
On Garbling Schemes with and without Privacy

Carsten Baum?

cbaum@cs.au.dk

Department of Computer Science, Aarhus University, Denmark

Abstract. Garbling schemes allow to construct two-party function evaluation with security against
cheating parties (SFE). To achieve this goal, one party (the Garbler) sends multiple encodings of
a circuit (called Garbled Circuits) to the other party (the Evaluator) and opens a subset of these
encodings, showing that they were generated honestly. For the remaining garbled circuits, the garbler
sends encodings of the inputs. This allows the evaluator to compute the result of function, while the
encoding ensures that no other information beyond the output is revealed. To achieve active security
against a malicious adversary, the garbler in current protocols has to send O(s) circuits (where s is the
statistical security parameter).
In this work we show that, for a certain class of circuits, one can reduce this overhead. We consider
circuits where sub-circuits depend only on one party’s input. Intuitively, one can evaluate these sub-
circuits using only one circuit and privacy-free garbling. This has applications to e.g. input validation
in SFE and allows to construct more efficient SFE protocols in such cases. We additionally show how
to integrate our solution with the SFE protocol of [5], thus reducing the overhead even further.

1 Introduction

Background. In actively-secure Two-party Function Evaluation (SFE) two mutually distrusting parties
Alice and Bob (Pa, Pb) want to jointly evaluate a function f based on secret inputs x, y that they choose
individually. This is done using an interactive protocol where both parties exchange messages such that, at
the end of the protocol, they only learned the correct output z = f(x, y) of the computation and no other
information. This also holds if one of the parties arbitrarily deviates from the protocol. The problem was
originally stated by Yao in 1982 [20], who also gave the first solution for the setting of honest, but curious
parties.
Given a trusted third party T which both Pa, Pb have access to, one can solve the problem as follows: Both
send their inputs as well as a description of f which we call Cf to T , which then does the following: We
consider Cf to be a boolean circuit with dedicated input and output wires. Cf consists of gates of fan-in two.
T represents the inputs x, y as assignments of 0, 1 to the input wires of the circuit, and then the functions of
the gates are applied (as soon as both input wires of a gate have an assignment) until all the output wires1

of Cf are either 0 or 1. Then T translates the values on the output wires into z and sends it to both Pa, Pb.
Yao showed in his seminal work how to replace this T with an interactive protocol. This technique became
known as Garbled Circuits.

Garbled Circuits in a nutshell. In order to obtain a garbled circuit from Cf , the garbler Pa does the
following: Each gate of the circuit can be represented as a table, where for each combination of the inputs
a value from {0, 1} is assigned to the output wire. Now, the rows of this table are first shuffled and then
the 0, 1 values of the inputs and outputs are replaced by random bit strings (keys), such that the output
key of a gate corresponds to the input key of another gate if its output is wired into the respective input in
Cf and if they both correspond to the same value on the wire. One then stores information such that each

? Supported by The Danish National Research Foundation and The National Science Foundation of China (under
the grant 61061130540) for the Sino-Danish Center for the Theory of Interactive Computation, within which part
of this work was performed; by the CFEM research center (supported by the Danish Strategic Research Council)
within which part of this work was performed; and by the Advanced ERC grant MPCPRO.

1 We let T accept only descriptions of f where the graph representing the circuit Cf is directed and acyclic.

output key can be derived if and only if both input keys for the corresponding row are known. Such a gate
is called a Garbled Gate and by applying this technique recursively to all gates, Pa computes a so-called
Garbled Circuit. One then considers the gates whose inputs are the input wires of the circuit. These keys are
considered as the input keys of the circuit. Moreover, Pa also has to store a table of the keys that belong to
the output wires of the circuit.
In the next step, Pa sends the garbled circuit and the input keys corresponding to her chosen input to the
evaluator Pb. He obtains his input keys from Pa by a so-called Oblivious Transfer(OT) protocol, where Pa
inputs all possible keys and Pb starts with his input y, such that afterwards Pb only learns the keys that
correspond to his input and Pa does not learn y. Pb can now evaluate the circuit gate by gate until he obtains
the output keys, which he sends to Pa. Intuitively, the security of the protocol is based on the OT hiding
Pb’s input while the garbling hides the input of Pa (and to some extend the computed circuit).
Pa can cheat in the above protocol in multiple ways: The circuit that is computed is hidden from Pb, so
it may differ from Cf (or he obtains input keys that do not correspond to his inputs). A solution to this
problem is called the cut-and-choose approach, where a number of circuits is garbled and sent to Pb. He then
chooses a random subset to be opened completely to him and he can check that the circuit indeed computes
the right function. For the other garbled instances, the above protocol is then run multiple times in parallel
and the evaluator derives the result from the outputs of these instances. This may lead to new problems, see
e.g. [16,17] for details.

Garbling Schemes. The garbled circuits-approach has found many applications in cryptography, such
as in verifiable computation, private set intersection, zero-knowledge proofs or functional encryption with
public keys (to just name a few). Moreover, it has been treated on a more abstract level e.g. in [12] as
Randomized Encodings. Kamara & Wei [14] discuss the idea of special purpose garbled circuits which do not
yield full-fledged SFE but can on the other hand efficiently be instantiated using Structured Encryption
Schemes and yield smaller overhead compared to directly using GC. Moreover, Bellare et al. [3] discussed
garbling as a primitive having potentially different security notions, and studied how these are related. Using
their framework one can compare different properties that a garbling scheme can have, such as privacy,
authenticity and obliviousness. This allows to look for special schemes that may only implement a subset or
different properties, which may be of use in certain contexts. As an example for such an application, one
can e.g. consider the efficient zero-knowledge protocol due to Jawurek et al. [13] where the prover evaluates
a garbled circuit in order to prove a certain statement.
Since only the evaluator in [13] has private inputs to the circuit and evaluates it on known values, no privacy
of the inputs is necessary. A garbling scheme such as the one from [7] can then be used, which has lower
overhead than comparable schemes with privacy.

The problem. In this paper, we address the following question:

Can one construct Secure Function Evaluation protocols based on a combination of garbling schemes both
with and without privacy, thus reducing overhead?

The question can be thought of as a generalization of [13]: Those parts of a circuit Cf that do only depend on
one party’s input may not need to be computed with active security. Such circuits naturally arise in the case
when predicates must be computed on the inputs of each party, which includes the case when signatures must
be verified or inputs in a reactive computation are checked for consistency. For such functions this separate
evaluation can potentially improve the runtime of SFE, as e.g. shown by [15]. While it seems intuitive that
in such a case this evaluation strategy is preferable, it is unclear how to combine those schemes while not
introducing new problems. In particular, one has to make sure that the outputs of the privacy-free part
correspond to the inputs of the actively-secure computation.

Contributions. In this work, we describe a solution to the aforementioned problem. It can be applied for
a certain class of functions that are decomposable as shown in Figure 1.
On the left side of the figure, the evaluation without optimization is shown. Here the whole circuit must be
evaluated using an actively secure two-party SFE scheme, while on the right side only parts of the circuit

2

f(x, y)

ga(x) gb(y)

f̂(ga(x), gb(y))

x y x y

Fig. 1: A graphical depiction of the function decomposition.

(the grey circuit) will be computed with active security. Our solution allows that the evaluation of f̂ can be

done by an arbitrary SFE scheme. To achieve this goal, we use circuit augmentation for ga, gb, f̂ which in
itself introduces a small overhead. We will show that this overhead can mostly be eliminated using e.g. [5]
as SFE scheme.

We start with the following idea: Let Pa compute a privacy-free garbling of gb and Pb compute a privacy-
free garbling of ga. Both parties exchange and evaluate the privacy-free garbling, whose output in turn will
be the input to the evaluation of f̂ . Now we must verify that both Pa and Pb take the output of their
respective functions and do not replace it before inputting it into f̂ . At the same time, the outputs of ga, gb
are confidential and we must prevent the garbler from sending an incorrect circuit or wrong input keys. Our
solution will deal with the inconsistency problem by checking that the inputs to f̂ come indeed from ga, gb
using a hash function whose output is properly masked. This, in turn, creates new problems since such a
mask can be used to tamper with the obtained hash. Therefore, care must be taken about the timing in the
protocol. Details follow in Section 3.

Why not just using Zero-Knowledge proofs? Intuitively there is another solution to the above problem
that avoids privacy-free garbling altogether: Pa commits to her inputs to f̂ as Com(ga(x); r) and proves in
zero-knowledge that this commitment indeed contains a value that lies in the image of ga (Pb similarly uses
gb in the proof). Now all functions ga, gb are assumed to be binary circuits and the most efficient generic
zero-knowledge proofs over Z2 are [9] and [13], where the proof-size is linear in the circuit size2. The crucial
point is that, to the best of our knowledge, the proof itself must compute either the Com function or some
verification function such as to tie the proof together with the SFE input. Computing public key-based
primitives over Z2 incurs a huge blowup in the proof size. If one uses symmetric primitives like e.g. SHA-256
then our approach is still preferable, since computing such a hash function requires significantly more AND
gates (see e.g. [19]) than computing the matrix multiplication that is required in our protocol.

Related work. Our problem shares some similarity with Verifiable Computation [2,8]. Here, the idea is that
a weak client outsources an expensive computation to a computationally stronger but possibly malicious
server. This server then performs the computation and delivers a proof of correct computation which the
client can check (in time significantly smaller than evaluating the function itself). Our setting differs, since
we want that the server performs the evaluation of the circuit on his own inputs and these must be kept
secret. Moreover, we do only require one evaluation of the circuit.

Our solution, as already mentioned, bears resemblance with the concept of Zero-Knowledge Proofs [10,11]
where a prover convinces a verifier about the truth of the statement in an interactive protocol without
revealing anything but the validity of this statement. In particular (in our setting), Pa proves to Pb that her

input to f̂ lies in the image of the function ga and vice versa. In cryptographic protocols, these proofs are
often used to show that certain algebraic relations among elements hold. The fact that these proofs can also

2 Approaches based on SNARKs have smaller proof size but require much more work on the prover’s side, which is
why we do not mention them.

3

be used to (efficiently) show that the prover knows a specific input to a circuit was already observed in [13].
In comparison to their work, we exploit this phenomenon in a more general sense.
In concurrent and independent work, Katz et al. [15] described a related approach to enforce input validity
in SFE. Their techniques differ significantly from our work: Using a clever combination of OT and ElGamal
encryption they can enforce that f̂ and ga, gb have the same inputs, where ga, gb are predicates with public
output (that validate the inputs of each party) and f̂ is evaluated using SFE. Their approach is using the

protocol of Afshar et al. [1] for the evaluation of f̂ while we allow for a larger class of SFE schemes to be
used.

2 Preliminaries

In this work, we let λ denote the computational and s denote the statistical security parameter. We use the
standard definitions for a negligible function negl(·) and polynomial function poly(·). Two distributions of
random variables are statistically indistinguishable if their distance is negligible in s. If instead distinguishing
them breaks a computational assumption (parametrized by λ), then we consider them as computationally
indistinguishable, which we denote as ≈c. We use B as shorthand for {0, 1}.
Let us assume that Pa, Pb agreed to evaluate a function f : B2n → Bm, where the first n input bits are
provided by Pa and the second n input bits by Pb. We assume that the function can be decomposed into
f̂ : Bla+lb → Bm, ga : Bn → Bla, gb : Bn → Blb such that

∀x, y ∈ Bn : f̂(ga(x), gb(y)) = f(x, y)

To be more applicable in our setting, we have to look at the functions as circuits, and will do so using an
approach similar to [3].

2.1 Circuits and the Split-Input Representation

Consider the tuple Cf = (nin, nout, ng, L,R,G) where

– nin ≥ 2 is the number of input wires, nout ≥ 2 the number of output wires and ng ≥ 1 the number of
gates. We let nw = nin + ng be the number of wires.

– we define the sets Inputs← {1, ..., nin}, Wires← {1, ..., nw} as well as Outputs← {nw−nout+1, ..., nw}
and Gates← {nin + 1, ..., nw} to identify the respective elements in the circuit.

– the function L : Gates 7→Wires \Outputs identifies the left incoming wire and
R : Gates 7→ Wires \Outputs identifies the right incoming wire for each gate, with the restriction that
∀g ∈ Gates : L(g) < R(g) < g.

– the mapping G : Gates× B2 7→ B determines the function that is computed by a gate.

To obtain the outputs of the above circuit when evaluating it on an input
x = x1...xnin

one evaluates Cf as follows:

eval(Cf , x):

(1) For g = nin + 1, ..., nw:

(1.1) l← L(g), r ← R(g)
(1.2) xg ← G(g, xl, xr)

(2) Output xnw−nout+1...xnw

For a function f : Bnin 7→ Bnout , we consider Cf = (nin, nout, ng, L,R,G) as a circuit representation of f iff
∀x ∈ Bnin : f(x) = eval(Cf , x).
In order to be able to apply our solution, the circuit in question must be decomposable in a certain way as
already outlined in Section 1. We will now formalize what we mean by this decomposability.

4

Definition 1 (Split-Input Representation (SIR)). Let f : B2n → Bm,

f̂ : Bla+lb → Bm, ga : Bn → Bla, gb : Bn → Blb be functions such that

∀x, y ∈ Bn : f̂(ga(x), gb(y)) = f(x, y)

Let moreover Cf , Cf̂ , Cga , Cgb be their respective circuit representations. Then we call Cf̂ , Cga , Cgb the Split-
input representation of Cf .

For every function h with n ≥ 2 such a decomposition always exists, but it is only of interest in our setting
if (intuitively) ng(Cf̂)� ng(Cf).

2.2 Secure Two-Party Computation and Garbling Schemes

The notion of an SFE protocol is described by a protocol between two parties Pa, Pb that securely implements
Figure 2.

Functionality FSFE&CommitOT

The input x to the circuit is split up into j blocks I1, ..., Ij , where each block is provided by either Pa, Pb or both.

Initialization:
– On input (init, C, I1, ..., Ij) from both Pa, Pb where C = (n,m, g, L,R,G) is a circuit, store C. Moreover,

the parties agree on a set of disjoint subsets Ii ⊆ [n] such that
⋃
Ii = [n].

Commit:
– Upon input (commit, id, x) from either Pa or Pb and if id was not used before, store (id, x, Pa) if the

command was sent by Pa, and (id, x, Pb) otherwise. Then send (commit, id) to both parties.
Open:

– Upon input (open, id) by Pa and if (id, x, Pa) was stored, output (open, id, x) to Pb.
– Upon input (open, id) by Pb and if (id, x, Pb) was stored, output (open, id, x) to Pa.

One-sided Committed OT:
– On input (cotB, id) from Pb and (cotB, id, {yi0, yi1}i∈[l]) by Pa and if there is a (id, x, Pb) stored with
x = x1...xl, then output (ot, {yixi

}i∈[l]) to Pb.

Input by both parties:
– Upon input (input, id, x) by both parties and if id was not used before, store (id, x,∼).

Input of Pa:
– Upon input (inputA) from Pa where there is a (Ii, xi, ·) stored for each i ∈ [j], output (inputA) to Pb.

Input of Pb:
– Upon input (inputB) from Pb where inputA was obtained, load all xi from (Ii, xi, ·), compute
z ← eval(C, x1...xj) and output (output, z) to Pb.

Fig. 2: SFE, commitments and committed OT for two parties.

Note that FSFE&CommitOT moreover provides commitments and3 committed OT [4]. Committed OT resem-
bles OT as depicted in Figure 3, but where the choice of the receiver is determined by a commitment.

The main reason why we need this specific functionality FSFE&CommitOT is that we have to ensure consistency
of inputs using the commitments between the actively secure scheme and the privacy-free part, and having
all of these as one functionality simplifies the proof.
Out of the framework of [3] we will now recap the notion of projective verifiable garbling schemes. We require
the properties correctness, authenticity and verifiability. These intuitively ensure that the evaluated circuit

3 These are building blocks are used in many SFE protocols. We hence assume that they are available and cheap.

5

Functionality FOT

OT for Pa:
– On input (otA, x) from Pa and (otA, {yi0, yi1}i∈[l]) by Pb and if x = x1...xl, output (ot, {yixi

}i∈[l]) to Pa.
OT for Pb:

– On input (otB, x) from Pb and (otB, {yi0, yi1}i∈[l]) by Pa and if x = x1...xl, output (ot, {yixi
}i∈[l]) to Pb.

Fig. 3: Functionality for OT.

shall compute the correct function, only leak the output keys that can be obtained using the provided input
keys and that one can check after the fact (i.e. when obtaining all the input keys) whether the circuit in fact
was a garbling of a certain function.
Let λ be a security parameter and G = (Gb,En,De,Ev, V e) be a tuple of (possibly randomized) algorithms
such that

Gb(1λ, Cf): On input 1λ, Cf where nin, nout = poly(λ), n ≥ λ and |Cf | = poly(λ) the algorithm outputs a
triple (F, e, d) where we call F the garbled circuit, e the input encoding information and d the output
decoding information.

En(e, x): On input e, x where e = {X0
i , X

1
i } is a set of keys representing the input wires, output X such

that Xi ← Xxi
i i.e. output the 0 key for input i if xi = 0 and vice versa for xi = 1.

Ev(F,X, x): On input (F,X, x) where F,X are outputs of the above algorithms, evaluate the garbled circuit
F on the input keys X to produce output keys Z.

De(Z, d): Let Z, d be input to this algorithm, where d = {Z0
i , Z

1
i } and Z contains l elements. The algorithm

outputs a string z ∈ {0, 1,⊥}l where zi ← b if Zi = Zbi , and zi ← ⊥ if Zi 6∈ {Z0
i , Z

1
i }.

V e(Cf , F, e): On input Cf , F, e with the same semantics as above, the algorithm outputs 1 if F, e is a garbling
of Cf .

The definitions are according to [7]. Correctness is straightforward and implies that combining the above
algorithms yields the expected output from evaluating f directly.

Definition 2 (Correctness). Let G be a verifiable projective garbling scheme. Then G is correct if for all
nin, nout = poly(λ), f : Bnin → Bnout with circuit representation Cf and for all x ∈ Bnin it holds that

Pr
[
De(Ev(F, (Xxi

i), x), d) 6= f(x) | (F, e, d)← Gb(1λ, Cf) ∧ (Xxi
i)← En(e, x)

]
≤ negl(λ)

Authenticity is very important for our later application. It prevents the adversary from successfully out-
putting other output keys than those he can derive from the input keys and the garbling.

Definition 3 (Authenticity). Let G be a verifiable projective garbling scheme. Then G provides authenticity
if for all nin, nout = poly(λ), f : Bnin → Bnout with circuit representation Cf and for all x ∈ Bnin , y ∈ Bnout

with y 6= f(x) it holds that

Pr
[
De(A(Cf , F, (Xxi

i), x), d) = y | (F, e, d)← Gb(1λ, Cf) ∧ (Xxi
i)← En(e, x)

]
≤ negl(λ)

for every A that is running in probabilistic polynomial time in λ.

In the definition of verifiability one has to consider that the V e algorithm can also output 1 for adversarially
chosen garblings F ′. In such a case, we require that no information about the input is leaked if the evaluator
honestly evaluates the garbled circuit.

Definition 4 (Verifiability). Let G be a verifiable projective garbling scheme. Then G has verifiability if for
all nin, nout = poly(λ), f : Bnin → Bnout with circuit representation Cf and for all x, y ∈ Bnin , x 6= y, f(x) =
f(y) it holds that

Pr
[
Ev(F, (Xxi

i), x) 6= Ev(F, (Xyi
i), y) | V e(Cf , F, {X0

i , X
1
i }) = 1 ∧ (F, {X0

i , X
1
i })← A(1λ, Cf)

]
≤ negl(λ)

for every probabilistic polynomial-time A.

A garbling scheme G that fulfils all the above three conditions will from now on be called privacy-free.

6

2.3 Universal Hash Functions

A third ingredient that we need for our protocol are universal hash functions. For such a function two inputs
will yield the same output only with small probability for as long as the function itself is randomly chosen
after the inputs are fixed. This is a rather weak requirement in comparison to e.g. collision-resistant hash
functions, but it is strong enough in our setting: If the circuits are first garbled and the inputs are fixed
before the hash function is chosen, then the chance of two inputs colliding is very small (even though the
universal hash function might be easily invertible).

Definition 5 (Universal Hash Function). Let H = {h : Bm → Bs}, then H is a family of universal hash
functions if

∀x, y ∈ Bm, x 6= y : Pr
h∈RH

[h(x) = h(y)] ≤ 2−s

A family of universal hash functions has the uniform difference property if

∀x, y ∈ Bm, x 6= y, ∀z ∈ Bs : Pr
h∈RH

[h(x)⊕ h(y) = z] ≤ 2−s

An family of functions that we will later use is defined as follows:

Definition 6. Let t ∈ Bm+s−1 and M ∈ Bs×m such that Mi,j = ti+j−1 and define ht : x 7→Mx. Moreover,
define the family H as H = {ht | t ∈ Bm+s−1}.
Remark 1. H is a family of universal hash functions with the uniform difference property.

Proof. See [5, Appendix E]

3 Construction

In our protocol, we use the functions defined above to protect against the adversary providing an inconsistent
input to f̂ . To do so, we augment the computed circuits slightly. A graphical depiction of that can be found
in Figure 4.

ga(x) gb(y) x y

ga(x) gb(y)f(x, y)

f(x, y)

sby

gb(·)⊕ ·

g′b(y, sb)

x sat

h·(ga(·))⊕ ·

g′a(t, x, sa)

ga(x) gb(y)sa g′a sbt g′b

f̂ ′(·, ·, ·, ·, ·, ·, ·)

f̂(·, ·) ga(·) gb(·)

Fig. 4: The functions and how they will be augmented.

The solution is tailored for protocols with one-sided committed OT (which is normally available for SFE
schemes based on garbled circuits). If there is committed OT for both or none of the parties, then the
protocol and function augmentation can be adjusted in a straightforward manner.

7

We let f, f̂ , ga, gb be functions as defined before. To compute a proof that Pa computed ga correctly, we will
make Pa additionally compute a digest on the output of ga. Therefore, we augment ga with a universal hash
function ht drawn from H to which Pa then adds a random string sa that is fixed in advance. As such, the
output will not reveal any information about the computed value. On the other hand, since Pa will commit
to the input before ht is chosen, the inputs ga(x), sa to f̂ will differ from the output g′a with high probability.

We observe that t, g′a can be public inputs to f̂ ′.

g′a : Bla+s−1 × Bn × Bla → Bla

(t, x, sa) 7→ ht(ga(x))⊕ sa

In the case of Pb, it is not necessary for him to compute an actual hash of gb(y). This is because only Pa can

arbitrarily send differing inputs for f̂ by choosing different values that blind her input (whereas committed
OT is available for Pb to circumvent this). Nevertheless, Pb adds a one-time-pad sb to gb(y), so that we once

again can make the value g′b a public input to f̂ ′.

g′b : Bn × Blb → Blb

(y, sb) 7→ gb(y)⊕ sb

The actively secure protocol will evaluate f̂ on the inputs ga(x), gb(y) as before. The correct value will only be

output of f̂ ′ if, given the auxiliary inputs sa, sb and the public inputs t, g′a, g
′
b it holds that ht(ga(x))⊕sa = g′a

and gb(y)⊕ sb = g′b. Otherwise, an abort symbol ⊥ will be delivered:

f̂ ′ :

(
Bla × Bs × Bs × Bla+s−1×

Blb × Blb × Blb

)
→ Bm ∪ {⊥}

(ga(x), sa, g
′
a, t, gb(y), sb, g

′
b) 7→

{
f̂(ga(x), gb(y)) if gb(y)⊕ sb = g′b ∧ ht(ga(x))⊕ sa = g′a
⊥ else

The protocol will be as follows:

Input phase Both parties Pa, Pb first locally compute ga(x), gb(y). They then commit to the inputs x, y, sa,
sb, ga(x), gb(y) using FSFE&CommitOT.

Function sampling Pb samples a hash function ht ∈ H and sends its description t to FSFE&CommitOT. He
then sends a privacy-free garbling of g′a(·, ·, ·). Pa sends a privacy-free garbling of a circuit computing
g′b(·, ·) to Pb.

Privacy-free phase Pb uses committed OT to obtain the input keys that correspond to the his commit-
ments from the input phase. Pa uses FOT. Afterwards, Pb decommits t and thereby reveals the hash
function ht. They then evaluate the privacy-free garblings locally and commit to the output keys.

Check phase Pa, Pb open the whole privacy-free garbling towards the other party. They each verify that
the circuit was constructed correctly and afterwards open the commitments to the output keys. These
values are then used as public inputs g′a, g

′
b to f̂ ′ in the next step.

Computation phase Pa and Pb evaluate f̂ ′ securely using SFE. The inputs are defined by the commitments
from the input phase and the opened commitments from the check phase.

The concrete protocol. We are now ready to present the protocol as outlined in the previous subsection.
It can be found in Figure 5.

4 Security

We will now prove the security of the protocol from the previous section. More formally, consider the
stripped-down functionality in Figure 6 which focuses on the SFE.

8

Protocol ΠSIREval

Both parties Pa, Pb want to evaluate a function f : B2n → Bm and we consider its SIR Cf̂ , Cga , Cgb . Pa has input
x ∈ Bn and Pb has input y ∈ Bn.

Input phase:
(1) Let Cf̂ ′ , Cg′a , Cg′b be circuits representing f̂ ′, g′a, g

′
b which were defined before.

(2) Both parties send (init, Cf̂ ′ , ”ga(x)”, ”sa”, ”g′a”, ”ht”, ”gb(y)”, ”sb”, ”g
′
b”) to FSFE&CommitOT.

(3) Pa computes ga(x) locally and chooses sa ∈R Bs. Pb computes gb(y) locally and chooses
t ∈R Bla+s−1, sb ∈R Blb .

(4) Pa sends (commit, ”ga(x)”, ga(x)), (commit, ”sa”, sa) to FSFE&CommitOT.
Pb sends (commit, ”y”, y), (commit, ”gb(y)”, gb(y)), (commit, ”sb”, sb), (commit, ”ht”, t) to FSFE&CommitOT.

Function sampling:
(1) Pa computes (Fb, {yi0, yi1}i∈[n]{si0,b, si1,b}i∈[lb], db)← Gb(1s, Cg′

b
) and sends Fb to Pb.

(2) Pb computes (Fa, {ti0, ti1}i∈[la+s−1]{xi0, xi1}i∈[n]{si0,a, si1,a}i∈[s], da)← Gb(1s, Cg′a) and sends Fa to Pa.
Privacy-free phase:

(1) Pa sends (otA, x) and Pb sends (otA, {xi0, xi1}i∈[n]) to FOT, hence Pa obtains {xi}i∈[n]. They do the same
for ”sa” so Pa obtains {sia}i∈[s]. Moreover, Pb sends {ti}i∈[la]+s−1 to Pa.

(2) Conversely, Pb sends (cotB, ”y”) and Pa sends (cotB, ”y”, {yi0, yi1}i∈[n]) to FSFE&CommitOT, hence Pb obtains
{yi}i∈[n]. They do the same for ”sb” so Pb obtains {sib}i∈[lb].

(3) Pb sends (open, ”ht”) to FSFE&CommitOT.
(4) Pa evaluates the privacy-free garbling as (gi′a)i∈[s] ← Ev(Fa, {ti}i∈[la]+s−1{xi}i∈[n]{sia}i∈[s], txsa) and then

commits to (gi′a)i∈[s].
(5) Pb evaluates the privacy-free garbling as (gi′b)i∈[lb] ← Ev(Fb, {yi}i∈[n]{sib}i∈[lb], ysb) and then commits to

(gi′b)i∈[lb].
Check phase:

(1) Pa sends (Fb, {yi0, yi1}i∈[n]{si0,b, si1,b}i∈[lb], db) to Pb who checks that he obtained correct input and output
keys and that V e(Cg′

b
, Fb, {yi0, yi1}i∈[n]{si0,b, si1,b}i∈[lb]) = 1. If not, then Pb aborts.

(2) Pb sends (Fa, {ti0, ti1}i∈[la+s−1]{xi0, xi1}i∈[n]{si0,a, si1,a}i∈[s], da) to Pa who checks that she obtained correct
input and output keys and that V e(Cg′a , Fa, {xi0, xi1}i∈[n]{si0,a, si1,a}i∈[s]) = 1. If not, then she aborts.

(3) Pa opens her commitments to (gi′a)i∈[s]. Pb computes g′a ← De((gi′a)i∈[s], da) and aborts if one of the
indices is ⊥. Otherwise, both send (input, ”g′a”, g′a) to FSFE&CommitOT.

(4) Pb opens his commitments to (gi′b)i∈[lb]. Pa computes g′b ← De((gi′b)i∈[lb], db) and aborts if one of the
indices is ⊥. Otherwise, both send (input, ”g′b”, g

′
b) to FSFE&CommitOT.

Computation phase:
(1) Pa sends (inputA) to FSFE&CommitOT, followed by Pb sending (inputB).
(2) Pb obtains (output, z) from FSFE&CommitOT and outputs z.

Fig. 5: Protocol ΠSIREval to evaluate SIR of a function.

Theorem 1. Let G = (Gb,En,De,Ev, V e) be a privacy-free garbling scheme, λ its computational secu-
rity parameter, and s be a statistical security parameter, then ΠSIREval securely implements FSFE in the
FSFE&CommitOT,FOT-hybrid model against static, malicious adversaries corrupting either Pa or Pb.

We split the proof into two different simulators, one for Pa being corrupt and the other one for a malicious
Pb, where the second one is a simplified version of the malicious-Pa simulator. The proof works as follows:
In the ideal world, the simulator runs a protocol where it intercepts all the commitments coming from Pa
and simulates an honest P̃b (with some default input) for the protocol. It aborts when the committed values
between the stages do not match up, or when Pa sends keys that she was not supposed to obtain. Then, a
hybrid argument proves the claimed statement.

Proof. As in the protocol ΠSIREval we assume that both parties Pa, Pb want to evaluate a function f : B2n →
Bm and we consider its SIR Cf̂ , Cga , Cgb . Pa has input x ∈ Bn and Pb has input y ∈ Bn.

9

Functionality FSFE

Initialization:
– On input (init, C) from both Pa, Pb where C = (2n,m, g, L,R,G) is a circuit, store C.

Input of Pa:
– Upon input (inputA, x) from Pa where x ∈ Bn and where no input was given by Pa before, store x and

send (inputA) to Pb.
Input of Pb:

– Upon input (inputB, y) from Pb where y ∈ Bn and where no input was given by Pb before and if (inputA)
was obtained by Pb, compute z ← eval(C, xy) and output z to Pb.

Fig. 6: Secure Function Evaluation.

Proof for malicious Pa. We first show a simulator SA to prove that from Pa’s perspective, FSFE � SA ≈
FSFE&CommitOT �ΠSIREval.

Let TPaReal be the distribution of the transcripts that are obtained by executing ΠSIREval and TPaSim be
the distribution obtained from SA (both of them only for a corrupted Pa), so the goal is to show that
TPaReal ≈ TPaSim.

Simulator SA

Input phase:
(1) Start a copy of FSFE&CommitOT with which Pa will communicate in the simulated protocol.
(2) P̃b sends (init, Cf̂) to FSFE&CommitOT. Moreover, the simulator sends (init, Cf) to FSFE.

(3) P̃b follows Step 1− 3 of the protocol normally.
(4) In Step 4 of the simulated protocol, extract the inputs that Pa is sending to FSFE&CommitOT . Save these

values as oa, sa,1 locally. Moreover, let y be a default input for the P̃b, which P̃b uses in Step 4 of the
protocol.

Function sampling:
(1) P̃b behaves like in the protocol.

Privacy-free phase:
(1) Run Step 1−5 of the protocol. During Step 1 extract the values that Pa inputs into the FOT functionality

as x and sa,2.
Check phase:

(1) Run Step 1− 2 of the protocol.
(2) In Step 3 compute the keys that Pa should have obtained based on sa,2, ht, x. If Pa opens commitments

to different keys, then abort.
(3) In Step 4 follow the protocol normally.

Computation phase:
(1) Run Step 1, 2 of the protocol, with the following restriction:

– If oa 6= ga(x) where oa, x are the extracted values above and ga(x) is the function evaluated on the
extracted input, then abort. Also abort if sa,1 6= sa,2.

– If no abort (also not from P̃b) happened, then send (inputA, x) to FSFE.

Fig. 7: The simulator for a malicious Pa.

Define the following hybrid distributions:

TPaHybrid1 which is obtained from using the simulator SA with the following change: In the Computation
phase, abort in Step 2 only if the output z of FSFE would be z = ⊥, i.e. if the hash function does not
detect a differing input.

10

TPaHybrid2 which is obtained from using the simulator generating TPaHybrid1 with the following change: In

the Check phase, do only abort if P̃b would abort instead of aborting if Pa opens commitments to
wrong, but still valid keys.

Consider the distributions TPaSim and TPaHybrid1, then the only difference lies in the outputs when Pa is
cheating. In the first case, Pa will always be caught cheating whereas in the second case, she gets away with
it as long as f̂ ′ does not output ⊥. There are three different events to consider:

(1) oa = ga(x), but sa,1 6= sa,2: In this case, both oa, ga(x) hash to the same value, hence ht(oa) ⊕ sa,1 6=
ht(ga(x))⊕ sa,2 which will always be detected by f̂ ′, so the success probability is 0.

(2) oa 6= ga(x), but sa,1 = sa,2: Since both oa, ga(x) are independent of ht and since ht is chosen uniformly
at random from the family H, by Remark 1 they will collide with probability 2−s, which is negligible in
s.

(3) oa 6= ga(x) and sa,1 6= sa,2: FSFE&CommitOT will not output ⊥ iff ht(oa)⊕ sa,1 = ht(ga(x))⊕ sa,2. Hence
it must hold that

ht(oa)⊕ ht(ga(x)) = sa,1 ⊕ sa,2 = c

and a succeeding Pa will have to fix this c before learning ht. By Remark 1 the success in doing so is
2−s due to the uniform difference property and therefore negligible in s.

We hence conclude that TPaSim ≈s TPaHybrid1. For the difference of TPaHybrid1 and TPaHybrid2, the simulator
aborts in the first case if Pa commits to the wrong values, whereas it aborts in TPaHybrid2 if Pa provides
strings that are not valid output keys of G. By assumption, G provides Correctness and Authenticity, meaning
that if Pa does not cheat, then she will obtain the correct keys and P̃b will continue. On the other hand,
she can succeed in providing wrong keys only with probability negl(λ). Therefore, we also obtain that
TPaHybrid1 ≈c TPaHybrid2.
Now consider the distributions TPaHybrid2, TPaReal. The output that is delivered to Z as the output of Pb is
the same in both distributions, so we focus on the messages that Pa obtains. The only difference between
those is that in the Check phase, Step 4 these depend on a fixed input in TPaHybrid2 and on the real input
of Pb in TPaReal. In both cases, these keys correspond to values that are uniformly random to Pa since they
are obtained by XOR-ing a uniformly random value sb to gb(x) if Pa sent a correct garbling. Assume that
Fb was not generated by G, but instead chosen arbitrarily by the adversary. Then the output wires may leak
some information about the inputs. In Step 1 of the Check phase the garbling Fb was verified and by the
Verifiability of the garbling scheme G the computed output keys only depend on the output of the function
except with probability negligible in λ. For every fixed output g′b of the circuit and for every y there exists
at least one sb to obtain g′b from y, and therefore the opened keys differ only with probability negl(λ). Hence
TPaHybrid2 ≈c TPaReal which proves the statement for a malicious Pa.

Proof for malicious Pb. The proof of security for a malicious Pb goes along the same lines as the proof
for Pa. We define the following hybrid distribution:

TPbHybrid which is obtained from using the simulator generating TPbSim with the following change: In the

Check phase, do only abort if P̃a aborts instead of aborting if Pb opens commitments to wrong, but
still valid keys.

By the same reasoning as before, we obtain that TPbSim ≈s TPbHybrid. Because committed OT is available

from P̃a to Pb, we do not have to cope with different values for sb. In the step between TPbHybrid and TPbReal,
we observe that in both cases, Pb obtains ⊥ iff the values related to the keys (gi′b)i∈[lb] do not match gb(y)⊕sb
for the extracted values y, sb so the distributions of the output value z are identical. Moreover, by the same
argument as before, the keys (gi′a)i∈[s] do only reveal the value g′a except with probability negligible in λ due
to the Verifiability of G (the keys do reveal no information because sa was chosen uniformly at random).
Therefore TPbHybrid ≈c TPbReal, which completes the proof. ut

11

Simulator SB

Input phase:
(1) Start a copy of FSFE&CommitOT with which P̃a, Pb will communicate.
(2) P̃a sends (init, Cf̂) to FSFE&CommitOT. Moreover, the simulator sends (init, Cf) to FSFE.

(3) P̃a follows Step 1− 3 of the protocol normally.
(4) In Step 4, extract the inputs that Pb is sending to FSFE&CommitOT . Save these values as ob, sb locally.

Moreover, let x be a default input value for P̃a. P̃a then performs Step 4 honestly with the default input.
Function sampling:

(1) P̃a follows Step 1, 2 of the protocol normally.
Privacy-free phase:

(1) P̃a follows Step 1− 5 of the protocol normally.
Check phase:

(1) P̃a follows Step 1− 3 of the protocol normally.
(2) In Step 4 compute the keys that Pb should have obtained based on sb, y. If Pb opens commitments to

different keys, then abort.
Computation phase:

(1) Run Step 1, 2 of the protocol, with the following restriction:
– If g′b(y) 6= gb(y) where g′b(y), y are the extracted values above and gb(y) is the function evaluated on

the extracted input, then abort.
– If no abort (also not from P̃a)s happened, then send (inputB, y) to FSFE. Upon (output, z) from FSFE,

send (output, z) to Pb.

Fig. 8: The simulator for a malicious Pb.

5 Optimizations

We will now discuss how the overhead from the protocol presented in Section 3 can be reduced. In partic-
ular, our construction requires more rounds of interaction and some computational overhead for securely
computing the hash function and the committed OT for Pb. We will show that, by making non-trivial use
of the SFE protocol by Frederiksen et al. [5] (FJN14) one can avoid parts of these extra computations. Due
to the complexity of FJN14, we will just sketch this solution without a proof of security.

A short overview over the FJN14 construction

In Section 1 we sketched how an SFE protocol based on garbled circuits generally works. The presented
pattern introduces a number of problems (as mentioned in the introduction), which are addressed in FJN14
using techniques which we will discuss now. We only focus on those techniques that are important with
respect to our protocol.

Consistency of Pb’s inputs. If one uses standard OT during the above protocol, then Pb may ask for
various input keys for different circuits. As an example, he could (for a subset of circuits) decide that the 5th
wire shall be 1 whereas it will be 0 for the other instances. This may, depending on the computed function,
leak information about Pa’s input. To thwart this attack, FJN14 performs OT for longer strings, where all
zero- or one-keys for a certain input wire for all circuits will be obtained in one iteration4.

Consistency of Pa’s inputs. Similarly to Pb, also Pa can send different input keys for the instances. A
solution similar to the above for Pb does not work, since Pb will then learn Pa’s inputs. Instead, one lets Pa
commit to her input keys ahead of time. Pb chooses a message digest function from H and Pa will garble the
circuits such that they also compute a digest of her inputs. Pb checks during the evaluation that the hash

4 To the best of our knowledge, a similar idea was first introduced in [17].

12

value is the same for all evaluated circuits, and aborts if not. To prevent leakage of information about Pa’s
input, Pa will mask the hash with a fixed string5.

Using the FJN14 construction with our protocol

Using the OT of FJN14. Let Pb obtain the input keys for the privacy-free circuit together with the input
keys of the actively-secure garbling, by also including these keys for sb in the same OT. We therefore have
to transfer an only slightly longer string for each input wire related to sb

6.

Evaluating the Hash in the SFE for free. In the actively secure protocol Pb will choose the hash
function for the consistency check. We can let this be the same hash function that is used in our protocol
with the same random padding sa. This means that we will use a lightweight version of our suggested f̂ ′

function that only checks for consistency of Pb’s input, while Pa’s consistency is implicitly checked during
the evaluation of the actively secure protocol. Note that in the case of a cheating Pa the protocol will then
be aborted before the actual output is computed by Pb. Therefore, Pa must send her input keys for FJN14
and must have obtained her keys for the privacy-free garbling before ht is revealed to her.

Public inputs. An approach to implement public inputs is to let the SFE protocol have a second input
phase where Pa can submit the keys for the public inputs. Like in the FJN14 protocol, the input keys
will be linked to a polynomial (whose evaluations are linked to either the 0-keys or 1-keys for each wire i)
which is of degree s/2. Before the evaluation, Pb checks that all such points for the keys lie on the same
polynomial (using the already opened circuits and keys from the cut-and-choose phase as well as the newly
obtained keys). Now Pb can identify to which wire the keys sent by Pa belong by taking one of the submitted
keys for both the 0, 1-wires, interpolating the polynomial and checking whether all other keys belong to the
polynomial that is linked to the correct bit of the publicly chosen input. We require that these public input
keys, the polynomials and the links are generated by Pa during the garbling phase. They are sampled the
same way as in the original protocol, and Pa is committed to the keys.

Acknowledgements

We want to thank Ivan Damg̊ard and Tore Frederiksen for helpful discussions.

References

1. Arash Afshar, Payman Mohassel, Benny Pinkas, and Ben Riva. Non-interactive secure computation based on
cut-and-choose. In Advances in Cryptology-EUROCRYPT 2014, volume 8441, page 387. Springer, 2014.

2. Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. From secrecy to soundness: Efficient verification via secure
computation. In Automata, Languages and Programming, pages 152–163. Springer, 2010.

3. Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled circuits. In Proceedings of the
2012 ACM conference on Computer and communications security, pages 784–796. ACM, 2012.

4. Claude Crépeau, Jeroen van de Graaf, and Alain Tapp. Committed oblivious transfer and private multi-party
computation. In Advances in Cryptology—CRYPT0’95, pages 110–123. Springer, 1995.

5. Tore Kasper Frederiksen, Thomas P Jakobsen, and Jesper Buus Nielsen. Faster maliciously secure two-party
computation using the gpu. In Security and Cryptography for Networks, pages 358–379. Springer, 2014.

6. Tore Kasper Frederiksen and Jesper Buus Nielsen. Fast and maliciously secure two-party computation using the
gpu. Cryptology ePrint Archive, Report 2013/046, 2013. http://eprint.iacr.org/.

5 We used the same technique, but for a different reason, in ΠSIREval. It was first introduced in the context of SFE
with garbled circuits in [6,18].

6 This means that we have to change the function g′b(·, ·) slightly, due to a technique that avoids selective failure-
attacks in FJN14. This change does not increase the size of the privacy-free circuit that is sent, since only XOR
gates are added.

13

http://eprint.iacr.org/

7. Tore Kasper Frederiksen, Jesper Buus Nielsen, and Claudio Orlandi. Privacy-free garbled circuits with appli-
cations to efficient zero-knowledge. In Advances in Cryptology-EUROCRYPT 2015, pages 191–219. Springer,
2015.

8. Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifiable computing: Outsourcing computa-
tion to untrusted workers. In Advances in Cryptology–CRYPTO 2010, pages 465–482. Springer, 2010.

9. Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. Zkboo: Faster zero-knowledge for boolean circuits. Cryp-
tology ePrint Archive, Report 2016/163, 2016. http://eprint.iacr.org/.

10. Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their validity or all languages
in np have zero-knowledge proof systems. Journal of the ACM (JACM), 38(3):690–728, 1991.

11. Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive proof-systems. In
Proceedings of the seventeenth annual ACM symposium on Theory of computing, pages 291–304. ACM, 1985.

12. Yuval Ishai and Eyal Kushilevitz. Randomizing polynomials: A new representation with applications to round-
efficient secure computation. In Foundations of Computer Science, 2000. Proceedings. 41st Annual Symposium
on, pages 294–304. IEEE, 2000.

13. Marek Jawurek, Florian Kerschbaum, and Claudio Orlandi. Zero-knowledge using garbled circuits: how to prove
non-algebraic statements efficiently. In Proceedings of the 2013 ACM SIGSAC conference on Computer & com-
munications security, pages 955–966. ACM, 2013.

14. Seny Kamara and Lei Wei. Garbled circuits via structured encryption. In Financial Cryptography and Data
Security, pages 177–188. Springer, 2013.

15. Jonathan Katz, Alex J. Malozemoff, and Xiao Wang. Efficiently enforcing input validity in secure two-party
computation. Cryptology ePrint Archive, Report 2016/184, 2016. http://eprint.iacr.org/2016/184.

16. Yehuda Lindell. Fast cut-and-choose based protocols for malicious and covert adversaries. In Advances in
Cryptology–CRYPTO 2013, pages 1–17. Springer, 2013.

17. Yehuda Lindell and Benny Pinkas. An efficient protocol for secure two-party computation in the presence of
malicious adversaries. In Advances in Cryptology-EUROCRYPT 2007, pages 52–78. Springer, 2007.

18. Chih-hao Shen and abhi shelat. Fast two-party secure computation with minimal assumptions. In Proceedings
of the 2013 ACM SIGSAC conference on Computer & communications security, pages 523–534. ACM, 2013.

19. Stefan Tillich and Nigel Smart. Circuits of basic functions suitable for mpc and fhe. Available at https:

//www.cs.bris.ac.uk/Research/CryptographySecurity/MPC/, accessed on June 25th 2016.
20. Andrew C Yao. Protocols for secure computations. In 2013 IEEE 54th Annual Symposium on Foundations of

Computer Science, pages 160–164. IEEE, 1982.

14

http://eprint.iacr.org/
http://eprint.iacr.org/2016/184
https://www.cs.bris.ac.uk/Research/CryptographySecurity/MPC/
https://www.cs.bris.ac.uk/Research/CryptographySecurity/MPC/

	On Garbling Schemes with and without Privacy

