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Abstract. CLEFIA is a block cipher developed by Sony Corporation in 2007. It is a recommended
cipher of CRYPTREC, and has been adopted as ISO/IEC international standard in lightweight
cryptography. In this paper, some new 9-round zero-correlation linear distinguishers of CLEFIA
are constructed with the input masks and output masks being independent, which allow multiple
zero-correlation linear attacks on 14/15-rounds CLEAIA-192/256 with the partial sum technique.
Furthermore, the relations between integral distinguishers and zero-correlation linear approximation-
s are improved, and some new integral distinguishers over 9-round are deduced from zero-correlation
linear approximations. By using these integral distinguishers and the partial sum technique, the
previous integral results on CLEFIA are improved. The two results have either one more rounds or
lower time complexity than previous attack results by means of integral and zero-correlation linear
cryptanalysis.
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1 Introduction

The block cipher CLEFIA[1] was proposed in 2007 by Sony Corporation. It was submit-

ted to IETF (Internet Engineering Task Force) and was on the Candidate Recommended

Ciphers List of CRYPTREC. Besides, it was one of the only two lightweight block cipher-

s recommended by the ISO/IEC standard. CLEFIA performs well in both software and

hardware and it is claimed to be highly secure. The efficiency comes from the generalized

Feistel structure and the byte orientation, while the security is based on the novel technique

called DSM (Diffusion Switching Mechanism), which increases resistance against linear and

differential attacks. Up to now, a great deal of attention has been paid to CLEFIA and

many cryptanalytic methods have been used to evaluate its security, such as integral[2][3][4],

truncated differential[5], impossible differential[6][7][8][9], improbable differential[10][11] and

zero-correlation linear cryptanalysis[12]. Main results are summarized in Table 1.
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Attack Type key size Rounds Date Time Source

Impossible Differential 192 13 2119.8CPs 2146Enc [9]
Improbable Differential 192 14 2127CPs 2183.2Enc [11]
Truncated Differential 192 14 2100CPs 2135Enc [5]

Integral 192 13 2113CPs 2180.5 Enc [2]
Integral 192 14 2128CPs 2166.7 Enc Sect.4.2

Multidimensional Zero-correlation 192 14 2127.5KPs 2180.2 Enc [12]
Multiple Zero-correlation 192 14 2124.5KPs 2173.9 Enc Sect.3.2

Impossible Differential 256 14 2120.3CPs 2212Enc [9]
Improbable Differential 256 15 2127.4CPs 2247.5Enc [11]
Truncated Differential 256 15 2100CPs 2203Enc [5]

Integral 256 14 2113CPs 2244.5 Enc [2]
Integral 256 15 2128CPs 2230.7 Enc Sect.4.2

Multidimensional Zero-correlation 256 15 2127.5KPs 2244.2 Enc [12]
Multiple Zero-correlation 256 15 2124.5KPs 2237.9 Enc Sect.3.2

Table 1: Summary of the attacks on CLEFIA

Since CLEFIA adopts a 4-branch generalized Feistel structure as the fundamental struc-

ture, in which there are two 4-byte F-functions per round, the designers[1] showed that

there are 9-round impossible differentials in CLEFIA, that is, (0, α, 0, 0) 9 (0, α, 0, 0) and

(0, 0, 0, α) 9 (0, 0, 0, α), where α are any 32-bit nonzero values. The length of the parts

of the plaintext and ciphertext differences are nonzero 32-bit values, however, the plaintext

and ciphertext differences must be the same. By observing the inner structure of F-functions,

where the branch numbers of the linear transformations are 5, Tsunoo et al. [9] presented that

there are some new 9-round impossible differentials, that is, (0, α000, 0, 0) 9 (0, 0β00, 0, 0),

where α, β are any nonzero 8-bit values. Although the length of those parts is 8 bits, it is not

necessary for the plaintext and ciphertext differences to be the same. Later, Sun et al.[13]

found the 9-round impossible differentials with the forms that (0, αβ00, 0, 0) 9 (0, γ000, 0, 0),

where α, β, γ are any nonzero 8-bit values. For the case of the linear distinguishers with zero-

correlation of CLEFIA, there only exist (α, 0, 0, 0) 9 (α, 0, 0, 0) and (0, 0, α, 0) 9 (0, 0, α, 0)

over 9-round, where the input and output masks α are any 32-bit nonzero values. Now, the

questions come up, that is, is there any zero-correlation linear distinguishers satisfying the

nonzero parts of the input masks and the output masks are different? The question is a part

of the motivation of this work.

Integral and zero-correlation distinguishers were established by Bogdanov et al.[14]. They

presented that an integral implies a zero-correlation distinguisher and a zero-correlation dis-

tinguisher implies an integral under some independent conditions. For a function F , if the in-

put masks α and output masks β 6= 0 are independent, then the approximation (α, 0)→ (β, 0)

of F has correlation zero if and only that for any λ, λ · F (x0, x1) is balanced with any fixed

x0. Now, if the approximation (M ′α, 0)→ (M ′′β, 0) has correlation zero, where M ′,M ′′ are

two linear matrixes and α, β are two independent values, whether there exist corresponding

integral distinguishers?
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In this paper, we investigate the propagation characteristics of the linear masks on the

matrixes of F-functions, and propose some new linear distinguishers with zero correlation

over 9-round CLEFIA, where the input masks and output masks are independent. Further,

with the links in more general case between zero correlation and integral being given, some

integral distinguishers are deduced. Further, key recovery attacks on 14/15-round CLEFIA-

192/256 are conducted by means of integral and multiple zero-correlation cryptanalysis. Our

contributions are summarized as follows.

1. The matrixes M0,M1 are MDS (Maximum Distance Separable) matrixes adopted

by CLEFIA in the linear transformations of F-functions, the branch numbers of which are

5. By the propagation characteristics of the linear masks, let α = (α0, 0, 0, 0) and β =

(β0, β1, 0, 0) are 32-bit values withM0M1β = (γ0, γ1, γ2, 0), where α0, β0, β1 are any nonzero 8-

bit values and γ0, γ1, γ2 are any 8-bit values, then, the linear approximations (M0α, 0, 0, 0)→
(M1β, 0, 0, 0) are zero correlation linear approximation over 9-round CLEFIA. The new linear

approximations are 9-round, the same with the existed approximations, however, the input

masks and output masks are not required independent. Further, we apply those new linear

approximations to key recovery attacks on 14/15-round CLEFIA-192/256 and propose the

first multiple zero correlation linear cryptanalysis of CLEFIA.

2. We study the relations between integral and zero-correlation distinguishers in detail,

which can be improved to more general case. For the zero correlation linear approximations

with the linear transformations operated on the independent input masks and output masks,

there exist corresponding integral distinguishers. Then, some integral distinguishers over 9-

round CLEFIA are deduced from the zero correlation linear approximations, which have much

stronger ability to distinguish the right keys from wrong keys, because the phenomenons of

the integral properties emerge in a extremely low probability in the case of wrong keys. By the

new integral distinguisher, we present key recovery attacks on 14/15-round CLEFIA-192/256.

The paper is organized as follows: In Sec.2, we give necessary notations, brief description

of CLEFIA and concise explanation of zero-correlation linear cryptanalysis. Some zero-

correlation linear distinguishers over 9-round are presented in Sec.3, and multiple zero corre-

lation linear attacks are proposed on 14/15-round CLEFIA-192/256. The relations between

integral and zero-correlation linear distinguishers are discussed in Sec.4, some 9-round inte-

gral distinguishers are deduced, and key recovery attacks on 14/15-round CLEFIA-192/256

are given. Finally, we summarize our work in Sec.5.

2 Preliminaries

2.1 Notations

F2 : the set of {0, 1};
Fn2 : the set of {0, 1}n;

|A| : the number of the elements of the set A;
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⊕ : bitwise XOR;

a · b : the scalar product of binary vectors by a · b = ⊕ni=1aibi;

M−1 : the inverse matrix of M ;

MT : the transposition of matrix M ;

z[i] : the i-th byte of z, and ’0’ is the most significant byte;

P,C : the plaintexts and the ciphertexts of CLEFIA;

Cij : the j-th 32-bit values of the i+ 1-round with j = 0, 1, 2, 3;

rki : the subkeys in the round functions of CLEFIA;

wki : the 32-bit whitening keys with i = 0, 1, 2, 3;

si(·) : the S-box with i = 0, 1;

Fi(·) : the round function with i = 0, 1;

X‖Y : the concatenation of X and Y ;

2.2 Description of CLEFIA

CLEFIA is a 128-bit block cipher with variable key lengths of 128, 192 and 256 bits, which

takes a 4-branch generalized Feistel network with two parallel F-functions (F0, F1) per round.

See Fig.1(a). The number of rounds are 18/22/26 for CLEFIA-128/192/256, respectively.

Firstly, a 128-bit plaintext P is split up into four 32-bit words P0, P1, P2 and P3. The input

state of the first round (C0
0 , C

0
1 , C

0
2 , C

0
3 ) = (P0, P1 ⊕ wk0, P2, P3 ⊕ wk1). For r = 1 to nr, do

the following steps:

Cr0 = Cr−1
1 ⊕ F0(Cr−1

0 , Cr−1
1 , rk2r−2), Cr1 = Cr−1

2 ,

Cr2 = Cr−1 ⊕ F1(Cr−1
1 , Cr−1

2 , rk2r−1), Cr3 = Cr−1
0 .

Finally, the 128-bit ciphertext C is computed as C = (Cnr0 , Cnr1 ⊕ wk2, C
nr
2 , Cnr3 ⊕ wk3).

The round function F0 and F1 take the SP structure, see Fig. 1(b)(c). There are two

types of byte orientation S-boxes in substitution layer, and the order of s0 and s1 is different

for both round functions, that is

S0(x0, x1, x2, x3) = (s0(x0), s1(x1), s0(x2), s1(x3)),

S1(x0, x1, x2, x3) = (s1(x0), s0(x1), s1(x2), s0(x3)).

The diffusion layer uses two different MDS matrix, M0 and M1 in functions F0 and F1,

respectively. The two matrices M0 and M1 are defined as

M0 =


0x01 0x02 0x04 0x06

0x02 0x01 0x06 0x04

0x04 0x06 0x01 0x02

0x06 0x04 0x02 0x01

 ; M1 =


0x01 0x08 0x02 0x0a

0x08 0x01 0x0a 0x02

0x02 0x0a 0x01 0x08

0x0a 0x02 0x08 0x01

 .
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Figure 1: The structure and building blocks of CLEFIA

where the multiplications between these matrices and vectors are performed in F 8
2 defined

by the primitive polynomial x8 + x4 + x3 + x2 + 1. By the matrices, we know that MT
0 =

M−1
0 = M0, MT

1 = M−1
1 = M1, and their branch number are both 5.

In addition, our attacks do not utilize the key relation, we omit the details of CLEFIA’s

key schedule. For the complete specification of CLEFIA, we refer to [1].

2.3 Multiple zero-correlation cryptanalysis

Consider a function f : Fn2 7→ Fn2 and let the input of the function be x ∈ Fn2 . The correlation

of the linear approximation x 7→ β · f(x)⊕ a · x, with an input mask α and an output mask

β is defined as follows

corx(β · f(x)⊕ a · x) = 2Prx(β · f(x)⊕ a · x = 0)− 1.

In zero-correlation linear cryptanalysis, the distinguishers use linear approximations with

zero correlation. To reduce the data complexity, Bogdanov et al.[15] proposed the multiple

zero-correlation linear distinguishers, which use ` zero-correlation linear approximations and

requires O(2n/
√
`) known plaintexts, where n is the block size of a cipher. Denoted by N ,

` the number of required known plaintexts and zero-correlation linear approximations for an

n-bit block cipher. For each of the given linear approximations, compute the number Ti of

times that linear approximation i is fulfilled on N plaintexts and ciphertexts, i ∈ {1, 2, ...`}.
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Figure 2: Zero-correlation linear approximations of 9-round CLEFIA

Each Ti suggests an empirical correlation value ĉi = 2Ti/N − 1. Then, evaluate the statistic:

T =
∑̀
z=0

ĉ2
i =

∑̀
z=0

(2
Ti
N
− 1)2.

Under a statistical independency assumption, the statistic T follows a X 2 -distribution with

mean µ0 = `/N and variance σ2
0 = 2`/N2 for the right key guess, while for the wrong

key guess, it follows a X 2-distribution with mean µ1 = `/N + `/2n and variance σ2
1 =

2`/(N2 + 22n +N2n−1).

If the probability of the type-I error and the type-II error to distinguish between a wrong

key and a right key are denoted as β0 and β1, respectively, considering the decision threshold

τ = µ0 + σ0z1−β0 = µ1 − σ0z1−β1 , the number of known plaintexts N should be about

N =
2n(z1−β0 + z1−β1)√

`/2− z1−β1
, (2.1)

where z1−β0 and z1−β1are the respective quantiles of the standard normal distribution. More

details are described in [15].

3 Multiple zero-correlation cryptanalysis of 14/15-round CLEFIA-192/256

3.1 Zero-correlation linear approximations for 9-round CLFEIA

To construct the zero-correlation linear approximations, one adopts the miss-in-the-middle

techniques just like to find impossible differential. Any linear approximations with nonzero
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Figure 3: Zero-correlations linear attacks on 14/15-round CLEFIA-192/256

bias is concatenated to any linear approximations with nonzero bias in the inverse direction,

where the intermediate masks states contradict with each other. For the propagation charac-

teristics of the linear masks on building element, see [16]. We assert the linear approximations

over 9-round CLEFIA (covering rounds 1-9, see Fig.2).(
M0(α0, 0, 0, 0), 0, 0, 0

)
→
(
M1(β0, β1, 0, 0), 0, 0, 0

)
have zero-correlation, where M0M1(β0, β1, 0, 0) = (γ0, γ1, γ2, 0), that is 0x40γ0⊕ 0x37γ1 = 0,

α0, β0, β1 ∈ F 8
2 /{0} and γ0, γ1, γ2 ∈ F 8

2 .

Along the encryption direction: We consider the linear trail with non-zero correlation.

Given the mask
(
M0(α0, 0, 0, 0), 0, 0, 0

)
, the mask of the 4-th branch after 5 rounds must have

the form (d0, b1, b2, b3) if the corresponding 5-round linear trail has non-zero correlation, where

b1, b2, b3 ∈ F 8
2 are unknown non-zero values.

Along the decryption direction: Given the mask
(
M1(β0, β1, 0, 0), 0, 0, 0

)
, the mask of

the 4-th branch after 4 rounds must have the form (φ0, φ1, φ2, 0) if the corresponding 4-round

linear trail has non-zero correlation, as the reason that M0M1(β0, β1, 0, 0) = (γ0, γ1, γ2, 0),

where γ0, γ1, γ2, φ0, φ1, φ2 are unknown values.

Contradiction: We just focus on the linear masks of the 4-th branch of 5-th round func-

tion. From the encryption direction, the input masks are (d0, b1, b2, b3) under the condition

the corresponding linear trail has non-zero correlation, where b1, b2, b3 are unknown non-zero

values. Similarly, from the decryption direction, the output masks are (φ0, φ1, φ2, 0), where
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Guess Keys Counters Computed States

rk0[0] y4 = P0[1, 2, 3]‖P1‖P2‖M0P3[0]‖M1 P1[0]+ = 0x01s0(P0[0]⊕ rk0[0]), P1[1]+ = 0x02s0(P0[0]⊕ rk0[0]);

P1[2]+ = 0x04s0(P0[0]⊕ rk0[0]), P1[3]+ = 0x06s0(P0[0]⊕ rk0[0]);

rk0[1] y5 = P0[2, 3]‖P1‖P2‖M0P3[0]‖M1 P1[0]+ = 0x02s1(P0[1]⊕ rk0[1]), P1[1]+ = 0x01s1(P0[1]⊕ rk0[1]);

P1[2]+ = 0x06s1(P0[1]⊕ rk0[1]), P1[3]+ = 0x04s1(P0[1]⊕ rk0[1]);

rk0[2] y6 = P0[3]‖P1‖P2‖M0P3[0]‖M1 P1[0]+ = 0x04s0(P0[2]⊕ rk0[2]), P1[1]+ = 0x06s0(P0[2]⊕ rk0[2]);

P1[2]+ = 0x02s0(P0[2]⊕ rk0[2]), P1[3]+ = 0x01s0(P0[2]⊕ rk0[2]);

rk0[3] y7 = P1‖P2‖M0P3[0]‖M1 P1[0]+ = 0x06s1(P0[3]⊕ rk0[3]), P1[1]+ = 0x04s1(P0[3]⊕ rk0[3]);

P1[2]+ = 0x02s1(P0[3]⊕ rk0[3]), P1[3]+ = 0x01s1(P0[3]⊕ rk0[3]);

rk1[1] y8 = P1‖P2[0, 2, 3]‖M0P3[0]‖M1 M0P3[0]+ = 0x08s0(P2[1]⊕ rk1[1]);

rk1[2] y9 = P1‖P2[0, 3]‖M0P3[0]‖M1 M0P3[0]+ = 0x02s1(P2[2]⊕ rk1[2]);

rk1[3] y10 = P1‖P2[0]‖M0P3[0]‖M1 M0P3[0]+ = 0x0as0(P2[3]⊕ rk1[3]);

rk1[0] y11 = P1‖P2[0]‖M0P3[0]‖M1 M0P3[0]+ = 0x01s1(P2[0]⊕ rk1[0]);

rk2[0]⊕ wk1[0] y12 = P1[1, 2, 3]‖P2[0]‖M0P3[0]‖M1 P2[0]+ = 0x01s0(P1[0]⊕ rk2[0]⊕ wk1[0]);

rk2[1]⊕ wk1[1] y13 = P1[2, 3]‖P2[0]‖M0P3[0]‖M1 P2[0]+ = 0x02s1(P1[1]⊕ rk2[1]⊕ wk1[1]);

rk2[2]⊕ wk1[2] y14 = P1[3]‖P2[0]‖M0P3[0]‖M1 P2[0]+ = 0x04s0(P1[2]⊕ rk2[2]⊕ wk1[2]);

rk2[3]⊕ wk1[3] y15 = P2[0]‖M0P3[0]‖M1 P2[0]+ = 0x06s1(P1[3]⊕ rk2[3]⊕ wk1[3]);

rk4[1] y16 = M0P3[0]‖M1 M0P3[0]+ = 0x01s0(P2[0]⊕ rk4[1]);

Table 2: Partial encryption and decryption of the attack on 14-round CLEFIA.

φ0, φ1, φ2 are unknown non-zero values, which is contradiction with that b3 6= 0. Thus, the

linear hull is a zero-correlation linear hull. See Figure 2.

3.2 Key Recovery for 14/15-Round CLFEIA-192/256

In this section, we will attack 14-round CLFEIA-192. We mount the 9-round linear approx-

imations from round 4 to round 12, and extend 3 rounds forward and 2 rounds backward

respectively, see Fig.3(a). The key-recovery attacks on 14-round CLEFIA-192 are proceeded

with the partial-sum technique as follows.

1. Collect all the N plaintext-ciphertext pairs (P,C). Allocate 8-bit counters N1[y1] for

2160 possible values of

y1 = P0‖P1‖P2‖M0P3[0]‖C0‖C1[0, 1]‖M1,

and initialize them to zero, where M1 is a 8-bit value with

M1 = 0x34M1C2[0]⊕ 0x40M1C2[1].

For every (P,C) pair, extract the value of y1 and increase the corresponding counter N1[y1].

2. Allocate 8-bit counters N2[y2] for 2120 possible values of

y1 = P0‖P1‖P2‖M0P3[0]‖C1[1]‖M1,

and initialize them to zero. Guess rk26 and wk2[0]⊕ rk27[0], and partially decrypt y1 to get

the value of y2, that is,
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M1 = M1 ⊕ 0x34s1

(
F0(C0, rk26)[0]⊕ wk2[0]⊕ rk27[0]

)
then update the corresponding counter by N2[y2]+ = N1[y1].

3. Allocate a counter N3[y3] for 2112 possible values of

y3 = P0‖P1‖P2‖M0P3[0]‖M1,

and initialize them to zero. Guess wk2[1]⊕ rk27[1], and partially decrypt y2 to get the value

of y3, that is,

M1 = M1 ⊕ 0x40× 0x08s0

(
F0(C0, rk26)[1]⊕ wk2[1]⊕ rk27[1]

)
then update the corresponding counter by N3[y3]+ = N2[y2].

The following steps in the partial encryption and decryption phase are similar to Step

3. Thus, to be consistent, we use Table 2 to show the details of each step of the partial

encryption and decryption.

17. Compute the statistic T according to Equation (1). If T < τ , the guessed key value

is a right key candidate. After Step 16, 152 key bits have been guessed, then, there are 40

master key bits that we have not guessed, we do exhaustive search for all keys conforming to

this possible key candidate.

Complexity of the Attack. In this attack, we set the type-I error probability β0 = 2−2.7

and the type-II error probability β1 = 2−20. We have z1−β0 = 1, z1−β1 = 4.2, n = 128, ` = 216.

The date complex N is about 2124.5 by equation 2.1, and the decision threshold τ ≈ 26.23.

The time complexity of steps 1-17 in the described attack is as follows:

(1) Step 1 requires 2124.5 memory accesses;

(2) Step 2 requires 2124.5 × 240 = 2164.5 memory accesses, because we should guess 40 bits

rk26 and wk2[0]⊕ rk27[0];

(3) Step 3-11 require 9× 2168 memory accesses;

(4) Step 12-16 require 5× 2176 memory accesses;

(3) Step 17 requires 2152 × 220 14-round CLEFIA encryption, because only the right key

candidates can survive in the wrong key filtration.

If we assume that processing each memory accesse is equivalent to half round encryption,

then the total time complexity is about 1/2 × 5/14 × 2176 ≈ 2173.9 14-round encryptions.

In total, the data complexity is 2124.5 KPs, the time complexity is about 2173.9 14-round

encryptions and the memory requirement are 2160 bytes for counters.

For the attack on 15-round CLEFIA-256, we mount the 9-round zero-correlation linear

approximations from round 4 to round 12, and extend 3 rounds forward and 3 rounds back-

ward, see Fig.3(b). We proceed similar steps to attack 14-round CLEFIA-192. The data

complexity of the attack is 2124.5 KPs. The total time complexity is 2237.9 encryptions and

the memory complexity is about 2224 bytes.
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4 Integral cryptanalysis of 14/15-round CLEFIA-192/256

In this section, the relations between integral and zero-correlation linear distinguishers are

discussed, some 9-round integral distinguishers are deduced, and then, key recovery attacks

on 14/15-round CLEFIA-192/256 are given by means of integral.

4.1 Some new integral distinguishers over 9-round CLEFIA

A number of relations have been established among some known attacks methods, so far.

Bogdanov et al.[14] presented that an integral implies a zero-correlation distinguisher and a

zero-correlation distinguisher implies an integral under some independent conditions.

Theorem 4.1. [14] Let m,m1,m2 be integrals, for the vectorial Boolean function f : Fm1
2 ×

Fm2
2 → Fm2 , the following are equivalent.

(i) corxm2

(
(bq, 0) · f(xm1 , xm2)

)
= 0, for all bq ∈ F q2 \ {0};

(ii) corxm1 ,xm2

(
(dm1 , 0) ·x⊕ (bq, 0) · f(xm1 , xm2)

)
= 0, for all dm1 ∈ F

m1
2 and bq ∈ F q2 \ {0}.

LetM0, M1 be two invertible matrices, for any dm′1 ∈ F
m′1
2 , bq1 ∈ F

q1
2 , andM0(dm′1 , 0, ..., 0) ∈

Fm1
2 , M1(bq1 , 0, ..., 0) ∈ F q2 , then we have the following results.

Corollary 4.1. The following two conditions are equivalent.

(i) corx(dm1−d
m′1

),xm2

(
bq1 ·MT

1 f
(
(M−1

0

)T
x)q1

)
= 0, for all bq1 ∈ F

q1
2 \ {0};

(ii) corx
(
(M0(dm′1 , 0, ..., 0), 0) · (xdm′1 , x(dm1−dm′1

), xm2)⊕ (M1(bq1 , 0, ..., 0), 0) · f(x)
)

= 0, for

all dm′1 ∈ F
m′1
2 and bq1 ∈ F

q1
2 \ {0}.

The corollary can be proved by the fact that (Ma · x) = (a ·MTx), where M is a linear

transformation, so we omit the proof here. By Corollary 4.1, an integral distinguisher covering

9-round of CLEFIA can be deduced from zero-correlation linear approximations.

Property 4.1. Choose a set of 2120 input of the r round , where the 32-bit values of Cr0 are

set to be a the form M0(a, b, c, d), Cr1 , C
r
2 , C

r
3 traversal F 32

2 , where a is fixed to be any 8-bit

values, b, c, d traversal F 8
2 . Encrypt the chosen 2120 values 9 rounds, then, each of the 28

possible values of 0x37(M1C
r+9
0 )[0]⊕ 0x40(M1C

r+9
0 )[1] occurs 2112 times.

Let F : F 120
2 → F 8

2 be a random vectorial Boolean function and the sets Aj = {xj ∈
F 120

2 |F (xj) = yj}, where yj ∈ F 8
2 , 1 ≤ j ≤ 28, then the probability of the random vectorial

Boolean function satisfying |Aj | = 2112, for each 1 ≤ j ≤ 28 is about(
C2112

2120 × C
2112

2120−2112 × · · · × C
2112

2113 × C
2112

2112
)
/(28)2120 ,

which is extremely small, compared with 2−192. Only under the case of the right keys, the

phenomenons of the integral properties can emerge, that is, the integral distinguisher has

much stronger ability to distinguish the right and wrong keys.
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Figure 4: Integral attacks on 14/15-round CLEFIA-192/256

4.2 Key-recovery attacks on 14/15-round CLEFIA-192/256

In this section, the new integral distinguisher is applied to the key-recovery attacks on 14/15-

round CLEFIA-192/256. The 9-round integral distinguisher starts from round 3 and end at

round 11, see Figure 4(a). In the attack process, we adopt the idea of subkey-dependent

chosen plaintexts. We first construct a precomputation table T .

Table T : For each of 2160 possible pairs(P0, P1, P2[1, 2, 3], P3, rk0, wk0[0] ⊕ rk2[0]), we

calculate P2[0] = s0(F0(P0, rk0)[0] ⊕ wk0[0] ⊕ rk2[0]) ⊕ 0x02P2[1] ⊕ 0x04P2[2] ⊕ 0x06P2[3].

Store all the 2120 pairs (P0, P1, P3, P4) in a hash table T indexed by 40-bit (rk0, wk0[0]⊕rk2[0]).

Attack Process. The key-recovery attacks on 14-round CLEFIA-192 are proceeded with

the partial-sum technique as follows.

1. Guess the subkeys rk0, wk0[0] ⊕ rk2[0], by the table T , choose a set of 2120 plaintexts

to obtain their cipertexts, allocate a 32-bit counter V1[x1] for each of 2104 possible values of

x1 = C0‖C2‖C3‖M1,

and initialize them to zero, where M1 is a 8-bit value with

M1 = 0x34M1C1[0]⊕ 0x40M1C1[1].

For each set of the chosen ciphertexts, extract the value of x1 and increase the corresponding

counter V1[x1].

2. Allocate 32-bit counters V2[x2] for 28 possible values of

x2 = C0‖C1[1, 2, 3]‖C3‖M1,

and set them zero. Guess rk27[0] and partially decrypt x1 to get the value of x2, then update

the corresponding counter V2[x2]+ = V1[x1].
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3. In the following partial decryption phase, guess rk27[1], rk27[2], rk27[3], rk26[0], rk26[1],

rk26[2], rk26[3], rk24[0],rk24[1],rk24[2],rk24[3], rk23[0], rk23[1], compute corresponding values

and update the counters, and get V3[x3], where

x3 = 0x37(MT
1 C

11
0 )[0]⊕ 0x40(MT

1 C
11
0 )[1].

4. After Step 3, 152 key bits have been guessed. If there exists x3 ∈ F 8
2 , V3[x3] 6= 2112,

discard the guessed keys and guess another subkey until we get the correct subkey. As

there are 40 master key bits that we have not guessed, we do exhaustive search for all keys

conforming to this possible key candidate.

Complexity of the Attack. In this attack,there are 152-bit key value guessed during

the encryption phase, and only the right key candidates survive in the wrong key filtration.

(1) Step 1 requires about 2160 memory accesses;

(2) Step 2 requires about 2104 × 240 × 28 = 2152 memory accesses;

(3) Step 3 requires about 10× 2168 memory accesses;

(4) Step 4 requires 240 14-round CLEFIA encryption, because only the right key candidates

can survive in the wrong key filtration.

If we assume that processing each memory accesse is equivalent to 1/2 round encryption, then

the total time complexity is about 2168×1/2×10/14 ≈ 2166.7 14-round encryptions. In total,

the data complexity is 2128 CPs, the time complexity is about 2166.7 14-round encryptions

and the memory requirement are 2104 bytes for counters.

For the integral attack on 15-round CLEFIA-256, we mount the 9-round zero-correlation

linear approximations from round 3 to round 12, see Fig.4(b). We proceed similar steps to

attack 14 rounds of CLEFIA-192. The data complexity of the attack is 2128 CPs. The total

time complexity is 2230.7 encryptions and the memory complexity is about 2128 bytes.

5 Conclusion

In this paper, we have evaluated the security of CLEFIA by means of integral and zero-

correlation linear cryptanalysis. Firstly, we investigate the propagation characteristics of

the linear masks on the matrixes of F-functions, and propose some new linear distinguish-

ers with zero correlation over 9-round CLEFIA, where the input masks and output masks

are independent, then multiple zero-correlation linear attack are conducted on 14/15-round

CLEFIA-192/256. Further, the relations between zero correlation and integral are improved,

and some integral distinguishers are deduced. Key recovery attacks on 14/15-round CLEFIA-

192/256 are conducted by means of integral cryptanalysis. These results are not the best

for CLEFIA compared with the truncated differential results, however, the multiple zero-

correlation linear attacks are the better compared with the multidimensional zero-correlation

linear attacks in terms of both data and time complexity and our integral cryptanalysis can

attack one round more than previous integral cryptanalysis.
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