
A preliminary version of this paper appears in EUROCRYPT 2016. This is the full version.

New Negative Results on Differing-Inputs Obfuscation

Mihir Bellare1 Igors Stepanovs2 Brent Waters3

June 2015

Abstract

We show that differing-inputs obfuscation (diO) for Turing Machines is impossible to achieve.
Our results are: (1) If sub-exponentially secure one-way functions exist then sub-exponentially
secure diO for TMs does not exist (2) If in addition sub-exponentially secure iO exists then
polynomially secure diO for TMs does not exist.

1 Department of Computer Science & Engineering, University of California San Diego, 9500 Gilman Drive, La
Jolla, California 92093, USA. Email: mihir@eng.ucsd.edu. URL: https://cseweb.ucsd.edu/~mihir/. Supported
in part by NSF grants CNS-1526801 and CNS-1228890, ERC Project ERCC FP7/615074 and a gift from Microsoft.

2 Department of Computer Science & Engineering, University of California San Diego, 9500 Gilman Drive,
La Jolla, California 92093, USA. Email: istepano@eng.ucsd.edu. URL: https://cseweb.ucsd.edu/~istepano/.
Supported in part by NSF grants CNS-1526801 and CNS-1228890, ERC Project ERCC FP7/615074 and a gift from
Microsoft.

3 Department of Computer Science, University of Texas at Austin, 2317 Speedway, Austin, Texas 78712, USA.
Email: bwaters@cs.utexas.edu. URL: https://www.cs.utexas.edu/~bwaters/. Supported in part by NSF grants
CNS-1228599 and CNS-1414082, DARPA SafeWare, a Google Faculty Research award, the Alfred P. Sloan Fellowship,
a Microsoft Faculty Fellowship and a Packard Foundation Fellowship.

Contents

1 Introduction 2

2 Preliminaries 6

3 Consistent puncturable digital signature schemes 10

4 Impossibility of differing-inputs obfuscation for TMs 14

1

1 Introduction

Differing-inputs obfuscation (diO) is a natural extension of indistinguishability obfuscation (iO).
It has been conjectured that candidate constructions of iO also met diO. Based on this, diO has
been exploited in applications. Garg, Gentry, Halevi and Wichs (GGHW) [27] showed that if
something they called “special purpose” obfuscation exists, then diO does not. This has put diO
in an ambiguous and contentious position, some people arguing that GGHW is evidence diO does
not exist, others saying that perhaps it does and it is special-purpose obfuscation that does not
exist. This paper uses a new approach to give powerful evidence that the first camp is right,
meaning it is indeed diO that does not exist, by showing this to be true under weaker and more
standard assumptions than special-purpose obfuscation. We show (1) If sub-exponentially secure
one-way functions exist then sub-exponentially secure diO for TMs does not exist (2) If in addition
sub-exponentially secure iO exists then polynomially secure diO for TMs does not exist.

Background. The notion of program obfuscation that is most intuitive and appealing is that an
obfuscated program should be no more useful than an oracle for the program itself. Formalized as
VBB obfuscation (vbbO), it was shown impossible in the sense that there is no obfuscator that will
successfully VBB obfuscate all programs [35, 7]. Further negative results about vbbO were given
in [32, 15]. In the face of this, Barak et al. [7] suggested other, weaker notions of obfuscation that
appeared not to succumb to their counter-examples and might therefore be achievable. The most
prominent were indistinguishability obfuscation (iO) and its extension, differing-input obfuscation
(diO). The first asks that obfuscations of functionally equivalent programs are indistinguishable.
The second is a natural computational relaxation: even if the programs are not functionally equiv-
alent, as long as it is hard, given the programs, to find an input on which they differ, then the
obfuscations of the programs are indistinguishable. The underlying intuition is that if one can find
a differing input for the programs, one can clearly distinguish their obfuscations. In iO this is
excluded information theoretically, by saying there does not exist such an input, while in diO it is
excluded computationally, by saying such an input might exist but is hard to find. On the surface
both might appear equally reasonable, since the vbbO negative results do not apply to either. But
this turns out not to be true.

These intriguing notions lay dormant for many years, for two reasons. First, that one could not
prove these notions unachievable did not mean they were achievable. Second, they seemed quite
weak; even if they were achievable, what could one do with them? An answer to the first question
came with candidate constructions of iO [26, 6, 42, 29]. An answer to the second came when Sahai
and Waters showed how to use iO towards many ends [44]. Since then, applications of iO and diO
have ballooned.

In these applications, a crucial role is played by auxiliary information. The modern definitions
of iO and diO used in these applications [26, 44, 1, 18, 12] consider a program sampler S that spits
out a pair P0,P1 of programs together with associated auxiliary information aux . The sampler is
said to produce functionally equivalent programs if P0 and P1 agree on all inputs. The sampler
is said to be difference-secure if an adversary given P0,P1, aux cannot find an input x such that
P0(x) ̸= P1(x) except with small probability. The obfuscation game picks a challenge bit b and
gives you (the adversary) an obfuscation P of Pb under the obfuscator Obf, together with aux . Your
task (as the adversary) is to guess b. Obf is called iO-secure if you have small advantage for all
samplers producing functionally equivalent programs, and diO-secure if you have small advantage
for all difference-secure samplers. Adversaries are always polynomial time, but probabilities referred
to as “small” may be sub-exponentially so or negligible. Programs may be TMs or circuits. This
leads to a collection of variant notions.

2

The GGHW result. Let Obf be an obfuscator. GGHW [27] provide a program sampler S for which
they show, under certain assumptions, that diO-security of Obf fails, which means that (1) the
sampler is difference secure under these assumptions, but (2) there is a way to distinguish the
obfuscations under Obf of the two programs returned by the sampler given the auxiliary information.
Their approach is to have the sampler first generate a signing and verification key pair (sk, vk) for
a signature scheme meeting the standard notion of unforgeability [33]. The program P1 takes a
message m and candidate signature σ and accepts iff σ is a valid signature on m under vk. The
program P0 will take in the same inputs, but it will always reject. Clearly the programs P0 and
P1 differ exactly on the input pairs (m,σ) where σ is a valid signature of m under vk. Next, the
sampler creates a third program P2 that has hardwired the secret signing key sk and takes as
input a (smaller) program P. It hashes P using a CRHF to get a message m, and uses sk to get a
signature σ on m. It then runs the P on (m,σ) and outputs 1 if P accepts on these inputs. Finally,
S creates auxiliary information aux consisting of an obfuscation P∗

2 of P2. This obfuscation is not
under the given obfuscator Obf, but under some other assumed “special purpose” obfuscator Obf∗

whose role and properties will emerge in the following.

To serve as a counterexample it should both (1) be possible, using the auxiliary information P∗
2,

to distinguish between obfuscations under Obf of P0 and P1, and (2) be difficult, given P0,P1,P
∗
2,

to find an input on which P0 and P1 differ. The first property follows trivially from the design.
An adversary given the auxiliary information P∗

2 and a challenge program P that is either an
obfuscation of P0 or P1 can distinguish these cases by simply feeding the program P as an input
to P∗

2. If P is an obfuscation of P1 then, when P∗
2 runs P on the message and valid signature that

P∗
2 creates, P will accept. But if P is an obfuscation of P0, then P∗

2 will reject.

In contrast it is much more difficult to establish the second property, namely that it is hard
to find an input on which P0,P1 differ even in the presence of the auxiliary information P∗

2. The
difficulty stems from the latter. In the absence of aux the property follows straightforwardly from
the security of the signature scheme, as a differing input is exactly a valid message-signature pair,
and would amount to a signature forgery. However, since the obfuscated differentiating program
P∗
2 has embedded in it the secret signing key sk it is not clear how to prove that it is hard to find

signatures in the presence of P∗
2.

Recall that P∗
2 was an obfuscation, under some un-specified obfuscator Obf∗, of P2. GGHW [27]

simply conjecture that there exists some obfuscator Obf∗ that will hide the secret key sk sufficiently
well that it is hard to find a differing input for P0,P1, meaning to find a valid message-signature pair,
even given P∗

2. While they were unable to prove this conjecture under any standard obfuscation
definitions such as iO or even vbbO, they were able to partially justify their conjecture with a
heuristic analysis. Their analysis replaces the adversary’s access to the obfuscated program P∗

2 with
an oracle that performs the same functionality. In this world the adversary no longer has direct
access to an object containing sk and GGHW are able to demonstrate differing inputs security of
S by a fairly straightforward reduction to the underlying security of the signature scheme.

The GGHW result certainly creates significant questions regarding the use of diO. Arguably,
the primary reason for using the diO security definition over vbbO is that no impossibility results
like those of [35, 7, 32, 15] are known for diO. However, if the GGHW conjecture holds, then this is
no longer true and the perceived benefit of diO versus vbbO is significantly reduced. (The benefit
is not eliminated, since even if there exist functionalities that cannot be diO obfuscated, it is still
possible that there are functionalities that can be diO obfuscated but not VBB obfuscated.) At the
same time, the heuristic used to justify the GGHW counterexample is itself much stronger than
assuming diO — namely their analysis relies on modeling the differentiating obfuscated program
as an oracle.

3

Our Approach. We introduce a new approach to proving the impossibility of diO. In contrast to the
prior work, we analyze our sampler under concrete assumptions that replace the GGHW conjecture.
We now explain the intuition behind our approach as well as the obstacles we had to overcome.

Let Obf be an obfuscator that we assume, towards a contradiction, is diO-secure. At the
highest level our approach is similar to GGHW. We build a program sampler S that produces
programs P0,P1 and auxiliary information P∗

2 consisting of an obfuscation of a program P2 under
an obfuscator Obf∗. As in GGHW, the sampler generates a signing and verification key pair (sk, vk)
for an underlying signature scheme DS, and program P0 always rejects. Likewise, P1 takes as input
a candidate message-signature pair (m,σ) and checks its validity under the signature verification
program DS.Ver with key vk. The auxiliary information continues to be the obfuscation P∗

2, under
an obfuscator Obf∗, of a program P2, where P2 hardwires the secret signing key sk. P2 takes as
input a program P of a certain maximum length, and uses m = P as the message it signs, and
runs P on m and the signature, accepting if this accepts. The important difference now however is
that Obf∗ is not some new type of obfuscator as in GGHW. Rather Obf∗ is assumed to be only an
iO-secure obfuscator.

It continues to be easy, using the auxiliary information P∗
2, to distinguish between obfuscations

under Obf of P0 and P1. The main issue is to prove that it is difficult, given P0,P1,P
∗
2, to find

an input on which P0 and P1 differ. The hurdle here continues to be the same, namely that the
auxiliary information program P∗

2 embeds the secret signing key sk. This precludes reducing to
the security of the signature scheme in an obvious way. To prove security we will show that it is
computationally difficult to generate a signature on any message. We do this via a hybrid argument
that steps through every possible message one by one. Since our hybrid steps through the entire
message space we base our security on assumptions of sub-exponential hardness.

To execute our strategy we will replace the generic signature scheme of GGHW with a special
type of puncturable signature scheme that we call a consistent puncturable signature scheme. Given
a “master” secret key sk, it should be possible to create a punctured version skm∗ of the key, for a
given message m∗, that can be used to sign any message m ̸= m∗ but even given which it is hard
to produce a signature on m∗. So far this is a special type of policy-based [9], functional [19] or
delegatable [5] signatures, these themselves analogues of the notions of puncturable, constrained
and functional PRFs [17, 39, 19]. The additional consistency requirement is that the signatures of
m ̸= m∗ produced under the master key and the punctured key should be the same. Note that only
deterministic puncturable signature schemes can be consistent, but the former is not a sufficient
condition. We show in Section 3 that such signature schemes can be built from iO and one-way
functions. While making a standard signature scheme deterministic is trivial via the use of PRFs,
our challenge is making the punctured and master versions of the key produce consistent signatures.

Our hybrid now proceeds as follows. We step through each program (message) P∗ and show
that it is computationally difficult to produce a signature on P∗. We do this by first replacing
the obfuscation of P2 with an obfuscation of a program P2,P∗ that works as follows. On all inputs
P ̸= P∗ the program P2,P∗ behaves as P2 with the exception that it uses a punctured version of the
signing key skP∗ . On input P∗ its output is hardwired to be whatever the output of P2(P

∗) was. We
observe that if indistinguishability obfuscation holds, then no poly-time attacker can distinguish
between obfuscations of programs P2 and P2,P∗ . This follows since the two programs share the same
output on every input. On every P ̸= P∗ the master and punctured keys will produce the same
signature that they feed into P, and on input P∗ program P2,P∗ is hardwired to behave the same
as P2. Since it is hard to distinguish between obfuscations of these two programs, it should be no
easier to output a signature on message P∗ when P2 is obfuscated to get the auxiliary information
aux than it is when P2,P∗ is obfuscated. However, in the latter case the security of the puncturable
signature scheme guarantees this is hard.

4

Note that since we assumed a diO-secure obfuscator Obf to start our proof by contradiction,
an iO-secure obfuscator, which we use both directly and to build consistent punctured signatures,
is provided for free and is not an extra assumption. This means the only assumption we need is a
sub-exponentially hard one-way function. More precisely, this is the case for sub-exponential diO,
while for polynomial diO the iO assumption will be an extra one.

While the text above outlines our main approach, there are several important factors that still
must be taken into account. First, we notice that P1 should be capable of verifying a signature on a
message that is an obfuscation of P1 and thus longer than P1 itself. For this reason we need to view
P0 and P1 as Turning Machines (TMs) that can process inputs longer than their own descriptions.

Next, our complexity leveraging argument requires that the advantage ϵ of any PT attacker
on the signature scheme multiplied by the message space be negligible. To satisfy this using
sub-exponential hardness assumptions we must use a verification key vk that is larger than the
programs P0,P1. However, this creates a circularity problem under the obvious strategy of having
P1 actually contain vk to verify the messages! We circumvent this issue by the use of a target
collision-resistant (TCR) hash function (also called a UOWHF) that hashes a separate verification
program as follows. We construct a program Pver that takes as input a candidate message-signature
pair (m,σ) and uses an embedded verification key vk to either accept or reject it. Now P1 takes
P′
ver as an additional input and uses it to check the candidate message-signature pairs, rather than

storing vk and performing the verification itself. P1 hardwires the hash h of Pver under a TCR
hash function, and rejects unless the hash h′ of P′

ver matches its hardwired hash h. This ensures
that only Pver can be used to verify the signatures. We analyze security by adding a hybrid step at
the beginning using the UOWHF security. We emphasize that the argument using our UOWHF is
outside of the complexity leveraging part of our hybrid.

The above is a very high-level description, and the devil is in the details that the body of the
paper sorts out. The circularity issues, summarized via Fig. 5, have to be dealt with very carefully.
A critical element of dealing with them is that different primitives are run with different values
of the security parameter. Thus, while the convention is that the security parameter in a proof
remains λ throughout, our constructions will feature n(λ) as the security parameter in certain
places, with n a polynomial that is carefully defined based on other parameters. Another subtlety
is that the success of this program depends on the details of how sub-exponential security is defined.
Specifically (cf. Section 2) we use “uniform” rather than “pointwise” definitions in the language
of [8]. The latter showed them equivalent in the usual setting of negligible functions but they are
not known to be equivalent in the sub-exponential setting.

Discussion. Our assumptions and conclusions both involve sub-exponential hardness and one might
ask about the validity of such assumptions and the value of such conclusions. Empirical evidence,
at least, says that when problems are hard, they are sub-exponentially hard. Natural problems
do not appear to be polynomially but not sub-exponentially hard except in rare cases [3]. Indeed
sub-exponential hardness is frequently assumed in cryptography, especially recently [34, 30, 23]. In
particular it is unlikely that polynomially-secure diO exists but sub-exponentially secure diO does
not, so ruling out the latter is significant in terms of evidence against diO. Similarly it is unlikely
that polynomially secure OWFs exist but sub-exponentially secure ones do not, so assuming the
latter is reasonable.

Differing-inputs obfuscation has proven to be a powerful tool using which we have built new
primitives. In some cases it has later been possible to reduce the assumption to iO or other
diO variants, but sometimes at the cost of weakening the conclusion and usually at the cost of
increased complexity and difficulty. Thus diO for circuits is used in [1, 18] to elegantly achieve
iO for TMs with unbounded input, adaptively-secure FE (Functional Encryption) and extractable

5

witness encryption. The assumption for TM iO was reduced to circuit iO in [22, 14, 40] but the
conclusion was weaker. The original result is shown in [37] under public-coin diO. Adaptively-
secure FE from iO did emerge but the solutions were more complex than the ones from diO [46, 2].
Differing input obfuscation is used as a tool in [12], via the result of Boyle, Chung and Pass [18], to
give hardcore functions with polynomially-many output bits from any injective one-way function
and iO, and is used as an assumption to extend this result to arbitrary one-way functions. It is
used similarly as a tool in [21]. It is used as an assumption in a result in [28]. All this motivates
understanding whether or not diO is achievable.

Related work. Bolyle, Chung and Pass [18] show that iO implies diO for samplers outputting circuits
that differ on only polynomially-many inputs. Our counter-examples and results do not apply to
this type of diO. They also do not apply to public-coin diO [37].

We get consistent puncturable signatures from OWFs and iO, which in our context effectively
means from OWFs since our proof assumes diO towards a contradiction and thus gets iO for free.
Our definition of consistent puncturable signatures is novel, but our construction follows Sahai-
Waters signatures [44]. Splittable signatures [40] also imply consistent puncturable signatures;
they are built based on an injective PRG and iO. Injective PRGs are not known to be implied by
OWFs so the assumption is stronger than ours. However, [16] build injective OWFs from OWFs
and iO, and also say that, due to an observation of Boyle at al. [18], the injective PRG of [40] can
be replaced with an injective OWF. By this route one can get consistent puncturable signatures
from OWFs and iO. However our construction is direct, substantially simpler and self contained.
Consistent puncturable signatures can also be constructed from constrained verifiable PRFs [25, 24].
The latter are achievable from κ-Multilinear DDH assumption. In our context, this would be an
additional assumption since it is not known to be implied by diO.

Some of the prior work focuses on constructing digital signature schemes with properties that are
similar to the ones we require above. The proposed primitives include: functional signatures [19],
policy-based signatures [9] and operational signatures [4], the latter subsuming the preliminary
work on delegatable signatures [5]. However, none of the proposed constructions of these primitives
satisfy the consistency requirement which requires that the master and punctured signing keys
produce the same signatures for all messages except for the punctured message, and which is
crucial for our impossibility result.

Bitansky et al. [13] show that if iO exists then auxiliary-input extractable OWFs do not. Under
the stronger assumption of public-coin diO for TMs, [20] obtain a stronger conclusion, in which
auxiliary-input extractable OWFs are ruled out with auxiliary input that does not depend on the
OWF.

2 Preliminaries

Notation. Let N = {0, 1, 2, . . .} be the set of non-negative integers. We denote by λ ∈ N the security
parameter and by 1λ its unary representation. If x ∈ {0, 1}∗ is a string then |x| denotes its length.
If x ∈ {0, 1}∗ is a string and ℓ ∈ N such that |x| ≤ ℓ then ⟨x⟩ℓ denotes the string of length ℓ that is
built by padding x with leading zeros. If X is a finite set, we let x←$ X denote picking an element
of X uniformly at random and assigning it to x. Algorithms may be randomized unless otherwise
indicated. Running time is worst case. “PT” stands for “polynomial-time,” whether for randomized
algorithms or deterministic ones. If A is an algorithm, we let y ← A(x1, . . . ; r) denote running A
with random coins r on inputs x1, . . . and assigning the output to y. We let y←$ A(x1, . . .) be the
result of picking r at random and letting y ← A(x1, . . . ; r). We let [A(x1, . . .)] denote the set of all
possible outputs of A when invoked with inputs x1, We say that f : N → R is negligible if for

6

Game OWF
F (λ)

fk←$ F.Kg(1λ)

x←$ F.In(λ)

y ← F.Ev(1λ, fk, x)

x′←$ F(1λ, fk, y)
y′ ← F.Ev(1λ, fk, x′)

Return (y = y′)

Game TCRH
H (λ)

(x0, st)←$H1(1
λ)

hk←$ H.Kg(1λ)

x1←$H2(1
λ, st ,hk)

h0 ← H.Ev(1λ, hk, x0)

h1 ← H.Ev(1λ, hk, x1)

win0 ← (x0 ̸= x1)

win1 ← (h0 = h1)

Return (win0 ∧ win1)

Game PPRFG
G(λ)

b←$ {0, 1} ; gk←$ G.Kg(1λ)

b′←$ GCH(1λ) ; Return (b = b′)

CH(x∗)

gk∗←$ G.PKg(1λ, gk, x∗)

If b = 1 then r∗ ← G.Ev(1λ, gk, x∗)

else r∗←$ G.Out(λ)

Return (gk∗, r∗)

Figure 1: Games defining one-wayness of function family F, target collision-resistance of function
family H and puncturable-PRF security of function family G.

every positive polynomial p, there exists λp ∈ N such that f(λ) < 1/p(λ) for all λ ≥ λp. We use
the code based game playing framework of [11]. (See Fig. 1 for an example.) By GA(λ) we denote
the event that the execution of game G with adversary A and security parameter λ results in the
game returning true.

Uniform and pointwise security definitions. There are two common ways to formalize security defini-
tions – by using different order of quantification. Let GAME be a security game, and let Advgame

A (λ)
be the advantage of a PT adversary A winning in this game with security parameter λ. Consider
the following two alternative definitions of sub-exponential security. A uniform definition requires
that there is a constant 0 < ϵ < 1 such that for every PT adversary A there exists λA ∈ N such
that Advgame

A (λ) ≤ 2−λϵ
for all λ ≥ λA. A pointwise definition requires that for every PT adversary

A there exist 0 < ϵ < 1 and λA ∈ N such that Advgame
A (λ) ≤ 2−λϵ

for all λ ≥ λA. These definitions
differ in the order of quantification between ϵ and A. In this work, we use uniform security defini-
tions. For the case of polynomial security, Bellare [8] proved that uniform and pointwise definitions
are equivalent. It is not known whether the equivalence also holds for the above definitions of
sub-exponential security.

Circuits and Turing Machines. We say that P is a program if it is either a circuit or a Turing Machine
(TM), and we denote the size of its binary representation by |P|. We assume that any program P
takes a single input string x; if P is defined to take multiple inputs x1, . . . then running P on an
input x is implicitly assumed to parse (x1, . . .)← x and run P(x1, . . .).

We say that circuits C0,C1 are functionally equivalent, written C0 ≡ C1, if they have the same
number of inputs ℓ ∈ N and if C0(x) = C1(x) holds for all x ∈ {0, 1}ℓ. We say that TMs M0,M1 are
functionally equivalent, and denote it by M0 ≡ M1, if both M0(x) and M1(x) halt on all x ∈ {0, 1}∗
and if M0(x) = M1(x) for all x ∈ {0, 1}∗.

If M is a TM and t ∈ N then y ← UTMt
M(x1, . . .) denotes running M on inputs x1, . . . and

assigning the output to y; if M(x1, . . .) does not halt within t steps, then UTMt
M(x1, . . .) returns 0.

If M is a TM and x ∈ {0, 1}∗ is a string such that M halts on input x, we use time(M, x) to denote
the number of steps that are required for it to halt.

Let P be any circuit or any TM that halts on all inputs. For any s ∈ N such that |P| ≤ s
let Pads(P) denote P padded to have size s, meaning that Pads(P) and P are of the same type
(i.e. both are circuits or TMs) and Pads(P) ≡ P. We assume that P can be padded to any size
larger or equal to |P|.

Function families. A family of functions F specifies PT algorithms F.Kg and F.Ev, where F.Ev is
deterministic. Assocated to F is a collection if input sets F.In and a collection of output sets F.Out,

7

defining all valid inputs and outputs for each of security parameters. Key generation algorithm
F.Kg takes 1λ to return a key fk. Evaluation algorithm F.Ev takes 1λ, fk and an input x ∈ F.In(λ) to
return F.Ev(1λ, fk, x) ∈ F.Out(λ).We say that F is injective if the function F.Ev(1λ, fk, ·): F.In(λ)→
F.Out(λ) is injective for all λ ∈ N and all fk ∈ [F.Kg(1λ)].

Puncturable function families. A puncturable function family G specifies (beyond the usual algo-
rithms) additional PT algorithms G.PKg and G.PEv, where G.PEv is deterministic. Punctured
key generation algorithm G.PKg takes 1λ, a key gk ∈ [G.Kg(1λ)] and a target input x∗ ∈ G.In(λ)
to return a “punctured” key gk∗. Punctured evaluation algorithm G.PEv takes 1λ, gk∗ and an
input x ∈ G.In(λ) to return G.PEv(1λ, gk∗, x) ∈ G.Out(λ). The correctness condition requires
that G.PEv(1λ, gk∗, x) = G.Ev(1λ, gk, x) for all λ ∈ N, all gk ∈ [G.Kg(1λ)], all x∗ ∈ G.In(λ), all
gk∗ ∈ [G.PKg(1λ, gk, x∗)] and all x ∈ G.In(λ) \ {x∗}.

One-way functions. Consider game OW of Fig. 1 associated to a function family F and an adversary

F , where F.In(λ) is required to be finite for all λ ∈ N. For λ ∈ N let AdvowF,F (λ) = Pr[OWF
F (λ)].

Let δ : N → R be any function. We say that F is δ-OW-secure if for every PT adversary F there
exists λδ,F ∈ N such that AdvowF,F (λ) ≤ δ(λ) for all λ ≥ λδ,F . We say that F is sub-exponentially

OW-secure if it is 2−(·)ϵ-OW-secure for some 0 < ϵ < 1.

Target collision-resistant functions. Consider game TCR of Fig. 1 associated to a function family H

and an adversary H. For λ ∈ N let AdvtcrH,H(λ) = Pr[TCRH
H (λ)]. Let δ : N → R be any function.

We say that H is δ-TCR-secure if for every PT adversary H there exists λδ,H ∈ N such that
AdvtcrH,H(λ) ≤ δ(λ) for all λ ≥ λδ,H. We say that H is sub-exponentially TCR-secure if it is 2−(·)ϵ-
TCR-secure for some 0 < ϵ < 1. Target collision-resistant hash functions were introduced by Naor
and Yung [41] under the name of Universal One-Way Hash Functions (UOWHF). [10] redefined the
corresponding security notion under the name of target collision-resistance.

TCR-secure function families can be built from one-way functions, by combining the following
results. First, [43, 36] (see also [38]) proposed constructions of TCR-secure compression function
families with fixed input and output lengths. More formally, they show how to build a function
family H′ such that H′.In(·) = {0, 1}pin(·) and H′.Out(·) = {0, 1}pout(·), where pin, pout are some poly-
nomials such that pin(λ) ≥ pout(λ) for all λ ∈ N. Next, [10, 45] showed how to use any TCR-secure
compression function H′ with fixed input length in order to build another TCR-secure function
family H for arbitrary, bounded variable-length inputs, meaning that H.In(λ) =

∪
i≤p(λ){0, 1}i and

H.Out(λ) = H′.Out(λ) for some function p : N→ N all λ ∈ N.

Puncturable PRFs. Consider game PPRF of Fig. 1 associated to a puncturable function family G
and an adversary G, where G.Out(λ) is required to be finite for all λ ∈ N and G is required to make

exactly one oracle query to CH. For λ ∈ N let AdvpprfG,G (λ) = 2Pr[PPRFG
G(λ)]− 1. Let δ : N→ R be

any function. We say that G is a δ-PPRF-secure if for every PT adversary G there exists λδ,G ∈ N
such that AdvpprfG,G (λ) ≤ δ(λ) for all λ ≥ λδ,G . We say that G is sub-exponentially PPRF-secure if it

is 2−(·)ϵ-PPRF-secure for some 0 < ϵ < 1. Puncturable PRFs were concurrently and independently
introduced in [17, 39, 19]. They can be built by extending the standard PRF construction of
Goldreich, Goldwasser and Micali [31].

Digital signature schemes. A digital signature scheme DS defines PT algorithms DS.Kg, DS.Sig,
DS.Ver, where DS.Ver is deterministic. Associated to DS is a collection of input sets DS.In and
a collection of output sets DS.Out, defining all valid messages and signatures for each of security
parameters. Key generation algorithm DS.Kg takes 1λ to return a signing key sk and a verification
key vk. Signing algorithm DS.Sig takes 1λ, sk and a message m ∈ DS.In(λ) to return a signature
σ ∈ DS.Out(λ). Verification algorithm DS.Ver takes 1λ, vk,m, σ to return a decision d ∈ {1, 0}

8

Game DIFFD
S (λ)

(P0,P1, aux)←$ S(1λ)

x←$D(1λ,P0,P1, aux)

Return (P0(x) ̸= P1(x))

Game IOO
Obf,S(λ)

b←$ {0, 1}
(P0,P1, aux)←$ S(1λ)

P←$ Obf(1λ,Pb)

b′←$O(1λ,P, aux)
Return (b = b′)

Figure 2: Games defining difference-security of program sampler S and iO-security of program
obfuscator Obf relative to program sampler S.

regarding whether σ is a valid signature of m under vk, where 1 is returned if σ is a valid and
0 otherwise. The correctness condition requires that DS.Ver(1λ, vk,m, σ) = 1 for all λ ∈ N, all
(sk, vk) ∈ [DS.Kg(1λ)], all m ∈ DS.In(λ) and all σ ∈ [DS.Sig(1λ, sk,m)]. We say that a digital
signature scheme DS is deterministic if its signing algorithm DS.Sig is deterministic.

Obfuscators. An obfuscator is a PT algorithm Obf that on input 1λ and a program P returns a
program P of the same type as P such that P ≡ P. We say that Obf is a circuit obfuscator if
it obfuscates circuits, and we say that Obf is a TM obfuscator if it obfuscates TMs. Note that
according to our definition of functionally equivalent programs, obfuscation is not defined for TMs
that do not halt on some inputs. The polynomial slowdown condition requires that for every TM
obfuscator Obf there is a polynomial p : N × N → N such that for every TM M that halts on all
inputs and for every input x ∈ {0, 1}∗, we have time(M, x) ≤ p(λ, time(M, x)) for all λ ∈ N and all
M ∈ [Obf(1λ,M)]. An analogous slowdown condition trivially holds for any PT circuit obfuscator.

In this work, we discuss indistinguishabilty obfuscation (iO) and differing-inputs obfuscation
(diO). The study of these obfuscation notions was initiated in [7]. Later [26, 44] showed how to
build and use the former, whereas [18, 1] provided results on the latter. We extend the definitional
framework of [12] that uses classes of program samplers to capture different variants of security
notions for iO and diO. Specifically, our definitions allow for a unified treatment of polynomial and
sub-exponential security of both circuit and TM obfuscation.

Program samplers. A circuit sampler is a PT algorithm Scirc that on input 1λ returns a triple
(C0,C1, aux), where C0,C1 are circuits of the same size, number of inputs and number of outputs,
and aux is a string. A TM sampler is a PT algorithm Stm that on input 1λ returns a triple
(M0,M1, aux), where M0,M1 are TMs of the same size, and aux is a string. We require that M0(x)
and M1(x) halt for all λ ∈ N, all (M0,M1, aux) ∈ [Stm(1λ)] and all x ∈ {0, 1}∗. We say that S is a
program sampler if it is either a circuit sampler or a TM sampler.

Classes of program samplers. We say that a program sampler S produces functionally equivalent

programs if Pr
[
P0 ≡ P1 : (P0,P1, aux)←$ S(1λ)

]
= 1 for all λ ∈ N. Let Scirc

eq be the class of all
circuit samplers that produce functionally equivalent circuits, and let Stm

eq be the class of all TM
samplers that produce functionally equivalent TMs. Consider game DIFF of Fig. 2 associated to a
program sampler S and an adversary D. For λ ∈ N let AdvdiffS,D(λ) = Pr[DIFFD

S (λ)]. Let δ : N→ R
be any function. We say that S is δ-DIFF-secure if for every PT adversary D there exists λδ,D ∈ N
such that AdvdiffS,D(λ) ≤ δ(λ) for all λ ≥ λδ,D. We say that S is sub-exponentially DIFF-secure if it is

2−(·)ϵ-DIFF-secure for some 0 < ϵ < 1. Let Scirc
δ-diff be the class of all δ-DIFF-secure circuit samplers,

and let Stm
δ-diff be the class of all δ-DIFF-secure TM samplers. Informally, difference-security of a

program sampler S means that given its output (P0,P1, aux), it is hard to find an input on which
the programs P0 and P1 differ.

9

Indistinguishability obfuscation and differing-inputs obfuscation. Consider game IO of Fig. 2 associ-

ated to an obfuscator Obf, a program sampler S and an adversary O. For λ ∈ N let AdvioObf,S,O(λ) =

2Pr[IOO
Obf,S(λ)]− 1. Let δ : N→ R be any function. Let S be a class of program samplers. We say

that Obf is δ-S-secure if for every program sampler S ∈ S and for every PT adversary O there exists
λδ,S,O ∈ N such that AdvioObf,S,O(λ) ≤ δ(λ) for all λ ≥ λδ,S,O. We say that Obf is sub-exponentially

S-secure if it is 2−(·)ϵ-S-secure for some 0 < ϵ < 1.

We say that Obf is a sub-exponentially secure indistinguishability obfuscator for TMs (resp. cir-
cuits) if there exists 0 < ϵ < 1 such that Obf is 2−(·)ϵ–Stm

eq -secure (resp. 2−(·)ϵ–Scirc
eq -secure). We

say that Obf is a differing-inputs obfuscator for TMs (resp. circuits) if for every negligible function
γ : N → R there exists a negligible function ν : N → R such that Obf is ν-Stm

γ-diff -secure (resp. ν-

Scirc
γ-diff -secure). Note that ν-Stm

γ-diff -security may be unachievable if there exists an infinite number
of security parameters λ ∈ N such that γ(λ) > ν(λ). We say that Obf is a sub-exponentially secure
differing-inputs obfuscator for TMs (resp. circuits) if for every 0 < ϵ0 < 1 and γ = 2−(·)ϵ0 there
exists 0 < ϵ1 < 1 such that Obf is 2−(·)ϵ1 -Stm

γ-diff -secure (resp. 2−(·)ϵ1 -Scirc
γ-diff -secure).

Note that according to our definitions, a sub-exponentially secure differing-inputs obfuscator is
not necessarily a polynomially-secure differing-inputs obfuscator. Namely, the former guarantees
no security with respect to δ-DIFF-secure program samplers when δ is negligible but not sub-
exponentially small. This observation can be used to strengthen our definition of sub-exponentially
secure diO. We chose to use the weaker definition, which is simpler to define and which makes our
impossibility results stronger.

3 Consistent puncturable digital signature schemes

We start by defining consistent puncturable digital signature schemes that will be used for our
impossibility results in Section 4. Our construction follows Sahai-Waters signatures [44], and we
prove its security assuming OWF and iO.

Informally, a puncturable digital signature scheme allows to ‘puncture’ its signing key sk at
an arbitrary message m∗. The resulting punctured secret key sk∗, punctured at m∗, allows to
produce signatures for all messages except for m∗. The puncturability property is similar to the
one of puncturable PRFs. We say that a puncturable digital signature scheme is consistent if its
secret signing key sk and every possible punctured signing key sk∗, that can be derived from sk,
deterministically produce the same signatures for all messages except for the punctured message.

We now define a security notion, informally, requiring that no PT adversary should be able
to forge a valid signature for the punctured message. The natural formalization of this security
notion requires selective unforgeability, meaning that an adversary has to choose a message m∗ at
which the original signing key sk should be punctured. Having received the corresponding pair of
punctured signing key sk∗ and verification key vk, the goal of the adversary is to produce a valid
signature for m∗ with respect to the verification key.

Puncturable digital signature schemes. A puncturable digital signature scheme DS specifies (beyond
the algorithms associated to digital signatures schemes) additional PT algorithms DS.PKg, DS.PSig,
where DS.PSig is deterministic. Punctured key generation algorithm DS.PKg takes 1λ, a signing
key sk ∈ [DS.Kg(1λ)] and a message m∗ ∈ DS.In(λ) to return a “punctured” signing key sk∗.
Punctured signing algorithm DS.PSig takes 1λ, sk∗ and a message m ∈ DS.In(λ) to return a sig-
nature σ ∈ DS.Out(λ). We say that puncturable digital signature scheme DS is consistent if
DS.Sig(1λ, sk,m) = DS.PSig(1λ, sk∗,m) for all λ ∈ N, all (sk, vk) ∈ [DS.Kg(1λ)], all m∗ ∈ DS.In(λ),
all sk∗ ∈ [DS.PKg(1λ, sk,m∗)] and all m ∈ DS.In(λ) \ {m∗}. Note that DS can be consistent only

10

Game PSUFCMAU
DS(λ)

(m∗, st)←$ U1(1λ)
(sk, vk)←$ DS.Kg(1λ)

sk∗←$ DS.PKg(1λ, sk,m∗)

σ∗←$ U2(1λ, st , vk, sk∗)
d← DS.Ver(1λ, vk,m∗, σ∗)

Return (d = 1)

Figure 3: Game defining selective unforgeability of puncturable digital signature scheme DS under
chosen message attack.

if it is deterministic. More precisely, both DS.Sig and DS.PSig should be deterministic. However,
determinism is a necessary but not a sufficient condition.

Punctured selective unforgeability under chosen message attack. Consider game PSUFCMA of Fig. 3
associated to a puncturable digital signature scheme DS and an adversary U . For λ ∈ N let
Advpsufcma

DS,U (λ) = Pr[PSUFCMAU
DS(λ)]. Let δ : N → R be any function. We say that DS is δ-

PSUFCMA-secure if for every PT adversary U there exists λδ,U ∈ N such that Advpsufcma
DS,U (λ) ≤ δ(λ)

for all λ ≥ λδ,U . We say that DS is sub-exponentially PSUFCMA-secure if it is 2−(·)ϵ-PSUFCMA-
secure for some 0 < ϵ < 1.

Our construction. We build a consistent puncturable digital signature scheme DS from a PPRF G,
an indistinguishability obfuscator Obf and a OWF F. Our main observation is that a PPRF key
gk can be used as a secret key for DS. In order to obtain a punctured key for DS, we puncture gk
accordingly. The correctness condition of puncturable PRFs guarantees that DS is consistent. We
build a verification key by obfuscating a circuit that embeds the PPRF key gk and a OWF key
fk. The circuit takes a message-signature pair (m,σ) and returns 1 if F.Ev(1λ, fk, σ) = F.Ev(1λ, fk,
G.Ev(1λ, gk,m)); it returns 0 otherwise.

Puncturable digital signature scheme PUNC-DS. Let s : N → N be a polynomial. Let G be a punc-
turable function family. Let F be a function family such that F.In = G.Out. Let Obf be a circuit
obfuscator. We build a consistent puncturable digital signature scheme DS = PUNC-DS[G,F,Obf, s]
as follows. Let DS.In(λ) = G.In(λ) and DS.Out(λ) = G.Out(λ) for all λ ∈ N, and

Algorithm DS.Kg(1λ)

gk←$ G.Kg(1λ) ; fk←$ F.Kg(1λ)
C←$ Obf(1λ,Pads(λ)(C1λ,gk,fk))

Return (gk,C)

Circuit C1λ,gk,fk(m,σ)

σ′ ← G.Ev(1λ, gk,m)
y′ ← F.Ev(1λ, fk, σ′)
If (y′ = F.Ev(1λ, fk, σ)) then return 1
Else return 0

Algorithm DS.PKg(1λ, gk,m∗)

Return G.PKg(1λ, gk,m∗)

Algorithm DS.Ver(1λ,C,m, σ)

Return C(m,σ)

Algorithm DS.Sig(1λ, gk,m)

Return G.Ev(1λ, gk,m)

Algorithm DS.PSig(1λ, gk∗,m)

Return G.PEv(1λ, gk∗,m)

We say that DS is well-defined if s(λ) ≥ |C1λ,gk,fk | for all λ ∈ N, all gk ∈ [G.Kg(1λ)] and all

fk ∈ [F.Kg(1λ)].
The following says that a PSUFCMA-secure, consistent punctured digital signature scheme can

be built assuming OWF and iO.

11

Theorem 3.1 Let G be a sub-exponentially PPRF-secure function family such that G.In(λ),G.Out(λ)
⊆
∪

i≤p0(λ)
{0, 1}i for some polynomial p0 and all λ ∈ N. Let F be a sub-exponentially OW-

secure function family such that F.In = G.Out and F.Out(λ) ⊆
∪

i≤p1(λ)
{0, 1}i for some polyno-

mial p1 and all λ ∈ N. Let Obf be a sub-exponentially Scirc
eq -secure circuit obfuscator. Let DS =

PUNC-DS[G,F,Obf, s]. Then (1) DS is well-defined, and (2) DS is sub-exponentially PSUFCMA-
secure.

In order to prove that DS is PSUFCMA-secure, we show that an adversary can not find the value
of G.Ev(1λ, gk,m∗) for a challenge message m∗, even given the obfuscated verification-key circuit
that contains gk. In the proof, we puncture gk at m∗ to get a punctured key gk∗, and construct
a functionally equivalent verification-key circuit that embeds gk∗ along with y∗ = F.Ev(1λ, fk,
G.Ev(1λ, gk,m∗)). The new verification key accepts σ as a valid signature for m∗ if and only if
y∗ = F.Ev(1λ, fk, σ), whereas the verification of signatures for all other messages m ̸= m∗ remains
the same. First, we use the iO-security of Obf to switch the verification circuits. Then we use the
PPRF-security of G, followed by the OWF-security of F to show that no adversary can find the
value of G.Ev(1λ, gk,m∗) from gk∗ and y∗.

Proof of Theorem 3.1: For any λ ∈ N let s(λ) be a polynomial upper bound on max(|C1
1λ,gk,fk

| ,
|C2

1λ,gk∗,fk,m∗,y∗
|) where the circuits are defined in Fig. 4 and the maximum is over all fk ∈ [F.Kg(1λ)],

gk ∈ [G.Kg(1λ)], m∗ ∈ G.In(λ), gk∗ ∈ [G.PKg(1λ, gk,m∗)] and y∗ ∈ F.Out(λ). This implies part (1)
of the theorem, meaning that DS is well-defined.

Let 0 < ϵpprf < 1 be a constant for which G is 2−(·)ϵpprf –PPRF-secure. Let 0 < ϵow < 1 be
a constant for which F is 2−(·)ϵow–OW-secure. Let 0 < ϵio < 1 be a constant for which Obf is
2−(·)ϵio–Scirc

eq -secure. Let ϵ = 1
2 min(ϵpprf , ϵow, ϵio). We now prove claim (2) by showing that DS is

2−(·)ϵ-PSUFCMA-secure.

Let U be a PT adversary. Consider the games and associated circuits of Fig. 4. Lines not annotated
with comments are common to all games. Game G0(λ) is equivalent to PSUFCMAU

DS(λ), so for all
λ ∈ N we have

Advpsufcma
DS,U (λ) = Pr[G0(λ)]. (1)

The proof proceeds in three steps. In the first step we transition from game G0 to game G1,
by replacing circuit C1

1λ,gk,fk
with circuit C2

1λ,gk∗,fk,m∗,y∗
. On input (m,σ) circuit C1

1λ,gk,fk
com-

pares F.Ev(1λ, fk, σ) with F.Ev(1λ, fk,G.Ev(1λ, gk,m)), where gk is a PPRF key. In contrast, cir-
cuit C2

1λ,gk∗,fk,m∗,y∗
contains the corresponding punctured key gk∗, punctured at the challenge

message m∗. In order to process inputs that contain message m∗, it uses an embedded value
y∗ = F.Ev(1λ, fk,G.Ev(1λ, gk,m∗)) instead. As a result, the circuits are functionally equivalent. We
build a circuit sampler S ∈ Scirc

eq and a PT adversary O against the sub-exponential iO-security of
Obf relative to S such that for all λ ∈ N we have

Pr[G0(λ)]− Pr[G1(λ)] = AdvioObf,S,O(λ). (2)

Circuit Sampler S(1λ)

(m∗, st)←$ U1(1λ) ; fk←$ F.Kg(1λ)
gk←$ G.Kg(1λ) ; gk∗←$ G.PKg(1λ, gk,m∗)
r∗ ← G.Ev(1λ, gk,m∗) ; y∗ ← F.Ev(1λ, fk, r∗)
C1 ← Pads(λ)(C

1
1λ,gk,fk

) ; C0 ← Pads(λ)(C
2
1λ,gk∗,fk,m∗,y∗

)

aux ← (st , gk∗,m∗) ; Return (C0,C1, aux)

Adversary O(1λ,C, aux)
(st , gk∗,m∗)← aux

σ∗←$ U2(1λ, st ,C, gk∗)

b← C(m∗, σ∗)
Return b

12

Games G0(λ)–G2(λ)

(m∗, st)←$ U1(1λ) ; fk←$ F.Kg(1λ) ; gk←$ G.Kg(1λ) ; gk∗←$ G.PKg(1λ, gk,m∗)
r∗ ← G.Ev(1λ, gk,m∗) ; y∗ ← F.Ev(1λ, fk, r∗) ; Cver ← C1

1λ,gk,fk // G0

r∗ ← G.Ev(1λ, gk,m∗) ; y∗ ← F.Ev(1λ, fk, r∗) ; Cver ← C2
1λ,gk∗,fk,m∗,y∗ // G1

r∗←$ G.Out(λ) ; y∗ ← F.Ev(1λ, fk, r∗) ; Cver ← C2
1λ,gk∗,fk,m∗,y∗ // G2

C←$ Obf(1λ,Pads(λ)(Cver)) ; σ
∗←$ U2(1λ, st ,C, gk∗) ; b← C(m∗, σ∗) ; Return (b = 1)

Circuit C1
1λ,gk,fk(m,σ)

σ′ ← G.Ev(1λ, gk,m)
y′ ← F.Ev(1λ, fk, σ′)
If (y′ = F.Ev(1λ, fk, σ)) then return 1
Else return 0

Circuit C2
1λ,gk∗,fk,m∗,y∗(m,σ)

If (m ̸= m∗) then
σ′ ← G.PEv(1λ, gk∗,m)
y′ ← F.Ev(1λ, fk, σ′)
Else y′ ← y∗

If (y′ = F.Ev(1λ, fk, σ)) then return 1
Else return 0

Figure 4: Games for proof of Theorem 3.1.

Next, in the transition from game G1 to game G2 we use the PPRF-security of G in order to replace
r∗ by a uniformly random value. We build a PT adversary G against the PPRF-security of G such
that for all λ ∈ N we have

Pr[G1(λ)]− Pr[G2(λ)] = AdvpprfG,G (λ). (3)

Adversary GCH(1λ)

(m∗, st)←$ U1(1λ) ; fk←$ F.Kg(1λ) ; (gk∗, r∗)← CH(m∗)

y∗ ← F.Ev(1λ, fk, r∗) ; C←$ Obf(1λ,Pads(λ)(C
2
1λ,gk∗,fk,m∗,y∗

))

σ∗←$ U2(1λ, st ,C, gk∗) ; b← C(m∗, σ∗) ; Return b

Finally, in order to win game G2, adversary U has to find a preimage of y∗ under the one-way
function F with key fk. We build a PT adversary F against the OW-security of F such that for all
λ ∈ N we have

Pr[G2(λ)] = AdvowF,F (λ). (4)

Adversary F(1λ, fk, y∗)
(m∗, st)←$ U1(1λ) ; gk←$ G.Kg(1λ) ; gk∗←$ G.PKg(1λ, gk,m∗)

C←$ Obf(1λ,Pads(λ)(C
2
1λ,gk∗,fk,m∗,y∗

))

σ∗←$ U2(1λ, st ,C, gk∗) ; Return σ∗

Let λS,O ∈ N be such that AdvioObf,S,O(λ) ≤ 2−λϵio for all λ ≥ λS,O. Let λG ∈ N be such that

AdvpprfG,G (λ) ≤ 2−λ
ϵpprf

for all λ ≥ λG . Let λF ∈ N be such that AdvowF,F (λ) ≤ 2−λϵow
for all λ ≥ λF .

Then there exists λU ∈ N such that the following holds for all λ ≥ λU :

Advpsufcma
DS,U (λ) =

1∑
i=0

(Pr[Gi(λ)]− Pr[Gi+1(λ)]) + Pr[G2(λ)] (5)

= AdvioObf,S,O(λ) + AdvpprfG,G (λ) + AdvowF,F (λ) (6)

13

≤ 2−λϵio + 2−λ
ϵpprf

+ 2−λϵow
(7)

≤ 3 · 2−λ2ϵ
(8)

≤ 3 · 2−(2λ)ϵ = 2log2 3−(2λ)ϵ (9)

≤ 2−λϵ
(10)

Equation (5) follows from Equation (1) for all λ ∈ N. Equation (6) follows from Equations (2)–(4)
for all λ ∈ N. Equation (7) holds for all λ ≥ max(λS,O, λG , λF), according to the sub-exponential
security of Obf, G and F. Equation (8) follows from our choice of ϵ, namely because 2ϵ ≤ ϵio,
2ϵ ≤ ϵpprf and 2ϵ ≤ ϵow. Equation (9) holds for all λ ∈ N such that λ2ϵ ≥ (2λ)ϵ, requiring that

λ ≥ 2. Equation (10) holds whenever log2 3−2ϵλϵ ≤ −λϵ, requiring that λ ≥
(
log2 3
2ϵ−1

)1/ϵ
. Therefore,

it suffices to set

λU = max

(
λS,O, λG , λF , 2,

⌈(
log2 3

2ϵ − 1

)1/ϵ
⌉)

.

This completes the proof.

4 Impossibility of differing-inputs obfuscation for TMs

In this section we show that differing-inputs obfuscation for Turing Machines is impossible. In
order to disprove sub-exponentially secure diO for TMs, we assume only the existence of sub-
exponentially secure one-way functions. Furthermore, we show that polynomially secure diO for
TMs is also impossible, additionally assuming sub-exponentially secure iO.

We construct a sub-exponentially difference-secure TM sampler, meaning that given a pair of
TMs produced by this sampler it is hard to find an input on which these TMs produce different
outputs. The proof of difference-security is the core part of our work. It requires to carefully
specify how to choose parameters for our sampler in a way that does not introduce any circular
dependencies. Besides proving difference-security, we also show that there exists an adversary that
can distinguish between obfuscations of TMs that are produced by the sampler regardless of the
used obfuscator. Together these claims imply the impossibility of diO for TMs.

The blueprint for impossibility results. The first black-box attack on differing-inputs obfuscation was
presented by Garg, Gentry, Halevi and Wichs (GGHW) [27]. They introduced a novel special-
purpose obfuscation assumption and showed that it contradicts diO. Our impossibility result follows
the high-level idea from their work, but we achieve it using concrete assumptions. We now explain
the core ideas of our impossibility result, which roughly follow GGHW.

We construct a TM sampler Stm that returns TMs M0,M1 along with an auxiliary information
string aux . The sampler generates a key pair (sk, vk) for a digital signature scheme DS, and its
output depends on these keys. TM M0 returns 0 on every input. TM M1 returns 1 if and only if
it gets a valid message-signature pair as input, corresponding to the verification key vk; it returns
0 otherwise. The auxiliary information string aux is an iO-obfuscation of a TM Maux. The latter
embeds the signing key sk and takes a TM M as input, which for our purpose will normally be a
diO-obfuscation of M0 or M1. Maux returns the result of running M on a message-signature pair
that is produced using its embedded signing key sk.

In order to determine whether a TM M is an obfuscation of M0 or M1, one can run Maux with
M as input. According to the construction of Maux, it will return b ∈ {0, 1} if and only if M is an

14

obfuscation of Mb. To prove difference-security of Stm, we will show that it is hard to find a valid
message-signature pair given (M0,M1, aux). The main technical challenge of the proof is to show
that aux (the obfuscation of Maux) properly hides the embedded signing key sk, which does not
naturally follow from the security of indistinguishability obfuscation.

Turing Machine sampler TM-SAMP. Let s0, ℓ, n, t0, t1, s1 : N→ N be polynomials. Let Obftmeq ,Obf
tm
diff

be TM obfuscators. Let H be a function family such that H.In(λ) = {0, 1}∗ and H.Out(λ) ⊆∪
i≤p0(λ)

{0, 1}i for some polynomial p0 and all λ ∈ N. Let DS be a deterministic digital signature

scheme such that DS.In(λ) = {0, 1}ℓ(λ) and DS.Out(λ) ⊆
∪

i≤p1(λ)
{0, 1}i for some polynomial p1

and all λ ∈ N. We build a TM sampler Stm = TM-SAMP [Obftmdiff ,H,DS,Obf
tm
eq , s0, ℓ, n, t0, t1, s1] as

follows:

TM Sampler Stm(1λ)

(sk, vk)←$ DS.Kg(1n(λ))
hk←$ H.Kg(1λ)
h← H.Ev(1λ, hk,Mver

1λ,vk
)

M0 ← Pads0(λ)(M
0)

M1 ← Pads0(λ)(M
1
1λ,hk,h

)

Maux ← Pads1(λ)(M
aux
1λ,sk,vk

)

aux ←$ Obftmeq (1
n(λ),Maux)

Return (M0,M1, aux)

TM M0(M, 1t,m, σ)

Return 0

TM M1
1λ,hk,h

(M, 1t,m, σ)

h′ ← H.Ev(1λ, hk,M)
If (h′ ̸= h) then return 0
Return UTMt

M(m,σ)

TM Maux
1λ,sk,vk

(M)

If (|M| ̸= ℓ(λ)) then return 0

σ ← DS.Sig(1n(λ), sk, ⟨M⟩ℓ(n(λ)))
d← UTM

t1(λ)

M
(Mver

1λ,vk
, 1t0(λ),M, σ)

Return d

TM Mver
1λ,vk

(m,σ)

If (|m| ̸= ℓ(λ)) then return 0

d← DS.Ver(1n(λ), vk, ⟨m⟩ℓ(n(λ)), σ)
Return d

We say that Stm is well-defined if s0(λ) ≥ |M0|, s0(λ) ≥ |M1
1λ,hk,h

|, ℓ(n(λ)) ≥ ℓ(λ), t0(λ) ≥
time(Mver

1λ,vk
, (m,σ)), t1(λ) ≥ time(M, (Mver

1λ,vk
, 1t0(λ),M, σ)) and s1(λ) ≥ |Maux

1λ,sk,vk
| for all λ ∈ N, all

hk ∈ [H.Kg(1λ)], all h ∈ H.Out(λ), all M ∈ {M0,M1
1λ,hk,h

}, all M ∈ [Obftmdiff(1
λ,Pads0(λ)(M))], all

(sk, vk) ∈ [DS.Kg(1n(λ))], all m ∈ {0, 1}ℓ(λ) and all σ ∈ DS.Out(n(λ)).

Core design ideas behind TM-SAMP. Note that TM Maux
1λ,sk,vk

takes as input an obfuscated TM M

and computes the signature σ for message ⟨M⟩ℓ(n(λ)), where the latter denotes M padded to size

ℓ(n(λ)). It then uses a Universal Turing Machine UTM to simulate M on input x for the duration of
t1(λ) steps, where x = (Mver

1λ,vk
, 1t0(λ),M, σ). The idea of computing a signature on a message that

depends on M was already proposed in GGHW [27], with the goal of avoding a trivial attack against
the difference-security of the sampler. Specifically, if a fixed message-signature pair (mch, σch) was
used for all inputs of Maux

1λ,sk,vk
, then a difference-security adversary could construct a sequence of

TMs that each reveals a single bit of (mch, σch) when used as an input M to Maux
1λ,sk,vk

. This would
allow adversary to recover the message-signature pair bit-by-bit.

Turing Machine M1
1λ,hk,h

takes an input x = (M, 1t,m, σ), where M is a TM, 1t is the unary

representation of some integer t ∈ N, and (m,σ) is a message-signature pair. We use a target
collision-resistant function family H in order to ensure that M1

1λ,hk,h
can return 1 only if M = Mver

1λ,vk
.

This is achieved by embeding a key hk for H and the value h = H.Ev(1λ, hk,Mver
1λ,vk

) into M1
1λ,hk,h

,

and by returning 0 whenever h ̸= H.Ev(1λ, hk,M). If M = Mver
1λ,vk

is satisfied, then M1
1λ,hk,h

uses

a Universal Turing Machine UTM to simulate M on input (m,σ) for the duration of t steps. TM
Mver

1λ,vk
is designed to return 1 if and only if its input x = (m,σ) is a valid message-signature pair

with respect to a verification key vk for the digital signature scheme DS. Our impossibility results
require the choice of DS to depend on the construction of M1

1λ,hk,h
, so embedding vk directly into

the latter would have introded a circular dependency between the two. Instead we have to resort
to the above approach of embedding vk into a separate TM.

15

Figure 5: Parameter dependencies in TM-SAMP for the proof of Theorem 4.1.

According to our definitions, two TMs can be functionally equivalent only if both of them halt
on all inputs. The notion of functional equivalence is further used for the definitions of program
samplers and obfuscation. This means that whenever a TM needs to simulate the code of another
TM, it is required to use a Universal Turing Machine UTM and specify the number of steps for the
simulation. Otherwise, the simulated TMs would not be guaranteed to halt.

Parameters of TM-SAMP. Fig. 5 shows the dependencies between all schemes and parameters that
will be used to instantiate the construction of TM-SAMP in Theorem 4.1. Let us introduce the
notation that is used in this picture. For any two entities A and B, an arrow from A to B means
that the construction, or the choice, of B depends on A. The relations are transitive, meaning that
we do not draw a direct arrow from A to B in the case if B is already reachable from A. TM
Maux-punc will be used only for the proof of security and is defined in Fig. 6.

The construction of TM-SAMP is parameterized by polynomials s0, s1, t0, t1, ℓ and n. Polyno-
mials s0, s1 denote the size to which some of our TMs must be padded prior to obfuscating them.
This stems from our definition of program samplers that are required to return programs of the
same size. Polynomials t0, t1 are used to indicate the number of steps that must be done when
simulating various TMs using a Universal Turing Machine UTM. Our definition of a well-defined
instantiation of TM-SAMP specifies lower bounds for t0, t1 that ensure the correctness of the attack
that we will design against the sub-exponential (d)iO-security of Obftmdiff with respect to Stm. Poly-
nomial ℓ will be defined to upper-bound the size of any obfuscation M of programs M0 and M1

1λ,hk,h
,

when obfuscator Obftmdiff is used. Note that Maux
1λ,sk,vk

rejects all inputs M of size different than ℓ(λ);

our attack will pad all obfuscations of M0 and M1
1λ,hk,h

to size ℓ(λ), using the padding operator

Padℓ(λ)(·) that is assumed to produce functionally equivalent TMs as per Section 2. Polynomial n
is used to set security parameters for schemes DS and Obftmeq . Specifically, if the TM sampler Stm

is instantiated with a security parameter λ ∈ N, then its construction uses these two schemes, each
with the security parameter n(λ).

In order for our proof of difference-security to work, if a 2−(·)ϵ-security is assumed for either
of DS or Obftmeq , then the choice of polynomial n will depend on ϵ. This leads to an inconvenient
dependency: DS uses n(λ) as its security parameter, but the choice of polynomial n depends
on the choice of DS. Ideally, we would have liked to choose a digital signature scheme DS such

16

that DS.Out(n(λ)) = {0, 1}ℓ(λ), because DS is used to sign messages that are TMs of size ℓ(λ).
However, since we do not know n ahead of choosing DS, we require that for all λ ∈ N we have
DS.Out(λ) = {0, 1}ℓ(λ) and ℓ(n(λ)) ≥ ℓ(λ), resulting in DS.Out(n(λ)) = {0, 1}ℓ(n(λ)). We then use
an injective string padding to map TMs (i.e. their string representations) of length ℓ(λ) into strings
of length ℓ(n(λ)). The injectivity of padding is necessary for the proof of difference-security of Stm.
In order to ensure that the requirement ℓ(n(λ)) ≥ ℓ(λ) is satisfied, we will choose polynomials ℓ, n
such that ℓ(λ+ 1) ≥ ℓ(λ) and n(λ) ≥ λ for all λ ∈ N.

Limitations and extensions. Our definition of TM samplers in Section 2 requires them to return TMs
that halt on all inputs. One could argue that this definition is still insufficient for the purpose of
obfuscation. Namely, a sampler can produce TMs that have significantly different running times,
and it might not be reasonable to expect an obfuscator to properly hide the difference in the running
times. We note that this does not hinder our results because we can artificially alter our TMs M0

and M1
1λ,hk,h

to have the same running times, by adding void instructions to the definition of M0.

The construction of TM-SAMP uses a TM obfuscator Obftmeq that in our theorem statements
will be assumed to be sub-exponentially Stm

eq -secure. It is used to produce auxiliary information
by obfuscating TMs Maux

1λ,sk,vk
and Maux-punc

1λ,sk∗,vk,m′,b
. We use a TM obfuscator for readability, but we

note that a sub-exponentially Scirc
eq -secure circuit obfuscator could be used instead. There are no

circular dependencies preventing us from redefining these two TMs as circuits.
According to Fig. 5, the size of Maux depends on the maximum size of TMs M0 and M1

1λ,hk,h
,

and in particular it might be larger than these TMs. This means that our impossibility result might
not hold if we restrict our attention to TM samplers whose auxiliary information strings aux are
required to be shorter than the size of the corresponding TMs M0 and M1. GGHW [27] circumvent
this limitation in their impossibility result by using a CRHF to compute and then sign a hash of the
TM that is passed inside their auxiliary-information program, rather than signing the TM itself.
Our proof techniques do not seem to be compatible with such approach.

Impossibility results. We now formally state our results. Theorem 4.1 shows how to choose pa-
rameters for TM-SAMP such that the resulting TM sampler is simultaneously well-defined and
difference-secure. Theorem 4.2 shows that any well-defined instantiation of TM-SAMP produces
TMs that can not be securely obfuscated.

Theorem 4.1 Let Obftmdiff be a TM obfuscator. Let H be a sub-exponentially TCR-secure func-
tion family such that H.In(λ) = {0, 1}∗ and H.Out(λ) ⊆

∪
i≤p0(λ)

{0, 1}i for some polynomial
p0 and all λ ∈ N. Then there are polynomials s0, ℓ : N → N such that the following is true.
Let DS be a sub-exponentially PSUFCMA-secure, consistent puncturable digital signature scheme
such that DS.In(λ) = {0, 1}ℓ(λ) and DS.Out(λ) ⊆

∪
i≤p1(λ)

{0, 1}i for some polynomial p1 and all

λ ∈ N. Let Obftmeq be a sub-exponentially Stm
eq -secure TM obfuscator. Then there are polynomi-

als n, t0, t1, s1 : N → N such that the following is true. Let Stm = TM-SAMP [Obftmdiff , H, DS,
Obftmeq , s0, ℓ, n, t0, t1, s1]. Then (1) Stm is well-defined, and (2) Stm is sub-exponentially DIFF-secure.

We defer the proof of Theorem 4.1 until after we show how to use this theorem to state and
prove our main claims regarding the impossibility of differing-inputs obfuscation for TMs.

Theorem 4.2 Let s0, ℓ, n, t0, t1, s1 : N → N be polynomials. Let Obftmeq ,Obf
tm
diff be TM obfusca-

tors. Let H be a function family with H.In(λ) = {0, 1}∗ and H.Out(λ) ⊆
∪

i≤p0(λ)
{0, 1}i for

some polynomial p0 and all λ ∈ N. Let DS be a deterministic digital signature scheme such that
DS.In(λ) = {0, 1}ℓ(λ) and DS.Out(λ) ⊆

∪
i≤p1(λ)

{0, 1}i for some polynomial p1 and all λ ∈ N. Let

Stm = TM-SAMP [Obftmdiff ,H,DS,Obf
tm
eq , s0, ℓ, n, t0, t1, s1]. Assume that Stm is well-defined. Then

there exists a PT adversary O such that AdvioObftmdiff ,S
tm,O(λ) = 1.

17

Proof of Theorem 4.2: We build a PT adversary O against the (d)iO-security of Obftmdiff relative
to Stm as follows:

Adversary O(1λ,M, aux)

Maux ← aux

b′ ← Maux(Padℓ(λ)(M))

Return b′

Adversary O takes 1λ,M, aux as input, where M is an obfuscation of either TM M0 or TM M1
1λ,hk,h

that was produced by the obfuscator Obftmdiff in game IOO
Obftmdiff ,S

tm(λ), and aux is an auxiliary in-

formation string. The goal of O is to guess which of M0 and M1
1λ,hk,h

was obfuscated. It should

return 0 if M is an obfuscation of M0, and it should return 1 otherwise.

Adversary O parses auxiliary information string aux into a TM Maux. The latter is an obfuscation
of TMMaux

1λ,sk,vk
, which was computed in Stm using obfuscator Obftmeq . Next, O pads M to construct a

functionally equivalent TM of size ℓ(λ) and passes it as input to Maux. According to the construction
of Maux

1λ,sk,vk
, the latter returns 1 if and only if M is an obfuscation of TM M1

1λ,hk,h
. Adversary O

returns the same value to win the game. This concludes the proof of Theorem 4.2.

Next, Theorem 4.3 shows the impossibility of a polynomially secure diO, whereas Theorem 4.4
shows the impossibility of a sub-exponentially secure diO.

Theorem 4.3 Let Obf be a Turing Machine obfuscator. Assume the existence of sub-exponentially
secure one-way functions and sub-exponentially secure indistinguishability obfuscation for Turing
Machines. Then Obf is not a differing-inputs obfuscator.

We now prove Theorem 4.3. Let Obftmeq be a sub-exponentially Stm
eq -secure TM obfuscator. Theo-

rem 3.1 shows how to build a sub-exponentially PSUFCMA-secure, consistent puncturable digital
signature scheme DS assuming only sub-exponentially secure OWF and sub-exponentially secure
iO. For a moment, assume that we can build a TCR-secure function family H with H.In(λ) = {0, 1}∗
for all λ ∈ N just from sub-exponentially secure OWFs (which is not known to be true, and we
address this below). Then according to Theorem 4.1, we can build a TM sampler Stm that is (1)
well-defined and (2) sub-exponentially DIFF-secure. But Theorem 4.2 shows that there exists an
efficient adversary that breaks the IO-security of Obf with respect to Stm. Therefore, Obf is not a
differing-inputs obfuscator.

In order to build a TCR-secure function family H from a sub-exponentially secure OWF, the
statements of Theorem 4.1 and Theorem 4.2 can be relaxed to require H.In(λ) = {0, 1}2λ for all
λ ∈ N. This change will still ensure the correctness of Stm, which requires that H can process inputs
of length |Mver

1λ,vk
|. The size of Mver

1λ,vk
in our construction is bounded polynomially in the security

parameter. But the reason we have to use a hash function that can process inputs of arbitrary,
super-polynomially bounded lengths is because the size of Mver

1λ,vk
is not known prior to fixing H (as

shown in Fig. 5).

As noted in Section 2, Shoup [45] shows how to build a TCR-secure function family H for
arbitrary, bounded variable-length inputs from any TCR-secure compression function family with
fixed input size. The latter is shown to be achievable from OWFs by Rompel [43]. We note that
the key size of Shoup’s construction grows logarithmically with the maximum input length of the
constructed function family, which is still polynomiallly bounded in the case of H that was proposed
above. Furthermore, the super-polynomial bound on the message lengths does not introduce any

18

difficulties for the security reduction of Shoup’s construction. This is because the loss of security
during the reduction depends on the length of the messages that are chosen by a PT adversary,
rather than by the (super-polynomial) bound on the messages supported by the scheme.

This concludes the proof of Theorem 4.3. Note that we ruled out the existence of polynomially-
secure differing-inputs obfuscation even with respect to sub-exponentially secure TM samplers,
which is a stronger version of difference-security than the one required by our definition of
polynomially-secure differing-inputs obfuscation.

Theorem 4.4 Let Obf be a Turing Machine obfuscator. Assume the existence of sub-exponentially
secure one-way functions. Then Obf is not a sub-exponentially secure differing-inputs obfuscator.

To prove Theorem 4.4, assume for a contradiction that Obf is a sub-exponentially secure differing-
inputs obfuscator. According to our definitions, it implies the existence of sub-exponentially secure
indistinguishability obfuscation. The rest of the proof is identical to the proof of Theorem 4.3.
It results in constructing a sub-exponentially difference-secure TM sampler Stm that can not be
securely obfuscated by Obf. Thus, we get a contradiction.

Finally, we now prove Theorem 4.1.

Proof of Theorem 4.1: We start by proving part (1) of the theorem. Specifically, we choose
polynomials s0, ℓ, n, t0, t1, s1 : N→ N such that Stm is well-defined.

We now specify polynomials s0, ℓ : N→ N. For any λ ∈ N let s0(λ) be a polynomial upper bound on
max(|M0|, |M1

1λ,hk,h
|) where the maximum is over all hk ∈ [H.Kg(1λ)] and h ∈ H.Out(λ). For any λ ∈

N let ℓ(λ) be a polynomial upper bound on max(|M|) such that ℓ(λ) ≤ ℓ(λ+1), where the maximum
is over all hk ∈ [H.Kg(1λ)], h ∈ H.Out(λ), M ∈ {M0,M1

1λ,hk,h
} and M ∈ [Obftmdiff(1

λ,Pads0(λ)(M))].

Note that the requirement that ℓ(λ) ≤ ℓ(λ+ 1) for all λ ∈ N is trivially achievable by removing all
terms with negative coefficients from the polynomial.

We now specify a constant 0 < ϵ < 1 this is required to define polynomial n. Let 0 < ϵtcr < 1 be
a constant such that H is 2−(·)ϵtcr -TCR-secure. Let 0 < ϵpsuf < 1 be a constant such that DS is

2−(·)ϵpsuf -PSUFCMA-secure. Let 0 < ϵio < 1 be a constant such that Obftmeq is 2−(·)ϵio -Stm
eq -secure.

Let ϵ = min(12ϵtcr, ϵpsuf , ϵio). Later we will prove that Stm is 2−(·)ϵ-DIFF-secure.

We now specify polynomial n : N → N. For any λ ∈ N let n(λ) = (2λ + ℓ(λ) + 3)⌈1/ϵ⌉. Note that
for any λ ∈ N we have n(λ) ≥ λ, and earlier we required that ℓ(λ + 1) ≥ ℓ(λ) for all λ ∈ N. It
follows that ℓ(n(λ)) ≥ ℓ(λ) for all λ ∈ N, as required for Stm to be well-defined. Let Invn be a
deterministic, PT algorithm that takes 1λ

′
to return the smallest λ ∈ N such that n(λ) ≥ λ′. We

note that Invn(1
n(λ)) = λ for all λ ∈ N since n is injective, which follows from the requirement that

ℓ(λ+ 1) ≥ ℓ(λ) for all λ ∈ N.

We now specify polynomials n, t0, t1, ℓ1 : N → N. For any λ ∈ N let t0(λ) be a polynomial upper
bound on the maximum running time of Mver

1λ,vk
(m,σ) where the maximum is over all (sk, vk) ∈

[DS.Kg(1n(λ))], m ∈ {0, 1}ℓ(λ) and σ ∈ DS.Out(n(λ)). For any λ ∈ N let t1(λ) be a polynomial
upper bound on the maximum running time of M(Mver

1λ,vk
, 1t0(λ),M, σ) where the maximum is over

all hk ∈ [H.Kg(1λ)], h ∈ H.Out(λ), M ∈ {M0,M1
1λ,hk,h

}, M ∈ [Obftmdiff(1
λ,Pads0(λ)(M))], (sk, vk) ∈

[DS.Kg(1n(λ))] and σ ∈ DS.Out(n(λ)). For any λ ∈ N let s1(λ) be a polynomial upper bound on
max(|Maux

1λ,sk,vk
|, |Maux-punc

1λ,sk∗,vk,m′,b
|) where the maximum is over all (sk, vk) ∈ [DS.Kg(1n(λ))], m′ ∈

{0, 1}ℓ(λ), sk∗ ∈ [DS.PKg(1n(λ), sk, ⟨m′⟩ℓ(n(λ)))] and b ∈ {0, 1}.

We proceed to prove part (2) of Theorem 4.1, namely that Stm is 2−(·)ϵ-DIFF-secure. The main
challenge of the proof is to show that the signing key sk of DS can not be extracted from Maux

1λ,sk,vk
,

19

Games G0(λ)–G1,2ℓ(λ)(λ)

(sk, vk)←$ DS.Kg(1n(λ))
hk←$ H.Kg(1λ)
h← H.Ev(1λ,hk,Mver

1λ,vk)

M0 ← Pads0(λ)(M
0)

M1 ← Pads0(λ)(M
1
1λ,hk,h)

Maux ← Pads1(λ)(M
aux
1λ,sk,vk)

aux ←$ Obftmeq (1
n(λ),Maux)

x←$D(1λ,M0,M1, aux)
(M, 1t,m, σ)← x
d0 ← (M0(x) ̸= M1(x))
d1 ← (M = Mver

1λ,vk)

res ← d0 // G0

res ← (d0 ∧ d1 ∧m ≥ 0) // G1,0

. . .

res ← (d0 ∧ d1 ∧m ≥ 2ℓ(λ)) // G1,2ℓ(λ)

Return res

Games G1,i(λ)–G1,i+1(λ)

(sk, vk)←$ DS.Kg(1n(λ))
hk←$ H.Kg(1λ)
h← H.Ev(1λ,hk,Mver

1λ,vk)

M0 ← Pads0(λ)(M
0)

M1 ← Pads0(λ)(M
1
1λ,hk,h)

m′ ← ⟨i⟩ℓ(λ) ; b← Maux
1λ,sk,vk(m

′)

m∗ ← ⟨m′⟩ℓ(n(λ))
sk∗←$ DS.PKg(1n(λ), sk,m∗)
Mtmp ← Maux

1λ,sk,vk ; z ← i // G1,i

Mtmp ← Maux-punc
1λ,sk∗,vk,m′,b

; z ← i // G1,i,A

Mtmp ← Maux-punc
1λ,sk∗,vk,m′,b

; z ← i+ 1 // G1,i,B

Mtmp ← Maux
1λ,sk,vk ; z ← i+ 1 // G1,i+1

aux ←$ Obftmeq (1
n(λ),Pads1(λ)(Mtmp))

x←$D(1λ,M0,M1, aux)
(M, 1t,m, σ)← x
d0 ← (M0(x) ̸= M1(x))
d1 ← (M = Mver

1λ,vk)

Return (d0 ∧ d1 ∧m ≥ z)

TM M0(M, 1t,m, σ)

Return 0

TM M1
1λ,hk,h(M, 1t,m, σ)

h′ ← H.Ev(1λ,hk,M)
If (h′ ̸= h) then return 0
Return UTMt

M(m,σ)

TM Maux
1λ,sk,vk(M)

If (|M| ̸= ℓ(λ)) then return 0
σ ← DS.Sig(1n(λ), sk, ⟨M⟩ℓ(n(λ)))
d← UTM

t1(λ)

M
(Mver

1λ,vk, 1
t0(λ),M, σ)

Return d

TM Mver
1λ,vk(m,σ)

If (|m| ̸= ℓ(λ)) then return 0
Return DS.Ver(1n(λ), vk, ⟨m⟩ℓ(n(λ)), σ)
TM Maux-punc

1λ,sk∗,vk,m′,b
(M)

If (|M| ̸= ℓ(λ)) then return 0
If (M = m′) then return b
σ ← DS.PSig(1n(λ), sk∗, ⟨M⟩ℓ(n(λ)))
d← UTM

t1(λ)

M
(Mver

1λ,vk, 1
t0(λ),M, σ)

Retrn d

Figure 6: Games for proof of Theorem 4.1.

meaning that the Stm
eq -secure obfuscation is sufficient to hide sk. In our proof this is implicit. The

core idea of the proof is to consider the exponential number of messages from DS.In(n(λ)) and for
each of them we argue that a PT adversary is unlikely to produce a signature for this message. This
implies that it is hard to find an input on which TMs M0 and M1

1λ,hk,h
return different outputs.

Let D be a PT adversary. Consider the games and associated TMs of Fig. 6. Lines not annotated
with comments are common to all games. Game G0(λ) is equivalent to DIFFD

Stm(λ), so for all λ ∈ N
we have

AdvdiffStm,D(λ) = Pr[G0(λ)]. (11)

Let us discuss the transitions between hybrid games that will be used in our proof. Let λ ∈ N. In
order to transition from game G0(λ) to game G1,0(λ) we claim that if adversary D wins in game
DIFFD

Stm(λ) then it must return a differing-input x = (M, 1t,m, σ) such that M = Mver
1λ,vk

. Otherwise,

20

one could use this adversary in order to break the TCR-security of H. Next, we consider an
exponential number of games, going from game G1,0(λ) to game G1,2ℓ(λ)(λ). Each game corresponds
to a unique value of message m that can be taken as an input by TM Mver

1λ,vk
. For any i ∈

{0, 1, . . . , 2ℓ(λ)}, adversary D wins in game G1,i(λ) if and only if it returns x = (M, 1t,m, σ) such
that M = Mver

1λ,vk
, m ≥ i and M0(x) ̸= M1(x). According to this definition, it is impossible to

win game G1,2ℓ(λ)(λ) because TM Mver
1λ,vk

rejects whenever it takes a message m as input such that

|m| ̸= ℓ(λ) (whereas the length of m in this game is required to be at least ℓ(λ) + 1). We now
need to show that for each i ∈ {0, 1, . . . , 2ℓ(λ)−1} the success probabilities of adversary D in games
G1,i(λ) and G1,i+1(λ) are sub-exponentially close.

Let i ∈ {0, 1, . . . , 2ℓ(λ)− 1}. We split the transition from game G1,i(λ) to game G1,i+1(λ) into three
steps. Specifically, we consider a sequence of games G1,i(λ), G1,i,A(λ), G1,i,B(λ) and G1,i+1(λ).
Games G1,i,A(λ) and G1,i,B(λ) generate aux as an obfuscation of TM Maux-punc

1λ,sk∗,vk,m′,b
instead of

an obfuscation of TM Maux
1λ,sk,vk

, where m′ = i and the used obfuscator is Obftmeq . As opposed to

TM Maux
1λ,sk,vk

, note that TM Maux-punc
1λ,sk∗,vk,m′,b

contains a punctured signing key sk∗ for DS that is

punctured at the message m∗ = ⟨m′⟩ℓ(n(λ)). Both TMs are defined to produce the same outputs on

all inputs M ̸= m′, which is achieved because the punctured digital signature scheme DS is assumed
to be consistent. (Recall that the latter requires that sk and sk∗ return the same signatures for
all messages except m∗.) Furthermore, TM Maux-punc

1λ,sk∗,vk,m′,b
is hardwired to return b = Maux

1λ,sk,vk
(m′)

on input M = m′, meaning that the TMs are functionally equivalent. We use it to claim that the
success probabilities of adversary D (1) in games G1,i(λ) and G1,i,A(λ), and (2) in games G1,i,B(λ)
and G1,i+1(λ) – are sub-exponentially close. Namely, if D can distinguish between any pair of these
games with a better than sub-exponentially small probability, then one can use D to break the
iO-security of obfuscator Obftmeq .

It remains to discuss the transition from game G1,i,A(λ) to game G1,i,B(λ). The difference between
these games is that the former requires m ≥ i as a part of its winning condition, whereas the later
requires m ≥ i + 1. Both of these games set aux as an obfuscation of TM Maux-punc

1λ,sk∗,vk,m′,b
, where

sk∗ is punctured at m∗ = ⟨m′⟩ℓ(n(λ)) and m′ = i. Note that adversary D can only have a different
success probability in both games if it is capable of forging a signature on message m∗ given any
information it might be able to extract from TM Maux-punc

1λ,sk∗,vk,m′,b
. However, Maux-punc

1λ,sk∗,vk,m′,b
does not

contain any information that could help to forge the signature of message m∗ (only bit b depends
on the challenge signature, but D can attempt to guess it). Therefore, we can use the PSUFCMA-
security of DS to bound the difference in adversary’s success probability when transitioning between
games G1,i,A(λ) and G1,i,B(λ).

Below we will prove the following claims:
Claim 1. There exists a PT adversary H against the TCR-security of H such that for all λ ∈ N we

have

Pr[G0(λ)]− Pr[G1,0(λ)] ≤ AdvtcrH,H(λ). (12)

Claim 2. There exist TM samplers Stm0 , Stm1 and a PT adversary O against the IO-security of Obftmeq

relative to Stm0 and Stm1 , such that for all λ ∈ N we have

2ℓ(λ)−1∑
i=0

(Pr[G1,i(λ)]− Pr[G1,i,A(λ)]) ≤ 2ℓ(λ) · AdvioObftmeq ,S
tm
0 ,O(n(λ)), (13)

21

2ℓ(λ)−1∑
i=0

(Pr[G1,i,B(λ)]− Pr[G1,i+1(λ)]) ≤ 2ℓ(λ) · AdvioObftmeq ,S
tm
1 ,O(n(λ)). (14)

Claim 3. There exists a PT adversary U against the PSUFCMA-security of DS such that for all

λ ∈ N we have

2ℓ(λ)−1∑
i=0

(Pr [G1,i,A(λ)]− Pr [G1,i,B(λ)]) ≤ 2ℓ(λ)+1 · Advpsufcma
DS,U (n(λ)). (15)

Finally, we claim that no adversary can win against G1,2ℓ(λ)(λ). Let x = (M, 1t,m, σ) be the output
of adversary D in game G1,2ℓ(λ)(λ). Adversary D wins the game if the following three conditions are

simultaneously true: M0(x) ̸= M1
1λ,hk,h

(x), M = Mver
1λ,vk

and |m| > ℓ(λ). The first condition requires

M1
1λ,hk,h

(x) to return 1. The second condition means that M1
1λ,hk,h

(x) will return the output of

Mver
1λ,vk

(m,σ). However, according to the third condition, the latter returns 0. Therefore,

Pr[G1,2ℓ(λ)(λ)] = 0. (16)

We now show that there exists λD ∈ N such that for all λ ≥ λD we have AdvdiffStm,D(λ) ≤ 2−λϵ
. By

definition, this means that Stm is 2−(·)ϵ-DIFF-secure.

AdvdiffStm,D(λ) = (Pr[G0(λ)]− Pr[G1,0(λ)])

+
2ℓ(λ)−1∑
i=0

(Pr[G1,i(λ)]− Pr[G1,i+1(λ)]) + Pr[G1,2ℓ(λ)(λ)] (17)

≤ AdvtcrH,H(λ) + 2ℓ(λ) · AdvioObftmeq ,S
tm
0 ,O(n(λ))

+ 2ℓ(λ)+1 · Advpsufcma
DS,U (n(λ)) + 2ℓ(λ) · AdvioObftmeq ,S

tm
1 ,O(n(λ)) (18)

≤ 2−λϵtcr
+ 2ℓ(λ) ·

(
2−n(λ)ϵio + 2 · 2−n(λ)

ϵpsuf
+ 2−n(λ)ϵio

)
(19)

≤ 2−λϵtcr
+ 2ℓ(λ)+1 ·

(
2−n(λ)ϵio + 2−n(λ)

ϵpsuf
+ 2−n(λ)ϵio

)
(20)

≤ 2−λ2ϵ
+ 2ℓ(λ)+1 · 3 · 2−n(λ)ϵ (21)

= 2−λ2ϵ
+ 2ℓ(λ)+1+log2 3−(2λ+ℓ(λ)+3)⌈1/ϵ⌉·ϵ (22)

≤ 2−λ2ϵ
+ 2−(2λ)ϵ (23)

≤ 2−(2λ)ϵ + 2−(2λ)ϵ = 21−(2λ)ϵ (24)

≤ 2−λϵ
. (25)

Let λH ∈ N such that AdvtcrH,H(λ) ≤ 2−λϵtcr for all λ ≥ λH. Let λU ∈ N such that Advpsufcma
DS,U (λ) ≤

2−λ
ϵpsuf

for all λ ≥ λU . For b ∈ {0, 1} let λStmb ,O ∈ N be such that AdvioObftmeq ,S
tm
b ,O(λ) ≤ 2−λϵio for all

λ ≥ λStmb ,O.

22

Equation (17) follows from Equation (11) for all λ ∈ N. Equation (18) follows from equations
(12)–(16) for all λ ∈ N. Equation (19) holds for all λ ∈ N such that λ ≥ λH and n(λ) ≥
max(λStm0 ,O, λU , λStm1 ,O). Equation (20) holds for all λ ∈ N. Equation (21) is obtained by expanding
ϵ according to its definition, namely by using the following relations: 2ϵ ≤ ϵtcr, ϵ ≤ ϵpsuf and ϵ ≤ ϵio.
Equation (22) is obtained by expanding n(λ) according to its definition. Equation (23) holds for
all λ ∈ N, because for any polynomial ℓ : N→ N, any constant 0 < ϵ < 1 and all λ ∈ N we have

ℓ(λ) + 1 + log2 3− (2λ+ ℓ(λ) + 3)⌈1/ϵ⌉·ϵ

≤ ℓ(λ) + 1 + log2 3− (2λ+ ℓ(λ) + 3)

<− 2λ ≤ −(2λ)ϵ.

Equation (24) holds for all λ ∈ N such that λ2ϵ ≥ (2λ)ϵ, requiring that λ ≥ 2. Equation (25) holds

for all λ ∈ N such that 1− 2ϵλϵ ≤ −λϵ, requiring that λ ≥
(

1
2ϵ−1

)1/ϵ
. Therefore, it suffices to set

λD = max
(
λH, Invn(1

λStm0 ,O), Invn(1
λU), Invn(1

λStm1 ,O), 2,
⌈
(2ϵ − 1)−1/ϵ

⌉)
.

This completes the proof. We now prove Claims 1-3.

Proof of Claim 1. We build a PT adversary H against the TCR-security of H such that for all λ ∈ N
we have Pr[G0(λ)]− Pr[G1,0(λ)] ≤ AdvtcrH,H(λ).

Adversary H1(1
λ)

(sk, vk)←$ DS.Kg(1n(λ))
st ← (sk, vk)
Return (Mver

1λ,vk
, st)

Adversary H2(1
λ, st , hk)

(sk, vk)← st ; h← H.Ev(1λ, hk,Mver
1λ,vk

)

M0 ← Pads0(λ)(M
0) ; M1 ← Pads0(λ)(M

1
1λ,hk,h

)

aux ←$ Obftmeq (1
n(λ),Pads1(λ)(M

aux
1λ,sk,vk

))

(M, 1t,m, σ)←$D(1λ,M0,M1, aux) ; Return M

Let x = (M, 1t,m, σ) be an output of adversary D in games G0(λ) and G1,0(λ) (note that the input
distribution of D is the same in both games). If these games produce different outcomes for the
same x, it means that M0(x) ̸= M1

1λ,hk,h
(x) and M ̸= Mver

1λ,vk
. According to the construction of

M0 and M1
1λ,hk,h

it follows that H.Ev(1λ, hk,Mver
1λ,vk

) = H.Ev(1λ,hk,M). Whenever this happens,

adversary H wins in game TCRH
H (λ) by returning x0 = Mver

1λ,vk
and x1 = M. This proves the claim.

Proof of Claim 2. We build TM samplers Stm0 ,Stm1 and a PT adversary O against the IO-security of

Obftmeq relative to Stm0 and Stm1 , such that for all λ ∈ N we have
∑2ℓ(λ)−1

i=0 (Pr[G1,i(λ)]− Pr[G1,i,A(λ)]) ≤
2ℓ(λ) ·AdvioObftmeq ,S

tm
0 ,O(n(λ)) and

∑2ℓ(λ)−1
i=0 (Pr[G1,i,B(λ)]− Pr[G1,i+1(λ)]) ≤ 2ℓ(λ) ·AdvioObftmeq ,S

tm
1 ,O(n(λ)).

Below, on the left we (simultaneously) define the TM samplers Stm0 and Stm1 that differ at the
commented lines and have the uncommented lines in common. On the right, we define the PT
adversary O.

23

TM Samplers Stm0 (1λ
′
), Stm1 (1λ

′
)

λ← Invn(1
λ′
) ; i←$ {0, 1}ℓ(λ)

(sk, vk)←$ DS.Kg(1n(λ))
hk←$ H.Kg(1λ) ; h← H.Ev(1λ, hk,Mver

1λ,vk
)

M̃0 ← Pads0(λ)(M
0) ; M̃1 ← Pads0(λ)(M

1
1λ,hk,h

)

m′ ← ⟨i⟩ℓ(λ) ; b← Maux
1λ,sk,vk

(m′)

m∗ ← ⟨m′⟩ℓ(n(λ)) ; sk∗←$ DS.PKg(1n(λ), sk,m∗)

Maux ← Pads1(λ)(M
aux
1λ,sk,vk

)

Maux-punc ← Pads1(λ)(M
aux-punc
1λ,sk∗,vk,m′,b

)

M1 ← Maux ; M0 ← Maux-punc ; z ← i // Stm0
M0 ← Maux ; M1 ← Maux-punc ; z ← i+ 1 // Stm1
aux ← (M̃0, M̃1, vk, z) ; return (M0,M1, aux)

Adversary O(1λ′
,M, aux)

λ← Invn(1
λ′
)

˜aux ← M

(M̃0, M̃1, vk, z)← aux

x←$D(1λ, M̃0, M̃1, ˜aux)
(M, 1t,m, σ)← x

d0 ← (M̃0(x) ̸= M̃1(x))
d1 ← (M = Mver

1λ,vk
)

If (d0 ∧ d1 ∧m ≥ z)
Then return 1
Else return 0

We now show that Stm0 , Stm1 ∈ Stm
eq , meaning that these samplers produce functionally equiva-

lent TMs. Both samplers return TMs Maux
1λ,sk,vk

and Maux-punc
1λ,sk∗,vk,m′,b

that are padded to size s1(λ).

First, observe that Maux
1λ,sk,vk

contains a signing key sk for DS, whereas Maux-punc
1λ,sk∗,vk,m′,b

contains the

corresponding punctured signing key sk∗, punctured at m∗ = ⟨m′⟩ℓ(n(λ)), and a bit b that equals
Maux

1λ,sk,vk
(m′). According to the definition of a consistent puncturable digital signature scheme, keys

sk and sk∗ produce the same signatures for all m ∈ DS.In(n(λ)) \ {m∗}. Note that both Maux
1λ,sk,vk

and Maux-punc
1λ,sk∗,vk,m′,b

compute a signature for an ℓ(n(λ))-bit string ⟨M⟩ℓ(n(λ)) that is built from the

ℓ(λ)-bit input string M by padding it with leading zeros, which is an injective padding. Since m∗

can only be built by padding m′, these TMs are equivalent for all inputs in M ∈ {0, 1}ℓ(λ) \ {m′}.
Furthermore, notice that Maux-punc

1λ,sk∗,vk,m′,b
returns b = Maux

1λ,sk,vk
(m′) on input m′, so these TMs are

equivalent for all inputs.

For any b ∈ {0, 1} consider game IOO
Obftmeq ,S

tm
b
(n(λ)). Let ib denote the value of i sampled by TM

sampler Stmb . For any i ∈ {0, 1, . . . , 2ℓ(λ) − 1} we have Pr[ib = i] = 2−ℓ(λ), and hence

AdvioObftmeq ,S
tm
b ,O(n(λ)) =

2ℓ(λ)−1∑
i=0

(
Pr[ib = i] · Pr[IOO

Obftmeq ,S
tm
b
(n(λ)) | ib = i]

)

= 2−ℓ(λ) ·
2ℓ(λ)−1∑
i=0

Pr[IOO
Obftmeq ,S

tm
b
(n(λ)) | ib = i]. (26)

Finally, observe that for any i ∈ {0, 1, . . . , 2ℓ(λ) − 1} we have the following by construction:

Pr[IOO
Obftmeq ,S

tm
0
(n(λ)) | i0 = i] = Pr[G1,i(λ)]− Pr[G1,i,A(λ)],

Pr[IOO
Obftmeq ,S

tm
1
(n(λ)) | i1 = i] = Pr[G1,i,B(λ)]− Pr[G1,i+1(λ)].

Claim 2 follows from Equation (26) together with the two equations above.

Proof of Claim 3. We build a PT adversary U against the PSUFCMA-security of DS such that for

all λ ∈ N we have
∑2ℓ(λ)−1

i=0 (Pr [G1,i,A(λ)]− Pr [G1,i,B(λ)]) ≤ 2ℓ(λ)+1 · Advpsufcma
DS,U (n(λ)).

24

Adversary U1(1λ
′
)

λ← Invn(1
λ′
)

m′←$ {0, 1}ℓ(λ)
m∗ ← ⟨m′⟩ℓ(n(λ))
st ← m′

Return (m∗, st)

Adversary U2(1λ
′
, st , vk, sk∗)

λ← Invn(1
λ′
) ; m′ ← st ; b←$ {0, 1}

hk←$ H.Kg(1λ) ; h← H.Ev(1λ, hk,Mver
1λ,vk

)

M0 ← Pads0(λ)(M
0) ; M1 ← Pads0(λ)(M

1
1λ,hk,h

)

aux ←$ Obftmeq (1
n(λ),Pads1(λ)(M

aux-punc
1λ,sk∗,vk,m′,b

))

x←$D(1λ,M0,M1, aux) ; (M, 1t,m, σ)← x
d0 ← (M0(x) ̸= M1(x)) ; d1 ← (M = Mver

1λ,vk
)

If (d0 ∧ d1 ∧m = m′) then return σ else return ⊥

Consider the value m′ sampled by U1 in game PSUFCMAU
DS(n(λ)). For any i ∈ {0, 1, . . . , 2ℓ(λ)−1}

it holds that Pr[m′ = i] = 2−ℓ(λ). Hence,

Advpsufcma
DS,U (n(λ)) =

2ℓ(λ)−1∑
i=0

(
Pr[m′ = i] · Pr[PSUFCMAU

DS(n(λ)) |m′ = i]
)

= 2−ℓ(λ) ·
2ℓ(λ)−1∑
i=0

Pr[PSUFCMAU
DS(n(λ)) |m′ = i]. (27)

Now observe that for any i ∈ {0, 1, . . . , 2ℓ(λ) − 1} we also have

Pr[PSUFCMAU
DS(n(λ)) |m′ = i] ≥ 1

2
· (Pr [G1,i,A(λ)]− Pr [G1,i,B(λ)]) . (28)

Let x = (M, 1t,m, σ) be an output of adversary D in games G1,i,A(λ) and G1,i,B(λ) (note that the
input distribution of D is the same in both games). If these games produce different outcomes
for the same x, it means that M0(x) ̸= M1

1λ,hk,h
(x), M = Mver

1λ,vk
and m = i. According to the

construction of M0 and M1
1λ,hk,h

it follows that (⟨m⟩ℓ(n(λ)), σ) is a valid message-signature pair for
the digital signature scheme DS with verification key vk.

Whenever the above happens, adversary U wins in game PSUFCMAU
DS(n(λ)) by forging a valid

signature σ for message m∗, as long as the following two conditions are satisfied. First, it is only
true if adversary U sampled m′ = i. Second, in order to build TM Maux-punc

1λ,sk∗,vk,m′,b
, adversary U has

to compute b = Maux
1λ,sk,vk

(m′). Since U does now know sk, instead it has to correctly guess the

value of b ∈ {0, 1}. Therefore, U can perfectly simulate the games with probability 1
2 .

Claim 3 follows from Equation (27) and Equation (28).

Acknowledgments

We thank the Eurocrypt 2016 reviewers for their comments.

References

[1] P. Ananth, D. Boneh, S. Garg, A. Sahai, and M. Zhandry. Differing-inputs obfuscation and applications.
Cryptology ePrint Archive, Report 2013/689, 2013. http://eprint.iacr.org/2013/689. 2, 5, 9

[2] P. Ananth, Z. Brakerski, G. Segev, and V. Vaikuntanathan. From selective to adaptive security in
functional encryption. In R. Gennaro and M. J. B. Robshaw, editors, CRYPTO 2015, Part II, volume
9216 of LNCS, pages 657–677. Springer, Heidelberg, Aug. 2015. 6

25

http://eprint.iacr.org/2013/689

[3] B. Applebaum, B. Barak, and A. Wigderson. Public-key cryptography from different assumptions. In
L. J. Schulman, editor, 42nd ACM STOC, pages 171–180. ACM Press, June 2010. 5

[4] M. Backes, O. Dagdelen, M. Fischlin, S. Gajek, S. Meiser, and D. Schröder. Operational signature
schemes. Cryptology ePrint Archive, Report 2014/820, 2014. http://eprint.iacr.org/2014/820. 6

[5] M. Backes, S. Meiser, and D. Schröder. Delegatable functional signatures. Cryptology ePrint Archive,
Report 2013/408, 2013. http://eprint.iacr.org/2013/408. 4, 6

[6] B. Barak, S. Garg, Y. T. Kalai, O. Paneth, and A. Sahai. Protecting obfuscation against algebraic
attacks. In P. Q. Nguyen and E. Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages
221–238. Springer, Heidelberg, May 2014. 2

[7] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. P. Vadhan, and K. Yang. On the
(im)possibility of obfuscating programs. In J. Kilian, editor, CRYPTO 2001, volume 2139 of LNCS,
pages 1–18. Springer, Heidelberg, Aug. 2001. 2, 3, 9

[8] M. Bellare. A note on negligible functions. Journal of Cryptology, 15(4):271–284, 2002. 5, 7

[9] M. Bellare and G. Fuchsbauer. Policy-based signatures. In H. Krawczyk, editor, PKC 2014, volume
8383 of LNCS, pages 520–537. Springer, Heidelberg, Mar. 2014. 4, 6

[10] M. Bellare and P. Rogaway. Collision-resistant hashing: Towards making UOWHFs practical. In B. S.
Kaliski Jr., editor, CRYPTO’97, volume 1294 of LNCS, pages 470–484. Springer, Heidelberg, Aug. 1997.
8

[11] M. Bellare and P. Rogaway. The security of triple encryption and a framework for code-based game-
playing proofs. In S. Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 409–426.
Springer, Heidelberg, May / June 2006. 7

[12] M. Bellare, I. Stepanovs, and S. Tessaro. Poly-many hardcore bits for any one-way function and a
framework for differing-inputs obfuscation. In P. Sarkar and T. Iwata, editors, ASIACRYPT 2014, Part
II, volume 8874 of LNCS, pages 102–121. Springer, Heidelberg, Dec. 2014. 2, 6, 9

[13] N. Bitansky, R. Canetti, O. Paneth, and A. Rosen. On the existence of extractable one-way functions.
In D. B. Shmoys, editor, 46th ACM STOC, pages 505–514. ACM Press, May / June 2014. 6

[14] N. Bitansky, S. Garg, H. Lin, R. Pass, and S. Telang. Succinct randomized encodings and their appli-
cations. In R. A. Servedio and R. Rubinfeld, editors, 47th ACM STOC, pages 439–448. ACM Press,
June 2015. 6

[15] N. Bitansky and O. Paneth. On the impossibility of approximate obfuscation and applications to
resettable cryptography. In D. Boneh, T. Roughgarden, and J. Feigenbaum, editors, 45th ACM STOC,
pages 241–250. ACM Press, June 2013. 2, 3

[16] N. Bitansky, O. Paneth, and D. Wichs. Perfect structure on the edge of chaos. Cryptology ePrint
Archive, Report 2015/126, 2015. http://eprint.iacr.org/2015/126. 6

[17] D. Boneh and B. Waters. Constrained pseudorandom functions and their applications. In K. Sako
and P. Sarkar, editors, ASIACRYPT 2013, Part II, volume 8270 of LNCS, pages 280–300. Springer,
Heidelberg, Dec. 2013. 4, 8

[18] E. Boyle, K.-M. Chung, and R. Pass. On extractability obfuscation. In Y. Lindell, editor, TCC 2014,
volume 8349 of LNCS, pages 52–73. Springer, Heidelberg, Feb. 2014. 2, 5, 6, 9

[19] E. Boyle, S. Goldwasser, and I. Ivan. Functional signatures and pseudorandom functions. In
H. Krawczyk, editor, PKC 2014, volume 8383 of LNCS, pages 501–519. Springer, Heidelberg, Mar.
2014. 4, 6, 8

[20] E. Boyle and R. Pass. Limits of extractability assumptions with distributional auxiliary input. Cryp-
tology ePrint Archive, Report 2013/703, 2013. http://eprint.iacr.org/2013/703. 6

26

http://eprint.iacr.org/2014/820
http://eprint.iacr.org/2013/408
http://eprint.iacr.org/2015/126
http://eprint.iacr.org/2013/703

[21] C. Brzuska and A. Mittelbach. Using indistinguishability obfuscation via UCEs. In P. Sarkar and
T. Iwata, editors, ASIACRYPT 2014, Part II, volume 8874 of LNCS, pages 122–141. Springer, Heidel-
berg, Dec. 2014. 6

[22] R. Canetti, J. Holmgren, A. Jain, and V. Vaikuntanathan. Succinct garbling and indistinguishability
obfuscation for RAM programs. In R. A. Servedio and R. Rubinfeld, editors, 47th ACM STOC, pages
429–437. ACM Press, June 2015. 6

[23] R. Canetti, H. Lin, S. Tessaro, and V. Vaikuntanathan. Obfuscation of probabilistic circuits and
applications. In Y. Dodis and J. B. Nielsen, editors, TCC 2015, Part II, volume 9015 of LNCS, pages
468–497. Springer, Heidelberg, Mar. 2015. 5

[24] N. Chandran, S. Raghuraman, and D. Vinayagamurthy. Constrained pseudorandom functions: Verifi-
able and delegatable. Cryptology ePrint Archive, Report 2014/522, 2014. http://eprint.iacr.org/
2014/522. 6

[25] G. Fuchsbauer. Constrained verifiable random functions. In M. Abdalla and R. D. Prisco, editors, SCN
14, volume 8642 of LNCS, pages 95–114. Springer, Heidelberg, Sept. 2014. 6

[26] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters. Candidate indistinguishability
obfuscation and functional encryption for all circuits. In 54th FOCS, pages 40–49. IEEE Computer
Society Press, Oct. 2013. 2, 9

[27] S. Garg, C. Gentry, S. Halevi, and D. Wichs. On the implausibility of differing-inputs obfuscation
and extractable witness encryption with auxiliary input. In J. A. Garay and R. Gennaro, editors,
CRYPTO 2014, Part I, volume 8616 of LNCS, pages 518–535. Springer, Heidelberg, Aug. 2014. 2, 3,
14, 15, 17

[28] C. Gentry, S. Halevi, M. Raykova, and D. Wichs. Outsourcing private RAM computation. In 55th
FOCS, pages 404–413. IEEE Computer Society Press, Oct. 2014. 6

[29] C. Gentry, A. Lewko, A. Sahai, and B. Waters. Indistinguishability obfuscation from the multilinear
subgroup elimination assumption. Cryptology ePrint Archive, Report 2014/309, 2014. http://eprint.
iacr.org/2014/309. 2

[30] C. Gentry, A. B. Lewko, and B. Waters. Witness encryption from instance independent assumptions.
In J. A. Garay and R. Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of LNCS, pages 426–443.
Springer, Heidelberg, Aug. 2014. 5

[31] O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions. Journal of the ACM,
33(4):792–807, Oct. 1986. 8

[32] S. Goldwasser and Y. T. Kalai. On the impossibility of obfuscation with auxiliary input. In 46th FOCS,
pages 553–562. IEEE Computer Society Press, Oct. 2005. 2, 3

[33] S. Goldwasser, S. Micali, and R. L. Rivest. A digital signature scheme secure against adaptive chosen-
message attacks. SIAM Journal on Computing, 17(2):281–308, Apr. 1988. 3

[34] S. Gorbunov, V. Vaikuntanathan, and H. Wee. Attribute-based encryption for circuits. In D. Boneh,
T. Roughgarden, and J. Feigenbaum, editors, 45th ACM STOC, pages 545–554. ACM Press, June 2013.
5

[35] S. Hada. Zero-knowledge and code obfuscation. In T. Okamoto, editor, ASIACRYPT 2000, volume
1976 of LNCS, pages 443–457. Springer, Heidelberg, Dec. 2000. 2, 3

[36] I. Haitner, T. Holenstein, O. Reingold, S. P. Vadhan, and H. Wee. Universal one-way hash functions via
inaccessible entropy. In H. Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages 616–637.
Springer, Heidelberg, May 2010. 8

[37] Y. Ishai, O. Pandey, and A. Sahai. Public-coin differing-inputs obfuscation and its applications. In
Y. Dodis and J. B. Nielsen, editors, TCC 2015, Part II, volume 9015 of LNCS, pages 668–697. Springer,
Heidelberg, Mar. 2015. 6

27

http://eprint.iacr.org/2014/522
http://eprint.iacr.org/2014/522
http://eprint.iacr.org/2014/309
http://eprint.iacr.org/2014/309

[38] J. Katz and C.-Y. Koo. On constructing universal one-way hash functions from arbitrary one-way
functions. Cryptology ePrint Archive, Report 2005/328, 2005. http://eprint.iacr.org/2005/328. 8

[39] A. Kiayias, S. Papadopoulos, N. Triandopoulos, and T. Zacharias. Delegatable pseudorandom functions
and applications. In A.-R. Sadeghi, V. D. Gligor, and M. Yung, editors, ACM CCS 13, pages 669–684.
ACM Press, Nov. 2013. 4, 8

[40] V. Koppula, A. B. Lewko, and B. Waters. Indistinguishability obfuscation for turing machines with
unbounded memory. In R. A. Servedio and R. Rubinfeld, editors, 47th ACM STOC, pages 419–428.
ACM Press, June 2015. 6

[41] M. Naor and M. Yung. Universal one-way hash functions and their cryptographic applications. In 21st
ACM STOC, pages 33–43. ACM Press, May 1989. 8

[42] R. Pass, K. Seth, and S. Telang. Indistinguishability obfuscation from semantically-secure multilinear
encodings. In J. A. Garay and R. Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of LNCS,
pages 500–517. Springer, Heidelberg, Aug. 2014. 2

[43] J. Rompel. One-way functions are necessary and sufficient for secure signatures. In 22nd ACM STOC,
pages 387–394. ACM Press, May 1990. 8, 18

[44] A. Sahai and B. Waters. How to use indistinguishability obfuscation: deniable encryption, and more.
In D. B. Shmoys, editor, 46th ACM STOC, pages 475–484. ACM Press, May / June 2014. 2, 6, 9, 10

[45] V. Shoup. A composition theorem for universal one-way hash functions. In B. Preneel, editor, EURO-
CRYPT 2000, volume 1807 of LNCS, pages 445–452. Springer, Heidelberg, May 2000. 8, 18

[46] B. Waters. A punctured programming approach to adaptively secure functional encryption. In R. Gen-
naro and M. J. B. Robshaw, editors, CRYPTO 2015, Part II, volume 9216 of LNCS, pages 678–697.
Springer, Heidelberg, Aug. 2015. 6

28

http://eprint.iacr.org/2005/328

	Introduction
	Preliminaries
	Consistent puncturable digital signature schemes
	Impossibility of differing-inputs obfuscation for TMs

