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On the (non-)existence of APN(n, n)-functions of
algebraic degreen

Lilya Budaghyan, Claude Carlet, Tor Helleseth, Nian Li

Abstract—In this paper, we study the problem of existence of
almost perfect nonlinear (APN) functions of algebraic degreen

over F2n . We characterize such functions by means of derivatives
and power moments of the Walsh transform. We deduce some
non-existence results which imply, in particular, that for most of
the known APN functionsF over F2n the function x

2
n
−1+F (x)

is not APN.

Index Terms—almost perfect nonlinear, almost bent, Boolean
function, differential uniformity, nonlinearity

I. I NTRODUCTION

A substitution box (S-box) in a block cipher is a mapping
that takesn binary inputs and whose image is a binarym-
tuple, for some positive integersn and m. The security of
most modern block ciphers importantly relies on cryptographic
properties of their S-boxes, since these are the only nonlinear
elements of these cryptosystems. It is therefore significant
to employ S-boxes with good cryptographic properties such
as high nonlinearity, low differential uniformity and high
algebraic degree, in order to resist linear, differential and
higher order differential attacks.

Differential attacks introduced by Biham and Shamir in
[1] are one of the most efficient cryptanalyst tools for block
ciphers. The differential attack is based on the study of how
differences in an input can affect the resulting differenceat
the output. Thus, in order to resist differential attacks, for
each S-box in the cipher, the difference between two outputs
corresponding to inputs whose nonzero difference is arbitrarily
fixed should be as uniformly distributed as possible. Among
S-boxes almost perfect nonlinear (APN) functions have the
best resistance to differential attacks [25]. Due to this reason,
much work has been dedicated to the notion of APN functions.
Constructing APN functions is a difficult problem. Up to now,
there are, up to CCZ-equivalence, only six known infinite
classes of APN monomials and a few known infinite classes
of quadratic APN multinomials (see [10]).

Another powerful attack on block ciphers is linear crypt-
analysis by Matsui [23] which is based on finding affine
approximations to the action of a cipher. Almost bent (AB)
functions are S-boxes providing optimal resistance to this
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attack [13]. Moreover every AB function is APN and therefore
is optimal against differential attacks as well. However, AB
functions exist only over binary fields of odd dimensions while
APN functions exist for even dimensions too.

When choosing S-boxes, functions with high algebraic de-
grees are preferable in order to resist higher order differential
cryptanalysis [21]. In this sense finding upper bounds for
algebraic degrees of APN and AB functions and constructing
such functions reaching these upper bounds are of particular
interest. On the other hand, finding restrictions on algebraic
degrees naturally reduces the set of functions when searching
for new APN or AB functions, and, therefore, facilitates the
problem of constructing these functions. The problem of an
upper bound for algebraic degree is completely settled for
AB functions and wide open for APN functions. Algebraic
degree of any AB function over the finite field of dimension
n is upper bounded by(n + 1)/2 and the inverses of Gold
power AB functions have this algebraic degree [12], [25].
There is no known upper bounds for algebraic degrees of
APN functions. Forn odd, the known APN function over the
finite fieldF2n with the highest algebraic degree is the inverse
APN function [25] which has algebraic degreen − 1. For n
even the known APN functions with high algebraic degrees
are Dobbertin function [16] with algebraic degreen/5+ 3 (n
must be divisible by 5 then) and Kasami functions [20] with
algebraic degreei+ 1 for i ≤ (n− 1)/2, gcd(n, i) = 1.

This paper is dedicated to the problem of existence of APN
functions overF2n with maximal algebraic degreen. Solving
this problem would provide complete answer to the upper
bound problem forn odd case. Besides, this would indicate
whether it is possible to preserve APN property by changing
one point in a given APN function. This natural question has
not been addressed in publications, even if it has been present
in the minds of many researchers on APN functions. For this
goal, throughout this paper, letF be any function fromF2n

to itself of algebraic degree strictly less thann, and define a
functionG overF2n as follows:

G(x) = x2n−1 + F (x). (1)

Then, the objective of this paper is to characterize the APNness
of the functionG in order to find new APN functions with the
maximal degree or to prove the non-existence of such func-
tions. We provide such characterizations using derivatives and
Walsh transform values of the functionF . As a consequence,
non-existence results for APN functions with maximal degree
are obtained for some special cases ofF which include all
power functions, almost bent functions, quadratic functions
and plateaued functions in general. This covers almost all
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known cases of APN functionsF and supports the following
conjectures.

Conjecture 1. There exists no APN function overF2n of
algebraic degreen for n ≥ 3.

This conjecture is true forn ∈ {3, 4, 5} (see [4]). If
Conjecture 1 is proven to be true then the following conjecture
would be true too.

Conjecture 2. LetF be an APN function overF2n with n ≥ 3
andF ′ a function obtained fromF by changing the values of
F in one point. ThenF ′ is not APN.

Note that, similar to Conjecture 1, Conjecture 2 is obvious
when reformulated for AB functions. That is, ifF is AB and
F ′ is obtained fromF by changing a single point thenF ′ is
not AB.

The remainder of this paper is organized as follows. Section
II introduces the preliminaries. Section III characterizes the
APN functions of the form (1) by means of the derivatives
and of the power moments of the Walsh transform, and then
some non-existence results on APN functions of the form (1)
are obtained in Section IV. In Section V we study equivalence
classes of maximum degree functions. Section VI concludes
the paper.

II. PRELIMINARIES

For positive integersn and m, an S-box is a vectorial
function F : Fn

2 7→ Fm
2 , also called an(n,m)-function.

When n = m it has a unique representation as a univariate
polynomial overF2n of the form

F (x) =
2n−1
∑

i=0

aix
i, ai ∈ F2n .

Let w2(i) =
∑n−1

s=0 is denote the2-weight of i, where0 ≤
i ≤ 2n − 1 has binary expansioni =

∑n−1
s=0 2sis. Then, the

algebraic degreeof F is equal to

deg(F ) = max{w2(i) : ai 6= 0, 0 ≤ i ≤ 2n − 1}.

Clearly deg(F ) ≤ n.
For an (n, n)-function F and any a, b ∈ F2n , define

∆F (a, b) = |{x ∈ F2n : F (x + a) + F (x) = b}|. Then,
the differential uniformity ofF is defined as

∆F = max{∆F (a, b) : a, b ∈ F2n , a 6= 0}.

F is calleddifferentially δ-uniform if ∆F = δ. If δ = 2, then
F is calledalmost perfect nonlinear(APN).

APN functions overF2n can be characterized in several
different ways. In this paper, we focus, in particular, on the
characterization by means of power moments of the Walsh
transform. For a Boolean functionf in n variables (that is, an
(n, 1)-function) the Walsh transform is defined by

Wf (a) =
∑

x∈F2n

(−1)f(x)+Trn1 (ax), a ∈ F2n ,

whereTrn1 (x) =
∑n−1

i=0 x2i is the absolute trace function of
F2n . For an(n,m)-functionF its Walsh transformWF (a, b)

at the point(a, b) ∈ F2n × F∗
2m is the Walsh transform of its

component functionTrm1 (bF (x)) at the pointa. That is,

WF (a, b) =
∑

x∈F2n

(−1)Tr
m
1 (bF (x))+Trn1 (ax).

Lemma 1 (see e.g. [10]). Let F be an(n, n)-function. Then
F is APN if and only if

∑

a∈F2n

∑

b∈F
∗

2n

W 4
F (a, b) = 23n+1(2n − 1).

APN functions have also a natural characterization by means
of its derivatives. Thederivativesof a given (n, n)-function
F are functions

DaF (x) = F (x+ a) + F (x), a ∈ F∗
2n .

A Boolean functionf in n variables is calledbent if
Wf (a) ∈ {±2n/2} for all a ∈ F2n . An (n,m)-function
F is called bent if all its component functions are bent,
that is, WF (a, b) ∈ {±2n/2} for all a ∈ F2n and b ∈
F∗
2m . Bent functions have optimum resistance against lin-

ear attacks because theirnonlinearity has optimal value
2n−1 − 2n/2−1. The nonlinearityNF of an (n, n)-function
F is the minimum Hamming distance between its component
functions and affine functions. It equalsNF = 2n−1 −
1
2 maxa∈F2n ,b∈F

∗

2n
|WF (a, b)|. Nyberg in [24] proved that

(n,m)-bent functions exist if and only ifn is even and
m ≤ n/2. Whenn is odd, there exists no(n,m)-bent function.
When n is odd andn = m, the optimal functions from
the viewpoint of nonlinearity are almost bent functions. An
(n, n)-function F is calledalmost bent(AB) if WF (a, b) ∈
{0,±2(n+1)/2} for all a ∈ F2n and b ∈ F∗

2n . Any AB
function is APN, but not vice versa. However, forn odd, every
quadratic APN function is also AB, and, more generally, every
plateaued APN function is also AB.

A plateaued Boolean function is a function fromF2n

to F2 whose Walsh transform takes values from{0,±µ}
for some positive integerµ (µ is called theamplitude of
the plateaued Boolean function). Plateaued Boolean functions
were introduced by Zheng and Zhang and were shown to
possess various desirable cryptographic characteristics[26].
More generally, for an(n,m)-function, Carlet introduced the
following two notions in [10], [11].

Definition 1. An (n,m)-functionF is calledplateauedif all
its component functionsTrm1 (uF (x)), u 6= 0, are plateaued,
with possibly different amplitudes.

Definition 2. An (n,m)-functionF is calledplateaued with
single amplitudeif all its component functions are plateaued
with the same amplitude.

Notice that the amplitude for a plateaued Boolean function
f should be a power of two whose exponent is at leastn

2 ,
due to the well-knownParseval’s identity

∑

a∈F2n
W 2

f (a) =
22n. Moreover, the distribution of its Walsh transform can be
determined as follows.

Lemma 2. Let f be a plateaued Boolean function overF2n

with amplitude2λ. Then the distribution of its Walsh transform
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values is given by

Walsh Transform Value Frequency
0 2n − 22n−2λ

2λ 22n−2λ−1 + (−1)f(0) 2n−λ−1

−2λ 22n−2λ−1 − (−1)f(0) 2n−λ−1

and we have
∑

a∈F2n
W 3

f (a) = (−1)f(0) 2n+2λ and
∑

a∈F2n
W 4

f (a) = 22n+2λ.

Proof. Let us denote byN+ (resp. N−) the number of
occurences of2λ (resp. −2λ), we have according to the
Parseval identity that22λ(N+ + N−) = 22n, and according
to the inverse Walsh transform formula

∑

a∈F2n
Wf (a) =

2n(−1)f(0), that 2λ(N+ − N−) = 2n(−1)f(0). This
directly gives the table above. The two other relations can
be deduced either from this table, or from (again) the
inverse Walsh transform formula and the Parseval identity,
since we have

∑

a∈F2n
W 3

f (a) = 22λ
∑

a∈F2n
Wf (a) and

∑

a∈F2n
W 4

f (a) = 22λ
∑

a∈F2n
W 2

f (a). �

Since the algebraic degree of a Boolean plateaued function
in n variables with amplitude2λ is upper bounded byn−λ+1
[22] then algebraic degree of a plateaued(n, n)-functionF is
upper bounded bymaxb∈F∗

2n
(n − λb + 1) where2λb is the

amplitude ofTrn1 (bF (x)), b 6= 0. Since the minimum value
for the amplitude of a plateaued function is2n/2 there exists
no bent(n, n)-function then this maximum is less or equal to
n− n/2+ 1 = n/2+ 1. Hence a plateaued function can have
algebraic degreen only if n ≤ 2.

Proposition 1. Let F be an (n, n)-function satisfying
deg(F ) 6= n andG be defined by (1). ThenG is not plateaued
for n ≥ 3. In particular, if F is AB or, more generally,
plateaued, thenG is not AB.

A. Equivalence Relations of Functions

There are several equivalence relations of functions for
which differential uniformity and nonlinearity are invariant.
Due to these equivalence relations, having only one APN
(respectively, AB) function, one can generate a huge class of
APN (respectively, AB) functions.

Two functionsF andF ′ from F2n to F2m are called
• affine equivalent(or linear equivalent) if F ′ = A1 ◦

F ◦A2, where the mappingsA1 andA2 are affine (resp.
linear) permutations ofF2m andF2n , respectively;

• extended affine equivalent(EA-equivalent) ifF ′ = A1 ◦
F ◦A2 +A, where the mappingsA : F2n → F2m , A1 :
F2m → F2m , A2 : F2n → F2n are affine, and where
A1, A2 are permutations;

• Carlet-Charpin-Zinoviev equivalent(CCZ-equivalent) if
for some affine permutationL of F2n × F2m the image
of the graph ofF is the graph ofF ′, that is,L(GF ) =
GF ′ whereGF = {(x, F (x)) | x ∈ F2n} and GF ′ =
{(x, F ′(x)) | x ∈ F2n}.

Although different, these equivalence relations are con-
nected to each other. It is obvious that linear equivalence is
a particular case of affine equivalence, and that affine equiv-
alence is a particular case of EA-equivalence. As shown in

[12], EA-equivalence is a particular case of CCZ-equivalence
and every permutation is CCZ-equivalent to its inverse. The
algebraic degree of a function (if it is not affine) is invariant
under EA-equivalence but, in general, it is not preserved by
CCZ-equivalence. Let us recall why the structure of CCZ-
equivalence implies this: for a functionF from F2n to F2m

and an affine permutationL(x, y) =
(

L1(x, y), L2(x, y)
)

of
F2n × F2m , whereL1 : F2n × F2m → F2n andL2 : F2n ×
F2m → F2m , we haveL(GF ) = {

(

F1(x), F2(x)
)

: x ∈ F2n}
whereF1(x) = L1(x, F (x)), F2(x) = L2(x, F (x)). Hence,
L(GF ) is the graph of a function if and only if the function
F1 is a permutation. The function CCZ-equivalent toF whose
graph equalsL(GF ) is thenF ′ = F2 ◦F−1

1 . The composition
by the inverse ofF1 modifies in general the algebraic degree,
except, for instance, whenL1(x, y) depends only onx, which
corresponds to EA-equivalence ofF andF ′ [9].

Proposition 2. [9] Let F and F ′ be functions fromFn
2 to

itself. The functionF ′ is EA-equivalent to the functionF or
to the inverse ofF (if it exists) if and only if there exists an
affine permutationL = (L1, L2) on F2n

2 such thatL(GF ) =
GF ′ and the functionL1 depends only on one variable, i.e.
L1(x, y) = L(x) or L1(x, y) = L(y).

Let functionsF andF ′ be CCZ-equivalent. Then
• {∆F (a, b) : a, b ∈ F2n , a 6= 0} = {∆F ′(a, b) : a, b ∈

F2n , a 6= 0};
• if F is APN thenF ′ is APN too;
• if F is AB thenF ′ is AB too;
• if F is plateaued with single amplitudeλ then F ′ is

plateaued with the same single amplitudeλ;
• if F is plateaued with different amplitudes thenF ′ is

not necessarily plateaued, it can happen thatF ′ has no
plateaued components at all. However ifF andF ′ are
EA-equivalent thenF ′ is plateaued with the same set of
amplitudes.

III. C HARACTERIZATIONS OF THEAPNNESS OF

MAXIMUM DEGREEFUNCTION G

Let n be a positive integer andG be a function overF2n of
algebraic degreen. ThenG(x) = ux2n−1+F (x) for someu ∈
F∗
2n and some functionF of algebraic degree strictly less than

n. Obviously,G is APN if and only if the functionG′(x) =
x2n−1 + u−1F (x) = x2n−1 + F ′(x) is APN sinceG and
G′ are EA-equivalent. Hence, when studying the problem of
existence of APN functions of maximum degree it is sufficient
to consider functionsG of the form (1) whereF is any(n, n)-
function of algebraic degree strictly less thann.

Considering the problem of preserving APN property when
changing a single point in an APN function also leads to
functions of the form (1). Indeed, if an(n, n)-function G is
obtained from a functionF by changing its value at a point
v ∈ F2n to u ∈ F2n \ {F (v)}, then

G(x) =

{

F (x) if x ∈ F2n \ {v}
u if x = v

= F ′(x)+u′(x+v)2
n−1,

whereF ′(x) = F (x) + u + F (v) and u′ = u + F (v) 6= 0.
Clearly, G is EA-equivalent toG′(x) = F ′′(x) + x2n−1 =
1/u′F ′(x+ v) + x2n−1 which has the form (1).
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Below we present necessary and sufficient conditions on
derivatives and Walsh coefficients of an(n, n)-functionF so
that the functionG defined by (1) is APN.

A. Characterization by means of derivatives

For anya ∈ F∗
2n

DaG(x) = G(x+ a) +G(x) = DaF (x) + 1{0,a}(x),

where1{0,a}(x) denotes the indicator of the pair{0, a} (that
is, 1{0,a}(x) = 1 if x ∈ {0, a} and1{0,a}(x) = 0 otherwise).
Hence,∆G ≤ ∆F +2, and, in particular,∆G ≤ 4 whenF is
APN.

Obviously,G is APN if and only if, for everya ∈ F∗
2n and

every b ∈ F2n , the equationDaF (x) + 1{0,a}(x) = b has 0
or 2 solutions. This implies thatG can be APN only ifF
is either APN or differentially 4-uniform. Another necessary
condition is thatDaF (x)+DaF (0) never takes value 1 (since
otherwise, the equationDaF (x) + 1{0,a}(x) = DaF (0) + 1
would have 4 solutions). WhenF is APN, this condition is
also sufficient forG to be APN.

Proposition 3. Let F be a function overF2n andG be defined
by (1). ThenG is APN if and only if the following three
conditions are satisfied:

1) for any nonzeroa ∈ F2n , the functionDaF (x) is 2-to-1
on F2n \ {0, a},

2) for any nonzeroa ∈ F2n , the equationDaF (x) =
DaF (0) + 1 has no solutions.

Corollary 1. Let F be an APN function overF2n andG be
defined by (1). ThenG is APN if and only if DaF (x) =
DaF (0) + 1 has no solutions for any nonzeroa ∈ F2n .

B. Characterization by means of the Walsh transform

For anya ∈ F2n and b ∈ F∗
2n we calculate the values of

the Walsh transform ofG

WG(a, b) =
∑

x∈F2n

(−1)Tr
n
1 (bx

2n−1+bF (x)+ax) (2)

= 1− (−1)Tr
n
1 (b) + (−1)Tr

n
1 (b)WF (a, b).

Hence,WG(a, b) ∈ { WF (a, b), 2 − WF (a, b) } and NF −
1 ≤ NG ≤ NF + 1. Since AB functions have highest
possible nonlinearity and since there exists no AB functions
of algebraic degreen then for an AB functionF the function
G is not AB andNG = 2n−1 − 2

n−1
2 − 1. This fact together

with other straightforward observations are summarized inthe
proposition below. The last claim there follows from restriction
on algebraic degree of plateaued functions.

Proposition 4. Let F be a function overF2n andG be defined
by (1). Then

1) G is not a permutation whendeg(F ) 6= n;
2) ∆G ≤ ∆F + 2, in particular,∆G ≤ 4 whenF is APN;
3) WG(a, b) ∈ { WF (a, b), 2 −WF (a, b) } for any a, b ∈

F2n , b 6= 0, and thenNF − 1 ≤ NG ≤ NF + 1;
4) for n ≥ 3 if F is plateaued ordeg(F ) 6= n thenG is

not plateaued, in particular, ifF is AB then G is not
AB andNG = 2n−1 − 2

n−1
2 − 1.

For characterization ofG by means of the Walsh trans-
form we shall use Lemma 1. For this reason first we
calculate the fourth power ofWG(a, b). Observe that
(−1)Tr

n
1 (b)WF (a, b) = WF+1(a, b). Then, by (2) one obtains

that
∑

a∈F2n

b∈F
∗

2n

W 4
G(a, b) =

∑

a∈F2n

bu∈F
∗

2n

(

1− (−1)Tr
n
1 (b) +WF+1(a, b)

)4

=
∑

a∈F2n

b∈F
∗

2n

(

ǫ4b + 4ǫ3bWF+1(a, b)

+ 6ǫ2bW
2
F+1(a, b) + 4ǫbW

3
F+1(a, b) +W 4

F+1(a, b)
)

,

where ǫb = 1 − (−1)Tr
n
1 (b) equals0 if Trn1 (b) = 0, and 2

otherwise. This leads to
∑

a∈F2n

b∈F
∗

2n

ǫ4b =
∑

a,b∈F2n

Trn1 (b)=1

24 = 22n+3

since the trace function is balanced and

|b ∈ F∗
2n : Trn1 (b) = 1| = 2n−1.

Similarly, for any functionf over F2n , by the inverse Walsh
transform formula and Parseval’s identity, both recalled above,
and using thatǫ3b = 4ǫb, one has:

∑

a∈F2n

b∈F
∗

2n

4ǫ3bWF+1(a, b)

=
∑

a∈F2n

b∈F
∗

2n

24(1 − (−1)Tr
n
1 (b))WF+1(a, b)

=
∑

b∈F
∗

2n

2n+4((−1)Tr
n
1 (b) − 1) = −22n+4,

since
∑

a∈F2n

WF+1(a, b) = 2n(−1)Tr
n
1 (b),

∑

b∈F2n

(−1)Tr
n
1 (b) = 0,

∑

a∈F2n

b∈F
∗

2n

6ǫ2bW
2
F+1(a, b) = 3 · 23n+2.

Then, by a simple calculation, we arrive at
∑

a∈F2n

b∈F
∗

2n

W 4
G(a, b) =

∑

a∈F2n

b∈F
∗

2n

(W 4
F+1(a, b) + 4ǫbW

3
F+1(a, b))

+22n+3(3 · 2n−1 − 1).

Again by the fact thatWF+1(a, b) = (−1)Tr
n
1 (b)WF (a, b), we

haveW 4
F+1(a, b) = W 4

F (a, b) and

4ǫbW
3
F+1(a, b) =

{

0 if Trn1 (b) = 0
−8WF (a, b)

3 if Trn1 (b) = 1
.
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Thus, the above equality can be written as
∑

a∈F2n

b∈F
∗

2n

W 4
G(a, bu) =

∑

a∈F2n

b∈F
∗

2n

W 4
F (a, b)− 8

∑

a,b∈F2n

Trn1 (b)=1

W 3
F (a, b)

+22n+3(3 · 2n−1 − 1).

Therefore, we can obtain the following result about the
APNness ofG according to Lemma 1.

Theorem 1. Let F be any function overF2n with F (0) = 0,
andG be defined by (1). ThenG is APN if and only if

∑

a∈F2n

b∈F
∗

2n

W 4
F (a, b) −8

∑

a,b∈F2n

Trn1 (b)=1

W 3
F (a, b) =

(

23n+1

−22n+3
)

(2n − 1)− 23n+2. (3)

Theorem 1 characterizes the APNness of the functionG
defined by (1) in terms of the power sums of the Walsh
transform values ofF . Sometimes it is more convenient to
express the power sums of Walsh transform values by the
numbers of solutions to certain equations over finite fields.

According to the definition, one can obtain that
∑

a,b∈F2n

W 4
F (a, b)

=
∑

a,b∈F2n

x,y∈F2n

z,w∈F2n

(−1)Tr
n
1 (b(F (x)+F (y)+F (z)+F (w))+a(x+y+z+w))

= 2n
∑

b,x,y,z∈F2n

(−1)Tr
n
1 (b(F (x)+F (y)+F (z)+F (x+y+z)))

= 22nM0,

where

M0 = |{(x, y, z) ∈ F3
2n : F (x) + F (y)

+F (z) + F (x + y + z) = 0}|. (4)

Similarly to above, one also has:
∑

a,b∈F2n

Trn1 (b)=1

W 3
F (a, b)

=
∑

a,b,x,y,z∈F2n

Trn1 (b)=1

(−1)Tr
n
1 (b(F (x)+F (y)+F (z))+a(x+y+z))

= 2n
∑

b,x,y∈F2n

Trn1 (b)=1

(−1)Tr
n
1 (b(F (x)+F (y)+F (x+y)))

= 22n−1(N0 −N1),

where

Ni = |{(x, y) ∈ F2
2n : F (x) + F (y) + F (x+ y) = i}|. (5)

Indeed, for any fixed (x, y) ∈ F2
2n we have

∑

Trn1 (b)=1(−1)Tr
n
1 (b(F (x)+F (y)+F (x+y))) = 0 if

F (x)+F (y)+F (x+y) 6∈ {0, 1} due to the two-tuple-balance
property of the trace function (i.e.,(Trn1 (x),Tr

n
1 (δx)) for

δ 6= 0, 1 takes each pair(0, 0), (0, 1), (1, 0), (1, 1) exactly
2n−2 times whenx runs throughF2n ).

Then, the APNness of the functionG defined by (1) can be
characterized in terms of the values ofM0, N0, N1 defined by
(4) and (5) as follows.

Theorem 2. Let F be any function overF2n with F (0) = 0,
andG be defined by (1). ThenG is APN if and only if

M0 − 4(N0 −N1) = (3 · 2n − 2)(2n − 4),

whereM0, N0, N1 are defined by (4) and (5) respectively.

Proof. This result follows from the above discussion, Theorem
1 and the fact

∑

a∈F2n

∑

b∈F
∗

2n
W 4

F (a, b) = 22nM0 − 24n is
based on a simple computation. �

WhenF is APN, the characterizations of APN functions
G defined by (1) can be further simplified, and some non-
existence results about APN functions with maximal algebraic
degree are obtained. Indeed, ifF is APN, then by Theorem 1
and Lemma 1 we have:

Corollary 2. Let F be APN withF (0) = 0 andG be defined
by (1). ThenG is APN if and only if

∑

a,b∈F2n

Trn1 (b)=1

W 3
F (a, b) = 22n(3 · 2n−1 − 1).

On the other hand, for an APN functionF , the values of
M0 andN0 defined by (4) and (5) respectively are well-known
(see [11] for example):

M0 = 2n(3 · 2n − 2), N0 = 3 · 2n − 2.

Then, by Theorem 2, we have:

Corollary 3. Let F be APN withF (0) = 0 andG be defined
by (1). ThenG is APN if and only ifN1 = 0, i.e.,

|{(x, y) ∈ F2
2n : F (x) + F (y) + F (x+ y) = 1}| = 0.

IV. SOME NON-EXISTENCERESULTS

A. WhenF is a Power Function

Let F (x) = xd. According to Proposition 3, ifG is APN,
then the equationDaF (x) +DaF (0) = 1, that is,xd + (x+
a)d + ad = 1 has no solution for any nonzeroa ∈ F2n . In
particular, takinga = 1 we get that the equation(1/x+1)d =
1 (with x 6= 0) has no solution. Hencegcd(d, 2n−1) = 1 and
F must be a permutation. Denotingy = x/a, we rewrite the
equation above as

yd + (y + 1)d = 1/ad + 1.

Note now that the right side of this equation ranges overF2n \
{1} whena ranges overF∗

2n . Hence, a necessary condition for
G being APN is thatyd+(y+1)d equals the constant function
1 andxd + (x + a)d equals the constant functionad, which
contradictsG being APN whenn ≥ 3.

We deduce:

Proposition 5. Let n ≥ 3, 1 ≤ d ≤ 2n − 2, andF (x) = xd

be a power function overF2n . Then the functionG(x) =
F (x) + x2n−1 overF2n is not APN.



6

Remark 1. (1) Let u, v ∈ F2n , u 6= 0. If v 6= 0 then there
exists somew ∈ F∗

2n such thatu(x + v)2
n−1 + xd is EA-

equivalent tow(x+1)2
n−1+xd. Indeed,u(x+v)2

n−1+xd =
u(x/v + 1)2

n−1 + vd(x/v)d and replacingy = x/v we get
w(y+1)2

n−1+yd wherew = u/vd. Hence when considering
a functionu(x+ v)2

n−1 + xd we can restrict the study to the
casesv ∈ F2.
(2) In general, for a functionG(x) = u(x+1)2

n−1+xd with
u ∈ F∗

2n there does not necessarily existu′ ∈ F∗
2n such thatG

is CCZ-equivalen toG′(x) = u′x2n−1 + xd. For example, if
n ∈ {5, 6} andd is the inverse exponent then for anyu, u′ ∈
F∗
2n functionsG andG′ are CCZ-inequivalent. �

Consider the general case whenF (x) = u(x+v)d for some
1 ≤ d ≤ 2n − 2 andu ∈ F∗

2n , v ∈ F2, andG(x) = F (x) +
x2n−1 . According to the second condition in Proposition 3,
if G is APN, then the equationDaF (x) +DaF (0) = 1, that
is, u(x+ v)d + u(x+ v + a)d = uvd + u(v + a)d + 1 has no
solution for any nonzeroa ∈ F2n . Denotingy = (x + v)/a
we can rewrite the latter equation

yd + (y + 1)d =
(v

a

)d

+
(v

a
+ 1

)d

+
1

uad
.

In the particular case ofgcd(d, 2n − 1) = 1 and v = 0 the
right hand side of this equation ranges overF2n \ {1} whena
ranges overF∗

2n , and, if it has no solutions for alla 6= 0 then
uxd + u(x+ 1)d cannot be 2-to-1 onF2n \ {0, 1}. HenceG
cannot be APN according to the first condition of Proposition
3.

Corollary 4. Let n ≥ 3 andF (x) = uxd be a function over
F2n with u ∈ F∗

2n , 1 ≤ d ≤ 2n − 2 andgcd(d, 2n − 1) = 1.
Then the functionG(x) = F (x)+x2n−1 overF2n is not APN.

For particular case of the inverse function we get the
following proposition.

Proposition 6. Let n ≥ 3 andF (x) = u(x + v)2
n−2 be a

function overF2n with u ∈ F∗
2n , v ∈ F2n . Then the function

G defined by (1) is not APN.

Proof. The equationDaF (x) = DaF (0) + 1, a ∈ F∗
2n , can

be written as

u(x+ v)d + u(x+ a+ v)d = uvd + u(a+ v)d + 1.

for d = 2n−2. If we find a solution forDaF (x) = DaF (0)+1
for some a ∈ F∗

2n then the functionG is not APN by
Proposition 2. According to Remark 1 (1) we can restrict to
the casesv ∈ F2. Besides, we can consider onlyn ≥ 4 since
n = 3 is easy to check with a computer.

(1): v = 0.
In this case,DaF (x) = DaF (0) + 1 is reduced toxd +

(x + a)d = ad + ud. Multiplying both sides byx(x + a), it
gives

x2 + ax+
a2u

a+ u
= 0. (6)

Notice that (6) has solutions inF2n if and only if Trn1 (
u

a+u ) =
0. Clearly, there exists somea ∈ F2n such thatTrn1 (

u
a+u ) = 0

whena runs through the nonzero elements inF2n . This means

that DaF (x) = DaF (0) + 1 has solutions inF2n for some
nonzeroa ∈ F2n .

(2): v = 1.
By a simple calculation, for this case fromDaF (x) =

DaF (0) + 1 we can obtain that

x2 + ax+ a+ 1 +
a

1 + (a+ 1)d + ud
= 0. (7)

Then, (7) has solutions inF2n if and only if Trn1 (
a+1
a2 +

1
a(1+(a+1)d+ud)

) = 0, i.e.,

Trn1 (
1

a(1 + (a+ 1)d + ud)
) = 0, (8)

wherea 6= 0, 1, (u+ 1)d. For simplicity, define

φ(a) =
1

a(1 + (a+ 1)d + ud)
=

ua+ u

(u+ 1)a2 + a
.

In what follows, we prove that there exists at least one nonzero
a ∈ F2n with a 6= 0, 1, (u+1)d such thatTrn1 (φ(a)) = 0. First,
we show thatφ(a) 6= h(a)2 + h(a) for any rational function
h(a) ∈ F2n [a], whereF2n denotes the algebraic closure of
F2n . Assume thatφ(a) = ν(a)2

µ(a)2 +
ν(a)
µ(a) for someµ(a), ν(a) ∈

F2n [a] with gcd(µ(a), ν(a)) = 1, then one gets

u(a+ 1)µ(a)2 = ((u+ 1)a2 + a)(ν(a)2 + µ(a)ν(a))

which implies thata|µ(a) and thena2|µ(a)2. However,a2 ∤
((u+1)a2+a)(ν(a)2 +µ(a)ν(a)) sincegcd(µ(a), ν(a)) = 1
anda|µ(a). This leads to a contradiction. Therefore,φ(a) 6=
h(a)2 + h(a) for any rational functionh(a) ∈ F2n [a]. By
Lemma 3 presented below, we have

|
∑

a∈F2n ,a 6=0,(u+1)−1

(−1)Tr
n
1 (φ(a))| ≤ (2 + 2− 2)

√
2n + 1.

Thus, if Trn1 (φ(a)) = 1 for any a ∈ F2n with a 6= 0, 1, (u+
1)d, then we have2n−3 ≤ (2+2−2)

√
2n+1, i.e.,2n ≤ (1+√

5)2 < 16. This shows that there exists at least one nonzero
a ∈ F2n with a 6= 0, 1, (u + 1)d such thatTrn1 (φ(a)) = 0 if
n ≥ 4. �

Lemma 3. ([19, Lemma 2]) LetF2n denote the algebraic
closure ofF2n . Let f(z), g(z) ∈ F2n [z], wheredeg f < r =
deg g andg(z) is a polynomial witht distinct zeros inF2n . If
f(z)
g(z) 6= h(z)2 + h(z) for any rational functionh(z) ∈ F2n [z],
then

|
∑

a∈L

(−1)Tr
n
1 (

f(z)
g(z) )| ≤ (t+ r − 2)

√
2n + 1,

whereL consists of all elements ofF2n except the zeros of
g(z).

We checked with a computer that for3 ≤ n ≤ 13 there
are no APN functions of the formx2n−1 + u(x+ v)d where
1 ≤ d ≤ 2n − 2, u, v ∈ F2n , u 6= 0.
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B. WhenF is a Plateaued Function

Majority of the known APN functions are plateaued. We
prove nonexistence of APN functions of the form (1) for
plateauedF by applying Theorem 1.

Theorem 3. Let F be a plateaued function overF2n with
n ≥ 3 andG be defined by (1). ThenG is not APN.

Proof. Let n be odd. Let 2λb be the amplitude of
the component functionTrn1 (bF (x)) for b ∈ F∗

2n .
We have λb ≥ n+1

2 . According to Lemma 2, we
have

∑

a∈F2n
W 3

F (a, b) = (−1)Tr
n
1 (bF (0)) 2n+2λb and

∑

a∈F2n
W 4

F (a, b) = 22n+2λb . Hence,
∑

a∈F2n
W 3

F (a, b) is
divisible by 22n+1 and

∑

a∈F2n
W 4

F (a, b) is divisible by
23n+1, and therefore by22n+4 sincen ≥ 3. Then Relation
(3) cannot be satisfied since the term on the left hand side is
divisible by 22n+4 and the term on the right hand side is not.

Let now n be even. This case is more technical. Without
loss of generality we can assume thatF (0) = 0. Suppose that
G is APN. Then, by Proposition 3, we get for anya 6= 0:

∑

b∈F2n

∆F (a, b)
2 = (2n−1 − 2) · 22 + 42

if DaF (x) = DaF (0) has 4 solutions and
∑

b∈F2n

∆F (a, b)
2 = (2n−1 − 2) · 22 + 2 · 22

otherwise. That is,
∑

b∈F2n

∆F (a, b)
2 = 2n+1 + 8ta,

where ta = 1 if DaF (x) = DaF (0) has 4 solutions and
ta = 0 otherwise. Indeed, we know thatDaF is 2-to-1 on
F2n\{0, a}; we deduce thatDaF (F2n\{0, a}) has size2n−1−
1 and includes the elementDaF (0) in the first case and does
not include it in the second case.

Because∆F (0, b) = 0 for any b 6= 0 then
∑

(a,b) 6=(0,0)

∆F (a, b)
2 = (2n − 1)2n+1 + 8

∑

a∈F
∗

2n

ta

= (2n − 1)2n+1 + 8T, (9)

where0 ≤ T ≤ 2n − 1.
Since∆F (0, 0) = 2n, WF (0, 0) = 2n andWF (a, 0) = 0

for a 6= 0 then the equality from [13]

∑

a,b∈F2n

∆F (a, b)
2 =

1

22n

∑

a,b∈F2n

WF (a, b)
4

leads to
∑

(a,b) 6=(0,0)

∆F (a, b)
2 =

1

22n

∑

(a,b) 6=(0,0)

WF (a, b)
4. (10)

Let 2λb be again the amplitude ofTrn1 (bF (x)) for b ∈ F∗
2n .

Thenλb =
n+sb

2 for 0 ≤ sb ≤ n and by Lemma 2

1

22n

∑

(a,b) 6=(0,0)

WF (a, b)
4 = 2n

∑

b∈F
∗

2n

2sb . (11)

The valuessb are even for allb 6= 0, and2sb − 1 and2n − 1
are divisible by 3. Hence using (9)-(11) we get

∑

b∈F
∗

2n

2sb = 2(2n − 1) + T ′ (12)

whereT ′ = T/2n−3, 0 ≤ T ′ ≤ 7. Then
∑

b∈F
∗

2n

(2sb − 1) = 2n − 1 + T ′

andT ′ is divisible by 3. HenceT ′ ∈ {0, 3, 6}.
Using (11) and (12) we get
∑

a∈F2n

b∈F
∗

2n

WF (a, b)
4 = 23n

∑

b∈F
∗

2n

2sb = 23n
(

2n+1 + v
)

= 24n+1 + 23nv, (13)

wherev = −2 if T ′ = 0 and v = 1 if T ′ = 3 and v = 4 if
T ′ = 6.

SinceG is APN then (3) holds by Theorem 1 and using
(13):

∑

a,b∈F2n

Trn1 (b)=1

W 3
F (a, b) =

1

8

∑

a∈F2n

∑

b∈F
∗

2n

W 4
F (a, b)

−(23n−2 − 22n)(2n − 1) + 23n−1

= 22n(7 · 2n−2 + 2n−3v − 1)

=







22n(3 · 2n−1 − 1) if v = −2
22n(15 · 2n−3 − 1) if v = 1
22n(9 · 2n−2 − 1) if v = 4.

(14)

By Lemma 2 and using (13), we get:
∑

a∈F2n

b∈F
∗

2n

W 3
F (a, b) = 22n

∑

b∈F
∗

2n

2sb = 22n(2n+1 + v). (15)

Besides,
∑

a∈F2n ,b∈F
∗

2n

Trn1 (b)=0

W 3
F (a, b) = 22n

∑

b∈F
∗

2n

Trn1 (b)=0

2sb

≥ 22n(2n−1 − 1). (16)

Hence by (14)-(16):

22n(2n+1 + v) =
∑

a∈F2n

∑

b∈F
∗

2n

W 3
F (a, b) ≥ 22n(2n−1 − 1)

+







22n(3 · 2n−1 − 1) if v = −2
22n(15 · 2n−3 − 1) if v = 1
22n(9 · 2n−2 − 1) if v = 4

.

Clearly, this inequality does not hold whenn ≥ 4 and
v ∈ {1, 4}. Whenv = −2 this corresponds to the case ofF
an APN function and the last inequality becomes an equality.
That is, we get thatTrn1 (bF (x)) is bent for all b ∈ F∗

2n

satisfyingTrn1 (b) = 0. However, this is impossible ifn > 2,
since otherwise we would have an(n, n − 1)-vectorial bent
function. Indeed, take a basis(b1, .., bn−1) of the hyperplane
of equationTrn1 (b) = 0 and define the vectorial(n, n − 1)-
function whose coordinates arefi(x) = Trn1 (biF (x)) for
i = 1, .., n − 1. Then all its component functions are bent
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and, by definition, the function is then bent. This contradicts
the fact recalled above that(n,m)-vectorial bent functions
exist only for2m ≤ n [24]. �

Note that Theorem 3 does not hold whenn ≤ 2. For
example,x3 is a plateaued APN function overF22 of algebraic
degree2.

Theorem 3 leads to a nonexistence result for APN functions
G with F quadratic or AB.

Corollary 5. Let F be a quadratic function andG be defined
by (1). ThenG is not APN.

Corollary 6. Let F be an AB function andG be defined by
(1). ThenG is not APN.

V. CHARACTERIZATIONS OFEQUIVALENCE CLASSES OF

MAXIMUM DEGREEFUNCTIONS

In this section we study the connection between EA- and
CCZ-equivalence classes of a functionF over F2n and the
respective classes of the functionG given by (1). We also
deduce some non-existence results for functions of the form
(1) whereF is CCZ-equivalent to known APN functions.

Next proposition describes EA-equivalence classes ofG via
EA-equivalence classes ofF .

Proposition 7. Let F be a function overF2n and G(x) =
x2n−1 + F (x). If a functionG′ is EA-equivalent toG then
there exist someu, v ∈ F2n , u 6= 0, and a functionF ′ EA-
equivalent toF such thatG′(x) = u(x+ v)2

n−1 + F ′(x).

Proof. For EA-equivalent functionsG andG′ there exist affine
permutationsA1, A2 and affineA such thatG′(x) = A1 ◦G◦
A2(x) +A(x). Note that

A1◦G◦A2(x)+A(x) = A1◦F◦A2(x)+A(x)+A1((A2(x))
2n−1)

and denotingF ′(x) = A1 ◦ F ◦ A2(x) + A(x) + A1(0) and
A′

1(x) = A1(x) +A1(0) we get

G′(x) = F ′(x) +A′
1(1)(x +A−1

2 (0))2
n−1

since A′
1((A2(x))

2n−1) takes valueA′
1(1) if x 6= A−1

2 (0)
(that is,A2(x) 6= 0) and 0 otherwise, and we can rewrite it
as A′

1(1)(x + A−1
2 (0))2

n−1) (which takes the same values).
HenceG′(x) = F ′(x) + u(x + v)2

n−1 for u = A′
1(1) 6= 0

andv = A−1
2 (0) and the functionF ′ is EA-equivalent toF . �

Note that ifF andF ′ are EA-equivalent then it does not
necessarily mean that functionsG(x) = x2n−1 + F (x) and
G′(x) = u(x + v)2

n−1 + F ′(x) are EA-equivalent for any
u, v ∈ F2n , u 6= 0. However, there exist someu, v ∈ F2n ,
u 6= 0 (in some cases these elements are unique) giving
EA-equivalent functionsG andG′ according to the following
proposition.

Proposition 8. If F andF ′ are EA-equivalent functions over
F2n then the functionG′(x) = x2n−1+F ′(x) is EA-equivalent
to u(x+ v)2

n−1 + F (x) for someu, v ∈ F2n , u 6= 0.

Proof. For EA-equivalent functionsF and F ′ there
exist affine permutationsA1, A2 and affine A such

that F ′(x) = A1 ◦ F ◦ A2(x) + A(x). Without
loss of generality we can assumeA1(0) = 0. Then
G′(x) = x2n−1 + A1 ◦ F ◦ A2(x) + A(x) and it
is EA-equivalent to A−1

1 ((A−1
2 (x))2

n−1) + F (x) =
A−1

1 (1)(x + A2(0))
2n−1 + F (x) = u(x + v)2

n−1 + F (x)
with u = A−1

1 (1) 6= 0 andv = A2(0). �

Using Proposition 8 we can deduce an important non-
existence result on APN functions of the form (1).

Corollary 7. Let F andF ′ be EA-equivalent functions over
F2n . If for any v ∈ F2n and any nonzerou ∈ F2n the function
x2n−1 + uF (x + v) is not APN then for anyv′ ∈ F2n and
any nonzerou′ ∈ F2n the functionx2n−1 + u′F ′(x + v′) is
not APN either.

Further we describe CCZ-equivalence classes ofG via CCZ-
equivalence classes ofF .

Proposition 9. Let F be a function overF2n andG be defined
by (1). If a functionG′ is CCZ-equivalent toG then there exist
someu, v ∈ F2n , u 6= 0, and a functionF ′ CCZ-equivalent
to F such thatG′(x) = u(x+ v)2

n−1 + F ′(x).

Proof. Since G and G′ are CCZ-equivalent then for some
affine permutation

L(x, y) =
(

L1(x, y), L2(x, y)
)

=
(

A1(x) +A2(y), A3(x) +A4(y)
)

,

where A1, A2, A3, A4 are affine, we haveG′(x) = G2 ◦
G−1

1 (x) with

G1(x) = L1(x,G(x)) = A1(x) +A2 ◦G(x)

a permutation and

G2(x) = L2(x,G(x)) = A3(x) +A4 ◦G(x).

Note thatG1(x) = A1(x) + A2 ◦ F (x) + A2(x
2n−1) and

since it is a permutation thenA2(0) = A2(1) andG1(x) =
A1(x)+A2◦F (x)+A2(0). TakeF1(x) = G1(x) andF2(x) =
A3(x) + A4 ◦ F (x). Then, obviously,F ′(x) = F2 ◦ F−1

1 (x)
is CCZ-equivalent toF and

G′(x) = F ′(x) +A2((F1(x))
2n−1)

= F ′(x) +A2(1)(x+ F−1
1 (0))

= F ′(x) + u(x+ v)2
n−1

with u = A2(1) and v = F−1
1 (0). Note thatu 6= 0 since

otherwise the system

A1(x) +A2(y) = A1(0) +A2(0)

A3(x) +A4(y) = A3(0) +A4(0)

would have two solutions(0, 0) and (0, 1) andL would not
be a permutation. �

Proposition 10. Let F andF ′ be CCZ-equivalent functions
overF2n , that is,L(GF ) = GF ′ for some affine permutation
L(x, y) = (L1(x, y), L2(x, y)) of F2

2n . If L1(0, y) is not a per-
mutation ofF2n then there exist someu, v, w ∈ F2n , u,w 6= 0,
such that functionswx2n−1+F (x) andu(x+v)2

n−1+F ′(x)
are CCZ-equivalent.
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Proof. When the affine functionL1(0, y) is not a permutation
of F2n there existsw ∈ F∗

2n such thatL1(0, 0) = L1(0, w).
Clearly a linear functionL◦(x, y) = (x,wy)) is a permutation
of F2

2n and

L ◦ L◦(x, y) = (L1(x,wy), L2(x,wy))

maps the graph of the functionw−1F (x) to the graph of the
functionF ′(x). Moreover,L ◦ L◦ maps the graph ofG(x) =
x2n−1 + w−1F (x) to the graph ofG′(x) = u(x + v)2

n−1 +
F ′(x) for u = L2(0, w) + L2(0, 0) and v = L1(0, F (0)).
Indeed, note thatu 6= 0 since otherwiseL would not be a
permutation and we have

G1(x) = L1(x,wG(x)) = L1

(

x, F (x) + wx2n−1
)

= L1(x, F (x)) +
(

L1(0, w) + L1(0, 0)
)

x2n−1

= F1(x),

G2(x) = L2(x,wG(x)) = L2

(

x, F (x) + wx2n−1
)

= L2(x, F (x)) + ux2n−1 = F2(x) + ux2n−1,

G′(x) = G2 ◦G−1
1 (x) = F2 ◦ F−1

1 (x) + c
(

F−1
1 (x)

)2n−1

= F ′(x) + u(x+ v)2
n−1.

Hence, G and G′ are CCZ-equivalent, and, therefore,
wx2n−1 + F (x) andG′ are CCZ-equivalent. �

In Proposition 10 the condition onL1(0, y) being a per-
mutation is essential. Indeed, takeF (x) = x3 andF ′(x) =
F−1(x) = x21 and n = 5, then F and F ′ are CCZ-
equivalent withL(x, y) = (L1(x, y), L2(x, y)) = (y, x) where
L1(0, y) = y is a permutation. It can be easily checked
with a computer that for allu, u′ ∈ F∗

25 , v, v′ ∈ F25 ,
the functionsG(x) = u(x + v)2

n−1 + F (x) and G′(x) =
u′(x+ v′)2

n−1 + F ′(x) are CCZ-inequivalent.
For n odd all known APN functions except inverse and

Dobbertin functions are AB. Hence, by Corollary 6 a function
u(x + v)2

n−1 + F (x), u, v ∈ F2n , u 6= 0, is not APN
for any of these functionsF and anyF CCZ-equivalent to
them (since CCZ-equivalence preserves AB property). Forn
even all known APN functions except Dobbertin functions and
functions constructed in [8], [9] (and a sporadic example with
n = 6 [17]) are plateaued and plateauedness is preserved by
EA-equivalence. Therefore,u(x+v)2

n−1+F (x), u, v ∈ F2n ,
u 6= 0, is not APN for any of these functionsF and anyF
EA-equivalent to them. Whenn is even andF is plateaued
the following corollary of Proposition 10 is useful for CCZ-
equivalence.

Corollary 8. Let F andF ′ be CCZ-equivalent APN functions
over F2n where F is plateaued andn is even. Then for
an affine permutationL(x, y) = (L1(x, y), L2(x, y)) of F2

2n

satisfying L(GF ) = GF ′ there existsw ∈ F∗
2n such that

L1(0, w) = L1(0, 0) andu(x + v)2
n−1 + F ′(x) is not APN

for u = L2(0, w) + L2(0, 0) andv = L1(0, F (0)).

Proof. If L1(0, w) 6= L1(0, 0) for anyw ∈ F∗
2n thenL1(0, y)

is a permutation ofF2n and F1(x) = L1(x, F (x)) is a
plateaued APN permutation which leads to a contradiction
since all plateaued APN functions have bent components
when n is even. Hence, there existsw ∈ F∗

2n such that

L1(0, w) = L1(0, 0). Sincew−1F (x) is plateaued APN then
G(x) = wx2n−1+F (x) is not APN by Theorem 3. It follows
from the proof of Corollary 10 that foru = L2(0, w)+L2(0, 0)
and v = L1(0, F (0)) the functionG′(x) = u(x + v)2

n−1 +
F ′(x) is CCZ-equivalent toG, and, therefore, it is not APN.
�

All APN functions with n even constructed in [8] and [9]
satisfy the conditions in Corollary 8 withv = 0 andu = w
satisfying

1) Trn1 (u) = 0 for functions

x2i+1 + (x2i + x+ 1)Trn1 (x
2i+1)

and
x3 +Trn1 (x

9) + (x2 + x+ 1)Trn1 (x
3)

wheregcd(n, i) = 1;
2) Trn3 (u+ u2) = 0 for functions

(

x+Trn3 (x
2(2i+1) + x4(2i+1))

+Trn1 (x)Tr
n
3 (x

2i+1 + x22i(2i+1))
)2i+1

and
(

x+Trn3 (x
6 + x12) + Trn1 (x)Tr

n
3 (x

3 + x12)
)3

+Trn1

(

(

x+Trn3 (x
6 + x12) + Trn1 (x)Tr

n
3 (x

3 + x12)
)9

)

wheren divisible by 6 andgcd(n, i) = 1.
Hence it is not possible to get APN function by adding
ux2n−1 to any of these functions. Besides, using Proposition 3,
Corollary 7 and computer search we confirmed that forn ≤ 10
there are no APN functions of the form (1) for anyF EA-
equivalent to the functions above.

When F is EA-equivalent to the inverse function then
u(x + v)2

n−1 + F (x), u, v ∈ F2n , v 6= 0, is not APN by
Proposition 6 and Corollary 7. ForF a Dobbertin function,
the functionux2n−1 + F (x), u ∈ F∗

2n , is not APN for n
odd by Proposition 4, and forn evenx2n−1 + F (x) is not
APN by Proposition 5. However, these results do not give
complete information aboutu(x+v)2

n−1+F (x), u, v ∈ F2n ,
u 6= 0, whenF is EA-equivalent to Dobbertin functions. Using
Proposition 3, Corollary 7 and computer search we confirmed
that for n ≤ 15 there are no APN functions of the form (1)
for any F EA-equivalent to Dobbertin functions. Regarding
to CCZ-equivalence, it is not known whether for inverse and
Dobbertin functions it coincides with EA-equivalence (in case
of Dobbertin functions together with EA-equivalence of their
inverses when they exist).

VI. CONCLUSION

The major objective of this paper was to characterize APN
functions over the finite fieldF2n having algebraic degree
n, or equivalently, of the formG(x) = x2n−1 + F (x),
whereF is any function fromF2n to itself having algebraic
degree less thann, in order to find new APN functions with
maximal algebraic degree or to prove the non-existence of
such APN functions. We obtained some characterizations of
those APN functions by means of the derivatives and of the
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power moments of their Walsh transform, and then some non-
existence results on APN functions with maximal algebraic
degree were proved. This includes all power functions and all
plateaued functions and covers most of the known cases of
APN functionsF . These results also imply that for most of
the known APN functions changing their value in a single
point results in non-APN functions.
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