the functior’ (z) = 22"~ 14 F’(x) is EA-equivalent
to u(z + v)2" ' + F(x) for someu,v € Fan, u # 0.



Proof. When the affine functiot, (0, y) is not a permutation
of Fa» there existsw € Fj. such thatL,(0,0) = L,(0,w).
Clearly a linear functiorC®(z, y) = (z,wy)) is a permutation
of F%, and

Lo L (x,y) = (Li(z,wy), La(x, wy))

maps the graph of the function—!F(x) to the graph of the
function F’(x). Moreover,L o £L° maps the graph ofi(z) =
22" =1 4w 1F(z) to the graph oG’ (z) = u(z 4+ v)*" ' +
F'(x) for u = Ly(0,w) + L2(0,0) andv = L1(0, F(0)).
Indeed, note that. # 0 since otherwiseZ would not be a
permutation and we have

Gi(z) = Li(z,wG(x)) = Li(z, F(z)+ w:CQn_l)
= Li(z, F(2)) + (L1(0,w) + L1(0,0))z*" !
= F(x),
Ga(z) = La(z,wG(x)) = La(z, F(z) + wan_l)
= Loz, F(2)) +uz? ' = Fy(z) + ua® 71,
G'(x) = GaoGrl(x)=FyoF \(z)+c(Fy (@)
= F'(z)+u(z+0v)? L
Hence, G and G’ are CCZ-equivalent, and, therefore,

wz?" ' + F(z) andG’ are CCZ-equivalent. O

In Proposition 10 the condition o4 (0,y) being a per-
mutation is essential. Indeed, takgx) = x® and F'(z)
F~Yz) = 2?' andn = 5, then F and F’ are CCZ-
equivalentwithZ(z, y) = (L1(z,y), La(z,y)) = (y, ) where

L1(0,y) = y is a permutation. It can be easily checked”

with a computer that for allu,u’ € Fi;, v,0" € Fos,
the functionsG(z) = u(z + v)?"~' 4+ F(z) and G'(z) =
u'(z 4+ v")?"~ + F'(z) are CCZ-inequivalent.

For n odd all known APN functions except inverse and
Dobbertin functions are AB. Hence, by Corollary 6 a functioff

L1(0,w) = L1(0,0). Sincew 1 F(z) is plateaued APN then
G(x) = wr?"~' + F(z) is not APN by Theorem 3. It follows
from the proof of Corollary 10 that far = L5 (0, w)+ L2 (0, 0)
andv = L;(0, F(0)) the functionG’(z) = u(z + v)*" ~! +
F'(z) is CCZ-equivalent ta7, and, therefore, it is not APN.
(]

All APN functions with n even constructed in [8] and [9]
satisfy the conditions in Corollary 8 with = 0 andu = w
satisfying

1) Tr}(u) = 0 for functions

224 (22 44 )T (2 )
and
? + Tof (27) + (2° + 2 + 1) T} (2?)
whereged(n, i) = 1;
2) Tk (u+ u?) = 0 for functions

(x—i—Trg(xQ(T“) +x4(27‘+1))

—i—Tr’f(:v)T&"g(xT“ +x22i(2i+1)))21+1
and
(a4 TG0 +22) + DY@ +22))
+T07 (@ + T (2 + 2'2) + T} (2) T (o + 212))” )

wheren divisible by 6 andgcd(n, i) = 1.
Hence it is not possible to get APN function by adding
2"~1 to any of these functions. Besides, using Proposition 3,
Corollary 7 and computer search we confirmed thatifet 10
there are no APN functions of the form (1) for aiy EA-
equivalent to the functions above.
When F' is EA-equivalent to the inverse function then
(x +v)?" "1 + F(x), u,v € Fan, v # 0, is not APN by

w(z + 0)2 '+ F(x), w0 € Fou, u # 0, is not APN Proposition 6 and Corollary 7. Faf a Dobbertin function,

for any of these functiong’ and anyF CCZ-equivalent to

them (since CCZ-equivalence preserves AB property).1For
even all known APN functions except Dobbertin functions a
functions constructed in [8], [9] (and a sporadic examplgwi

the functionuxz?®"~! 4+ F(z), u € F}., is not APN forn
odd by Proposition 4, and fon evenz2"~! 4+ F(z) is not

PN by Proposition 5. However, these results do not give

complete information about(z +v)?" ' + F(x), u,v € Fan,

n = 6 [17]) are plateaued and plateauedness is preserved“o# 0, whenF' is EA-equivalent to Dobbertin functions. Using

EA-equivalence. Therefore,(z +v)?" ~' + F(z), u,v € Fan,
u # 0, is not APN for any of these function® and anyF
EA-equivalent to them. When is even andF’ is plateaued
the following corollary of Proposition 10 is useful for CC
equivalence.

Proposition 3, Corollary 7 and computer search we confirmed
that forn < 15 there are no APN functions of the form (1)
for any F' EA-equivalent to Dobbertin functions. Regarding

z.to CCZ-equivalence, it is not known whether for inverse and

Dobbertin functions it coincides with EA-equivalence (mse
of Dobbertin functions together with EA-equivalence ofithe

Corollary 8. Let ' andF” be CCZ-equivalent APN functionsjnverses when they exist).

over Fy. where F' is plateaued andh is even. Then for
an affine permutatiorC(x,y) = (L1(x,y), La(x,y)) of F2,

satisfying £L(Gr) = Gp there existsw € Fj. such that
L1(0,w) = L1(0,0) andu(x 4 v)*"~' 4+ F'(z) is not APN
for w = La(0,w) + L2(0,0) andv = L4 (0, F(0)).

Proof. If Ly(0,w) # L1(0,0) for any w € F3,, thenL;(0,y)
is a permutation offy. and Fi(z) = Li(z,F(x)) is a

VI. CONCLUSION

The major objective of this paper was to characterize APN
functions over the finite fieldf,» having algebraic degree
n, or equivalently, of the formG(z) = 22"~!' + F(x),
where F' is any function fromF,. to itself having algebraic
degree less than, in order to find new APN functions with

plateaued APN permutation which leads to a contradictionaximal algebraic degree or to prove the non-existence of
since all plateaued APN functions have bent componerstsch APN functions. We obtained some characterizations of
when n is even. Hence, there exists € [, such that those APN functions by means of the derivatives and of the
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power moments of their Walsh transform, and then some ngg4] K. Nyberg, “Perfect non-linear S-boxes”, Proceedingé EURO-
existence results on APN functions with maximal algebraic CRYPT'91, Lecture Notes in Computer Science, vol. 547, p8-386,
degree were proved. This includes all power functions ahd @511 K. Nyberg, “Differentially uniform mappings for crypgraphy”, Pro-
plateaued functions and covers most of the known cases of ceedings of EUROCRYPT'93, Lecture Notes in Computer Seierol.

APN functionsF. These results also imply that for most of__ 765, pp. 55-64, 1994. . .
26] Y. Zheng and X. Zhang, “Plateaued functions”, Procegdi of

the_ known A_PN functions Ch"’_‘ng'ng their value in a singl ICICS'99, Lecture Notes in Computer Science vol. 1726, @#-300,
point results in non-APN functions. 1999.
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