Revisiting Structure Graphs: Applications to
CBC-MAC and EMAC

Ashwin Jha and Mridul Nandi

Indian Statistical Institute, Kolkata
ashwin. jhal991@gmail.com, mridul.nandi@gmail.com

Abstract. In Crypto’05, Bellare et al. proved an O(£¢*/2™) bound for
the PRF (pseudorandom function) security of the CBC-MAC based on
an n-bit random permutation IT, provided ¢ < 2"/3. Here an adver-
sary can make at most g prefix-free queries each having at most £ many
“blocks” (elements of {0,1}™). In the same paper an O(£°"V¢?/2"™) bound
for EMAC (or encrypted CBC-MAC) was proved, provided ¢ < on/4,
Both proofs are based on structure graphs representing all collisions
among “intermediate inputs” to Il during the computation of CBC. The
problem of bounding PRF-advantage is shown to be reduced to bounding
the number of structure graphs satisfying certain collision patterns. In
the present paper, we show that the Lemma 10 in the Crypto ’05 paper,
stating an important result on structure graphs, is incorrect. This is due
to the fact that the authors overlooked certain structure graphs.
This invalidates the proofs of the PRF bounds. In ICALP ’06, Pietrzak
improved the bound for EMAC by showing a tight bound O(q*/2™) under
the restriction that ¢ < 2/8. As he used the same flawed lemma, this
proof also becomes invalid. In this paper, we have revised and sometimes
simplified these proofs. We revisit structure graphs in a slightly different
mathematical language and provide a complete characterization of cer-
tain types of structure graphs. Using this characterization, we show that
PRF security of CBC-MAC is about oq/2" provided ¢ < 2"/3 where o
is the total number of blocks in all queries. We also recover tight bound
for PRF security of EMAC with a much relaxed constraint (£ < 2"/%)
than the original (¢ < 27/%).

Keywords: CBC, EMAC, ECBC, FCBC, structure graph, accident

1 Introduction

BRrIEF HIiSTORY ON CBC AND EMAC. The notion of authentication in cryp-
tographic protocols was first introduced by Diffie and Hellman in their seminal
paper [9] of 1976. In symmetric key settings, this need is fulfilled by message au-
thentication codes, better known as MACs. CBC-MAC is a block cipher based
MAC construction which is based on the CBC mode of operation invented by
Ehrsam et al. [13]. The CBC-MAC was an international standard [1] which
was proven to be secure for fixed length messages [2,5] or prefix-free message
spaces [30, 16]. The fixed length constraint is not desired in practice. One way to

circumvent this is to use the length of message as the first block in CBC compu-
tation. This requires prior knowledge of the message length. A more reasonable
and popular approach is to encrypt the CBC output with an independent keyed
permutation. This later approach is called the EMAC which has been proved
to be secure without any restrictions on the message [30]. We refer readers to
section 2 for a brief overview of literature related to CBC-MAC.

CBC AND EMAC FuncTIONS. Throughout the paper, we fix a positive integer
n and let B := {0,1}". Elements of these sets are called blocks. Let Perm :=
Perm(n) be the set of all permutations over . The CBC (cipher block chaining)
function with key 7w € Perm, denoted by CBC,, takes as input a message M =
(M[1],...,M[m]) € B™ and outputs a block out™(M)[m] which is inductively
computed as out™(M)[0] = 0™ and

owt™(M)[i] = w(owt™ (M)[i — 1] ® M[i]), i=1,...,m.

For 0 < i < m, in™(M)[i] := out™(M)[i — 1] ® M* and out™ (M)[i] are said to be
the intermediate input and output respectively. Fig 3 in section 3.6 provides an
illustration of CBC computation and intermediate values.

SECURITY DEFINITIONS. In this paper we consider two types of attacks for an
adversary which makes queries of at most £ blocks: atk = pf and atk = any mean
no query is a prefix of another and the queries are arbitrary distinct strings,
respectively. Let Adv%tk(q,é7 o) denote the marimum advantage attainable by
any adversary making q queries and the total number of blocks in all q queries
is at most o, mounting an atk attack, in distinguishing whether its oracle is F'
or a random function that outputs n bits.! To analyze the security of CBC and
EMAC for the random permutation I, the collision probability and full collision

probability

CP, (M, M) := Prp[CBCp(M;) = CBCp(Ms)]
FCP, (M, M) := PrH[outH(Mg)[mg] = outH(Mr)[j]; 3 (r,j) # (2,ma)]

were introduced for distinct messages M; and M, with lengths m; and mo
respectively. Moreover, let CP3'§ and FCP3 denote the maximum collision
and full collision probabilities respectively where the maximum is taken over all
distinct messages M, M’ having at most ¢ blocks and satisfies atk. In [3], the

following results were shown:
Adviiac(g,0) < (g) (CPYY +277), Adv%fBC(qJ) < qQ(FCPS; +46/2™).

As EMAC encrypts output of CBC-MAC under an independent key, as long
as there is no collision in the output of CBC-MAC, the final output behaves
randomly. This is essentially the same as the Carter-Wegman construction [33].

! In this paper, F is either CBC-MAC or EMAC based on the random permutation
IT on n bits (i.e., IT is chosen uniformly from Perm).

The CBC-MAC function can be similarly viewed as a (dependent) nested con-
struction in which the final encryption is computed under the same key as the
internal computation. This is why we need an extended definition of collision
which is appropriately captured by the full collision event. Thus, bounding PRF
advantages are reduced to bounding (full) collision probabilities. These are again
reduced to bounding the number of structure graphs as described in the following
paragraph.

STRUCTURE GRAPH. A block-vertex structure (BS) graph G with vertex
set V' C {0,1}™ associated to a message M and a permutation m, is the directed
edge-labeled graph induced by the edge set F consisting of all edges

e; s owt™ (M)[i — 1] = owt™(M)[i] := (out™ (M)[i — 1],out™(M)[i]), 1<1i<m.

The label for e; is L£(e;) = M|[i]. Note that a BS graph can be simply viewed as an
M-walk. Informaly, an M-walk is nothing but the walk generated by the message
M starting at 0™. In this paper we often use this equivalent representation of
BS graphs. A structure graph G* over a vertex set V* C Z(an index set) is
an isomorphic graph of the BS graph G mapping 0™ to 0. The labelled walk of
G is preserved in G* (in isomorphism sense) due to the isomorphism between G
and G*. So we can have a similar representation of a structure graph in terms of
walks. We refer readers to Definition 4 for a more formal definition of a structure
graph. The (block-vertex) structure graph is also similarly defined for a tuple
(or sometimes pair) of messages M = (M, ..., M,).

Given a structure graph G* = (V*, E*), suppose we reconstruct the graph by
defining edges one by one along the M-walk. Now there are three possibilities at
any point of time: (1) we add a new edge heading to a new vertex (not obtained
so far) (2) we get an old edge which is already defined and (3) we add a new edge
heading to an already existing vertex. True collisions correspond to the last case.
The number of such true collision can be equivalently defined as the following
sum

TC(G) :=in — deg(0™) + Z (in — deg(v) — 1).
veV\{0}

Let us assign a variable Y,,, meant for the intermediate output, for each node
v € V*. Let 0 := (u,v ; z) be a triple such that u — 2z, v — z and u # v. We call
such triple input-collision (also called collision). Given any such input-collision
the following linear equation, denoted by Ls must hold whenever Y-variables are
actually assigned as intermediate outputs:

Y, ®Y, = ¢s where ¢s = L(v,2) ® L(u, 2).

When 0 has no in-degree, the accident of a structure graph G*, denoted by
Acc(@), is the rank of all linear equations Ls over all collisions of the graph.
When 0 has positive in-degree we add one to the rank to define the accident. In
section 5, we provide a more detailed study on the structure graph.

A Flaw in [3, Lemma 10]. The Lemma 10 of [3] states that for any structure
graph G* realized by a pair of messages Acc(G*) = 1 implies TC(G*) = 1.

This result has been used to bound FCP,, (in [3]) as well as CP,, (in [3,31]).
Unfortunately, the claim is incorrect as illustrated in Fig. 1 where we have two
structure graphs with true collision 2 and accident 1. Surprisingly, this flaw
remained unobserved till now, although it has been applied for other results.

Fig. 1: Counter-example for [3, Lemma 10]. The walks corresponding to the two mes-
sages start at v, and end at vs. Here Ma[1] := M;[1] & M1[2] & M;[3] and * can be
any number of blocks. In particular when % has no block, the figures in (a) and (b) are
identical. In (a) we have two input-collisions 61 := (v1,v2 ; v3) and &2 := (v1,v2 ; v3).
The two linear equations Ls, and Ls, corresponding to the two input-collisions are
the same as Yy, ® Yy, = Mi[1] @ M:1[2] and so the rank of all collisions (which is also
the accident) is one. However, true collision is two (at v and vs) which contradicts [3,
Lemma 10]. A similar argument can be given for (b).

1.1 Owur Contributions

The flaw in [3, Lemma 10] is an important observation that affects several re-
sults [3,31,15,35] based on it. Naturally, the next course of action should be
to study the impact of this flaw to those results in addition to [3], where it
has been applied. This work serves this purpose. To our best knowledge, it has
been applied in [31] and probably in [10, Lemma 3] (no proof of this claim is
publicly available though). The bound on FCPSTZ (see [3]) is also used in the

PRF analysis of truncated CBC [15]. Any revision in the FCPS; bound [3] will
also necessitate revision of bound in [15].

Characterization of all accident-one structure graphs. As [3, Lemma
10] is wrong and we have identified two graphs which violate this lemma, it is
important to see whether there are any more missing cases. We first settle this
issue and show that these are the only missing cases. To do so, we characterize
all structure graphs (realized by a single message) having at most accident 1
(see Lemma 4. This will actually help when we study structure graphs for two
messages.

Revision of the CP and FCP, and PRF bound of CBC. We revise the
FCP bound of [3]. Fortunately, the upper bounds of FCP and hence PRF

Table 1: PRF upper bounds for CBC-MAC, EMAC, ECBC and FCBC. Entries in
boldface are proved in this paper.

Construction Best Known Result This paper

CBC-MAC(prefix-free) O (%) for ¢<27* [3]* | O (g2) for £ < 27/
EMAC 0 (gé) for £ <23 [31]° | O (gi) for £ < 2n/4
ECBC) (2—2) for £ <275 [31]° | O (;L) for £ < 2/
FCBC) (ng) for €< 2"/ 23] | O (;L) for £ < 2/

¢ Proof is flawed.

advantage of CBC, are only increased by a constant factor keeping the order of
the bound unchanged (see section 7). In case of the CP bound due to Bellare et
al. [3] their [3, Lemma 15] used to bound the main claim is false. Fortunately, it
can be shown that the main claim remains true after revision.

Revision of the PRF bound of EMAC, ECBC and FCBC. We revisit
Pietrzak’s [31] proof of the PRF bound for EMAC in section 8. Unfortunately,
a straight forward revision gives a non-tight bound on EMAC. Then, we take a
different approach (by considering a different bad event) to show in Theorem 3
the tight bound for EMAC. Our approach is much simpler and gives the tight
bound even for a more relaxed choice of £, namely ¢ < 2"/4, whereas the original
constraint was ¢ < 2"/%. Furthermore, small tweaks in the proof give similar
bounds for ECBC and FCBC.

Other Consequences. The CP and FCP bounds in [3] have been used in mul-
tiple subsequent works. For instance, Gazi et al. [15] applied this result to bound
the probability of a bad event in PRF analysis of truncated CBC. Similarly, Ya-
suda [35] used the CP bound of [3]. Fortunately, the proofs in these works hold
with small changes in constant factors. Since these changes are minor, in this
paper we concentrate solely on [3,31].

2 Related Works

The security of MAC constructions has seen constant research interest. Among
the block cipher based constructions CBC-MAC and its variants are the most
popular. Here we try to summarize the research on PRF security of CBC-MAC
and its variants. The aim is to list the state of the art results as well as emphasize
the progress that has been made till date.

e Analysis of CBC-MAC. First concrete results on CBC-MAC were given
by Bellare et al. [2]. They showed a bound of 2¢2¢?/2" for fixed length

queries, which was further improved to ¢2¢*/2" by Maurer [22]. Later Bern-
stein [5] simplified the proof for fixed-length CBC-MAC. Petrank and Rack-
off [30] extended the proof in [2] to prefix-free queries and a similar extension
on Bernstein’s proof was done by Rackoff and Gorbunov [16]. Both bounds
are about £2¢?/2". The most recent bound on CBC-MAC is by Bellare et
al. [3] who improved (in terms of £) the bound to 12¢¢*/2" + 64¢%¢? /22",
Another way of improving the bound is to show the PRF bound of the form
qo /2™ (see [26]).

e Analysis of EMAC. In [2] Bellare et al. also suggested some variants of
CBC-MAC to handle variable length messages. In particular, they mentioned
a construction where the output of CBC-MAC is further encrypted by an
independent key. This construction known as EMAC was first developed
during the RACE [4] project. Petrank and Rackoff [30] proved that DMAC
(same as EMAC) is secure up to 2.5¢2¢%/2". Bellare et al. [3] improved the
bound to ¢? - d’(¢)/2" which was further improved by Pietrzak [31] to ¢?/2"
for £ < 27/8. However, the proof of the later result is invalid due to the flaw
that we discussed earlier. A result on CP3, stated in [10] also gives a tight
bound of O(q?/2") for equal length messages.

e Analysis of variants of CBC-MAC and EMAC. Although the EMAC
construction is tolerant to variable length messages it has a domain lim-
ited to BT. Black and Rogaway [7] introduced three refinements to EMAC,
viz., ECBC, FCBC and XCBC to allow use of variable block length strings.
They showed that ECBC and FCBC are secure upto 2.502/2" [7] and the
bound on XCBC is 3.750%/2™ [7]. Jaulmes et al. [19] gave a randomized
version of EMAC which they called RMAC and proved that the construc-
tion resists birthday attacks. However the proof seems to be incorrect (as
suggested in [3]). Other excellent variants of CBC-MAC are TMAC [21],
OMAC [17] and GCBC [24]. A variant of OMAC, namely OMACI is equiva-
lent to CMAC which became an NIST recommendation [12] in 2005. Another
design approach is the PMAC construction proposed by Black and Rog-
away [6] which is inherently parallel. In [23, 18,27, 25] the improved bounds
for XCBC, TMAC, PMAC and OMAC are shown in the form of O(¢q?/2"),
O(0?/2™) and O(oq/2™). Apart from these specific constructions Jutla [20]
suggested a general class of DAG-based PRF constructions.

Beyond Birthday Bound (BBB) Security. Another direction of research
is BBB security, where the aim is to achieve more than n/2-bits security in o.
Among the block cipher based BBB secure MACs, PMAC _Plus [36] and 3kf9 [37]
are two efficient candidates. Both these candidates are three-key constructions.
Recently, Dutta et al. [8] proposed a one-key candidate named 1kf9, which also
offers beyond birthday security of 3kf9.

Structure Graph Analysis. Structure graphs are the basic tool for analyzing
sequential construction based on random permutation as evident from the work
on CBC based MACs [3,31,15] and 1kf9 [8]. Although structure graphs have
been mainly used in analysis of random permutation based constructions, they

have also found application in random function based construction as evident
from the analysis of NI MAC by Gazi et al. [14] and the one key compression
function based MAC by Dutta et al. [11]. From our observation these later
works[14, 8, 11] are free from the flaw that we observed for [3, 31].

3 Preliminaries

Basic NoTATION. Throughout the paper, we fix a positive integer n. Let Perm
be the set of all permutations on B := {0, 1}". Elements of B are called blocks.
For any two integers a < b, we write [a..b] (or simply [b], when a = 1) to denote
the set {a,a +1,...,b}. Let ¢ be a property defined for the elements of S. We
define the subset
Sl def {z € S : x satisfies ¢}.

The above set will appear in this paper many times for different choices of S
and ¢. Let P(m, k) :=m(m—1)---(m—k+1) denote the k-permutations of m.

3.1 Notation on Sequences

Let Z and S be two sets. A S-sequence x over the index set Z is denoted as
(z[a])acz where z[a] € S for all @« € Z. The length of the sequence is |Z|, the size
of the index set. In this paper we mostly consider block sequences, i.e. S = B.
When the index set is [a..b], we also write the sequence as a tuple or vector
z[a..b] :== (z[a], ..., z[b]). Sometimes, by abusing notation, x also represents the
set {z[a] : &« € T}. Similarly z[a..b] represents {z]a] : « € [a..b]}. We write #z
to denote the number of distinct elements in the sequence x. We write ST and
5=t .= U;<¢S* to represent the set of all S sequences of positive and finite length,
and of length at most ¢, respectively. Now we define an equivalence relation that
captures the equalities among the elements of the sequence x.

Definition 1. Given a sequence x over an index set I, we define an equivalence
relation ~, over the index set as follows: a ~, B if x[a] = z[F].

Let p: D — R. Let = and y be, respectively, D- and R-sequences over an index
set Z. We write 2 — y to mean that p(z[a]) = y[a] for all & € Z and we simply
say that p multi-maps x to y. This is a property of function p. When D = R, the
subset Perm[z —— y] represents the set of all permutations 7 multi-mapping
to y. We say that (x,y) is permutation compatible if there exists a permutation
7 such that z — y. It is easy to see that (z,y) is permutation compatible if
and only if ~p=n~,,.

3.2 Notation on Strings

We call B an alphabet and its elements will be referred to as letters. A string
over the alphabet B is an element of B*. We can also say that a string is a
finite concatenation S := ay|las]|...|la¢ where a; € B. Note that the elements

of B are also strings. We can also view strings as B-sequences over an index set
Z. The length of a string S, denoted by |S| is defined as the total number of
letters in it. Note that for an empty string the length will be 0 as it does not
have any letters in it. For a string S = X||Y, X (respectively Y) is said to be a
prefiz (respectively suffiz) of S. We write X <1 S if X is a prefix of S. We write
X <3 Sif X[1.x — 1] <1 S but X|[z] # S[s], where = |X| and s = |S|. For
two strings S; and Sy of lengths s; and s, respectively, a non-negative integer
p := LCP(S1;S2) (respectively s := LCS(Sy;S2)) is called the index of the largest
common prefix (respectively largest common suffiz), if Si[l..p] = Sa[l..p] and

Silp + 1] # Sa[p + 1] (or Si[s..s1] = Sa[s..s2] and Si[s — 1] # Sa[s — 1]).

3.3 Basic Definitions and Notation of Graph

DIRECTED EDGE-LABELED GRAPH. A directed edge-labeled graph is a pair G :=
(V,E) with E CV x V x L where V is the set of vertices, L is the set of edge
labels, and E is the set of edges along with their corresponding labels. In this
paper we will consider only those directed edge-labeled graphs where for each
pair of vertices u,v € V there exists at most one label a € L with ((u,v) ; a) € E.
We also write u —— v to mean that ((u,v) ; a) € E.

Convention: By abusing notation, E also denotes the set of unlabeled edges and
the label a of the edge e := (u,v) is expressed as Lg(e) (this notation makes sense
as there is a unique choice of the label for an edge) or simply L(e) whenever the
graph is understood.

For an edge e := (u,v), vertex u is called a predecessor of v, and v a successor
of u. An edge (u,v) is called a loop if u = v. We define two sets:

1. The predecessor set of a vertex v is nbd(x — v) := {u : (u,v) € E}.
2. The successor set of v is nbd(v —) :={u: (v,u) € E}.

The sizes of the predecessor and successor sets of v are called in-degree and
out-degree respectively. We implicitly assume that no vertex has both in-degree
and out-degree 0. So the vertex set and hence the graph without the edge labels
is uniquely determined by the edge set.

Definition 2 (walk). A walk of length s is defined as a vertexr sequence w :=
(w[0],...,w[s]), such that w[i — 1] — w[i] for all i € [s]. We define the label of
the walk as L(w) := (a1,...,as) where a; = L(w[i — 1], w[i]), ¢ € [s].

Since a walk is a V-sequence over the index set {0,1,...,s}, we define a
subwalk wla..b] := (wla],...,w[b]) where 0 < a <b < s.

When all vertices of a walk sequence are distinct, we call it a path. When all
vertices w(0],. .., w[s — 1] are distinct and w[s] = w[0] then we call it a cycle.
Other special examples of walks, which will be studied later in the paper, are p
walks and p’ walks.

A p walk is a walk w := (w[0],...,w[s]) such that for some 0 < i < j <'s,
w[0..j — 1] is a path, w[j] = wi] and for all j < k < s, w[k] = w[i + r] where

0<r<(j—i)and (k—r) is a multiple of (j —i). It is illustrated in Fig 2(a). In
words, a p walk comes back to one previous vertex (which makes a cycle) and
afterwards it remains in the cycle.

A p’ walk is an extension of a p walk that leaves the cycle and does not come
back. It is illustrated in Fig 2(b). Note that the lengths of the subwalks labeled
with * can be zero.

v1 * v2 vy * Vo
'/% '/@_/:?
(a) p walk (b) p’ walk

Fig. 2: The graphs corresponding to p and p’ walks. Note that the lengths of the parts
labeled with * can be zero.

A directed edge-label graph G = (V, E) is called a function graph if for all
v € V, there do not exist two distinct successors v1 and vy of v with Lg (v, v1) =
L (v,v2). In other words, for every vertex v and any label a we can find at most
one successor w for which the label of the edge (u,v) is a. This observation can
be extended for a walk in a function graph G as follows:

wl[O] = wg[O],E(wl) = ﬁ(wg) = W1 = Wa2.

So if there is a walk with label M then it must be unique and we call such a
walk M-walk.

3.4 PRF Advantage of a Keyed Function

If S is a finite set, then x <% denotes the uniform random sampling of z
from S. Let D C Bt be a finite set. A random function from D to B is

RF(D) & Func(D, B), the set of all functions from D to B. When the domain D
is understood, we simply write the random function as RF.

Definition 3. Let F' be a keyed function from D to B with a finite key space
K. We define the prf-advantage (or pseudorandom function advantage) of an
adversary A against F' as

Advi(A) & prafc = 1: K & K] — PrARF = 1],

The mazimum prf-advantage of F is defined as

Advitk(q,¢,0) = max Advik(A)

where the maximum is taken over all adversaries A making at most g queries
from the domain D, say Mj,..., M, with M; € B™:, such that > ,m; < o

and max; m; < {. Note that atk = pf means none of the query is a prefix
of another; atk = eq means the queries are of equal length; and atk = any
means all queries are arbitrary distinct strings. This is an information theoretic
definition and we allow an unbounded time adversary. There is no loss to assume
that A always makes exactly ¢ distinct queries, represented by a sequence say
M = (My,...,M,). In this case for any T = (11, ...,T,) € B9, we have

Prre[M 5 T) = 277,

3.5 Coefficient-H Technique

Let A be an adversary which makes ¢ distinct queries (possibly adaptive) to F.
Let the queries be x1, ..., x4 and the corresponding F' outputs be y1,...,yq. Let
view(AT") denote the g-tuple of pairs ((x1,¥y1), ..., (z4,y4)) Where z; denotes the
it" query and y; is the corresponding response.

For any g-tuple of pairs 7 = ((@1,¥1), - .., (&4, Yq)), the following probability

def

IPE (1) Prpf(a, ..., 2q) — (W1s .- ¥g)]

is called the interpolation probability, where the probability is taken under the
randomness of F’s key. Here we assume that F' is stateless and so the above
probability is independent of the order of the pairs.

Theorem 1. [Coefficient-H Technique] Let Tgooa be some set of g-tuples of
pairs. Suppose the interpolation probability for a (stateless) oracle O follows
the inequality

IPO(r) > (1—¢) - IPFF(7) = (1 —)27 Vre Tgood-
Then, for any adversary A we have,
AdvEE(A) < e + Priview(ARF) ¢ Too0d)-

This technique was first introduced by Patarin in his PhD thesis [28] (as men-
tioned in [32]). The proof of this theorem can be found in [29]. So we skip the
proof. We use this theorem to bound the PRF advantage of CBC function defined
in the next subsection.

3.6 CBC-MAC and EMAC Functions Based on Permutations

CBC FuNcTION. The CBC (cipher block chaining) function (see figure 3) with
an oracle 7 € Perm, viewed as a key of the construction, takes as input a
message M = (M[1],..., M[m]) € B™ with m blocks and outputs CBC, (M) :=
out™(M)[m]. This is inductively computed as follows: out™(M)[0] = 0™ and

out™ (M)[i] = w(in™(M)[i]), in™(M)[i] = out™(M)[i — 1] & M[i], i€ [m]. (1)

We call in™ (M) and out™ (M) intermediate input and output vectors respec-
tively, associated to 7. Note that the intermediate input vector in” is uniquely
determined by out”™ (and does not depend on the permutation 7). We can write
down this association generically as a function out2iny; : B™ — B™ mapping any
block vector y to a block vector x where x[1] = M([1] and «[i] = y[i — 1] & M]3
if 1 < < m. So for all permutations m € Perm, we have out2in(out™) = in".

Fig. 3: CBC function and its intermediate values.

EMAC FuncTION. The EMAC function (E for encrypted) is derived from the
CBC function by additionally encrypting the output with another permutation

' € Perm. Formally, EMAC, (M) % #/(CBC,(M)).

4 PRF Analysis of CBC and EMAC

In this section we quickly recall the PRF analysis of CBC and EMAC as done
in [3,31]. Here CBC is based on a uniform random permutation IT chosen uni-
formly from Perm and EMAC is based on two independent random permutations
IT and II'. In this section we reduce the bounding PRF advantages of CBC and
EMAC to the full bounding collision and collision probability respectively. We
use the coeflicient-H technique rather than the game playing technique used
in [3].

4.1 PRF Advantage of EMAC

Let M7 and Ms be two distinct tuples of blocks. Let coll,(M;y; Ms) denote the
event that CBCr(M;) = CBC(M;) and we call it the collision event for a pair
of messages M; and M,. We similarly define the collision event for a tuple of
g > 2 distinct messages M = (M, ..., M,) as

coll (M) = [] collx(M;; M;).
i#]

We define the collision probability as CP,,(M) = Pr|coll 7 (M)].
Let CP2% = max CP,,(M) where the maximum is taken over all g-tuples

of distinct messages M having at most £ blocks each and satisfy atk (i.e., when

atk = eq, messages must have equal length, similarly when atk = pf no mes-
sage is prefix to others, and finally atk = any means no restriction other than
length restriction). Following [3], we view EMAC as an instance of the Carter-
Wegman paradigm [33]. This enables us to reduce the problem of bounding the
prf-advantage of EMAC to bounding the collision probability as

an an q(q _ 1)

AdVEI\);[AC((LK) S CPq’z + W (2)
Note that CP?" < (4)CP37 as the collision for ¢ messages is the union of

collision events for each of the (g) pairs of messages. Bellare et al. [3] proved

that 2(0) 0t
2 6

any
CP3Y <

where d'(¢) = maxy <, d(¢') and d(¢’) is the the number of divisors of ¢. In [34],
Wigert showed that d’(¢) = ¢/€nné) — po(1) Using this bound of collision
probability for a pair of messages, we see that the prf-advantage of EMAC is
about O(d’(£)q?/2") for £ < 2"/, Later Pietrzak [31] provided an improved anal-
ysis of EMAC and proved that the PRF advantage of EMAC is about O(g?/2")
for ¢ < min{q'/2,2"/%}. We revisit this improved analysis later in section 8. A
related claim on CP is CP;‘?Z =27+ (d(£))?-£-272" +£6.273" (see [10]) which
gives tight bound for equal length messages.

4.2 PRF Advantage of CBC

Now we revisit the security analysis of CBC-MAC construction. Let Fcoll . (M7; Ms),
called full collision, denote the event that

in™(Ms)[mz] = in™ (M,)[j] for some (r,j) # (2,m2).

In other words, if the full collision event does not hold then the last intermediate
input of 7 is “fresh” (not appeared before) while computing CBC (Mz). So when
7 is replaced by a random permutation and this event does not hold then the
CBC-output should behave “almost” randomly. We use this intuition while we
provide a bound of prf-advantage of CBC.

Remark 1. We would like to remark that in the original paper [3], the full colli-
sion event is defined through the intermediate outputs instead of inputs. Since we
consider CBC based on permutation only, equalities among inputs and equalities
among outputs are the same.

For a ¢-tuple of messages M, the union of full collision events is similarly
denoted by Fcoll;(M). The probability of this event, called full collision prob-
ability, is denoted by FCP,,(M). The maximum full collision probability is
denoted by FCPZ%. Similar to inequality 2, the following result has been proved
in [3].

Advil(q,0) < *(FCPY, +4¢/27). (4)

Note that we must restrict the adversary to make prefix-free queries, since oth-
erwise it would be easy to distinguish CBC from a random function (using the
classical length extension attack). Similarly, if M is a prefix of M, it is easy
to see that FCP, (M7, Ms) = 1 so the above result becomes meaningless. As
before, we also state an equivalent form of PRF advantage of CBC in terms of
full collision probability among ¢ messages. The above inequality 4 would be
again a straightforward application of the following result.

20 2

s f f q q
Proposition 1. We have Advgpq(g,4,0) < FCPY, + on + IESE

Proof. Let Tyooq := ((M1,Th), (M2, Ts),. .., (M, T,)) be the set of all pairs of
M = (My,...,.My) € (B")? and T = (T1,...,T,) € B? such that the M; are
distinct and the T; are also distinct. Trivially, random function RF returns a
collision pair on any ¢ distinct queries with probability at most (3)2_" for any

adversary A. Thus,

q2

2n+1'

Pr{view(ARF) & Tyo0a] <

Using the coefficient H-technique, now we only need to bound the relationship
between the interpolation probabilities. We fix M = (M, ..., M,) € (B1)? and
T = (T1,...,T,) € B? such that the M; € B™ are distinct and the T; are also
distinct. Let m; < £ for all ¢ and we write) ., m; = m < 0. Now, a permutation
7 is called bad if

1. Feoll;(M) holds, or
2. out™(M,)[i] = T,, for some r, 7’ € [q],% € [m,].

All other permutations are called good. We define an equivalence relation ~ on
Perm as m ~ 7" if in™ (M,.) = in”,(M,.) for all r. It is clearly an equivalence rela-
tion and a good permutation can only be related with another good permutation.
Let C be an equivalence class consisting of some good permutations. Let s be
the number of distinct intermediate inputs for the computation of all CBC (M)
where 7 € C. Note that s is the same for all 7 € C. Then, |C| = (2" — s)!, as the
outputs of exactly s inputs of 7 are determined. Since the T; are not intermediate
outputs, we have

ICIM B 7] = (2" — 5 — q)!

(since ¢ additional restrictions on input-output are being added). So for any class
of good permutations C,

n_g_—qg)!
Pim B 7 rec) = 25D S gona,
(2n — s)!
Thus,
Prim B9 11> ST Prim B T | I e] x Pr{IT € C]

> Pr[II is good] x 27 ™4,

So it is sufficient to bound a random permutation being bad. Then we will be
done by using the coefficient H-technique as stated in theorem 1. By definition
of full collision probability, the first condition for a permutation to be bad can
happen with probability at most FCPZTZ. The second condition says that we
sample at most m outputs of a random permutation and one of them belongs to
the set {T1,...,Ty}. This can happen with probability at most mgq/2™ — m which
is further less than mq/2" ! provided m < 2"~ 1. Note that m < o. If m > 2n~1
then the above bound holds trivially. So the probability of bad permutation is
bounded by FCPZT@ +mq/2" L. After applying the coefficient-H technique, we
have proved the result. a

Remark 2. Note that FCPZ; < q(g—1)FCP3Y by considering all ordered pairs
(M;, M;). This also proves the original claim from [3] as stated in inequality 4.
In fact, it is potentially a better bound than the original as it uses the total
number of blocks o instead of £g. In [3], it is proved that

¢ 8 64t
FCPy, < on e (5)

In section 7 we revisit the above bound. In particular we revise the proof in light
of the flaw in [3, Lemma 10] and get an increment in the multiplication factor.
Moreover, our revised bound of FCPZfZ would be in the order og/2" instead

of £g%/2" (whenever £ < 2"/3). So our analysis rectifies the previous proof and
also provides a better bound in some cases (e.g., average message length is much
smaller than the length of longest messages which may occur when message
lengths are very skewed).

5 Revisiting Structure Graph

In the previous section we have seen how the PRF advantage of CBC or EMAC
is essentially reduced to bound some collision events of internal inputs or outputs
of the underlying permutation. Thus, it would be useful to have an object which
deals with the intermediate inputs and outputs. The structure graph does so
and it has been used to bound the (full) collision probabilities in [3]. In this
section we revisit the structure graph and show that one of the main claims
in [3](namely, [3, Lemma 10]) about structure graphs is false.

Notation and Conventions for this section: Let us fix a tuple of messages
M = (My,...,M,) throughout this section where M; € B™ and let m :=
>od_ m; and max; m; = £.

5.1 Intermediate Inputs and Outputs

Index Set. We first collect all intermediate inputs and outputs which are ob-
tained through the computation of CBC, (M) for all r. These intermediate val-
ues will be defined as a sequence over a two-dimensional index set. Each index

is a pair where the first element of the pair corresponds to the message number
and the second element is the block number of that message. More formally, we
define the index set

7= {(T,i) ire [Q]vi € [mr]}

and the dictionary order < on it as follows: (r,é) < (v/,4¢) if r <7’/ or r =1/
and i < ¢'. Let z be a sequence over this index set. For any r € [q], we denote
the subsequence (z[r,1],...,z[r,m;]) by z[r,*]. Sometimes we also consider the
index set Zyp = ZU {(r,0) : r € [¢]}, and the natural extension of the order < on
T,

Sequences for Intermediate Inputs and Outputs. We denote the sequences
of intermediate outputs and inputs over the index set Z as out™ (M) and in™ (M)
respectively where

out™(M)[r, %] = out™ (M), in"(M)[r,*] =in"(M,), Vr € [q].

For a single message, we have seen before that the intermediate input sequence
is uniquely determined by the intermediate output sequence and we denote the
association by a function out2in. The same is true for ¢ messages and we extend
this definition as follows: Given any block sequence y over the index set Z,
we define out2in(y) as a block sequence x over the same index space where
x[r, %] = out2inyy, (y[r, *]), 7 € [¢]. Thus, for any =, we have out2in(out™) = in”.

5.2 Structure Graphs and Block-Vertex Structure Graphs

A block-vertex structure graph is a graph theoretical representation of interme-
diate output out™. The block-vertex structure graph Bstruct™ for a permu-
tation 7 is defined by the set of labeled edges

E Y UI_ {(out™[r,i — 1], 0ut™[r,q] ; M,[i]) : i € [m.]}-

Clearly, G is a union of M;-walks for all i € [¢], and vertex 0™ € V has positive
out-degree. Let Bstruct(M) denote the set of all block structure graphs for the
tuple of messages M. Note that as explained below,

viwwéﬂ(v@/l):w. (6)

So for every v € V, all outward edges (similarly for inward edges) have distinct
edge labels. Using this property, it is easy to see that the walks are unique and
we denote them by wyy, or simply w; whenever the message tuple is understood.
See Fig. 4 for a single message (i.e., ¢ = 1) in which the input and output vectors
are stored in a directed graph.

While storing the intermediate sequences as a set of labeled edges, we may
loose the order as well as the repetition of the elements. Interestingly, we see
that we can uniquely reconstruct the intermediate sequences from such an edge-
labeled graph by using uniqueness of M;-walks. More precisely, out™[r, i] = w,[].

1 2
i

2

Fig. 4: Let M; = (1,0,2,0,2) and 7(1) = 2, 7(2) = 3. For any such 7, we have out™ =
(0,2,3,2,3,2) and in™ = (1,2,1,2,1). However, the graph consists of three vertices
{0,2,3} and edge set E = {(0,2), (2,3),(3,2)} with labels 1, 0 and 2 respectively. We
see that the intermediate input and output sequences actually can be reconstructed
from this labeled structure graph. The walk corresponding to the message M; will
uniquely identify the output vector as out” = (0,2,3,2,3,2) and the input vector
in™ = (1,2,1,2,1) can be constructed using the relation between input, output and
message.

Let G = (V, E) be a labeled directed graph and f : V — V* a bijective
function. Then one can define a labeled directed graph G* = (V*, E*) isomorphic
to G for which f is an isomorphism. More precisely, ((u,v);a) € E if and only if
((f(u), f(v));a) € E*. When f is an injective function we can view the function
where the range set is the image set of the function and this makes the function
bijective. We call the graph obtained as described above a transformed G with
respect to f.

Definition 4 (structure graph). For every vertex v of a block-vertex structure
graph G = (V, E), we define a mapping « : V — T as «, = a(v) = (r,i) where
(r,1) is the minimum index such that w,[i] = v. Clearly, it is an injective mapping
with an tmage set say V*. The structure graph G* = (V*, E*) associated to 7 is
the a-transformed block-vertex structure graph.

Mi[1] vy Mi[1] (1,1)
Yo = 0" e———>4 (1,0) ———>0
M (1) i My 3] My 2] o, M,]1] i M, [3] My[2)
g(—{ 2(—{
Ys Mi[4] Ya (1,5) M1[4] (1,2)

(a) (b)

Fig. 5: Structure Graph corresponding to the labeled structure graph.

Ezample 1. Let My = (M;[1], M;[2], M;[3], M1[2], M1[4]) and My = (M3[1]) be
two messages and for 7 € Perm let in"[1,%] = (Yo & Ma[1],Y1 & M1[2],Y> &
Ml[g}, Yl D Ml [2], Y2 D M1 [4]), out“[l, *] = (Yb, Yl, Yg, Yl, YQ, YE;) and in’f[2, *] =
(Yo @ Ms[1]);0ut™[2,%] = (Yo, Y3). The corresponding block labeled structure
graph Bstruct” is as shown in fig. 5(a). Following the above steps we arrive at a
valid structure graph struct”™ in fig. 5(b).

Let w,* denote the M,-walk in G*. It is easy to see that a structure graph is
again an union of M,-walks w} starting from 0.2 A structure graph is called a
zero-output graph if 0 has positive in-degree, otherwise we call it non-zero
output graph. To express it mathematically, we define a binary function Iszero
such that for each zero-output graph G*, Iszero(G*) = 1, otherwise it maps to
0.

To reconstruct a block-vertex structure graph realizing G* we have to find
labels from B for all the vertices in a “consistent manner” and we call such a
labeling valid. Basically, we need to find an injective mapping o= : V* — B
such that image set of a1 is V and a := (a~!)~! is an isomorphism.

Definition 5 (valid block label). An injective function Y : V* — B is called
valid block label for a structure graph S = (V*, E*) if the graph G = (V, E)
s a block-vertex structure graph where

1. V={0"}U{Y;:=Y(i):i € V*} and
2. E is the edge set after relabeling i by Y; (we assume Yy := 0™).

NECESSARY CONDITION OF VALID LABELING FUNCTION Y. Now we try to
find necessary conditions of a valid labeling. First of all, by definition, Y; should
be all distinct as the valid block label is injective (distinct vertex should get
distinct block label). In addition to this, whenever e := (u, 2),e3 := (v,2) € E
we must have Y, @ L(e1) =Y, @ L(e2) as these are input for the vertex z. An
input-collision or simply a collision of a graph G is defined by such a triple
0 = (u,v; z). The set {u, v} is called the source of the collision whereas z is called
the head of the collision. We also say the edges e; and ey are colliding edges.
Thus, an input-collision § = (u, v; z) induces a linear restriction Ls : Y, ®Y, = ¢5
where ¢5 = L(u, 2) D L(v, z) € B. Thus, a valid block label must satisfy the above
condition for all collisions §. Let Ag« denote the set of all collisions of G*. Let
rank(G*) denote the rank of all linear equations {Ls : § € Ag~}. The accident
of a structure graph is defined depending on whether the graph is zero-output
or not.

Definition 6 (Accident of a structure graph). We define the accident of a

structure graph G* as Acc(G*) L rank(G*) + Iszero(G*). Thus, the accident of

a non-zero structure graph G* is defined to be rank(G*), whereas the accident of
a zero-output graph is rank(G*) + 1.

Lemma 1. If there is a vertex v with in-degree d then rank(G*) > d — 1. More-
over, if the graph is a zero-output graph then Acc(G*) > d.

Proof. Let vy,...,vg be all predecessors of v. Let us define an input-collision
0ij = (vi,v5;v). It is now easy to see that Ls,; = L1, ® L1 j. Moreover, the
Ly ;’s are linearly independent. Thus, the first part is proved, The second part
is also trivial from the first part and the definition of the accident. a

2 Note that, as per the convention used here and in the preceding discussion w; [i] =
a(wr(d]).

Remark 3. Another simple but useful observation is as follows: if a structure
graph G* has at least two collisions with different source, then rank(G*) > 2.

Let S = (V*, E*) be a structure graph with rank r and |V*| = s + 1. Then
from linear algebra we know that some s — r choices of Y; values will uniquely
determine the rest and so the number of valid block labelings is at most P(2", s—
7). Any valid choice of Y induces a block-vertex structure graph G = (V, E) such
that G* = S. Note that s+Iszero(G) is the number of vertices v € V with positive
in-degree. So exactly (2" — s — Iszero(G))! number of permutations can result in
a block-vertex structure graph G. Therefore,

(2" — (s + Iszero(G)))! 1

Pr[Bstruct’” = G] = - '
r[Bstruct G| on| P(27, s + Iszero(G))

(7)

So Prlstruct’” = S] = 3" .q-_g Pr[Bstruct”’ = GJ. Here the sum is taken over
all block-vertex structure graphs G such that the induced structure graph G* =
S. As there are at most P(2",s — r) many vertex-label structure graphs (by
bounding the number of valid block label functions as described above and using
s+ 1 < m), we proved the following important result.

Lemma 2. For any structure graph S with accident a, we have

Pr[strUCtH = S} S m.

Now we state another important result which bounds the number of structure
graphs with accident a. The proof of this result can be found in [3,31]. So we
skip the proof here.

Lemma 3. The number of structures graphs associated to M = (M, ..., M)
with accident a s at most (?)a In particular, there exists exactly one structure
graph with accident 0.

Corollary 1. Let a > 1 be an integer. Then,

$ m?\@

Pr[Acc(struct”) > a : IT < Perm] < (27> .

This can be shown by making a straightforward algebraic simplification after
applying the lemma 2 and lemma 3. So we skip the proof. a

5.3 True Collision and an Observation on [3, Lemma 10]

The definition of the accident is not obvious by looking at the structure graph. It
would be good to have some transparent definition for a structure graph. True
collision is such a metric. Let G* be a structure graph and w; the M;-walks.
Suppose we reconstruct the graph G* again by making all the walks w; for i =1
to g. While we walk along w; for all ¢ we count how many times we reach an
existing vertex which increases its current in-degree. The total count is defined

to be the number of true collisions of the graph. Mathematically, one can define
it as follows: For a vertex v € V* \ {0}, we define the number of true collisions

at v by TC(v) := |nbd(x — v)| — 1 and TC(0) = |nbd(x¥ — 0)|. So the above

count is actually the sum TC(G*) %ef > wev= TC(v). By lemma 1 we know that

Acc(G*) > TC(v) for all v € V*. From the definition of the accident it is also
obvious that Acc(G*) < TC(G*).

Lemma 10 of [3]. To identify all structure graphs with accident 1 it would be
good if we have some relationship between true collision and accident. Lemma 10
of [3] was meant for this. It says that when ¢ = 2, Acc(G*) =1 = TC(G*) = 1.
This lemma is wrong due to the following counter-examples given in figure 6. The
lemma has been used to bound the PRF advantage of CBC [3] and EMAC [31,
3]. As this becomes wrong, it would be very important to look back the proof
and rectify the results as much as possible.

(1,1
M (1]

(1,0

Fig. 6: The counter examples. (a) M1 = (M;[1], M1[2], M1[3], M1[2], M1[4]) and My =
(M2[1]) be two messages such that Ms[1] := Mi[l] @ M:[3] & M:1[4]. Here we have
two input-collisions §; := ((1,0),(1,2) ; (1,1)) and d2 := ((1,0),(1,2) ; (1,5)). The
two linear equations Ls, and Ls, corresponding to the two input-collisions are same as
Y(1,0)® Y(1,2) = M1[1] @ M1[3] and so the rank (which is also the accident in this case)
is one. However, true collision is two (at (1,1) and (1,5)) which contradicts [3, Lemma
10]. Similar arguments can be given for figure (b), where My = (M;[1], M1[2], M1[3])
and M> = (M>[1]), such that M>[1] := Mi[1] & M1[2] & M[3].

6 Characterization of accident-one structure graphs

In this section we characterize all structure graphs with accident 0 or 1. We have
already seen that the authors of [3] have missed some structure graphs for two
messages. Thus it is important to see whether there are other such graphs or not.
To do so we characterize single message structure graph which is much easier
to convince. Later in section we characterize all structure graphs for a pair of
messages satisfying some event. Note that from here onwards we will not deal
with the block-vertex structure graph. So for simplicity from here onwards we

will use G (instead of G*) to represent a structure graph and w, (instead of w})
to represent the M,-walk in the structure graph.

Let struct,(M) = {G € struct(M) : Acc(G) = a}, the set of all struc-
ture graphs associated to M with accident a. In particular we are interested in
structg(M) and struct; (M) the sets of all structure graphs with accident 0 and
1 respectively. Lemma 3 says that the number of graphs with accident 1 is at
most (T;) where m = Y7, m; and M; € B™. The number of structure graphs
with accident 0 is at most one. In the following we actually identify a structure
graph and hence it is unique, We call it the free graph associated to M.

Free Graphs. As there is no accident every non-zero vertex has in-degree 1
and 0 has in-degree 0 (i.e., non-zero output graph). Being a structure graph, G
is union of M;-walks wys,. An M;-walk starting from 0 with no vertex having
in-degree 2 must be a path. So G is a union of M;-paths wyy,. Now for any ¢ # j,
let p = LCP(M;; M;). Then, w;[1..p] = w;[1..p] and w;[p+1] # w;[p+1] (if these
are defined). It is also easy to see that w;[1..p], w;[p+1..m;], and w;[p+1..m;] are
disjoint paths. Thus, any two paths w; and w; are identical up to the length of
the largest common prefix of M; and M; and afterwards they remain disjoint. We
call this unique graph free graph. A free graph for three messages is illustrated
in Fig 7.

x wiy [ml]
w1 [0] €= —uji[zl ’ u;[j] >® wa[m2]
iws [ms]

Fig. 7: Free structure graph for three messages.

6.1 Accident one for a Single Message

Now we consider the structure graph for a single message M € BT. Note that
any such structure graph must be a walk w of length m. We say a node wli] is
fresh in the walk if w[i] # w[j] for all j # i.

Case A: 0 has positive in-degree As 0 has positive in-degree there can
not be any more collision pairs otherwise the accident would be at least two.
Let ¢ be the minimum positive integer such that w[c] = 0, so we have a cycle
(w[0],w[1],...,w[c]). Let X be its label. Suppose M = X*||Y where i is the
maximum positive integer for which we can write M in this form. So X is not a
prefix of Y. Let s = LCP(X;Y"). Thus, wlic + j] = w[j] Vj € [0..s].

1. If Y is a prefix of X then the structure graph is a cycle of size ¢ ending at
wls]. It is illustrated in fig. 8(a) where the * is empty.

2. If Y is not a prefix of X then wlic 4+ s] = w[s] and wic + s + 1] # w[s + 1].
Further, wlic+ s+ 1] # wj] for all j € [¢] since otherwise we get a collision.
In fact it can be shown that all subsequent nodes are fresh. Suppose not,
then let j > ic + s + 1 be the first such integer for which w[j] = w[k] for
some k < j, hence we obtain a collision. So the structure graph is an edge
disjoint union of a cycle of size ¢ and a path starting from s, as illustrated
in fig. 8(a). The length of the cycle is ¢, whereas the length of the path is
m —ic — s. We also called this graph p’ graph. The tail (path from 0 to the
cycle) of the p’ walk is empty.

Case B: 0 has in-degree 0 As 0 has in-degree 0, there is a collision § =
(up,vo; z). In fact, all other collisions must have same source as that of 4.

Consider the M-walk (w[0],w[1],...) which is clearly not a path. Let (ig, jo)
be the smallest positive distinct integers such that w(ig] = w[jo].*> As 0 has in-
degree 0 so 1 < ip < jo and we can assume that w[ig—1] = up and w[jo—1] = vp.
Now, as in Case A, let A = L(w[0..70]), X = L(w[ip--Jo]), jo—io = ¢. Then, A|| X
is the prefix of M. Let t be the largest positive integer such that M = A[| X*||Y.
So X is not a prefix of Y. If Y is a prefix of X then we have a structure graph
as illustrated in fig. 8(d) and 8(f) (the end point lies inside the cycle). Suppose
Y is not a prefix and let s = LCP(X;Y).

Claim. The walk after A||X'||Y[1..s] is a path and disjoint from the rest (illus-
trated in fig. 8(c)).

Proof of the claim. Suppose Jv # w[s] € w[tc + s..m] N w[l..tc + s]. We
distinguish the following cases.

Case B.1: w[tc+ s + 1] = wli], i € [te+ s]. If s # jo — 1 then we have a
new collision ¢’ = (w[i — 1], w[tc + s]; w[i]) independent of § which increases the
accident to 2. If s = jo — 1 then i # ig as X[s + 1] # Y[1]. Now the only way to
make ¢’ dependent on ¢ is to have i — 1 = ig — 1. This implies a collision at w]j]
where j € [1..ip — 1], as the walk must come back to ig — 1 at the (i — 1)-th step.
This again gives a new accident.

Case B.2: w[tc + s + 1] € w[l..tc 4+ s] and w[j] = wli], ¢ € [tc + s], and
J € [te 4+ s + 2..m]. So, there is a new collision §' = (w[j — 1], w[i — 1]; w[i])
which is independent of §. This gives a new accident. Thus, we have w[tc + s +
1.m]Nw[l..tc + s] = 0.

Case B.3: w[tc 4+ s..m] is not a path. Therefore 3i, j € [tc+ s..m] such that
(wli], w[j]; w[i + 1]) is a collision. Clearly this will be independent from ¢ and
hence gives a new accident. So none of the case 1, 2 or 3 is possible. a

3 40 and jo can be fixed one by one. First fix ig to be the smallest positive integer such
that wio] = wlj], j € [io + 1..m]. Now, fix the smallest positive integer jo such that
wljo] = wlio].

Observe that s = jo — 1 is a special case. In addition to this condition, suppose
we have an edge e := (w[ip — 1], w[tc + s + 1]) which creates a collision ¢ =
(wlio — 1], wljo — 1];w[tc + s + 1]) dependent on §. The edge e cannot occur
in a single message graph, as that will imply nbd(x — w[j]) > 2 for some
J € [0..ip — 1] which gives a new accident. But for a two message graph this is
realizable (counter-examples) as illustrated in fig. 8(b) and 8(e). We summarize
our discussion in the following lemma.

Lemma 4. Form >1, M € B™ and m € Perm, the graphs in figure 8 exhaust
all possible forms for G.(M) when the accident is 1.

O 90— 1 70 O i0— 1 10
T = T= S -~
=X
S —_-—
- T = >
'@
£ (te+s+1) jo—1 Jjo—1
(a) (b) (¢)
0e 90— 1
0 i0 — 1 g T -
-~~~ 0e .
S~ i0—1
jo—1 s = .
[K

£ (te+s+1)
(d) (e) (f)

Fig. 8: Characterizing all accident-one structure graphs realizable by a single message.
The dashed lines in these illustrations represent optional subwalks. Here the vertex
wli] is represented by i, for notational simplicity.

7 Revisiting CP, (M, M5) and FCP,,(M;, M>) bounds

In this section our main aim is to revise the proofs of (C'P) and (FCP) bounds
and consequently the PRF advantages in [3]. As mentioned earlier the motivation
for this revision is our observation that one of the main tools [3, Lemma 10] in
bounding [struct; [coll]| and |struct; [Feoll]| is false.

We start off with a discussion that establishes the role of structure graphs
in the PRF security analysis of CBC-MAC and EMAC. Note that we have
already seen that bounding PRF advantages of CBC-MAC and EMAC is reduced
to bounding full collision probability FCPS; and collision probability CP5")
respectively. So it would be sufficient to bound these probabilities. For this we

first prove a general claim as stated in (proposition 2).

Structure Graph Events. Let M = (My,..., M;) be a tuple of ¢ messages.
Let E be an event defined on the intermediate output sequence out™ (M) for a
permutation w. We say that the event F is defined by a structure graph if

there is an event E’ defined on the structure graph struct™ such that F holds if
and only if £’ holds. We call such an event a structure graph event. Moreover,
we say that F is non-free if it is false for the free structure graph (the structure
graph with accident 0). Note the the collision event for any distinct messages as
well as the full collision event for prefix-free messages are examples of non-free
structure graph events. In consistency with our notation, we denote by struct, (E)
the set of all structure graphs with a accidents and satisfying a non-free event
E.

Proposition 2. Let E be a non-free structure graph event for the message tuple

M. Then,

_ Istructy [E]| | m*

PrH[E] o —m 22n'

Proof. Note that for any structure graph event F,

Prp[E] = Z Pr(struct’” € struct,[E]].
a>0
As the event is non-free, the sum can be done for a > 1. Moreover, we know
4
that Pr{Acc(struct’) > 2] < 2= So the result follows from the Lemma 2 which
bounds the probability of realizing a structure graph with accidents a. a

7.1 Revisiting the CP3, Bound

Suppose M; € B™ and My € B™2 such that Mj[my] # Ma[ma], 0 < my < mao,
since otherwise we can remove the largest common suffix which does not change
the collision probability. Note that the first message M; now can be empty
(then M is not as they are distinct) and in this case collision event means that
out (My)[ms] = 0™. This is a structure graph event because 0 is a vertex of
the structure graph. Due to proposition 2, we only need to bound the number of
structure graphs with accident 1 satisfying the coll event for the pair of messages.
More precisely, we have to bound the size of the set structy (M7, Ma)[coll].

Case 1: M; is an empty message. In this case we have
StI’UCtl(Ml, MQ)[CO”] = StI’LICtl(]\42)['[1)]%2 [mg} = 0]

Now, we make the following claim which is essentially [3, Lemma 14]:
Claim. |struct; (M2)[wz[me] = 0]] < d(mz)

Proof of the claim. Let x be the smallest positive integer such that wy[z] = 0.
Let X be the label of the walk ws[0..7]. If My = X? with some positive integer
d, then struct; (Ms)[wz[x] = 0] contains exactly one structure graph. Note that
2 must divide my and hence the number of possible choices of such x is at most
d(ms), the number of divisors of msy. Suppose My = XY for some non-empty

Y where d is the largest such integer of this form. If Y is a prefix then Wa[mso)
is the point in the cycle and it must be 0. This can be zero only if Y = X which
contradicts the maximality of d. So now assume that Y = Y7||Y2 such that Y; is
the largest common prefix of X and Y, and Y5 is some non-empty string. If s is
the length of Y7 then Y5[1] # Y[s + 1]. Thus, wa[dz + s+ 1] # wa[s+ 1]. As it is
a zero-output structure graph, we can not have any collision. So there is no way
to obtain wa[msg] = 0. This proves the claim.

Case 2: M; is not an empty message. In this case we have a collision
(u :=wi[my — 1], v := wa[ms — 1], z := wa[mys])

as the labels of the last edges for walks w; and wy are different. Any other
collision, if any, must have the same source set {u,v}. Moreover, 0 can not have
positive in-degree. Now we consider different sub-cases:

Case 2.1: Both w; and w2 are paths: In this case, the union of wq[1..m; —1]
and wa[l..mg — 1] is a free graph (as wy[my — 1] and we[mg — 1] can not appear
before in the graph and so no collision among the path can occur). This gives
only one choice of the graph as shown in the figure 9(a). So the number of choices
is bounded by at most 1. This is proved as part of the incorrect lemma [3, Lemma
15].

Case 2.2: ws is not a path: Then we have already characterized all pos-
sibilities of wy. So there exist some integers ¢, ¢ such that ws[l..t] is a path
with wa[t — 1] = v and ws[t] = p, we[t..t + ¢] is a cycle of length ¢ such that
walt + ¢ — 1] = v. (Note that wq[t — 1] # wa[mz2 — 1].) Now, wi[m; — 1] = u.
Claim 2.2.1: wy[l..m; — 1] = wo[l..t — 1] and so m; = t.

Proof. Let s be the length of the largest common prefix of w;[l..my — 1] and
wa[l..t —1]. If s < ¢ — 1 then in the walk w; there is no way to reach u without
coming back to the walk ws[1..t —1]. Coming back is not possible as it leads to a
collision with a different generator set. Similarly we can disprove that s =t —1
and my > t. Thus, we have mq = ¢ and wq[l..mq — 1] = we[l..t — 1]. O

Now, we distinguish two cases for the choices of p = LCP(Mj; Ms).

1. Case 2.2.1.(a): If wy[p] = z then we have the structure graph as illustrated
in Fig 9(b). In this case M; is a prefix of Ms. The number of such structure
graphs is again at most d(me — my) (similar to the previous case where M;
is the empty message). This is also [3, Lemma 13].

2. Case 2.2.1.(b): If wy[p] # z. Then we get a case which was not considered
in [3]. In this case ws[p] should be a fresh node otherwise we get a collision
with different source set. Thus, we get a structure graph which is shown in
the Fig 9(c). Let My = Alla where A = M;[l1..t — 1] and a = M;]t]. Note
that ¢ — 1 is the length of the largest common prefix of M; and Ms. Then,

My = A||b||(X||2)* | X ||le, where ¢ = Ma[ma],b= Ms[t],z =a®b& c.

The choice of X is variable. But it must satisfy the above for some d > 1. In
fact X is determined by its length which is ¢. Again, ¢ must divide mgo —my
and hence the number of choices of ¢ is at most d(mg — my) — 1.

This completes the characterization of all structure graphs satisfying coll
with accident 1 and bounds the number of such graphs for all cases. Note that
the cases 2.2.1.(a) and 2.2.1.(b) cannot hold simultaneously. But, Cases 2.2.1.(b)
and 2.1 can hold simultaneously which makes the total count of these two cases
at most d(mg —my). Since the order of messages does not matter in coll we are
done.

Lemma 5. Let My € B™, My € B™2,

1. If My <1 My then struct (My, Ms)[coll] is of the form illustrated in Fig 9(b)
and the number of such graphs is at most d'(mz).

2. If My <o My then struct, (M, Mz)[coll] is of the form illustrated in Fig 9(c)
and the number of such graphs is at most d'(mg).

3. In all other cases, struct;(My, Ms)[coll] is of the form illustrated in Fig 9(a)
and the number of such graphs is at most one.

(a) (b) (c)

Fig.9: Characterizing all accident-one structure graphs realizable by two messages
which satisfy the coll event. Dashed lines represent w; and solid lines represent wo.

Corollary 2. We have |struct; (M, Ma)[coll]| < d'(ma) for any distinct mes-
sages My, My with m1 < mo. Thus,

dw) 160
any <
CPor < 51 oo

7.2 Revision of FCng"Z Bound
Since Fcoll is a non-free structure graph event, we have, using proposition 2,

|struct; (Fcoll)| N (m1 4+ mo)*

FCP! pf) (M, My) <
TLp)(17 2)7 2n_m1_m2 2277,

Thus, it would be again sufficient to bound the number of structure graphs
for two messages with accident 1 and satisfy full collision property. Bellare
et al. [3] proved that |struct(Fcoll)] < 4max{m;, mo}. While bounding the
|struct; (Feoll)|, they proved a strong result [3, Lemma 19] that will be also use-
ful in our analysis also. We reproduce it here in our notations.

Lemma 6. Forb € {1,2} and any i € [0..mp),
|struct1(M1, Mg)[wb[i] S ’LUb[OZ — 1,7+ 1mb]]| < myp.

Since the proof of lemma 6 can be found in [3], we skip it here. Now, we
revise the FCP bound to |struct; (Feoll)| < 3(my 4+ ms) and the new bound is as
follows

Lemma 7. FCPP/(M;, My) < Smatma) (mitma)’

2" —my—mo

Proof. We need to bound the number of structure graphs for a pair of prefix-
free messages My € B™ and My € B™2 which satisfy the Fcoll event and have
at most accident 1. Note that the event implies that the structure graphs must
have at least accident 1 as the messages are prefix-free. The event Fcoll can be
written as wa[ma] € wa[0..mg — 1] U wa[ma] € wy[l..my].

Case 1: wa[mz] € wz[0..m2 — 1]. This case can be bounded to at most mso,
by direct application of lemma 6.

Case 2: wa[mg] € wi[l..mq]. Suppose Fcoll(M;; Ms) happens due to ws[ms] =
wi[r] for an arbitrary r € [l..m; — 1]. Then Fcoll(M; M) is equivalent to
coll(My[1..r], M3). For simplicity let M{ := M;j[l..r]. Let s := LCS(Mj7; M2).
Then Mi[s — 1] # Ma[ms — 7 + s — 1]. Let My = M{[l..s — 1] and My =
Ms[1l..mg — r + s — 1]. From lemma 5 we know that G* € structy (M;; M3)[coll]
must be one of (a), (b) or (¢) in fig. 9. Note that G* is a subgraph of some
G € structy (My; Mo)[Fcoll].

Case 2.1: In this case, G* is as in fig. 9(a). Therefore w; and wj are paths.
For a fixed r the only possible collision is at (w}[s—2], w3 [mas—r+s—2]; wi[s—1])
and hence the number of such graphs is at most 1. There are at most m possible
values for r. So, the number of choices for G € struct; (My; Ms)[Fcoll] is at most
my.

Case 2.2: G* is either as in fig. 9(b) or (c). In this case, at least one of
wj and w3 is not a path. Without loss of generality assume wj is not a path.
Let p* = LCP(M;; M3). We know that My <3 M; and My <3 Ms. Thus
Mi[1..p*] = Mas[1..p*]. Now we must have a collision (u,v ; z) in wj. From
lemma 5 we know that the graph can be either fig. 9(b) or (c) depending on
whether z = wi[p*] or z = wi[p* + 1]. Next we make two claims which will
enable us to bound the two cases. The proofs for these two claims are given later
in the section.

Claim 2.2.1: If G* is fig. 9(b) then w1 [LCP(M7y; M>)] is not fresh in w;.
Claim 2.2.2: If G* is fig. 9(c) then w1[LCP(M1; Mz2) + 1] is not fresh in w;.
Recall that in a walk w a vertex w(i] is not fresh if 3 j # ¢ such that w[j] = w[i].

By claim 2.2.1 we know that wq[LCP(My; M>)] is not fresh when G* is as in
fig. 9(b). Similarly, by claim 2.2.2 we know that w;[LCP(My; M) + 1] is not

fresh when G* is as in fig. 9(c). So using lemma 6 we bound the number of such
graphs G to at most mq +my = 2my when w7 is not a path. Similarly we have at
most 2mg choices when wj is not a path. Therefore the total number of choices
in case 2.2 is at most 2(m; + mz). Combining case 1, 2.1 and 2.2 we have at
most 3(my + mg) choices. The result follows. O

Proof for claim 2.2.1: If G* is like fig. 9(b), we must have z = wj[p*]. Let
g be the minimum index such that wi[q] = wj[p*]. Let P = L(w}[0..p*]) and
X = L(wi[p*..q]), ¢ = ¢ — p*. Then M7 = P||X and M5 = P. As M and M}
are formed by removing the largest common suffix from of M; and M respec-
tively, therefore M| = (M;[|X"||Y) = (P|| X“FY) and My = (M3]| X%2]]Y) =
(P||X*2||Y’) where i1,i2 > 0 are the largest such indices. Since M| and M, are
prefix-free, we have i; + 1 > iy. Now My = (M{||Z) = (P|| X" +||Y]|Z), where
|Z| > 0. From now onwards we will work on the walk w; (instead of w} which is a
subwalk of wq) corresponding to M;. If Y is a prefix of X then My <; M; which
contradicts the prefix-free condition. So Y is not a prefix of X. If X is a prefix of
Y then it contradicts the maximality of i1,42. So X is not a prefix of Y. Assume
Y = Y1||Y2 such that Y7 is the largest common prefix of X and Y, and Y5 is
some non-empty string. If p is the length of Y3, then Y3[1] = Y[p+1] # X[p+1].
Thus M [l..i9¢ + p] = Ma[l..izc + p] and Mi[isc + p + 1] # Malisc + p + 1].
So, p = LCP(M7; M3). Further since iy < i1 + 1, wy[p] is traversed twice. Thus
w1 [LCP(Mjy; My)] will not be fresh. Note that we started off with an arbitrary
7. So w1 [LCP(My; M3)] will not be fresh irrespective of the value of r. O

Proof for claim 2.2.2: If G* is like figure 9(c), we must have z = wi[p*+1]. As
noted earlier in the revision of the CP bound, this case was missing in the proof
in [3]. Using a similar line of argument as in the previous case we can conclude
that irrespective of the value of 7, the cycle goes through wq[LCP(My; Ms) + 1]
twice. Thus, w1 [LCP(M7; M3) + 1] is not fresh. O

Note that our approach in Case 2.2 above is a bit subtle. We used lemma 5 to
identify a fundamental property (cycle goes through p or p 4+ 1 twice) and then
exploited this property to bound the counting. A straightforward approach of
summing the counts for graphs in fig. 9(b) and (c) over all values of r will give
a worse bound of myd'(mp),b € {1,2}. To get a tighter bound of my, we needed
this subtlety. Now we extend the bound for FCPP'(M;; Ms) to FCngg, in order
to get the revised prf bound for CBC-MAC. ’

FCP", < > FCPY(M; M;)

i#j€[q]
3(mi +my) | (mi+my)t

<
—42(2”—m1—m2+ 22n)

i#j€lq]

6(m; +m;) (mi+m;)?

< 7 j i J

i#j€[q]

3 3

< 6mqg 8mgl < 60q 8oql (8)

- 9n 22n — 9n 22n

Here we have computed the bound in terms of ¢, ¢ and o. Another approach (as
used in [3]) is to bound the value using ¢ and ¢ only, in which case the bound
will be) i
FCpre < 124q 160%q
q, i 22n

Using proposition 1 and eq. 8, we get the following theorem.

8o 8oql3 2
Theorem 2. We have AdvéfBC(q,Z,a) < an + 227(1” ﬁﬁ
This gives a bound of O(Z¢) for £ < 2"/3. As noted earlier, this is a better
bound whenever the average message length is much smaller than the length of

the longest message.

8 Revised Security Analysis of EMAC

In this section we revisit the PRF analysis of EMAC due to Pietrzack [31]. We
first identify the actual flaw in the proof and then provide a different proof to
obtain, in fact, a better bound of EMAC (in terms of ¢). For notational simplicity
we will keep our bounds in order notation and avoid the constant factors.

8.1 Flaw and Revision of PRF Advantage of EMAC [31]
The proposed bound for EMAC as stated in [31] is

prf q2 68

Adv{iao(a, o) = O((1+ 5))
provided ¢? < ¢. Thus, it becomes tight bound ¢?/2" when ¢ < min(g/2,2"/8).
To show the above result we need to bound the collision probability CPg .
One possible approach is to group the ¢ message into O(q/¢?) groups, each
group consists of about £? messages. So the collision event among ¢ messages
implies that a collision occurs in two of the groups. Since coll is a non-free event,
proposition 2 gives
|struct1(./\/l)[coll]|) N O(ﬁ)

on 922n

P, = Of

Applying this with ¢ = 2¢? (i.e. for two groups) we have
2 258

0P, =0((5) x o= 0(figr) + (1)

where N denote the number of accident one structure graphs satisfying coll for
% messages with maximum length ¢. The O(q?/¢*) term is due to the number
of ways in which we can choose two groups. In [31, Lemma 4], Pietrzak claimed
that N = O(¢*). So, plugging this bound for £ we have the desired bound. Now
to prove this bound for N, Pietrzak considered two cases for a pair of messages

M and M’ (note that accident 1 and collision must occur for a pair of messages).
More precisely, it can be shown that

N =¢* max |struct; (M.M’)[coll]| + ¢*. 9)
Mg M’

Recall that M <£; M’ means that they become prefix-free after removing the
largest common suffix of M and M’.

Claim 1 of [31]. If M #£; M’ then |struct; (M.M’)[coll]| = 1.

If this claim happens to be true then N = O(¢*). However, we have seen be-
fore there exists M, M’ with M <o M’ (such that M £, M’) with |struct; (M, M’)[coll]| =
d(¢ —1). Thus,

structy (M, M")[coll A M &1 M']| = O(d'(£)).

If we plug in this, we find the modified bound as N = O(¢*(d’(£))?) and so the
revised bound for the collision probability becomes O(q¢?d’(£)/2") which is not
tight.

8.2 Simple Proof of PRF Security for EMAC

We have seen in the last subsection that the influence of the flaw from [3, Lemma
10] is more serious having tight bound of EMAC. So it is very crucial to revisit
the security analysis of EMAC. One possible approach to fix the proof of [31], by
bounding N in a different way. For example, we can consider two cases M <; M’
and M <g M’ (i.e., M[1.m—1] <3 My but M #£; M'). For any pair of messages
which are not related by any one of these two relations then the number of
structure graphs can be shown to be one. However, we need to show that the
remaining graphs is still about £* (see second term of Eq. 9).

In this section we actually took a slightly different and, in fact simpler, ap-
proach. Instead of making groups of ¢ messages we directly bound the number
of structure graphs for a slightly different choices of permutations. We will ig-
nore all those permutations (i.e. bad permutations) which induces one of the
following:

1. For some pair of messages M; and M; the number of accident is two or more.
2. For some message M;, the accident is one.

Let ¢ be the property to represent the complement of the event. Let S be a
structure graph associated to a g-tuple of messages. We recall that S is an union
of ¢ walks w;. We denote the sub-graph S; and S;; to represent the walk wj;
and w; U w;. Note that these are again structure graphs associated to M; and
(M;, M;) respectively. In this notation, ¢ is a property on all structure graphs
S on M such that Acc(S; ;) <1 for all ¢ # j and Acc(S;) = 0 for all i. We call
a permutation good if its induced structure graph satisfies ¢, otherwise we call
bad. Now we claim our new bound.

Lemma 8. CP, (M) < O(g—i) + O(f—f) + O(@—‘f).

Proof. We first bound the probability of bad random permutation. For a bad
permutation (1) there exists ¢ and j such that the accident for the pair of message
M; and M; is at least 2 or (2) there exists ¢, such that the accident for M; is
at least one. The first event can happen with probability O(¢*¢?/2%") by using
corollary 1. Similarly the second event can happen with O(¢2¢/2"). Now we
bound the probability p := Pr[coll A ¢]. Note that collision event implies that
there exists ¢ and j such that collision event holds for the message M; and M;.
Now ¢ implies that accident of S; ; is one whereas accident of S; and S; are zero.
In section 6 we have characterized all structure graphs for a pair of messages
with accident one satisfying collision. Among all possibilities only one structure
graph satisfies ¢. Hence there is exactly one structure graph. This implies that
Prlcoll(M;, M;) A ¢] = O(27™). Hence, by summing over all possible 7, j we have

Pr[coll(M) A ¢] = O(¢*/2™).
Now we summarize above discussion as

CP, ¢(M) = Pryrfcollz (M) A (struct” (M) € struct(M)[4)])]
+ Pr[struct” (M) ¢ struct™ (M)[¢]]]

— Z O(|StrUCt(Mian)[co” A (b]') + O(£2q/2n) + O(€4q2/22n)

i#] 2
= 0(q*/2") + O(£q/2") + O(¢'¢?/2%") (10)
This completes the proof. a

Theorem 3. Adviy.-(q,¢,0) = 0(22%2—1—%4—‘1;—[:). So if ¢ < min{q'/?,2"/*}
n 2
then Adviiac(e, t,0) = O(g—n).

Note that our theorem gives tight bound for a better constraint than what we
had before in [31]. The condition ¢ > ¢% can be dropped if we assume ¢ < 27/4=*
for some small k such that 2% is negligible. More precisely, if £ < 2"/4=% then

the PRF advantage of EMAC is about g—i +

oF *

Remark 4. A straightforward application of the proof technique used in case of
EMAC to ECBC gives tight PRF bound for ECBC.

Remark 5. Note that FCBC can also be viewed as an instance of Wegman-
Carter MACs. In case of FCBC one has to prove that the final internal input of
CBC-MAC behaves as universal hash output. This can be argued as follows: An
input collision occurs if and only if the corresponding outputs collide (due to the
permutation nature of the internal function). The final output of CBC-MAC is
universal, hence the final input of CBC-MAC is universal with identical collision
probability bound. Hence FCBC is birthday bound secure PRF when ¢ < 27/4,
To the best of our knowledge this is the first demonstration of tight PRF bound
for FCBC.

9 Conclusion and Future Work

In this paper we have revisited the PRF security analysis of CBC-MAC and
EMAC. We made the revision as we have found one of the main claims in the
original papers providing improved bounds is not correct. This claim, in fact,
influences some of the other claims. More importantly, the tight bound claim
of EMAC becomes invalid even after a simple fix of the claim. So we feel that
revision is essential and this paper serves this. Fortunately we have recovered
same bounds, at least in terms of the order, for both constructions. While revising
we attain potentially better bound of O(oq/2™) for CBC-MAC. Moreover, we
have found a better way to analyze EMAC which provides tight bound with a
much relaxed constraint on message length ¢. Namely our constraint is £ < 27/4
whereas the original constraint was ¢ < 2"/8.

Acknowledgement

We have communicated with the authors of the papers [3,31] and they have
acknowledged our findings. We would like to thank them for giving their valuable
time to go through our findings.

References

1. Information Technology — Security Techniques — Message Authentication Codes
(MACs) — Part 1: Mechanisms Using A Block Cipher. ISO/IEC 9797-1, Interna-
tional Organization for Standardization, Geneva, CH, 1999.

2. Mihir Bellare, Joe Kilian, and Phillip Rogaway. The Security of The Cipher Block
Chaining Message Authentication Code. J. Comput. Syst. Sci., 61(3):362-399,
2000.

3. Mihir Bellare, Krzysztof Pietrzak, and Phillip Rogaway. Improved Security Anal-
yses for CBC MACs. In Advances in Cryptology - CRYPTO 2005: 25th Annual
International Cryptology Conference, Santa Barbara, California, USA, August 14-
18, 2005, Proceedings, pages 527-545, 2005.

4. A. Berendschot, B. den Boer, J. Boly, A. Bosselaers, J. Brandt, D. Chaum,
I. Damgard, M. Dichtl, W. Fumy, M. van der Ham, C. Jansen, P. Landrock, B. Pre-
neel, G. Roelofsen, P. de Rooij, and J Vandewalle. Final Report of Race Integrity
Primitives, 1995.

5. D. J. Bernstein. A Short Proof of the Unpredictability of Cipher Block Chaining,
2005.

6. John Black and Phillip Rogaway. A Block-Cipher Mode of Operation for Par-
allelizable Message Authentication. In Advances in Cryptology - EUROCRYPT
2002, International Conference on the Theory and Applications of Cryptographic
Techniques, Amsterdam, The Netherlands, April 28 - May 2, 2002, Proceedings,
pages 384-397, 2002.

7. John Black and Phillip Rogaway. CBC MACs for Arbitrary-Length Messages: The
Three-Key Constructions. J. Cryptology, 18(2):111-131, 2005.

8. Nilanjan Datta, Avijit Dutta, Mridul Nandi, Goutam Paul, and Liting Zhang. One-
key Double-Sum MAC with Beyond-Birthday Security. IACR Cryptology ePrint
Archive, 2015:958, 2015.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Whitfield Diffie and Martin E. Hellman. New Directions in Cryptography. [EEE
Transactions on Information Theory, 22(6):644-654, 1976.

Yevgeniy Dodis, Rosario Gennaro, Johan Hastad, Hugo Krawczyk, and Tal Rabin.
Randomness Extraction and Key Derivation Using the CBC, Cascade and HMAC
Modes. In Advances in Cryptology - CRYPTO 2004, 24th Annual International
CryptologyConference, Santa Barbara, California, USA, August 15-19, 2004, Pro-
ceedings, pages 494-510, 2004.

Avijit Dutta, Mridul Nandi, and Goutam Paul. One-Key Compression Function
Based MAC with BBB Security. JACR Cryptology ePrint Archive, 2015:1016, 2015.
M Dworkin. Recommendation for Block Cipher Modes of Operation: The CMAC
Mode for Authentication. NIST Special Publication 800-38b, National Institute of
Standards and Technology, U. S. Department of Commerce, 2005.

William F. Ehrsam, Carl H. W. Meyer, John L. Smith, and Walter L. Tuchman.
Message Verification and Transmission Error Detection by Block Chaining. Patent
4074066, USPTO, 1976.

Peter Gazi, Krzysztof Pietrzak, and Michal Rybar. The Exact PRF-Security of
NMAC and HMAC. In Advances in Cryptology - CRYPTO 2014 - 34th Annual
Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2014, Proceedings,
Part I, pages 113-130, 2014.

Peter Gazi, Krzysztof Pietrzak, and Stefano Tessaro. The exact PRF security of
truncation: Tight bounds for keyed sponges and truncated CBC. In Advances in
Cryptology - CRYPTO 2015 - 35th Annual Cryptology Conference, Santa Barbara,
CA, USA, August 16-20, 2015, Proceedings, Part I, pages 368-387, 2015.

Sergey Gorbunov and Charles Rackoff. On the Security of Cipher Block Chaining
Message Authentication Code.

Tetsu Iwata and Kaoru Kurosawa. OMAC: One-Key CBC MAC. In Fast Software
Encryption, 10th International Workshop, FSE 2003, Lund, Sweden, February 24-
26, 2003, Revised Papers, pages 129-153, 2003.

Tetsu Iwata and Kaoru Kurosawa. Stronger Security Bounds for OMAC, TMAC,
and XCBC. In Progress in Cryptology - INDOCRYPT 2003, 4th International
Conference on Cryptology in India, New Delhi, India, December 8-10, 2003, Pro-
ceedings, pages 402-415, 2003.

Eliane Jaulmes, Antoine Joux, and Frédéric Valette. On the Security of Random-
ized CBC-MAC Beyond the Birthday Paradox Limit: A New Construction. In
Fast Software Encryption, 9th International Workshop, FSE 2002, Leuven, Bel-
gium, February 4-6, 2002, Revised Papers, pages 237-251, 2002.

Charanjit S. Jutla. PRF Domain Extension Using DAGs. In Theory of Cryptogra-
phy, Third Theory of Cryptography Conference, TCC 2006, New York, NY, USA,
March 4-7, 2006, Proceedings, pages 561-580, 2006.

Kaoru Kurosawa and Tetsu Iwata. TMAC: Two-Key CBC MAC. IEICE Trans-
actions, 87-A(1):46-52, 2004.

Ueli M. Maurer. Indistinguishability of Random Systems. In Advances in Cryptol-
ogy - EUROCRYPT 2002, International Conference on the Theory and Applica-
tions of Cryptographic Techniques, Amsterdam, The Netherlands, April 28 - May
2, 2002, Proceedings, pages 110-132, 2002.

Kazuhiko Minematsu and Toshiyasu Matsushima. New Bounds for PMAC, TMAC,
and XCBC. In Fast Software Encryption, 14th International Workshop, FSE 2007,
Luzembourg, Luzembourg, March 26-28, 2007, Revised Selected Papers, pages 434—
451, 2007.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Mridul Nandi. Fast and Secure CBC-type MAC Algorithms. In Fast Software
Encryption, 16th International Workshop, FSE 2009, Leuven, Belgium, February
22-25, 2009, Revised Selected Papers, pages 375-393, 2009.

Mridul Nandi. Improved Security Analysis for OMAC as a Pseudorandom Func-
tion. J. Mathematical Cryptology, 3(2):133-148, 2009.

Mridul Nandi. A Unified Method for Improving PRF Bounds for a Class of Block-
cipher Based MACs. In Fast Software Encryption, 17th International Workshop,
FSE 2010, Seoul, Korea, February 7-10, 2010, Revised Selected Papers, pages 212—
229, 2010.

Mridul Nandi and Avradip Mandal. Improved Security Analysis of PMAC. J.
Mathematical Cryptology, 2(2):149-162, 2008.

Jacques Patarin. Etude des Générateurs de Permutations Pseudo-aléatoires Basés
sur le Schéma du DES. PhD thesis, Université de Paris, 1991.

Jacques Patarin. The ” Coefficients H“ Technique. In Selected Areas in Cryptogra-
phy, 15th International Workshop, SAC 2008, Sackville, New Brunswick, Canada,
August 14-15, Revised Selected Papers, pages 328-345, 2008.

Erez Petrank and Charles Rackoff. CBC MAC for Real-Time Data Sources. J.
Cryptology, 13(3):315-338, 2000.

Krzysztof Pietrzak. A Tight Bound for EMAC. In Automata, Languages and
Programming, 33rd International Colloquium, ICALP 2006, Venice, Italy, July
10-14, 2006, Proceedings, Part II, pages 168-179, 2006.

Serge Vaudenay. Decorrelation: A Theory for Block Cipher Security. J. Cryptology,
16(4):249-286, 2003.

Mark N. Wegman and Larry Carter. New Classes and Applications of Hash Func-
tions. In 20th Annual Symposium on Foundations of Computer Science, San Juan,
Puerto Rico, 29-31 October 1979, pages 175-182, 1979.

S. Wigert. Sur 'ordre de grandeur du nombre des diviseurs d’un entier. Ark. Mat.
Astron. Fys., 3(18):9, 1907.

Kan Yasuda. The sum of CBC MACs is a secure prf. In Josef Pieprzyk, edi-
tor, Topics in Cryptology - CT-RSA 2010: The Cryptographers’ Track at the RSA
Conference 2010, San Francisco, CA, USA, March 1-5, 2010. Proceedings, pages
366-381, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

Kan Yasuda. A New Variant of PMAC: Beyond the Birthday Bound. In Advances
in Cryptology - CRYPTO 2011 - 81st Annual Cryptology Conference, Santa Bar-
bara, CA, USA, August 14-18, 2011. Proceedings, pages 596-609, 2011.

Liting Zhang, Wenling Wu, Han Sui, and Peng Wang. 3kf9: Enhancing 3GPP-
MAC Beyond the Birthday Bound. In Advances in Cryptology — ASIACRYPT
2012: 18th International Conference on the Theory and Application of Cryptology
and Information Security, Beijing, China, December 2-6, 2012, Proceedings, pages
296-312, 2012.

