
Annihilation Attacks for Multilinear Maps:

Cryptanalysis of Indistinguishability Obfuscation over GGH13

Eric Miles

UCLA

enmiles@cs.ucla.edu

Amit Sahai∗

UCLA

sahai@cs.ucla.edu

Mark Zhandry

MIT

mzhandry@gmail.com

Abstract

In this work, we put forward a new class of polynomial-time attacks on the original multi-
linear maps of Garg, Gentry, and Halevi (2013). Previous polynomial-time attacks on GGH13
were “zeroizing” attacks that generally required the availability of low-level encodings of zero.
Most significantly, such zeroizing attacks were not applicable to candidate indistinguishability
obfuscation (iO) schemes. iO has been the subject of intense study.

To address this gap, we introduce annihilation attacks, which attack multilinear maps using
non-linear polynomials. Annihilation attacks can work in situations where there are no low-level
encodings of zero. Using annihilation attacks, we give the first polynomial-time cryptanalysis
of candidate iO schemes over GGH13. More specifically, we exhibit two simple programs that
are functionally equivalent, and show how to efficiently distinguish between the obfuscations of
these two programs.

Given the enormous applicability of iO, it is important to devise iO schemes that can avoid
attack.

∗Research supported in part from a DARPA/ARL SAFEWARE award, NSF Frontier Award 1413955, NSF grants
1228984, 1136174, 1118096, and 1065276, a Xerox Faculty Research Award, a Google Faculty Research Award, an
equipment grant from Intel, and an Okawa Foundation Research Grant. This material is based upon work supported
by the Defense Advanced Research Projects Agency through the ARL under Contract W911NF-15-C-0205. The
views expressed are those of the author and do not reflect the official policy or position of the Department of Defense,
the National Science Foundation, or the U.S. Government.

1 Introduction

In this work, we put forward a new class of polynomial-time attacks on the original multilinear maps
of Garg, Gentry, and Halevi [GGH13a]. Previous polynomial-time attacks on GGH13 were “zeroiz-
ing” attacks that either explicitly required the availability of low-level encodings of zero [GGH13a,
HJ15], or required a differently represented low-level encoding of zero, in the form of an encoded
matrix with a zero eigenvalue [CGH+15]. As a result, such zeroizing attacks were not applicable
to many important applications of multilinear maps, most notably candidate indistinguishability
obfuscation (iO) schemes over GGH13 [GGH+13b, BR14, BGK+14, AGIS14, MSW14, BMSZ15].
iO has been the subject of intense study. Thus, understanding the security of candidate iO schemes
is of high importance. To do so, we need to develop new attacks that do not require, explicitly or
implicitly, low-level encodings of zero.

Annihilation Attacks. To address this gap, we introduce annihilation attacks, which attack
multilinear maps in a new way, using non-linear polynomials. Annihilation attacks can work in
situations where there are no low-level encodings of zero. Using annihilation attacks, we give
the first polynomial-time cryptanalysis of candidate iO schemes over GGH13. More specifically, we
exhibit two simple programs that are functionally equivalent, and show how to efficiently distinguish
between the obfuscations of these two programs. We also show how to extend our attacks to more
complex candidate obfuscation schemes over GGH13, namely ones that incorporate the “dual-input”
approach of [BGK+14]. (Note that, even without the dual-input structure, [BGK+14, AGIS14,
MSW14, BMSZ15] were candidates for achieving iO security when implemented with [GGH13a].)

We now give an overview of our attack. The overview will introduce the main conceptual ideas
and challenges in mounting our attack.

1.1 Overview of the Attack

We begin with a simplified description of the GGH13 scheme, adapted from text in [CGH+15].

1.1.1 The GGH13 scheme

For GGH13 [GGH13a] with k levels of multilinearity, the plaintext space is a quotient ring Rg =
R/gR where R is the ring of integers in a number field and g ∈ R is a “small element” in that
ring. The space of encodings is Rq = R/qR where q is a “big integer”. An instance of the scheme
relies on two secret elements, the generator g itself and a uniformly random denominator z ∈ Rq.
A small plaintext element α is encoded “at level one” as u = [e/z]q where e is a “small element” in
the coset of α, that is e = α + gr for some small r ∈ R.

Addition/subtraction of encodings at the same level is just addition in Rq, and it results in an
encoding of the sum at the same level, so long as the numerators do not wrap around modulo q.
Similarly multiplication of elements at levels i, i′ is a multiplication in Rq, and as long as the
numerators do not wrap around modulo q the result is an encoding of the product at level i + i′.

The scheme also includes a “zero-test parameter” in order to enable testing for zero at level k.
Noting that a level-k encoding of zero is of the form u = [gr/zk]q, the zero-test parameter is an
element of the form pzt = [hzk/g]q for a “somewhat small element” h ∈ R. This lets us eliminate
the zk in the denominator and the g in the numerator by computing [pzt · u]q = h · r, which is
much smaller than q because both h, r are small. If u is an encoding of a non-zero α, however, then

1

multiplying by pzt leaves a term of [hα/g]q which is not small. Testing for zero therefore consists of
multiplying by the zero-test parameter modulo q and checking if the result is much smaller than q.

Note that above we describe the “symmetric” setting for multilinear maps where there is only
one z, and its powers occur in the denominators of encodings. More generally, we will equally well
be able to deal with the “asymmetric” setting where there are multiple zi. However, we omit this
generalization here as our attack is agnostic to such choices. Our attack is also agnostic to other
basic parameters of the GGH13, including the specific choice of polynomial defining the ring R.

1.1.2 Setting of our attack

Recall that in our setting, we – as the attacker – will not have access to any low-level encodings of
zero. Thus, in general, we are given as input a vector ~u of ℓ encodings, corresponding to a vector
~α of ℓ values being encoded, and with respect to a vector ~r of ℓ random small elements. Thus, for
each i ∈ [ℓ], there exists some value ji < k such that

ui =

[
αi + gri

zji

]

q

αi 6= 0

What a distinguishing attack entails. In general, we consider a situation where there are two
distributions over vectors: ~α(0) and ~α(1). Rather than thinking of these vectors as directly giving
distributions over values, we can think of them as distinct vectors of multivariate polynomials over
some underlying random variables. Thus, from this viewpoint, ~α(0) and ~α(1) are just two distinct
vectors of polynomials, that are known to us in our role as attacker.

Then a challenger chooses a random bit b ∈ {0, 1}, and we set ~α = ~α(b). Then we are given
encodings ~u of the values ~α using fresh randomness ~r, and our goal in mounting an attack is to
determine the challenger’s bit b.

Note that to make this question interesting, it should be the case that all efficiently computable
methods of computing top-level encodings of zero using encodings of ~α(0) should also yield top-level
encodings of zero using encodings of ~α(1). Otherwise, an adversary can distinguish between these
encodings simply by zero testing.

1.1.3 Using annihilating polynomials

Our attack first needs to move to the polynomial ring R. In order to do so, the attack will need
to build top-level encodings of zero, and then multiply by the zero-testing element pzt. Because
we are in a setting where there are no low-level encodings of zero, top-level encodings of zero can
only be created through algebraic manipulations of low-level encodings of nonzero values that lead
to cancellation. Indeed, a full characterization of exactly how top-level encodings of zero can be
created for candidate iO schemes over GGH13 was recently given by [BMSZ15]. In general, our
attack will need to have access to a collection of valid algebraic manipulations that yield top-level
encodings of zero, starting with the encodings ~u.

Generally, then, a top-level encoding of zero e produced in this way would be stratified into
levels corresponding to different powers of g, as follows:

e =
gγ1 + g2γ2 + · · · gkγk

zk

2

and thus
f := [e · pzt]q = h · (γ1 + gγ2 + · · · gk−1γk)

Above, each γi is a polynomial in the entries of ~α and ~r. As suggested by the stratification
above, our main idea is to focus on just one level of the stratification. In particular, let us focus on
the first level of the stratification, corresponding to the polynomial γ1.

A simple illustrative example. Suppose that we had three ways of generating top-level encod-
ings of zero, e, e′, and e′′, which yield products f, f ′, and f ′′ in the ring R. Suppose further that
e, e′, and e′′ contained polynomials γ1 = xr; γ′

1 = xr2; and γ′′
1 = x, where x is a random variable

underlying ~α(0). Then we observe that there is an efficiently computable annihilating polynomial,
Q(a, b, c) := a2 − bc, such that Q(γ1, γ′

1, γ′′
1) is the zero polynomial. Further, because Q is homoge-

neous, Q(h ·γ1, h ·γ′
1, h ·γ′′

1) is also the zero polynomial. (We will always ensure that our annihilating
polynomials are homogeneous, which essentially comes for free due to the homogeneity of the γ1

polynomials in the iO setting; see Lemma 5.3.)
Thus, if we compute Q(f, f ′, f ′′), we obtain an element in the ring R that is contained in the

ideal 〈hg〉.
However, consider the top-level encodings of zero e, e′, and e′′ that arise from ~α(1), which is a

different vector of polynomials over x than ~α(0). Suppose that in this case, the encodings e, e′, and
e′′ contain polynomials γ1 = x3r; γ′

1 = xr; and γ′′
1 = x. In this scenario, the polynomial Q is no

longer annihilating, and instead yields Q(γ1, γ′
1, γ′′

1) = x6r2 −x2r. Thus, what we have is that if the
challenge bit b = 0, then Q(f, f ′, f ′′) is contained in the ideal 〈hg〉, but if the challenge bit b = 1,
then Q(f, f ′, f ′′) is not contained in the ideal 〈hg〉.

Obtaining this distinction in outcomes is the main new idea behind our attack.

1.1.4 Central challenge: How to compute annihilating polynomials?

While it was easy to devise an annihilating polynomial for the polynomials contained in the simple
example above, in general annihilating polynomials can be hard to compute. Every set of n + 1 or
more polynomials over n variables is algebraically dependent and hence must admit an annihilating
polynomial. Indeed, therefore, if we do not worry about how to compute annihilating polynomials,
our high-level attack idea as described above would apply to every published iO scheme that can be
instantiated with GGH13 maps that we are aware of, and it would work for every pair of equivalent
programs that output zero sufficiently often. This is simply because every published iO candidate
can be written as an algebraic expression using only a polynomial number of underlying random
variables, whereas the obfuscated program can be evaluated on an exponential number of inputs.

However, unless the polynomial hierarchy collapses (specifically, unless Co-NP ⊆ AM), there
are sets of (cubic) polynomials over n variables for which the annihilating polynomial cannot be
represented by any polynomial-size arithmetic circuit [Kay09]. As a result, for our attack idea to be
meaningful, we must show that the annihilating polynomials we seek are efficiently representable
by arithmetic circuits and that such representations are efficiently computable. In particular, we
seek to do this in the context of (quite complex) candidates for indistinguishability obfuscation.

We begin by looking deeper at the structure of the polynomials γ1 that we need to annihilate.
In particular, let’s examine what these polynomials look like as a consequence of the stratification
by powers of g. We see that by the structure of encodings in GGH13, each polynomial γ1 will
be linear in the entries of ~r and potentially non-linear in the entries of ~α. This is already useful,

3

since the ~r variables are totally unstructured and unique to each encoding given out, and therefore
present an obstacle to the kind of analysis that will enable us to find an annihilating polynomial.

To attack iO, we will first design two simple branching programs that are functionally equivalent
but distinct as branching programs. To this end, we consider two branching programs that both
compute the always zero functionality. The simplest such program is one where every matrix is
simply the identity matrix, and this will certainly compute the constant zero functionality. To
design another such program, we observe that the anti-identity matrix

B =

(
0 1
1 0

)

can be useful, because it has the property that BB = I. Thus, to make another branching program
that computes the always zero functionality, we can create a two-pass branching program, where
the (two) matrices corresponding to x1 = 0 are both set to B, and all other matrices are set to I.

With these branching programs in mind, we analyze the γ1 polynomials that arise. The main
method that we use to prune the search space for annihilating polynomials is to find changes of
variables that can group variables together in order to minimize the number of active variables. We
use a number of methods, including inclusion-exclusion formulas, to do this. By changing variables,
we are able to reduce the problem to finding the annihilating polynomial for a set of polynomials
over only a constant number of variables. When only a constant number of variables are present,
exhaustive methods for finding annihilating polynomials are efficient. For further details, refer to
Section 5.

Moving to more complex iO candidates. The above discussion covers the main ideas for
finding annihilating polynomials, and by generalizing our methods, we show that they extend to
more challenging settings. Most notably, we can extend our methods to work for the dual-input
technique of [BGK+14], which has been used in several follow-up works [AGIS14, MSW14, BMSZ15].
Previously, no cryptanalysis techniques were know to apply to this setting. For further details, see
Sections 4 and 5.

1.1.5 An abstract attack model

We first describe our attacks within a new abstract attack model, which is closely related to a
model proposed in [CGH+15, App. A]. The new model is roughly the same as existing generic
graded encoding models, except that a successful zero test returns an algebraic element rather
than a bit b ∈ {0, 1}. These algebraic elements can then be manipulated, say, by evaluating an
annihilating polynomial over them. This model captures the fact that, in the GGH13 candidate
graded encoding scheme [GGH13a], the zero test actually does return an algebraic element in a
polynomial ring that can be manipulated.

We describe our attacks in this abstract model to (1) highlight the main new ideas for our
attack, and (2) to demonstrate the robustness of our attack to simple “fixes” for multilinear maps
that have been proposed.

Theorem 1.1. Let O denote the single-input variant of the iO candidates in [BGK+14, AGIS14,
BMSZ15] over GGH13 [GGH13a] maps. There exist two functionally-equivalent branching pro-
grams A, A′ such that O(A) and O(A′) can be efficiently distinguished in the abstract attack model
described in Section 2.

4

Note that in the single input case, the [BGK+14, AGIS14, BMSZ15] obfuscators over GGH13 [GGH13a]
maps were shown to achieve iO security in the standard generic graded encoding model. This the-
orem shows that such security does not extend to our more refined model.

The attack in Theorem 1.1 works by executing the obfuscated program honestly on several
inputs, which produces several zero-tested top-level 0-encodings. Recall that in our model, each
successful zero-test returns an algebraic element. We then give an explicit polynomial that annihi-
lates these algebraic elements in the case of one branching program, but fails to annihilate in the
other. Thus by evaluating this polynomial on the algebraic elements obtained and testing for zero,
it is possible to distinguish the two cases.

1.1.6 Beyond the abstract attack model

Our abstract attack does not immediately yield an attack on actual graded encoding instances. For
example, when the graded encoding is instantiated with [GGH13a], the result of an annihilating
polynomial is an element in the ideal 〈hg〉, whereas if the polynomial does not annihilate, then the
element is not in this ideal. However, this ideal is not explicitly known, so it is not a priori obvious
how to distinguish the two cases.

We observe that by evaluating the annihilating polynomial many times on different sets of
values, we get many different vectors in 〈hg〉. With enough vectors, we (heuristically) can compute
a spanning set of vectors for 〈hg〉. This is the only heuristic portion of our attack analysis, and it is
similar in spirit to previous heuristic analysis given in other attacks of multilinear maps (see, e.g.,
[CGH+15]). With such a spanning set, we can then test to see if another “test” vector is in this
ideal or not. This is the foundation for our attack on obfuscation built from the specific [GGH13a]
candidate.

Dual-Input Obfuscation and Beyond. Moving on to the dual-input setting, we do not know
an explicit annihilating polynomial for the set of algebraic elements returned by our model. How-
ever, we are able to show both that such a polynomial must exist, and furthermore that it must
be efficiently computable because it has constant size. Thus we demonstrate that there exists an
efficient distinguishing adversary in the abstract attack model. As before, we can turn this into a
heuristic attack on obfuscation built from [GGH13a] graded encodings. We also show that modify-
ing the branching programs to read d > 2 bits at each level does not thwart the attack for constant
d, because the annihilating polynomial still has constant size (albeit a larger constant).

Theorem 1.2. Let O denote the dual-input variant of the iO candidates found in [BGK+14,
AGIS14, BMSZ15] over GGH13 [GGH13a] maps. There exist two functionally-equivalent branch-
ing programs A, A′ such that O(A) and O(A′) can be efficiently distinguished in the abstract attack
model described in Section 2.

1.2 Defenses

The investigation of the mathematics needed to build iO remains in its infancy. In particular, our
work initiates the study of annihilation attacks, and significant future study is needed to see how
such attacks can be avoided.

5

2 Model Description

We now describe an abstract model for attacks on current multilinear map candidates. There are
“hidden” variables X1, . . . , Xn for some integer n, Z1, . . . , Zm for another integer m, and g. Then
there are “public” variable Y1, . . . , Ym, which are set to Yi = qi({Xj}) + gZi for some polynomials
qi. All variables are defined over a field F.

The adversary is allowed to make two types of queries:

• In a Type 1 query, the adversary submits a “valid” polynomial pk on the Yi. Here “valid”
polynomials come from some restricted set of polynomials. These restrictions are those that
are enforceable using graded encodings. Next, we consider p as a polynomial of the formal

variables Xj , Zi, g. Write pk = p
(0)
k ({Xj}, {Zi}) + gp

(1)
k ({Xj}, {Zi}) + g2....

If pk is identically 0, then the adversary receives ⊥ in return. If p
(0)
k is not identically 0,

then the adversary receive ⊥ in return. If pk is not 0 but p
(0)
k is identically 0, then the

adversary receives a handle to a new variable Wk, which is set to be pk/g = p
(1)
k ({Xj}, {Zi})+

gp
(3)
k ({Xj}, {Zi}) +

• In a Type 2 query, the adversary is allowed to submit arbitrary polynomials r with small
algebraic circuits on the Wk that it has seen so far. Consider r({Wk}) as a polynomial of
the variables Xj , Zi, g, and write r = r(0)({Xj}, {Zi}) + gr(1)(({Xj}, {Zi})) + g2.... If r(0) is
identically zero, then the model responds with 0. Otherwise the model responds with 1.

In current graded encoding schemes, the set of “valid” polynomials is determined by the re-
strictions placed by the underlying set structure of the graded encoding. Here we consider a more
abstract setting where the set of “valid” polynomials is arbitrary.

In the standard abstract model for graded encodings, Type 1 queries output a bit as opposed
to an algebraic element, and there are no Type 2 queries. However, this model has been shown to
improperly characterize the information received from Type 1 queries in current candidate graded
encoding schemes. The more refined model above more accurately captures the types of attacks
that can be carried out on current graded encodings.

2.1 Obfuscation in the Abstract Model

We now describe an abstract obfuscation scheme that encompass the schemes of [AGIS14, BMSZ15],
and can also be easily extended to incorporate the scheme of [BGK+14]. The obfuscator takes as
input a branching program of length ℓ, input length n, and arity d. The branching program contains
an input function inp : [ℓ] → 2[n] such that |inp(i)| = d for all i ∈ [ℓ]. Moreover, the branching
program contains 2dℓ + 2 matrices A0, {Ai,Si

}i∈[ℓ], Aℓ+1 where Si ranges over subsets of inp(i), and
A0Aℓ+1 are the “bookend” vectors. To evaluate a branching program on input x, we associate x
with the set T ⊆ [n] where i ∈ T if and only if xi = 1. To evaluate the branching program on input
x (set T) compute the following product.

A(T) = A0 ×
ℓ∏

i=1

Ai,T ∩inp(i) × Aℓ+1

The output of the branching program is 0 if and only if A(T) = 0.

6

The obfuscator first generates random matrices {Ri}i∈[ℓ+1] and random scalars {αi,Si
}i∈[ℓ],Si⊆inp(i).

Then it computes the randomized branching program consisting of the matrices Ãi,Si
= αi,Si

(Ri ·

Ai,Si
· Radj

i+1) and bookend vectors Ã0 · Radj
1 and Âℓ+1 = Rℓ+1 · Aℓ+1. It is easy to see that this

program computes the same function as the original branching program.
Finally, the obfuscator sets the “hidden” variables in the model to the Ã matrices. Denote the

“public” variables as Yi,S = Ãi,S + gZi,S = αi,SRi · Ai,S · Radj
i+1 + gZi,S . The set of valid Type 1

polynomials is set up so that honest evaluations of the branching program are considered valid.
That is, the polynomials

pT = Y0 ×
ℓ∏

i=1

Yi,T ∩inp(i) × Yℓ+1

are explicitly allowed. Notice that the g0 coefficient of pT is exactly Ã(T) ≡ A(T), so the evaluator
can run the program by querying on pT , and checking if the result is ⊥.

In the case d = 1, this obfuscator corresponds to the basic single-input branching program
obfuscator of [BGK+14, AGIS14, BMSZ15]. In the more restricted model where there are no
Type 2 queries, it was shown how to set the underlying graded encodings so that the only valid
Type 1 queries are linear combinations of arbitrarily-many pT polynomials. This is sufficient for
indistinguishability obfuscation. When d = 2 this corresponds to the dual-input version of these
obfuscators, in which it was shown how to set up the underlying graded encodings so that the the
linear combination has polynomial size. This is sufficient for virtual black box obfuscation (again
in the more restricted model).

In any case, since for functionality the set of allowed queries must include honest executions
of the program, we always allow queries on the pT polynomials themselves. As such, our attacks
will work by only making Type 1 queries on honest evaluations of pT . Thus with any restrictions
in our abstract model that allow for such honest evaluations of pT , we will demonstrate how to to
break indistinguishability security.

3 Abstract Attack

Here we describe an abstract attack on obfuscation in our generic model. For simplicity, we describe
the attack for single input branching programs, which proves Theorem 1.1. We extend to dual-input
and more generally d-input branching programs in Section 5, which proves Theorem 1.2.

3.1 The branching programs

The first branching program A is defined as follows. It has 2n + 2 layers, where the first and last
layers consist of the row vector A0 := (0 1) and the column vector A2n+1 := (1 0)T respectively.
The middle 2n layers scan through the input bits twice, once forward and once in reverse, with
input selection function inp(i) := min(i, 2n + 1 − i) (so x1 is read in layers 1 and 2n, x2 is read in
layers 2 and 2n − 1, etc.)1. In each of these layers, both matrices are the identity, i.e. we have

Ai,0 = Ai,1 =

(
1 0
0 1

)

1Recall that in the single-input case, the set outputted by inp(i) is just a singleton set.

7

for i ∈ [2n]. Here, we adopt the more standard notation for branching programs where the matrix
Ai,b is selected if xinp(i) = b.

The branching program A = {inp, A0, A2n+1, Ai,b | i ∈ [2n], b ∈ {0, 1}} is evaluated in the usual
way:

A(x) := A0 ×
2n∏

i=1

Ai,xinp(i)
× A2n+1.

Clearly this satisfies A(x) = 0 for all x.
The second branching program A′ = {inp′, A′

0, A′
2n+1, A′

i,b | i ∈ [2n], b ∈ {0, 1}} is defined almost
identically. The sole difference is that, in the layers reading bits any of the bits x1, . . . , xk for some
integer k ≤ n, the matrices corresponding to “xi = 0” are changed to be anti-diagonal. Namely, we
have

A′
i,0 = A′

2n+1−i,0 =

(
0 1
1 0

)
for i ∈ [k]

and all other components remain the same (i.e. inp′ = inp, A′
0 = A0, A′

2n+1 = A2n+1, and A′
i,b = Ai,b

for all (i, b) where b = 1 or i ∈ [k + 1, 2n − k]). We again have A′(x) = 0 for all x, because the
anti-diagonal matrix above is its own inverse and all the matrices commute.

3.2 The distinguishing attack

We now specialize the abstract obfuscation scheme from Section 2 to the single-input case. We
choose invertible matrices {Ri ∈ Z2×2

p }i∈[2n+1] and non-zero scalars {αi,x ∈ Zp}i∈[2n],b∈{0,1} uni-
formly at random. Next, we define

Ã0 := A0 · Radj
1 Ã2n+2 := R2n+1 · A2n+1 Ãi,b := αi,bRi · Ai,b · Radj

i+1

for i ∈ [2n], b ∈ {0, 1}, where Radj
i is the adjugate matrix of Ri. Finally, each of the entries of the

various Ã are what are actually encoded, meaning the “public” variables consist of

Yi,b = αi,bRi · Ai,b · Radj
i+1 + gZi,b

Next, by performing a change of variables on the Zi,b, we can actually write

Yi,b = αi,bRi · (Ai,b + gZi,b) · Radj
i+1

The underlying graded encodings guarantee some restrictions on the types of Type 1 encodings
allowed — however, the restrictions must allow evaluation of the branching program on various
inputs. In particular, the query

px := Y0 ×
2n∏

i=1

Yi,xinp(i)
× Y2n+1

is allowed. Now, the coefficient of g0 in px is given by

p(0)
x := Ã0 ×

2n∏

i=1

Ãi,xinp(i)
× Ã2n+1 = ρ

∏

i

αi,xinp(i)
A0 ×

2n∏

i=1

Ai,xinp(i)
× A2n+1

8

which evaluates to 0 by our choice of branching programs. Here ρ :=
∏

i det(Ri) satisfies ρI =∏
i RiR

adj
i , and we abuse notation by letting Y0,xinp(0)

denote Y0 (and similarly for the other matrices).
Thus, the model, on Type 1 query px, will return a handle to the variable

p(1)
x := ρ

∏

i

αi,xinp(i)

2n∑

i=1

(
· · · Ai−1,xinp(i−1)

· Zi,xinp(i)
· Ai+1,xinp(i+1)

· · ·
)

As in Section 2, we will associate x ∈ {0, 1}n with sets T ⊂ [n] where i ∈ T if and only if xi = 1.
For i ∈ [2, n], write α′

i,b = αi,bα2n+1−i,b. Also set α′
1,b = ρα1,bα2n,b. Thus ρ

∏
i αi,xinp(i)

=
∏

i α′
i,xi

.
Define this quantity as Ux = UT . It is straightforward to show that the UT satisfy the following
equation2 when |T | ≥ 2.

UT =
∏

S⊆T,|S|≤1

U

[
(|T |−|S|−1

1−|S|)(−1)|S|+1

]

S = U
−(|T |−1)
∅ ·

∏

j∈T

U{j}

Moreover, any equation satisfied by the UT is generated by these equations.

For the other part of p
(1)
x = p

(1)
T , there are two cases:

• The branching program is all-identity. Then Ai,0 = Ai,1 =: Ai. Here, we write βi,b = · · · Ai−1 ·
Zi,xinp(i)

·Ai+1 · · · . Notice that the βi,b are all independent. For i ∈ [n], let β′
i,b = βi,b+β2n+1−i,b.

Thus,
2n∑

i=1

(
· · · Ai−1,xinp(i−1)

· Zi,xinp(i)
· Ai+1,xinp(i+1)

· · ·
)

=
n∑

i=1

β′
i,xi

Define this quantity as Vx = VT . It is straightforward to show that the VT satisfy the following
equation when |T | ≥ 2.

VT =
∑

S⊆T,|S|≤1

[(
|T | − |S| − 1

1 − |S|

)
(−1)|S|+1

]
VS = −(|T | − 1)V∅ +

∑

j∈T

V{j}

Moreover, any equation satisfied by the VT is generated by these equations.

Piecing together, we have that p
(1)
T = UT VT , where UT , VT satisfy the equations above.

• The branching program has reverse diagonals for b = 0, i ≤ k. Consider a term · · · Ai−1,xinp(i−1)
·

Zi,xinp(i)
· Ai+1,xinp(i+1)

· · · . Suppose for the moment that i ≤ k + 1. Since each Ai,b is either
diagonal or anti-diagonal, we have that · · · Ai−1,xinp(i−1)

= · · · Ai−1,xi−1 is equal to the row
vector (0 1) if the parity of x[1,i−1] is zero, and is equal to (1 0) if the parity is 1. Similarly,

Ai+1,xinp(i+1)
· · · is equal to the column vector (1 0)T if the parity of x[1,i−1] is zero, and (0 1)T

otherwise3. Therefore, · · · Ai−1,xinp(i−1)
· Zi,xinp(i)

· Ai+1,xinp(i+1)
· · · is equal to

(
Zi,xinp(i)

)
1,2

or
(
Zi,xinp(i)

)
2,1

, depending on the parity of x[1,i−1]. Therefore, define γi,b,p to be the result of

the product when xi = b and the parity of x[1,i−1] is p. For i ∈ [2n + k, 2n], the same holds,
so we can absorb the product for this i into γi,b,p. For i ∈ [k + 2, 2n − k − 1], the same holds

2See Section 5 for a proof of a more general case.
3The rest of the bits of x do not matter, since both matrices for each of these bits occur in the product

Ai+1,xinp(i+1)
· · · , and therefore cancel out.

9

true, except that it is only the parity of the bits x[1,k] that matter. Therefore, we can write
the product as γi,b,p where xi = b and the parity of x[1,k] is p. Notice that each of the γi,b,p

are independent.

Define

WT = Wx =
n∑

i=1

γi,xi,partiy(x[1,min(i−1,k)])

Then we have that p
(1)
T = UT WT .

The WT must satisfy some linear relationships, since the number of W is 2n, but the number
of γ is 4n. We have not derived a general equation, but instead we will focus on two cases. If
the bits x1, . . . , xk are fixed (say to 0), then the parity for these bits is always the same (0).
Therefore, WT for these T satisfy the same equations as the VT . Thus, any equation satisfied

by the p
(1)
T for these T in the all-identity case will also be satisfied in the anti-diagonal case.

In the other case, take T ⊆ {1, 2, 3}, and suppose k = 1. In this simple case, it is straightfor-
ward to show that the following are the only linear relationships among these W :

W1,2,3 + W1 = W1,2 + W1,3

W2,3 + W∅ = W2 + W3

These are different, and fewer, than the equations satisfied by the VT . This will be the basis
for our distinguishing attack.

To distinguish the two branching programs, it suffices to find a polynomial Q that annihilates

the p
(1)
T for T ⊆ {1, 2, 3} in the all-identity case, but does not annihilate in the anti-identity case.

Here is such a polynomial:

Q1,2,3 =
(
p

(1)
∅ p

(1)
1,2,3

)2
+
(
p

(1)
1 p

(1)
2,3

)2
+
(
p

(1)
2 p

(1)
1,3

)2
+
(
p

(1)
3 p

(1)
1,2

)2

− 2
(
p

(1)
∅ p

(1)
1,2,3p

(1)
1 p

(1)
2,3 + p

(1)
∅ p

(1)
1,2,3p

(1)
2 p

(1)
1,3 + p

(1)
∅ p

(1)
1,2,3p

(1)
3 p

(1)
1,2

+p
(1)
1 p

(1)
2,3p

(1)
2 p

(1)
1,3 + p

(1)
1 p

(1)
2,3p

(1)
3 p

(1)
2,3 + p

(1)
2 p

(1)
1,3p

(1)
3 p

(1)
2,3

)

+ 4(p
(1)
∅ p

(1)
1,2p

(1)
1,3p

(1)
2,3 + p

(1)
1,2,3p

(1)
1 p

(1)
2 p

(1)
3)

The fact that Q1,2,3 annihilates in the all-identity case can be verified by tedious computation.
The fact that it does not annihilate in the anti-diagonal case can also be verified by tedious com-

putation as follows. Consider a generic degree 4 polynomial Q in the p
(1)
T for T ⊆ {1, 2, 3}. The

condition “Q annihilates the p
(1)
T ” can be expressed as a linear equation in the coefficients of Q.

Since Q has degree 4 in 8 variables, the number of coefficients is bounded by a constant, so the
linear constraints can be solved. The result of of this computation is that Q = 0 is the only solution.

By Schwartz-Zippel, if Q does not annihilate, then with overwhelming probability over the
randomness of the obfuscation, the result of applying Q is non-zero.

The attack thus works as follows. First query on inputs x which are zero in every location
except the first three bits. Since the branching program always evaluates to zero, the model will

10

return a handle to the element p
(1)
T , where T ⊆ {1, 2, 3} is the set of bits where x is 1. Then,

evaluate the polynomial Q1,2,3 on the elements obtained. If the result is 0, then guess that we are
in the all-identity case. If the result is non-zero, then guess that we are in the anti-diagonal case.
As we have shown, this attack distinguishes the two cases with overwhelming probability.

We make one final observation that will be relevant for attacking the specific [GGH13a] candi-
date. We note that, for either branching program, the following is true. Let T0 be some subset of
[k + 1, n] of size 3, and write T0 = i1, i2, i3. Let T1 some subset of [1, n] \ T0. Then for any subset

T ⊆ [3], write p̂
(1)
T := p

(1)
T ′ , where T ′ = {i : i ∈ T1 or i = ij for some j ∈ T }. If we then evaluate the

above polynomial Q1,2,3 over the p̂
(1)
T , we see that it annihilates. This is because the corresponding

p
(1)
T ′ satisfy the same equations as above.

4 Attack on GGH13 Encodings

In this section we explain how the abstract attack above extends to actual obfuscation schemes
[BGK+14, AGIS14, BMSZ15] when implemented with [GGH13a] multilinear maps. At a high level,
this is done by implementing Type 1 and Type 2 queries ourselves, without the help of the
abstract model’s oracle.

Implementing Type 1 queries is straightforward: for any honestly executed 0-output of the
program, namely an encoding

px =
[(

p(0)
x ({Xj}, {Zi}) + gp(1)

x ({Xj}, {Zi}) + g2...
)

/zk
]

q

with p
(0)
x ({Xj}, {Zi}) = 0, we can multiply by the zero-testing parameter pzt = [hzk/g]q to obtain

Wx := [px · pzt]q = h ·
(
p(1)

x ({Xj}, {Zi}) + gp(2)
x ({Xj}, {Zi}) + g2...

)
(4.1)

This differs from what is returned in the abstract attack because of the factor h. To handle this, we

ensure that our annihilating polynomial Q is homogeneous, and thus Q({h · p
(1)
x ({Xj}, {Zi})}x) = 0

whenever Q({p
(1)
x ({Xj}, {Zi})}x) = 0. (Lemma 5.3 in fact shows we can assume Q is homogeneous

without loss of generality, because the p
(1)
x are all homogeneous and of the same degree.)

To implement Type 2 queries, we must check whether a given polynomial Q over {Wx}x∈S (for

some S ⊆ {0, 1}n) is an annihilating polynomial, i.e. whether Q
(
{h · p

(1)
x ({Xj}, {Zi})}x∈S

)
= 0.

To do this we observe that, for any such Q, Q ({Wx}x∈S) produces a ring element in the ideal
〈hg〉. So, we compute many such elements vi = Qi ({Wx}x∈Si

), where Qi is the (homogeneous)

polynomial that annihilates {p
(1)
x ({Xj}, {Zi})}x∈Si

when the encodings were formed by obfuscating
the all-identity branching program. More specifically, we compute enough vi to (heuristically) form
a basis of 〈hg〉. Then, we compute one more element v∗ which is either in 〈hg〉 or not depending
on which branching program was obfuscated, and finally we use the 〈hg〉-basis to test this.

4.1 The attack

We use essentially the same pair of branching programs A, A′ that were used in the abstract attack
(see Section 3.1): A consists of all identity matrices, while in A′ the two matrices corresponding to
x1 = 0 are changed to be anti-diagonal.

11

Let O denote the obfuscator described in Section 2.1. This obfuscator is exactly the one from
[BMSZ15], with two exceptions. First, it operates on a branching program reading only one bit
per layer, while in [BMSZ15] the branching programs read two bits per layer. In Section 5, we
show that our abstract attack, and thus also the concrete attack described here, extends to the
dual-input setting. (In fact, we show that it extends to arity-d branching programs for any constant
d.) Second, equation (4.1) (and the presence of zk in pzt) assumes that all encodings output by O
are level-1 GGH encodings, while in [BMSZ15] a more complicated level structure is used (following
[BGK+14, MSW14]). However, since our attack only uses these encodings to honestly execute the
obfuscated program, (4.1) holds even for this level structure.

Here is our attack:

• Let m = nO(1) be the dimension of the underlying encodings (this is a parameter of the
[GGH13a] scheme). Note that any m linearly independent elements of 〈hg〉 form a basis for
〈hg〉. Let m′ ≫ m be an integer.

• Repeat the following for t = 1, . . . , m′:

– Choose a random size-3 subset T0 = {i1, i2, i3} ⊆ [n] that does not contain 1. T0 will
correspond to the set of input bits that we vary.

– Choose a random subset T1 ⊆ ([n]\T0). T1 will correspond to a fixing of the bits outside
T0.

– For each T ⊆ [3],

∗ let xT ∈ {0, 1}n be the string such that xi = 1 if and only if either i ∈ T1, or i = ij

for some j ∈ T (recall that T0 = {i1, i2, i3}).

∗ Run the obfuscated program on input x, until the zero test query. Let p
(1)
T be the

vector obtained from zero testing.

– Evaluate the polynomial Q1,2,3 in Section 3 on the p
(1)
T . Let the output be defined as vt.

That is, we let xT vary over the the 8 possible values obtained by fixing all the input
bits outside of T0, run the obfuscated program on each of the xT , and then evaluate the
polynomial Q1,2,3 on the results to get vt.

• Find a linearly independent subset V of the vt.

• Choose a random size-3 subset T ∗
0 = {i1, i2, i3} ⊆ [n] that does contain 1. For each T ⊆ [3],

compute p
(1)
T as above. Then evaluate the polynomial Q1,2,3 on the p

(1)
T to obtain a vector v∗.

• Finally, test if v∗ is in the span of V . If it is, output 1. Otherwise, output 0.

Analysis of our attack. As in Section 3, let T0 ⊆ [n], and choose an arbitrary fixing of the
remaining bits. Suppose we evaluate the branching program on the 8 different inputs corresponding
to varying the bits in T0, and then run the polynomial Q1,2,3 on the results. Then Q1,2,3 annihilates
annihilates in either of the following cases:

• T0 does not contain 1.

• The branching program is the all-identity program, even if T0 contains 1.

12

Therefore, we see that Q1,2,3 annihilates for each t = 1, . . . , m′. In the case of [GGH13a], Q1,2,3

annihilating mans that the resulting vector v is an element of the ideal 〈hg〉.
Thus, each of the vt are elements in the ideal, regardless of the branching program. We will

heuristically assume that the vt span the entire ideal. This is plausible since the number m′ of vt

is much larger than the dimension of the ideal. Increasing m′ relative to m should increase the
likelihood of the heuristic being true.

For v∗, however, things are different. v∗ is in the ideal if the branching program is the all-
identity, but outside the ideal (with high probability) if the branching program has anti-diagonals,
since in this case Q1,2,3 does not annihilate. Therefore, our test for v∗ being linearly independent
from v will determine which branching program we were given.

5 Beyond Single-Input Branching Programs

In this section, we show an abstract attack on dual-input branching programs. More generally,
we show that generalizing to d-input branching programs for any constant d will not prevent the
attack.

We first recall our semantics of branching programs in the general d-ary setting. Fix integers
d, ℓ and n which respectively correspond to the number of bits read by each layer of the branching
program, the length of the branching program, and the input length. Let inp : [ℓ] → 2[n] be any
function such that |inp(i)| = d for all i ∈ [ℓ]. A branching program of length ℓ then consists of
2dℓ + 2 matrices A0, {Ai,Si

}i∈[ℓ], Aℓ+1 where Si ranges over subsets of inp(i), and A0Aℓ+1 are the
“bookend” vectors.

We associate an input x with the subset T ∈ 2[n] of indices where x is 1. To evaluate the
branching program on input x (set T) compute the product

A(T) = A0 ×
ℓ∏

i=1

Ai,T ∩inp(i) × Aℓ+1

Consider the obfuscation of the branching program. Let Ri be the Kilian randomizing matrices.
Let αi,S be the extra randomization terms. Then the encoded values seen by the adversary are the

matrices Yi,S = αi,SRi.Ai,S.Radj
i+1 + gZi,S

By performing a change of variables on the Zi,S, we can actually write Yi,S = αi,SRi · (Ai,S +

gZi,S) · Radj
i+1

The encodings will guarantee some restrictions on the Type 1 queries allowed — however they
must allow evaluation of the branching program. Thus we assume that the following query is
allowed for every T ⊆ [n].

pT = Y0 ×
ℓ∏

i=1

Yi,T ∩inp(i) × Yℓ+1

Now we will assume a trivial branching program where (1) within each layer, all matrices are
the same (Ai,Si

= Ai,S′
i

for any Si, S′
i ∈ inp(i)), so in particular the program is constant, and (2),

the branching program evaluates to 0 on all inputs. Therefore, the g0 coefficient in pT will evaluate
to zero everywhere. Thus, a Type 1 query will output a handle to the variable

13

p
(1)
T = ρ

(
∏

i

αi,S∩inp(i)

)
∑

i

(
· · · Ai,T ∩inp(i−1) · Zi,T ∩inp(i) · Ai+1,T ∩inp(i+1) · · ·

)

For any sets S′ ⊆ S ⊆ [n] with |S| = d, define

αS,S′ :=
∏

i:inp(i)=S

αi,S′ βS,S′ :=
∑

i:inp(i)=S

βi,S′

and for any set T ⊆ [n], define

UT :=
∏

S:|S|=d

αS,T ∩S VT :=
∑

S:|S|=d

βS,T ∩S

Then we have that p
(1)
T = UT VT .

The following theorem shows that, for |T | > d, UT and VT can each be written as rational
polynomials in the variables UT ′ , VT ′ for |T ′| ≤ d.

Theorem 5.1. Let T ⊆ [n] with |T | > d. Then,

UT =
∏

T ′⊆T :|T ′|≤d

U
(−1)d−|T ′ |·(|T |−|T ′|−1

d−|T ′|)
T ′

and

VT =
∑

T ′⊆T :|T ′|≤d

(−1)d−|T ′| ·

(
|T | − |T ′| − 1

d − |T ′|

)
· VT ′ .

Proof. We prove this equation for VT , the proof for UT is analogous. Consider expanding the left
and right sides of the equation in terms of the βS,Z and equating the coefficients of βS,Z on both
sides, we see that the following claim suffices to prove the theorem:

Claim 5.2. For any sets T, S, Z,

∑

T ′⊆T :|T ′|≤d,T ′∩S=Z

(
|T | − |T ′| − 1

d − |T ′|

)
(−1)d−|T ′| =

{
1 if T ∩ S = Z

0 if T ∩ S 6= Z

The left hand side (resp. right hand side) of the above equation corresponds to the coefficient
of βS,Z in the right hand side (resp. left hand side) of the V equation in Theorem 5.1. Hence the
theorem follows from the claim.

We now prove the claim. First, suppose Z * T ∩ S. Then the sum on the right is empty, so
the result is zero, as desired. Next, suppose Z ⊆ T ∩ S. Then for any T ′ in the sum, we can write
T ′ = Z ∪ T ′′ where T ′′ ⊆ T \ (S ∪ Z) and |T ′′| ≤ d − |Z|. Therefore, we can think of the sum as
being over T ′′. The number of T ′′ of size i is

(|T \(S∪Z)|
i

)
. Therefore, the sum on the left is equal to

d−|Z|∑

i=0

(
|T \ (S ∪ Z)|

i

)(
|T | − |Z| − i − 1

d − |Z| − i

)
(−1)d−i−|Z|

14

Let e = d − |Z|, t = |T | − |Z| = |T \ Z| (since Z ⊆ (T ∩ S) ⊆ T), and k = |T \ (S ∪ Z)|. Notice
that k ≤ t, and that k = t if and only Z = T ∩ S. Thus, we need to show that

e∑

i=0

(
k

i

)(
t − i − 1

e − i

)
(−1)e−i =

{
1 if k = t

0 if k < t

First, we use the identity (−1)s
(s−r−1

s

)
=
(r

s

)
with s = e−i and r = e−t to replace

(t−i−1
e−i

)
(−1)e−i

with
(e−t

e−i

)
(note that the binomial coefficients are defined for negative integers such as e − t).

Then we have that the left hand side becomes
∑e

i=0

(k
i

)(e−t
e−i

)
. The Chu-Vandermonde identity

shows that this is equal to
(k+(e−t)

e

)
=
(e−(t−k)

e

)
. Notice that if t = k, the result is 1. Moreover, if

k < t, then the upper index of the binomial is less than the bottom index, so the result is 0. This
proves the claim and hence the theorem.

Annihilating polynomial for p
(1)
T . We now describe our abstract attack using annihilating

polynomials. The first step is to argue that it is possible to efficiently devise a non-zero polynomial

Q on several of the p
(1)
T such that Q is identically zero when the p

(1)
T come from the obfuscation. In

particular, we need Q to be identically zero as a polynomial over the α’s and β’s. Using Theorem 5.1,
it suffices to find Q that is identically zero as a rational function over the UT , VT for |T | ≤ d.

We will first consider the values p
(1)
T as polynomials in the VT , UT , |T | ≤ d over the rationals.

Let k = 2d + 2, and consider all p
(1)
T for T ⊆ [k]. Then each p

(1)
T is a rational function of the UT , VT

for T ⊆ [k], |T | ≤ d. There are
∑d

i=0

(k
i

)
< 22d+1 such T , and therefore fewer than 22d+2 such

UT , VT . Yet there are 22d+2 different p
(1)
T for T ⊆ [k] of arbitrary size. Thus, there must be some

algebraic dependence among the p
(1)
T . Notice moreover that the expression for p

(1)
T , T ⊆ [k] in terms

of the UT ′ , VT ′ , T ′ ⊆ [k], |T ′| ≤ d are fixed rational functions with integer coefficients, independent
of the branching program, n, or ℓ; the only dependence is on d. Recall that we are taking d to be

a constant, so the number of p
(1)
T , VT ′ , UT ′ and the coefficients in the relation between them are all

constants. Therefore, there is a fixed polynomial Qd in the p
(1)
T over the rationals such that Qd is

identically zero when the p
(1)
T come from obfuscation.

We note that by a more tedious argument, it is actually possible to show there must be an

algebraic dependence among the p
(1)
T , and hence an annihilating polynomial for them, when T

varies over the subsets of [k] for k = 2d + 1 (as opposed to 2d + 2).
By multiplying by the LCM of the denominators of the rational coefficients, we can assume

without loss of generality that Qd has integer coefficients. Therefore, there is a fixed integer

polynomial Qd such that Qd(p
(1)
T) is identically 0. Since the coefficients are integers, this polynomial

actually also applies in any field or ring; we just need to verify that it is not identically zero in the
field/ring. This will be true as long as the characteristic of the ring is larger than the largest of
the coefficients. Since in our case, the ring characteristic grows (exponentially) with the security
parameter, for high enough security parameter, the polynomial Qd will be non-zero over the ring.

Computing the annihilating polynomial Qd. In Section 3, we gave an annihilating polyno-
mial for the case d = 1. For more general d, we do not know a more general expression. However,
we still argue that such a Qd can be efficiently found for any d:

15

• The polynomial Qd is just a fixed polynomial over the integers; in particular is has a constant-
sized description for constant d. Thus, we can assume that Qd is simply given to the adversary.

• If we want to actually compute Qd, this is possible using linear algebra. Using degree bounds
for the annihilating polynomial due to [Kay09], we can determine an upper bound t on the

degree of Qd. Then, the statement “Qd annihilates the p
(1)
T ” can be expressed as a system

of linear equations in the coefficients of Qd, where the equations themselves are determined

by expressions for p
(1)
T in terms of the UT ′ , VT ′ . By solving this system of linear equations, it

is possible to obtain a polynomial Qd. We note that, for constant d, t will be constant, the
system of linear constraints will be constant, and hence it will take constant time to compute
Qd. In terms of d, the running time is necessarily exponential (since the number of variables

p
(1)
T is exponential).

The following lemma shows that we can take Q to be a homogeneous polynomial, which will be
necessary for obtaining an attack over [GGH13a].

Lemma 5.3. Let p1, . . . , pk be homogeneous polynomials each of the same degree d. Let Q be any
polynomial that annihilates {pi}i, and let Qr denote the homogeneous degree-r part of Q. Then Qr

annihilates {pi}i for each r ≤ deg(Q).

Proof. If Qr({pi}i) 6= 0 for some r ≤ deg(Q), then Qr contains some degree-dr monomial m. Then

because
∑deg(Q)

r=0 Qr({pi}i) = Q({pi}i) = 0, some Q(r′) for r′ 6= r must contain the monomial −m.
However, since Q(r′) is homogeneous of degree dr′ 6= dr, this is a contradiction.

Completing the attack. Using the annihilating polynomial above, we immediately get an attack
on the abstract model of obfuscation. The attack distinguishes the trivial branching program where
all matrices across each layer are the same, from a more general all-zeros branching program that
always outputs zero, but has a non-trivial branching program structure.

The attack proceeds as follows: query the model on Type 1 queries for all pT as T ranges over
the subsets of [k]. Since the branching program always outputs 0, the model will return a handle

to the p
(1)
T polynomials. Then evaluate the annihilating polynomial Qd above on the obtained p

(1)
T .

If the result is non-zero (as will be the case for many non-trivial branching programs), then we
know the branching program was not the trivial branching program. In contrast, if the result is
zero, then we can safely guess that we are in the trivial branching program case. Hence, we breach
the indistinguishability security of the obfuscator.

References

[AGIS14] Prabhanjan Ananth, Divya Gupta, Yuval Ishai, and Amit Sahai. Optimizing obfus-
cation: Avoiding barrington’s theorem. Cryptology ePrint Archive, Report 2014/222,
2014. http://eprint.iacr.org/.

[BGK+14] Boaz Barak, Sanjam Garg, Yael Tauman Kalai, Omer Paneth, and Amit Sahai. Pro-
tecting obfuscation against algebraic attacks. In Proc. of EuroCrypt, 2014.

[BMSZ15] Saikrishna Badrinarayanan, Eric Miles, Amit Sahai, and Mark Zhandry. Post-zeroizing
obfuscation: The case of evasive circuits. Cryptology ePrint Archive, Report 2015/167,
2015. http://eprint.iacr.org/.

16

http://eprint.iacr.org/
http://eprint.iacr.org/

[BR14] Zvika Brakerski and Guy N. Rothblum. Virtual black-box obfuscation for all circuits
via generic graded encoding. In TCC, 2014.

[CGH+15] Jean-Sébastien Coron, Craig Gentry, Shai Halevi, Tancrède Lepoint, Hemanta K. Maji,
Eric Miles, Mariana Raykova, Amit Sahai, and Mehdi Tibouchi. Zeroizing without low-
level zeroes: New MMAP attacks and their limitations. In CRYPTO, 2015.

[GGH13a] S Garg, Craig Gentry, and S Halevi. Candidate multilinear maps from ideal lattices.
Advances in Cryptology (EuroCrypt), 2013.

[GGH+13b] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. In Proc. of FOCS, 2013.

[HJ15] Yupu Hu and Huiwen Jia. Cryptanalysis of GGH map. IACR Cryptology ePrint
Archive, 2015:301, 2015.

[Kay09] Neeraj Kayal. The complexity of the annihilating polynomial. In Proceedings of
the 24th Annual IEEE Conference on Computational Complexity, CCC 2009, Paris,
France, 15-18 July 2009, pages 184–193, 2009.

[MSW14] Eric Miles, Amit Sahai, and Mor Weiss. Protecting obfuscation against arithmetic
attacks. IACR Cryptology ePrint Archive, 2014:878, 2014.

17

	Introduction
	Overview of the Attack
	The GGH13 scheme
	Setting of our attack
	Using annihilating polynomials
	Central challenge: How to compute annihilating polynomials?
	An abstract attack model
	Beyond the abstract attack model

	Defenses

	Model Description
	Obfuscation in the Abstract Model

	Abstract Attack
	The branching programs
	The distinguishing attack

	Attack on GGH13 Encodings
	The attack

	Beyond Single-Input Branching Programs

