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Abstract
The task of finding a constructive approximation in the computational distance, while simultan-
eously preserving additional constrains (referred to as "simulators"), appears as the key difficulty
in problems related to complexity theory, cryptography and combinatorics.

In this paper we develop a general framework to efficiently prove results of this sort, based on
subgradient-based optimization applied to computational distances. This approach is simpler and
natural than KL-projections already studied in this context (for example the uniform min-max
theorem from CRYPTO’13), while simultaneously may lead to quantitatively better results.

Some applications of our algorithm include:
Fixing an erroneous boosting proof for simulating auxiliary inputs from TCC’13 and much
better bounds for the EUROCRYPT’09 leakage-resilient stream cipher
Deriving the unified proof for Impagliazzo Hardcore Lemma, Dense Model Theorem, Weak
Szemeredi Theorem (CCC’09)
Showing that "dense" leakages can be efficiently simulated, with significantly improved bounds

Interestingly, our algorithm can take advantage of small-variance assumptions imposed on dis-
tinguishers, that have been studied recently in the context of key derivation.

1 Introduction

Many important objects in modern cryptography are built on the common concept of re-
laxing the way we define similarity or indistinguishability, which allows us to go beyond
information-theoretic limits. Typically, when defining them, we refer to some ideal object
whose behavior we want to mimic, that is approximate but keeping certain restrictions,
however with better efficiency (for example reduced complexity or reduced amount of ran-
domness needed). For illustrative purposes, we mention some of them below

(a) Pseudorandom generators: we want to generate a distribution close to the uniform one,
but using much less auxiliary randomness. A probabilistic argument shows that this is
indeed possible if we don’t care about the complexity[7]. It remains an open question
whether such a transformation can be polynomial in the input size.

(b) Simulating leakages in cryptography: the goal of leakage-resilient cryptography is to
extend classical results (encryption schemes, key derivation and so on) to handle cases
where some auxiliary information leaks to adversaries. For any X which is leakage from
a secret state Z we can think of X as a randomized function of Z, that is X d= h(Z). A
non-trivial problem is to answer whether we can find an efficient h which approximates
X well [10, 17].

(c) Key derivation: The classical Leftover Hash Lemma [8] states that universal hash func-
tions are randomness extractors. The only problem is with the inherited entropy loss,
where one needs to sacrifice 2 log(1/ε) bits of randomness, in order to achieve ε-closeness
(security for any adversary). For practical applications where ε = 2−80 this gives 160
bits, which is quite a lot. It has been shown [1, 4] that this loss can be overcome if we
modify the closeness by considering only certain computationally bounded adversaries
(which is possible for a wide class of applications, so called square-friendly applications)
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1.1 Question

We are interested in approximating some reference object p∗ when keeping certain constraints
satisfied and with possibly low complexity. Informally this reads as follows

Given the target p∗, consider p satisfying the following conditions

(a) computational closeness: p is close to p∗ under some class of test functions
(b) constraints preserved: p satisfies required constraints

Question: how to construct p with minimal complexity with respect to D?

We intentionally emphasize the word construct to mention that we want a constructive
(preferably iterative) solutions. In Section 1.2 we will give a more precise meaning to what
are constrains, computational distances, and computational efficiency. In Section 1.3 we
discuss the related literature, and in Section 1.5 we present our algorithm. After providing
necessary definitions in Section 2, we present applications of our results in Section 3.

1.2 Abstract problem statement

We start by discussing main components of optimization tasks we study in this paper.

1.2.1 Key ingredients

1.2.1.1 Domain

We consider optimization problems over the set of all bounded functions on a finite set X,
which we denote by B(X ). In most cases we will be interested in probability distributions
or positive measures, however even for these applications it is convenient to work with the
extended definition (similarly to related works [16, 10]). We can think of functions on X
as vectors with components enumerated by elements of X , and B(X ) as a subset of RN
where N = |X |1 (For example, probability distributions correspond to vectors with positive
components summing up to 1). This allows us to use multidimensional optimization tools.

1.2.1.2 Reference function

By p∗ we denote the reference function/vector, which is the model object we want to ap-
proximate. Typically it satisfies certain bounds (inequalities) we want to preserve.

1.2.1.3 Constraints

The constraints we impose usually come directly from the problem setting and in most
cases translate some simple information-theoretic restrictions, for example probability dis-
tributions with certain entropy. Often the constraints are simply linear inequalities and
equations, perhaps composed with the maximum function. We will see that this sort of
functions is particularly easy to deal with, basically because it allows very simple subgradi-
ent calculations (see Section 2). For example, to consider probability distributions p(·) over

1 Where the vector entries correspond to the values of the probability mass function on particular points,
according to some fixed order
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X that have min-entropy at least k we write the following inequalities

p(x) :


maxx∈X (−p(x)) 6 0

maxx∈X (p(x))− 2−k 6 0∑
x∈X p(x)− 1 = 0

It suffices to consider inequalities only, as every equation can be written as two inequalities.
We follow the "zero right-hand side" convention, when constraints are of the form C(p) 6 0.

1.2.1.4 (Computational) Distance

Fix a class D of real functions on X , understood as "distinguishers". In most cases D consists
of bounded functions of small complexity2; later we will discuss a specific case of restrictions
imposed on the variance of members of D. Distinguishers are used to measure "similarity"
or "closeness" between functions on X as follows

δD(p1; p2) = max
D∈D

∣∣∣∣∣∑
x∈X

D(x)(p1(x)− p2(x))

∣∣∣∣∣
For example, if we take D to be all [−1, 1] valued function, we retrieve the notion of the
L1-norm. More generally, we can rewrite and extend this definition using the standard inner
product between D and p1− p2 interpreted as vectors (see Theorem 7), as well as extend to
any convenient inner product. This observation is crucial for out technique, because it shows
explicitly that distinguishers are subgradients of the computational distance functions.

1.2.2 Optimization tasks
As in every optimization problem we attempt to minimize a loss function given some con-
straints

minimize
p

δD(p, p∗)

s.t. Cj(p) 6 0, j ∈ J
(1)

where in our case constraints come from information-theoretic restrictions and the loss equals
the statistical distance. We expect to achieve δD(p, p∗) 6 ε making at most poly(ε−1) oracle
queries to D and arithmetical operations in the definition of p3.

1.3 Related works
Below we give a short overview of how the problem has been addressed so far in the literature.

1.3.1 Nonconstructive min-max theorem
Interestingly the best tool to prove results of this sort non-constructively, if we don’t care
much about efficiency (improving bounds of this sort depends on convex approximation
results and may be tricky), is the min-max theorem. Being interested in constructive tech-
niques, however, we omit the detailed discussion of applications of the classical min-max
theorem, mentioning only that eventually, iterative methods turn out to be equally good or
better in terms of efficiency. See for example [16].

2 Often functions computable by circuits of size logarithmic in the domain size.
3 Sometimes we also allow the use of small storage space,like the standard RAM model.
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1.3.2 Naive iterative optimization (descent)
1.3.2.1 Description

Presumably the most convenient way to attack the problem is by a naive iterative optimiza-
tion. In this approach we simply check if our candidate solution is good enough, and - if not
- optimize it based on a "certificate" of the negative answer. This certificate is simply a dis-
tinguisher D which contradicts to the computational distance being (supposedly) small; by
definition, such a certificate must exists. The pseudocode of this meta-algorithm is provided
in Algorithm 1. We hope to find update rules which are relatively simple and such that
the sequence of updates converges4. While the general theory equips us with concrete up-
dates and guarantees the convergence under general convexity conditions, the complexity of
computing updates for concrete problems may be quite large, especially with constraints.

1.3.2.2 Naive iteration pseudocode

Algorithm 1: Boosting for computational distance
Data: starting point p0, steps number N , update rules, distinguisher oracle
Result: a point p close to p0

1 i← 0
2 pi ← p0 // initialize
3 while i < N do
4 i← i+ 1

// check if the current solution is too far
5 if there is a distinguisher D for pbest and p∗ then
6 pi ← update (pi−1,D) // update based on the new distinguisher
7 else
8 pbest ← pi
9 return pbest

// Lookup for the best answer (not always the last one)
10 pbest ← best(p1, . . . , pN )
11 return pbest

1.3.2.3 Note on uniformness

The sequence of updates may be less or more "uniform", for example it might be dependent
on calculating some auxiliary numbers. We stress that when building a solution we do not
attempt to find this distinguisher - it simply exists and is considered as an oracle answer.
While this yields no problems in the non-uniform setting, it looks like a little bit of cheating
whenever we talk about uniform iterative algorithms. This is, however, how uniform iterative
algorithms for computational distance are defined in the literature [2, 17].

1.3.2.4 [11]

Possible applications of boosting technique for crypto-related problems (though not related
directly to computational-distance) were investigated for the first time in [11]. The au-

4 The method is referred to as a "descent" because the proof of a convergence usually goes by showing
that a certain function, called "potential" decreases with every iteration
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thors observed that the proof of the Hardcore Lemma [9] can be seen as a specific iterative
optimization algorithm.

1.3.2.5 [16]

The first application of iterative optimization techniques to cryptography-related problems
concerning computational distance goes back to [16], where the authors reproved Dense
Model Theorem, Weak Szemeredi Lemma and proved that any distribution of high-min
entropy is computationally close to samplable distributions with the same entropy (see
Theorem 11). The only constraints covered in the proof were rectangular constraints, that
is inequalities of the form −1 6 p(x) 6 1. The technique uses an ad-hoc potential function.

1.3.2.6 [2]

A different iterative algorithm was proposed by Barak et al. [2]. The proof uses Bregman
projections projections, and is restricted for distributions with certain density constraints.

1.3.2.7 [10]

An extension of the method from [16], aiming to to cover constraints induced by conditional
distributions, that is 0 6 p(x|z) and

∑
x p(x|z) = 1, was proposed in [10]. However this proof

is flawed and doesn’t seem to be fixable [13] (we will return to this later in Section 3.2).

1.3.2.8 [17]

The uniform min-max theorem from [17] gives a result that solves the problem in general,
under some (weak) convexity assumptions. However, as we point out later, there are some
interesting cases where, due to generic approximations, it fails to achieve best bounds.

1.4 Advantages of our approach
Compared to related works, in particular to [17], our approach is

1. More modular and explicit: it captures several factors, see e.g. the remark after The-
orem 2 and Section 3.4

2. Simpler : we do not need complicated projections, just subgradients which are easy to
calculate for practical constraints; also the convergence is proved in the second norm)

3. May be quantitatively better : see Section 3.2 and in particular Table 2.
4. Illustrative: it demonstrates that distinguishers are nothing more than subgradients for

computational distance, and how the subgradient calculus is powerful in this context.

1.5 Our results
We consider the problem in two settings, depending on whether the constraints involve all
vector components or only a subset of indexes (the later being referred to as the conditional
setting). This distinction allows us to better handle constraints in specific cases where we
can take advantage of a smaller domain, but the algorithm is essentially the same. Our tech-
nique is a subgradient algorithm, in which we follow the negative subgradient direction in
every round, similarly to the classical gradient/subgradient descent technique [3]. However,
we apply it to the specifically designed objective function. It captures not only the compu-
tational distance but also penalty terms for violating constraints. Technically speaking, we
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convert our problem into an unconstrained problem with penalty terms and solve it by the
standard subgradient optimization. The iterative process ends on a point at which penalties
are small, which allows us to simply build the final answer by making it fit the constraints.
A comparison of out technique with related works is discussed in Section 1.5.3

1.5.1 Unconditional setting (general)
Suppose that the constraints are functions of all components of the input vector:

minimize
p=p(x)∈RN

maxD∈D〈D; p− p∗〉

s.t. Cj(p) 6 0, j ∈ J
(2)

In order to solve problem (2), we attempt to minimize the following objective L which
captures weighted penalty terms for violating constraints:

L(p) = max
D∈D
〈D; p− p∗〉+

∑
j

αj(max(Cj(p(x)), 0))2 (3)

The pseudocode is given in Algorithm 2 below.
Algorithm 2: Subgradient Algorithm, General

Data: starting point p0, loss function L, step size γ, steps number N
// use L defined as in Equation (12)
// L is the comp. distance to p∗ + constraints penalty terms
Result:

1 i← 0
2 pbest ← p0 // the best answer found so far
3 while i < N do
4 i← i+ 1
5 w ← ∂pi

L(pi) // compute a subgradient of L at pi (see Equation (4))
6 pi = pi−1 − γw // go towards the negative subgradient direction

7 pbest ← pproj
i

8 return pbest

The subgradient of L can be computed by basic rules (see Lemma 9 and 10) as shown below.

I Lemma 1 (Objective subgradient). For some D in D and any vj ∈ ∂pCj(p) we have that

w = D +
∑
j

αj max(Cj(p), 0) · vj (4)

is a subgradient of L at p.

I Remark (Non-uniqueness). For any j we need to choose vj from possibly many subgradients
∂pCj . This flexibility might help us to choose possibly simple vj (in terms of complexity).
In Theorem 2 below we estimate the convergence of Algorithm 2.

I Theorem 2 (Subgradient algorithm for computational distance, convergence). Let p∗ be the
optimal point and p0 be the starting point. Let 〈, 〉 be an inner product and ‖·‖ be the induced
norm. Let D,R and Mj for j ∈ J be constants such that

D > max
D∈D
‖D‖2

R >
∥∥p0 − p∗

∥∥2
Mj > max

p:‖p−p∗‖<R2
‖∂pCj(p)‖2 for j ∈ J (5)
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and L be the objective

L(p) = max
D∈D
〈D; p− p∗〉+

∑
j∈J

αj (max (Cj(p), 0))2
. (6)

Then setting γ = ε
(|J|+1)D and αj = 2

(4|J|+1)Mjγ
in Algorithm 1, after T steps where

T = O

(
D ·R · |J |

ε2

)
(7)

for p = pT we get

max
D∈D
〈D; p− p∗〉+

∑
j∈J

αjCj(p) < ε. (8)

In particular, at the end we have

δD(p, p∗) < ε (9)

Cj(p) <
√
Mjε2

D
∀j ∈ J. (10)

I Remark (Intuitions). Our result captures the following intuitions:

(a) the closer to the target we start (smaller R), the better convergence
(b) the closer are distinguishers to being constant (small varianceD), the better convergence
(c) the less regular constrains (big numbers Mj) the worse convergence
A short comparison with the related works is given in Table 1.

1.5.2 Average-case version (conditional)

We consider the following generalization of Equation (2)

minimize
p=p(x,z)

maxD∈D〈D; p− p∗〉

s.t. Cj,z(p(·, z))) 6 0, ∀j ∈ J, ∀z ∈ Z
(11)

where p(·, z) denotes the vector of size |X | with components (p(x, z))x∈X for fixed z. Note
that although formally the domain of the problem is the product X ×Z, the constraints are
restricted to only components from X and technically, when optimizing, we work only over
the set X . This distinction is meaningful when the constraints are imposed on conditional
distributions, for example distributions (X,Z) where X has high entropy conditioned on
Z. In order to solve problem (2), we attempt to minimize for every single z the following
objective L which captures penalty terms for violated constraints (when z is fixed).

Lz(p) = max
D∈D
〈D(·, z); p(·, z)− p∗(·, z)〉+

∑
j∈J

αj(max(Cj(p(·, z), 0))2 (12)

The corresponding convergence result is similar, the only difference is that we prove that the
constraint are (almost) satisfied on average over Z. The proof is also similar, but we need
to make sure not only the convergence but in applications also that the step size doesn’t
depend on z (which would massively increase the complexity).
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I Theorem 3 (Subgradient algorithm for computational distance). Let p∗ be the optimal point
and p0 be the starting point. Let 〈, 〉 be an inner product and ‖ · ‖ be the induced norm. Let
D,R and Mj for j ∈ J be constants such that

D = max
z∈Z

max
D∈D
‖D‖2 (13)

R = max
z∈Z

∥∥p0(·, z)− p∗(·, z)
∥∥2 (14)

Mj = max
z∈Z

max
p:‖p(·,z)−p∗(·,z)‖<R2

∥∥∂p(·,z)Cj(p(·, z))
∥∥2 for j ∈ J (15)

and, for any single z, let Lz be the objective

Lz(p) = max
D∈D
〈D(·, z); p(·, z)− p∗(·, z)〉+

∑
j

αj(max(Cj(p(·, z), 0))2 (16)

Then setting γ = ε
(|J|+1)D and αj = 2

(4|J|+1)Mjγ
in Algorithm 1, after T steps where

T = O

(
D ·R · |J |

ε2

)
(17)

for p = pT and any z we get Lz(p) < ε, which means that (in particular)

δD(p, p∗) < ε (18)

Cj,z <

√
Mjε2

D
∀z ∈ Z ∀j ∈ J (19)

We skip the proof as it goes along the lines of the proof of Theorem 2.

1.5.3 Comparison with related works (overview)

Author Technique Constrains Initial distance Distinguisher structure Comments
[16] ad-hoc potential + proj. rectangular Not exploited Not exploited
[2] Bregman proj. density Not exploited Not exploited
[10] L2-porential restricted subsums An error in the proof
[17] Bergman Projections any convex No No
this paper subgradients any convex speed up (L2-distance) speed up (variance)

Table 1 Comparison of different techniques with our approach.

2 Preliminaries

I Definition 4 (Convex hull). For any subset S of RN by conv(S) we denote the set which
contains all convex combinations of elements of S.

I Definition 5 (Inner products and induced norms). The standard inner product on RN is

〈p; q〉 =
N∑
i=1

p(i)q(i) (20)

where p(i) denotes the i-th component of the vector p. In general, 〈·; ·〉 is an inner product
when is bilinear and positive definite. The norm ‖‖ associated with the inner product is

‖p‖ = 〈p; p〉. (21)
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I Definition 6 (Bounded functions). Given a finite set X , we denote the set of all finite
real-valued function on X by B(X ). Enumerating elements X as x1, . . . , xN , with respect
to some fixed order5, we can identify it with a vector (p(x1), . . . , p(xN )) that has N non-
negative components. In particular, the inner product of two functions p and q is defined
as the inner product of the corresponding vectors

〈p1; p2〉 = 〈(p(x1), . . . , p(xN ); q(x1), . . . , q(xN )) . (22)

I Definition 7 (Computational distance). The computational distance of functions p1 and
p2 under the class of functions D and fixed scalar product 〈〉 is equal to

δD(p1, p2) = max
D∈D
〈D; p1 − p2〉 (23)

I Definition 8 (Subgradients and subdifferentials). A subgradient of a function L : RN → R
at a point p ∈ RN is any vector α ∈ RN such that

∀q ∈ dom(L) : L(q) > L(p) + 〈α; q − p〉.

where 〈·; ·〉 is any (fixed) scalar product on RN . The set of all such vectors α is called
subdifferential of L at p and denoted by ∂pL(p).

I Remark (Subgradients existence and uniquness). Subgradients may not exist or be non-
unique. However, if L is convex, finite-valued and continuous they always exist [6] with any
inner product. There may be many subgradients at a given point, however for the standard
inner product and differentiable L, the subgradient is unique and equal to the gradient.

Linearity and chain rules are what subgradients share with gradients (first order derivatives).

I Lemma 9. For convex and finite functions L1, L2, any real constants α1, α2 we have

∂ (α1L1 + α2L2) = α1∂L1 + α2∂L2

Also, for any convex L1 and L2 we have the chain rule as for the first-order derivatives

∂p (L1 ◦ L2(p)) = 〈∂L2(p) (L1) ; ∂pL2(p)〉

The next lemma shows how to compute subgradients of pointwise maximums.

I Lemma 10 (Pointwise maximum subgradients, [3]). Let {Lj}j∈J be a finite collection of
real convex functions on RN . Then for any point p

∂

(
max
j∈J

Lj(p)
)

= conv
(
∂Lj(p) : j ∈ Jact) (24)

where J is the so called set of active indexes at p, that is

j ∈ Jact ⇐⇒ Lj(p) = max
j=1∈J

Lj(p).

In particular, for any active j any subgradient of Lj at p is the subgradient of ∂maxj∈J Lj.

5 For X = {0, 1}n we take the lexicographical order
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3 Applications

3.1 Hardcore Lemma, Dense Model Theorem, and simulating high
min-entropy

As shown in [16], several important results: Hardcore Lemma, Dense Model Theorem, Weak
Szemeredi Lemma and an original result about simulating high-min entropy distributions
can be derived from one single theorem. We show that it easily follows from Theorem 2.

I Theorem 11 ([16]). Let X be a finite set, and let D be a class of functions D : X → [−1, 1].
Then for any function f : X → [−1, 1] there exists a function h : X → [−1, 1] such that

(a) Low complexity with respect to D
(b) Indistinguishability from f

More precisely, with complexity O
(
ε−2) one gets ε-indistinguishability by D.

I Remark. The result is provided for the extended notion of computational indistinguishab-
ility, with a weight function µ involved:

∣∣∑
x∈X D(x)h(x)µ(x)−

∑
x∈X D(x)f(x)µ(x)

∣∣ 6 ε

(the standard case is µ(x) = 1). We will also conclude this slightly more general version, by
choosing a non-standard inner product.

Proof. Suppose for now that the weight function µ equals 1. Consider the space X = {0, 1}n
and the restrictions C1(p) =

∑
x∈X max(0, p(x) − 1), C2(p) =

∑
x∈X max(0,−p(x) − 1),

C3(p) = 1 −
∑
x∈X p(x) and C4(p) =

∑
x∈X p(x) − 1. By Lemma 9 and 10 for every p and

j = 1, 2 we have
1
|X ′|

∑
x∈X ′

1p(x)>1ex ∈ ∂pC1(p), 1
|X ′|

∑
x∈X ′

−1p(x)<−1ex ∈ ∂pC2(p)

where we use the following notational convention: the vector ex has 1 at position x and
0 elsewhere, and for any predicate A the function 1A outputs 1 on instances where it is
satisfied and 0 elsewhere. We also conclude that ∂pC3(p) and ∂pC4(p) are vectors with all
−1 and respectively 1 entries. Now we easily compute necessary constants for Theorem 2.
I Claim 1. In Theorem 2 we can put R = 1, D = 2n, M1 = M2 = 1 and M3 = M4 = 2n.
Clearly, Cj they can be computed in complexity O(1) from p6. By Theorem 2 we obtain∣∣∑

x∈X D(x)p(x)−
∑
x∈cX D(x)p∗(x)

∣∣ 6 ε and∑
x∈X

max (p(x)− 1, 0) 6 ε,
∑
x∈X

max (−p(z, x)− 1, 0) 6 ε, 1− ε 6
∑
x∈X

p(x) 6 1 + ε

Note that the constraints are only "slightly" violated - a mass shifting argument shows that
they can be fixed, in the sense that p can be transformed, with an only additive overhead
O(1), into a feasible point p′, such that we lose only O(ε) in the computational distance. This
final "shift" is essentially the same as in the proof of Theorem 14. To obtain the statement
with the weight function µ we need to change the inner product to

〈p; q〉 =
∑
x

p(x)q(x)µ(x)

and proceed as before. It remains only to prove that we can compute subgradients efficiently.
J

6 This is trivial for j = 3, 4. In turn for j = 1, 2 we only compare p(x) with −1 or 1 at one point, and
hardcoding the constants |X ′|, |X ′′|
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3.2 Simulating auxiliary inputs and better security for leakage-resilient
stream ciphers

For every joint distribution (Z,X) the marginal X can be represented as a randomized
(and inefficient) function of Z. If X is relatively short we intuitively hope to approximately
compute if from Z. Indeed, this is possible at a price of a distance-efficiency tradeoff, as
shown in [10]. Applying such a "simulator" to X being leakage from a secret Z, one achieves
better and simpler bounds for leakage-resilient stream ciphers [12] as explained in [10]. We
use our Theorem 3 to beat best known bounds by a factor O

(
ε−2) in running time.

I Theorem 12 ([10], corrected). For every distribution (Z,X) on {0, 1}n×{0, 1}` and every
ε, s, there exists a “simulator” h : {0, 1}n → {0, 1}` such that

(a) (Z, h(Z)) and (Z,X) are (ε, s)-indistinguishable7
(b) h is of complexity sh = O

(
s · 23`ε−2)

I Remark (Flaws in the original proof). The original proof achieves only sh = O
(
s · 24`ε−4)

due to flaws. Here we correct a fixable flaw (a missing factor of 2`), but also report that
there is a more serious error (which seems to be unfixable) in the alternative boosting proof,
which was claimed to offer much better bounds. The flaws are discussed in Appendix A.
I Remark (Alternative bounds in [17]). We note that the uniform min-max theorem due to
Vadhan and Zheng [17] implies incomparable bounds sh = O

(
s · 2`ε−2 + ε−4) in Theorem 14.

However, our result may be much better, in particular for small-or moderate values of `, as
demonstrated in Table 2, and in terms of time-advantage ratio (where we lose only a factor
of 4 versus a factor of 6 in [17])
Using the above result and following the argument in [10], we improve the security bounds of
the Eurocrypt’09 leakage-resilient stream cipher [12]. A necessary background on leakage-
resilient stream ciphers is given in Appendix B, here we only mention that for the first time
we get meaningful bounds for a weak PRF instantiated with a standard 256-bit block cipher
like AES. See Table 2 for an illustrative example.

I Theorem 13 (Proving Security of Stream Ciphers [10]). If F is a (εF , sF , 2)-secure weak
PRF then SCF is a (ε′, s′, q, λ)-secure leakage resilient stream cipher where

ε′ = 4q
√
εF 2λ, s′ = Θ(1) · sF ε

′2

23λ .

I Remark (The exact complexity loss). The inspection of the proof in [10] shows that sF
equals the complexity of the simulator h in Theorem 14 applied to the class of all circuits
of size s′ and ε replaced by ε′. Thus, our result is better by a factor of O(ε′−2).

Analysis/Authors wPRF security Leakage Advantage ε′ Size s′

[10] (a variant of Theorem 14)
256 λ = 3 2−40

0
[17] (a variant of Theorem 14) 0
this paper (Theorem 14) 266

Table 2 The security of the EUROCRYPT’09 stream cipher, instantiated with AES256 as a
weak PRF of k = 256 bits of security, that is sF /εF ≈ 2256. In this setting only our new bounds
provide non-trivial bounds even if we aim for security ε′ ≈ 2−40.

7 That is indistinguishable by the class D of circuits of size s
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Proof. We start by observing, similarly to [10], that it suffices to prove the following result

I Theorem. Let Z,X be finite sets, and let D be a class of functions D : Z × X → [−1, 1].
Then for any function f : Z × X → [−1, 1] there exists a function h : X → [−1, 1] with the
following properties:

(a) h uses O
(
s · 22`ε−2) calls to D and O

(
2`
)
auxiliary memory8,

(b) h is ε-indistinguishable from f by D,
(c)

∑
x h(z, x) =

∑
x f(z, x) for every z ∈ Z.

Note that constraint (c) makes the only difference to the proof of Theorem 11. Define
β(z) =

∑
x f(z, x) and consider the variables p(z, x), 2`-dimensional vectors p = p(z, ·) and

the following constraints: C1,z(p) =
∑
p(z, x)−β(z) for z ∈ Z, C2,z(p) = −

∑
p(z, x)+β(z)

for z ∈ Z, C3,z(p) =
∑
x max (−p(z, x)− 1, 0) for z ∈ Z, C4,z(p) =

∑
x max (p(z, x)− 1, 0)

for z ∈ Z. The numbers β(z) stands for the probabilities Pr[Z = z], and numbers p(z, x)
for the probabilities Pr[h(z) = x]. Constraints C3,z, if positive, are penalties for breaking
the inequality −1 6 p(x, z) and similarly C4,z penalize (if positive) breaking the inequality
p(z, x) 6 1. The result easily follows from Theorem 3, for details see Appendix D. J

3.3 Simulating high min-entropy leakage

We obtain the following extension for Theorem 14 and Theorem 11. It essentially says that
not the length of leakage makes it simulatable, but high density in the uniform distribution.

I Theorem 14 ([10], corrected). For every distribution (Z,X) on {0, 1}n × {0, 1}m and
every ε, s, there exists a “simulator” h : {0, 1}n → {0, 1}m such that

(a) (Z, h(Z)) and (Z,X) are (ε, s)-indistinguishable
(b) h is of complexity sh = O

(
s · 23`ε−2)

where
` = n−H∞(X|Z)

is the min-entropy9 deficiency.

This result beats by over O(ε−2) the recent bound from [15].

3.4 Simulating for square-friendly applications

As the final remark, note that we have not exploited yet the constant D in Theorem 2.
Indeed, small variance assumptions imposed on distinguishers appear in recent works on
key derivation [1, 5, 4]. It has been shown that they are already satisfied by a large class
of applications, so called square-friendly applications. With our Theorem 2 it is possible to
derive simulators that gain in the complexity a factor of the variance, which could be quite
large (for example, of order ε ≈ 2−80 bits). We discuss this problem in another paper.

8 We use the standard RAM model of computations as it is more convenient, the statement above for
circuits can be obtained by general reductions [14].

9 Recall, min-entropy is defined by H∞(X|Z) = minz(− log maxx Pr[X = x|Z = z]).
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A More on the flaw in [10]

In the original setting we have Z = {0, 1}λ. In the proof of the claimed better bound
O
(
s · 23λε−2) there is a mistake on page 18 (eprint version), when the authors enforce a

signed measure to be a probability measure by a mass shifting argument. The number M
defined there is in fact a function of x and is hard to compute, whereas the original proof
amuses that this is a constant independent of x. During iterations of the boosting loop, this
number is used to modify distinguishers class step by step, which drastically blows up the
complexity (exponentially in the number of steps, which is already polynomial in ε). In the
min-max based proof giving the bound O

(
s · 23λε−4) a fixable flaw is a missing factor of 2λ

in the complexity (page 16 in the eprint version), which is because what is constructed in
the proof is only a probability mass function, not yet a sampler [13].

B Stream ciphers definitions

We start with the definition of weak pseudorandom functions, which are computationally
indistinguishable from random functions, when queried on random inputs and fed with
uniform secret key.

I Definition 15 (Weak pseudorandom functions). A function F : {0, 1}k×{0, 1}n → {0, 1}m
is an (ε, s, q)-secure weak PRF if its outputs on q random inputs are indistinguishable from
random by any distinguisher of size s, that is

|Pr [D ((Xi)qi=1 ,F((K,Xi)qi=1) = 1]− Pr [D ((Xi)qi=1 , (Ri)
q
i=1) = 1]| 6 ε

where the probability is over the choice of the random Xi ← {0, 1}n, the choice of a random
key K ← {0, 1}k and Ri ← {0, 1}m conditioned on Ri = Rj if Xi = Xj for some j < i.

Stream ciphers generate a keystream in a recursive manner. The security requires the output
stream should be indistinguishable from uniform10.

I Definition 16 (Stream ciphers). A stream-cipher SC : {0, 1}k → {0, 1}k × {0, 1}n is a
function that need to be initialized with a secret state S0 ∈ {0, 1}k and produces a sequence
of output blocks X1, X2, ... computed as

(Si, Xi) := SC(Si−1).

A stream cipher SC is (ε, s, q)-secure if for all 1 6 i 6 q, the random variable Xi is (s, ε)-
pseudorandom givenX1, ..., Xi−1 (the probability is also over the choice of the initial random
key S0).

Now we define the security of leakage resilient stream ciphers, which follow the “only com-
putation leaks” assumption.

IDefinition 17 (Leakage-resilient stream ciphers). A leakage-resilient stream-cipher is (ε, s, q, λ)-
secure if it is (ε, s, q)-secure as defined above, but where the distinguisher in the j-th round
gets λ bits of arbitrary deceptively chosen leakage about the secret state accessed during
this round. More precisely, before (Sj , Xj) := SC(Sj−1) is computed, the distinguisher

10We note that in a more standard notion the entire stream X1, . . . , Xq is indistinguishable from random.
This is implied by the notion above by a standard hybrid argument, with a loss of a multiplicative
factor of q in the distinguishing advantage.
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can choose any leakage function fj with range {0, 1}λ, and then not only get Xj , but also
Λj := fj(Ŝj−1), where Ŝj−1 denotes the part of the secret state that was modified (i.e., read
and/or overwritten) in the computation SC(Sj−1).

C Proof of Theorem 2

We use the following notational convention: for any function C = C(p) we denote by C+ its
non-negative part C+(p) = max(C(p), 0). Denote for shortness Lj(p) =

(
C+
j

)2. According
to Equation (4), the update is

pt+1 = pt − γ

Dt + 2
∑
j

αj∂Lj

 . (25)

Now we have

∥∥pt+1 − p∗
∥∥2

2 =

∥∥∥∥∥∥pt − p∗ − γD − γ
∑
j

αj∂Lj

∥∥∥∥∥∥
2

2

=
∥∥pt − p∗∥∥2

2 − 2γ
∑
j

αj〈pt − p∗, ∂Lj〉+

− 2γ〈pt − p∗,D〉+ 2γ2
∑
j

αj〈D, ∂Lj〉+

+ γ2

∥∥∥∥∥∥
∑
j

αj∂Lj

∥∥∥∥∥∥
2

2

+ γ2 ‖D‖2
2

which by triangle inequality and the Jensen inequality (
∑
j∈J uj)2 6 |J | ·

∑
j u

2
j means that∥∥pt+1 − p∗

∥∥2
2 6

∥∥pt − p∗∥∥2
2 − 2γ

∑
j

αj〈pt − p∗, ∂Lj〉+

− 2γ〈pt − p∗,D〉+ 2γ2
∑
j

αj〈D, ∂Lj〉+

+ γ2|J |
∑

α2
j

∥∥∂Lj∥∥2
2 + γ2 ‖D‖2

2

Suppose that at the i-th step we still are ε-far from the target function p∗. That is,

〈pt − p∗,Dt〉 > ε−
∑
j

αjLj . (26)

Using this, we get∥∥pt+1 − p∗
∥∥2

2 6
∥∥pt − p∗∥∥2

2 − 2γ
∑
j

αj〈pt − p∗, ∂Lj〉+ 2γ2
∑
j

αj〈Dt, ∂Lj〉

+ γ2 ∥∥Dt
∥∥2

2 + 2γ
∑
j

αjLj + γ2|J |
∑
j

α2
j ‖∂Lj‖

2
2 − 2γε (27)

I Lemma 18. Let Cj be a convex function, Lj be the function defined by Lj(p) =
(
C+
j

)2,
p∗ be a point such that Cj(p∗) 6 0 and p be an arbitrary point. Then

〈p− p∗, ∂pLj(p)〉 > 2Lj(p).
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Proof of Lemma. Consider the case Lj(p) = 0. We have then C+
j (p) = 0. Since ∂pLj(p) =

2C+
j ∂pC

+
j (p), we see that both sides are zero. Suppose now that Lj(pt) > 0. In particular

C+
j (p) > 0. The assumption Cj(p∗) 6 0 gives us C+

j (p∗) = 0. Therefore, since C+
j is convex

as a maximum of two convex functions: Cj and the zero function, we have

〈pt − p∗, ∂Lj(pt)〉 = 〈pt − p∗, 2Cj(pt)∂ptC+
j 〉

= 2Cj(p)〈pt − p∗, ∂ptC+
j 〉

> 2Cj(p)
(
C+
j (pt)− C+

j (p∗)
)

= 2
(
C+
j (pt)

)2

= 2Lj(pt)

J

By Theorem 18 we obtain∥∥pt+1 − p∗
∥∥2

2 6
∥∥pt − p∗∥∥2

2 + 2γ2
∑
j

αj〈Dt, ∂Lj〉+ γ2 ∥∥Dt
∥∥2

2 +

− 2γ
∑
j

αjLj + γ2
∑
j

α2
j ‖∂Lj‖

2
2 − 2γε. (28)

I Lemma 19. Let Cj be a convex function, and Lj be the function defined by Lj(p) =
(
C+
j

)2.
Then for any p

‖∂pLj(p)‖2 = 4Lj(p) · ‖∂pCj‖2

Using Lemma 19 we can estimate∥∥pt+1 − p∗
∥∥2

2 6
∥∥pt − p∗∥∥2

2 + 2γ2
∑
j

αj〈Dt, ∂Lj〉+ γ2 ∥∥Dt
∥∥2

2 +

+
∑
j

(
−2γαj + 4|J |γ2α2

j ‖∂Cj‖
2
)
Lj − 2γε. (29)

where we denote ∂Cj = ∂ptCj(pt). Now we get rid of tems 〈Dt, ∂Lj〉. By the Cauchy-
Schwarz Inequality, we have for any positive number θj

2〈Dt, ∂Lj〉 6
1
θj

∥∥Dt
∥∥2 + θj ‖Lj‖2

Using again Lemma 19 we finally obtain

∥∥pt+1 − p∗
∥∥2

2 6
∥∥pt − p∗∥∥2

2 +

γ2 +
∑
j

γ2αj
θj

∥∥Dt
∥∥2

2 +

+
∑
j

(
−2γαj + 4|J |γ2α2

j ‖∂Cj‖
2 + γ2θjαj ‖∂Cj‖2

)
Lj − 2γε. (30)

The coefficient of the term Lj is negative as long as

−2 + 4|J |γαjMj + γθjMj < 0

Setting θj = αj and αj = 2
(4|J|+1)Mj

we get∥∥pt+1 − p∗
∥∥2

2 6
∥∥pt − p∗∥∥2

2 + (|J |+ 1)γ2 ∥∥Dt
∥∥2

2 − 2γε.
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To minimize the right-hand side we choose

γ = ε

(|J |+ 1)‖D‖2
2

which yields

∥∥pt+1 − p∗
∥∥2

2 6
∥∥pt − p∗∥∥2

2 −
ε2

(|J |+ 1)‖D‖2
2
. (31)

From this equation we easily conclude the result.

D Proof of Theorem 14

For every p = p(z, ·) we compute

∂pC1,z(p) = [1, . . . , 1] , ∂pC1,z(p) = [−1, . . . ,−1]

where both vectors have |X | = 2` components and that

−
∑
x

1p(z,x)<0ex ∈ ∂pC3,z(p),
∑
x

1p(z,x)>0ex ∈ ∂pC3,z(p)

where for shortness we use the following notational convention: the vector ex has 1 at
position x and 0 elsewhere, and for any predicate A the function 1A outputs 1 on instances
where it is satisfied and 0 elsewhere. In particular, since X has 2` elements, we have
I Claim 2. Calculating subgradients requires O(2`) extra computations in every round of
Algorithm 2, given we store pi from the previous round (for C3 and C4 we scan entire X
and read all components of pi−1).
It is now easy to calculate constants in Theorem 3
I Claim 3. We can take D = 2`, R = 1, M1 = M2 = 2` and M3 = M4 = 1.
Since |J | = 4 by Theorem 3 we obtain h = p(z, x) of complexity O

(
22`ε−2) such that

δD(h; f) 6 ε,
∑
x max (p(z, x)− 1, 0) 6 ε ∀z ∈ Z,

∑
x max (−p(z, x)− 1, 0) 6 ε, ∀z ∈ Z

and β(z) − ε 6
∑
x h(z, x) 6 β(z) + ε ∀z The constraints are almost satisfied, it suffices

to apply a mass-shifting argument. Define θ(z, x) = 1− h(z, x) if h(z, x) > 1 and θ(z, x) =
−1−h(z, x) if h(z, x) < −1. Setting h′(z, x) = h(z, x)+θ(z, x) we fix the constraints C3,z 6 0
and C4,z 6 0, the constraints C1,z and C2,z get violated at most by an extra additive term
ε. Then we put h′′(z, x) = h′(z, x) · β(z)∑

x′
h(z,x′)

and get
∑
x |h′′(z, x)− h′(z, x)| 6 2ε, and

hence
∑
x |h′′(z, x)− h(z, x)| 6 3ε for every z. Thus, the constraints are satisfied and the

computational distance is at most ε+ 3ε = 4ε, essentially the same up to a constant. Note
that the last step can be realized with O

(
2`
)
operations given the vector p in the storage

at the last step of the algorithm.
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