
Commutativity, Associativity, and Public Key
Cryptography

Jacques Patarin1 and Valérie Nachef2

1 Laboratoire de Mathématiques de Versailles, UVSQ
CNRS, Université de Paris-Saclay

78035 Versailles, France
jpatarin@club-internet.fr

2 University of Cergy-Pontoise, Department of Mathematics
UMR CNRS 8088

F-95000 Cergy-Pontoise
valerie.nachef@u-cergy.fr

Key words: Diffie-Hellman algorithms, Tchebychev Polynomials, New Public Key
Algorithms

Abstract. In this paper, we will study some possible generalizations of
the famous Diffie-Hellman algorithm. As we will see, at the end, most of
these generalizations will not be secure or will be equivalent to some clas-
sical schemes. However, these results are not always obvious and more-
over our analysis will present some interesting connections between the
concepts of commutativity, associativity, and public key cryptography.

1 Introduction

The Diffie-Hellman algorithm [3] was the first published public key algorithm
(1976). In fact, it is more a public-key key exchange algorithm than a direct
public key encryption algorithm, but it opened the way to a whole new area of
science: public key cryptography. Since 1976, many more algorithms have been
found, and some of them can be seen as generalizations of the original Diffie-
hellman algorithm, for example when the computations are done in an elliptic
curve instead of (mod p), where p is a prime number. In this paper, we will
study some other possible generalizations and the link between this problem and
commutativity or associativity in some mathematical structures (with one way
properties).
Let us first recall what was the original Diffie-Hellman algorithm. Let p be a
prime number and g be an element of Z/pZ such that x 7→ gx (mod p) is ( as far
as we know) a one way function. (Typically p has more than 1024 bits and g can
be a generator of Z/pZ). Let Alice and Bob (as in the original paper of Diffie and
Hellman) be the two persons who want to communicate. Alice randomly chooses
a secret value a between 1 and p− 1, and she sends the value A = ga (mod p)
to Bob. Similarly, Bob randomly chooses a secret value b between 1 and p−1 and
sends B = gb (mod p) to Alice. Then Alice and Bob are both able to compute



a common key K = ga.b (mod p) (Alice by computing K = Ba (mod p),
and Bob by computing K = Ab (mod p)). However, if an enemy, Charlie just
listens to the line, he will obtain A and B, but, if x 7→ gx (mod p) is one way,
he will not obtain a and b, and if the “Diffie-Hellman” problem is difficult, he
will not be able to compute K. If Charlie is also able to send messages, this
simple algorithm can be attacked by a man in the middle attack, and we can
avoid this for example by introducing signatures, a Public Key infrastructure,
and using for example the SIGMA protocol. However, this is not the aim of this
paper. We will here look for generalizations of the algorithm, and we can assume
that Charlie does not send messages (but listens to the communication).
The paper is split in two parts. In part I, we will concentrate on “associativity”
property. In fact, in order to have (ga)b = (gb)a in a mathematical structure
(G, ∗), we do not need to have a group. We only need that ∗ is associative and that
x 7→ gx in one way for the security of the scheme. In part II, we will concentrate
on “commutativity” property, to generalize the fact that (ga)◦ (gb) = (gb)◦ (ga),
on the mathematical structure (G, ◦) and to design variants of the Diffie-Hellman
algorithm based on such properties.

2



Part I

Associative Properties





2 Associativity with a
√
1 + b2 + b

√
1 + a2

To generalize the Diffie-Hellman algorithm by working in a structure (G, ∗) dif-
ferent from (Z/pZ,×), we want:

– ∗ to be associative

– x 7→ gx to be one way (from the best known algorithms, the existence of
proven one way functions is an open problem since it would imply P 6= NP ).

Moreover, we would like G to be as small as possible, but with a security greater
than 280. Therefore, elements of G would have typically between 80 bits (or 160
bits if from a collision gx = gy.A we can find z such that gz = A) and 2048 bits
for example, since the computation of a ∗ b is expected to be fast. This is what
we have on elliptic curves, but is it possible to suggest new solutions? Ideally,
it would be great to generate a “random associative” structure on elements
of size, say, about 200 bits for example. It is very easy to generate “random
commutative” structure on elements of such size. Let for example a and b be
two elements of 256 bits. If a ≤ b, we can choose a∗b to be anything (for example
a ∗ b = AES − CBCk(a‖b) where k is a random value of 128 bits to be used as
the AES key) and if b < a then to define b ∗ a as a ∗ b. However here we want
to design a “random associative” structure on elements of about 200 bits and
not a “random commutative” structure, and this is much more difficult! In fact,
for associativity structure of this size, we do not know how to get them if we
do not create a specific mathematical structure that gives the associativity. But
then, there is a risk that such a structure could be used to attack the scheme.
In this section, we will study an example of associativity created like this. More
precisely, we will study here a ∗ b = a.

√
1 + b2 + b.

√
1 + a2 on a set G where .,+

and
√

can be defined (we will see examples). Let us first see why ∗ is associative
on various G.

2.1 Associativity in (R, ∗)

Definition 1. ∀a, b ∈ R, a ∗ b = a.
√

1 + b2 + b.
√

1 + a2

We will see that (R, ∗) is a group. In fact the only difficult part in the proof
is to prove the associativity of ∗. We will see 3 different proofs of this fact, since
all of these proofs are interesting.

Associativity of ∗: Proof no1. A nice way to prove the associative property is
to notice that sinh function is a bijection from R to R that satisfies: ∀a ∈ R, ∀b ∈
R, sinh(a+b) = sinh(a)∗sinh(b) (since sinh(a+b) = sinh a cosh b+sinh b cosh a).
This shows that sinh is an isomorphism from (R,+) to (R, ∗) and therefore ∗ is
associative and (R, ∗) is a group.

5



Associativity of ∗: Proof no2.

Theorem 1.

∀a ∈ R, ∀b ∈ R,
(
a
√
b2 + 1 + b

√
a2 + 1

)2
+ 1 =

(
ab+

√
a2 + 1

√
b2 + 1

)2
Proof. It is obvious by developing the two expressions.

Theorem 2.

∀a, b, c ∈ R, (a ∗ b) ∗ c = a ∗ (b ∗ c)

Proof. Let α = a
√
b2 + 1 + b

√
a2 + 1. Then A = (a ∗ b) ∗ c = α ∗ c = α

√
c2 + 1 +

c
√
α2 + 1. Now from Theorem 1,

√
α2 + 1 = ab +

√
a2 + 1

√
b2 + 1 (this is true

even when a < 0 or b < 0). Therefore (a∗b)∗c = (a
√
b2 + 1+b

√
a2 + 1)

√
c2 + 1)+

abc + c
√
a2 + 1

√
b2 + 1. Similarly, let β = b

√
c2 + 1 + c

√
b2 + 1. Then B = a ∗

(b ∗ c) = a ∗ β = a
√
β2 + 1 + β

√
a2 + 1. Then from Theorem 1,

√
β2 + 1 =

bc +
√
b2 + 1

√
c2 + 1. Therefore B = a ∗ (b ∗ c) = abc + a

√
b2 + 1

√
c2 + 1 +

(b
√
c2 + 1 + c

√
b2 + 1)

√
a2 + 1. Thus we obtain A = B.

Associativity of ∗: Proof no3. Here, we will define a law on R2, called
“Domino Law” and represented by �.

Definition 2. Let (a, α) ∈ R2 and (b, β) ∈ R2. Then the � law is defined by

(a, α) � (b, β) = (aβ + bα, ab+ αβ)

We can notice that � is very similar to the multiplication in C, except that
we have ab+αβ instead of ab−αβ. Here aβ+ bα is the analog of the imaginary
part and ab+ αβ is the analog of the real part.

Proposition 1. The � law is associative:

∀(a, α), (b, β), (c, γ), (a, α) � [(b, β) � (c, γ)] = [(a, α) � (b, β)] � (c, γ)

Proof. It is easy to see that

(a, α) � [(b, β) � (c, γ)] = [(a, α) � (b, β)] � (c, γ)
= (abc+ aβγ + bαγ + cαγ, abγ + acβ + αbc+ αβγ)

Corollary 1. The ∗ law is associative.

Proof. First, using Theorem 1, we notice that (a,
√

1 + a2)� (b,
√

1 + b2) = (a ∗
b,
√

1 + (a ∗ b)2). Therefore, the associativity of � implies the associativity of ∗,
since ∗ is the restriction of � on the curve b2 = a2 + 1.

6



2.2 Application to finite fields: a new group (P, ∗) for Cryptography

Let K be a finite field. Let P = {x ∈ K,∃α ∈ K, 1 + x2 = α2}. When a ∈ P ,
let
√
a2 + 1 denote any value α such that α2 = a2 + 1 (we will choose later if√

a2 + 1 = α or
√
a2 + 1 = −α) so far we will just need that

√
a2 + 1 denotes

always the same value, α, or −α when a is fixed.

Theorem 3.

∀a ∈ P, ∀b ∈ P, (a
√
b2 + 1 + b

√
a2 + 1)2 + 1 = (ab+

√
a2 + 1

√
b2 + 1)2

Proof. As with Theorem 1, the proof is obvious: we just have to develop the two
expressions.

Definition 3. When a ∈ P and b ∈ P , we will denote by a ∗ b = a
√
b2 + 1 +

b
√
a2 + 1

Remark. For
√
a2 + 1 we have two possibilities in K, α and −α, and for√

b2 + 1, we also have two possibilities, β and −β. Therefore, for a∗b, we have so
far 4 possibilities. So far we just assume that one of these possibilities is chosen,
and later we will see how to choose one of these 4 possibilities in order to have
a group (P, ∗). Moreover we will always choose

√
1 = 1.

Theorem 4. ∗ is associative on P .

Proof. This comes directly from Theorem 3 with the same proof as proof no2 on
(R, ∗).

Therefore, we can design a variant of the Diffie-Hellman scheme on (P, ∗). To
be more precise, we will now explain how to compute

√
1 + a2 explicitly.

Theorem 5. We have the following properties:
∀a ∈ P, a ∗ 0 = 0 ∗ a = a ∀a, b ∈ P, (−a) ∗ (−b) = −(a ∗ b)
∀a ∈ P, a ∗ (−a) = (−a) ∗ a = 0 ∀a, b ∈ P, (−a) ∗ b = −(a ∗ (−b))

Proof. This comes immediately from
√

1 = 1 and from the fact that
√
a2 + 1

will always be the same value in all the expressions used for ∗.

Theorem 6. ∀a, b ∈ P, a ∗ b ∈ P .

Proof. From Theorem 3, 1 + (a ∗ b)2 is a square.

Theorem 7.

[∀a, b ∈ P,
√

(ab+
√
a2 + 1

√
b2 + 1)2 = ab+

√
a2 + 1

√
b2 + 1]

=⇒ ∀a, b, c ∈ P, a ∗ (b ∗ c) = (a ∗ b) ∗ c

7



Proof. Let A = (a ∗ b) ∗ c and B = a ∗ (b ∗ c). Let α = a
√
b2 + 1 + b

√
a2 + 1.

Let β = b
√
c2 + 1 + c

√
b2 + 1. From Theorem 7 we have

√
α2 + 1 = ±ab +√

a2 + 1
√
b2 + 1 and similarly

√
β2 + 1 = ±bc+

√
b2 + 1

√
c2 + 1. Therefore A =

(a
√
b2 + 1 + b

√
a2 + 1)

√
c2 + 1 ± c(ab +

√
a2 + 1

√
b2 + 1 and B = (b

√
c2 + 1 +

c
√
b2 + 1)

√
a2 + 1 ± a(bc +

√
b2 + 1

√
c2 + 1. We see that if here we will have

two “+”, then A = B, i.e. a sufficient condition to have A = B is to have

∀a, b ∈ P,
√

(ab+
√
a2 + 1

√
b2 + 1)2 = ab+

√
a2 + 1

√
b2 + 1.

We will denote by ] this condition

∀a, b ∈ P,
√

(ab+
√
a2 + 1

√
b2 + 1)2 = ab+

√
a2 + 1

√
b2 + 1 (])

From theorem 3, ] also means:

∀a, b ∈ P,
√

1 + (a ∗ b)2 = ab+
√

1 + a2
√

1 + b2 (]])

From (]]) and a∗b = a
√

1 + b2+b
√

1 + a2, we see that from (a,
√

1 + a2), (b,
√

1 + b2),
we can compute (a ∗ b,

√
1 + (a ∗ b)2 with 4 multiplications and 2 additions in

K. With a = b, we obtain:

∀a ∈ P,
√

(a2 + 1)2 = 2a2 + 1 (\)

2.3 A toy example for (P, ∗)

Here we have K = Z/19Z with p = 19 (p ≡ 3 (mod 4) as wanted). The set of
all the squares of K is C = {0, 1, 4, 5, 6, 7, 9, 11, 16, 17}.
∀a ∈ K, a2+1 is a square⇔ a2 ∈ {0, 4, 5, 6, 16} ⇔ a ∈ P with P = {0, 2, 4, 5, 9, 10, 14, 15, 17}.
We denote by P this set. Therefore in P we have 9 values (i.e. p−1

2 values). For ex-

ample, let assume that we want to compute 5∗9. We have: 5∗9 = 5
√

82+9
√

26 =
5
√

6 + 9
√

7. Now
√

6 can be 5 or 14, and
√

7 can be 8 or 11, so for 5 ∗ 9 we have
4 possibilities here. In order to see what the exact values are for

√
6 and

√
7, we

use the formula: ∀a ∈ P,
√

(2a2 + 1)2 = 2a2 + 1 (\). To compute
√

6, we first
solve the equation (2a2 + 1)2 = 6. This gives 2a2 + 1 = 5 or 14, thus 2a2 = 4
or 13. Since 2−1 = 10 (mod 19)), we obtain a2 = 40 or 130, i.e. a2 = 2 or 16.
This gives a = 4 or 15. Now, (\) with a = 4 (or 15) gives:

√
6 = 14.

Similarly, to compute
√

7 we first solve the equation (2a2 + 1)2 = 7. This gives
2a2 + 1 = 11 or 8. Thus we have 2a2 = 10 or 17 and a2 = 5 or 13. Thus a = 9 or
10. Now (\) with a = 9 (or 10) gives:

√
7 = 11. Finally 5 ∗ 9 = 5

√
6 + 9

√
7 = 17.

All the values a ∗ b with a, b ∈ P can be computed in the same way. We obtain
like this the table below of the group (P, ∗) = P (Z/19Z).

2.4 A more general context

Definition and properties The Domino Law can be defined also on P × P .
It is still associative (the proof is similar to the one given for R2).

8



Table 1. P (Z/19Z)

∗ 0 2 4 5 9 10 14 15 17

0 0 2 4 5 9 10 14 15 17

2 2 17 5 10 14 4 15 9 0

4 4 5 9 14 2 15 17 0 10

5 5 10 14 15 17 9 0 2 4

9 9 14 2 17 5 0 10 4 15

10 10 4 15 9 0 14 2 17 5

14 14 15 17 0 10 2 4 5 9

15 15 9 0 2 4 17 5 10 14

17 17 0 10 4 15 5 9 14 2

Proposition 2. Let (a, b) ∈ P × P , then (a, b) � (a, b) = (2ab, a2 + b2). If
(a, b)2� = (A,B), then A+B = (a+ b)2.
More generally, ∀k ∈ N, if (a, b)k� = (A,B) then A+B = (a+ b)k.

Proof. . For k = 2, the computation is straightforwards. Then, the proof is done
by induction.

Corollary 2. Proposition 2 shows that computing logarithms in (P × P,�) is
equivalent to computing logarithms in (K, .)

Proof. The proof is obvious.

Application to a ∗ b = a
√

1 + b2 + b
√

1 + a2

Proposition 3. We have: (a,
√

1 + a2) � (b,
√

1 + b2) =
(
a ∗ b,

√
1 + (a ∗ b)2

)
.

Hence ∀k, (a,
√

1 + a2)k� = (ak∗,
√

1 + (ak∗)
2

Again, this proposition shows that computing logarithms in (P, ∗) is equiv-
alent to to computing logarithms in (K, .). Therefore the cryptographic scheme
based on (P, ∗) is essentially similar to the classical cryptographic scheme based
on discrete logarithms on (K, .).

3 Associativity based on the hyperbolic tangent

3.1 The general case

In this section, we will use the tanh function. This function is a bijection from
R to ]− 1, 1[ and we have the formula

tanh(a+ b) =
tanh a+ tanh b

1 + tanh a tanh b

Thus if we define on ]−1, 1[ the following law: a∗b = (a+b)(1+ab)−1 we obtain
a group since tanh is an isomophism from (R,+) to (] − 1, 1[, ∗). Similarly, we

9



will work on finite fields. Let K be a finite field. We suppose that in K, −1 is
not a square. When we can perform the computation (i.e. when ab 6= −1), we
define:

a ∗ b = (a+ b)(1 + ab)−1

We have the following properties:

Proposition 4. 1. ∀a ∈ K, a ∗ 0 = a.
2. ∀a ∈ K \ {−1}, a ∗ 1 = 1 and ∀a ∈ K \ {1}, a ∗ (−a) = 0.
3. ∀a, b, ab 6= −1, (−a) ∗ (−b) = −(a ∗ b).
4. ∀a, b, c, (a ∗ b) ∗ c = a ∗ (b ∗ c) when the computation is possible, i.e. ∗ is

associative.

Proof. Properties 1, 2 and 3 are straightforward. We will prove that ∗ is asso-
ciative.

(a ∗ b) ∗ c = [(a+ b)(1 + ab)−1 + c][1 + (a+ b)(1 + ab)−1c]−1

We multiply by (1 + ab)(1 + ab)−1. This gives:

(a ∗ b) ∗ c = [((a+ b)(1 + ab)−1 + c)(1 + ab)][(1 + (a+ b)(1 + ab)−1c)(1 + ab)]−1

(a ∗ b) ∗ c = [a+ b+ c+ abc][(1 + ab+ bc+ ac]−1

Similarly

a ∗ (b ∗ c) = [a+ (b+ c)(1 + bc)−1][1 + a(b+ c)(1 + bc)−1]−1

Here we multiply by (1 + bc)(1 + bc)−1 and we obtain

a ∗ (b ∗ c) = [a+ b+ c+ abc][(1 + ab+ bc+ ac]−1

3.2 A toy example

In Table 2, we give the example of the construction of a group denoted P (K)
when K = Z/19Z. Here −1 is not a square since 19 ≡ 3 (mod 4). We already
know that 1 and 18 are not elements of P (K). When we do the computations, we
obtain that for P (K) = {0, 2, 3, 4, 7, 12, 15, 16, 17}. We also have that P (K) =
〈3〉.

3.3 Computing log with ∗ (analog of tanh)

We will now study the power for ∗ of an element of K. We will use the following
notation: ak∗ = a ∗ a ∗ . . . ∗ a︸ ︷︷ ︸

k times

.

Proposition 5. Suppose that we can perform the computations (i.e. we never
obtain the value −1 during the computations). ∀a ∈ K, ∀k, ak∗ = skt

−1
k with

sk = (1 + a)k − (1− a)k and tk = (1 + a)k + (1− a)k. Then uk + vk = (1 + a)k.

10



Table 2. P (Z/19Z)

∗ 0 2 3 4 7 12 15 16 17

0 0 2 3 4 7 12 15 16 17

2 2 16 17 7 12 15 3 4 0

3 3 17 12 2 16 4 7 0 15

4 4 7 2 15 3 17 0 12 16

7 7 12 16 3 17 0 2 15 4

12 12 15 4 17 0 2 16 3 7

15 15 3 7 0 2 16 4 17 12

16 16 4 0 12 15 3 17 7 2

17 17 0 15 16 4 7 12 2 3

Proof. We have a1∗ = a ∗ 0 = u1 ∗ v1 with u1 = a and v1 = 1. Then a2∗ = a ∗ a =
2a(1 + a2)−1. Thus u2 = 2a and v2 = 1 + a2. Suppose that ak−1∗ = uk−1v

−1
k−1.

Then ak∗ = a ∗ ak−1∗ = (a + uk−1v
−1
k−1)(1 + auk−1vk−1)−1. We multiply this

expression by vk−1v
−1
k−1. We obtain that ak∗ = ukv

−1
k with uk = avk−1 + uk−1

and vk = vk−1 + auk−1. Thus we can write:[
uk
vk

]
=

[
1 a
a 1

] [
uk−1
vk−1

]
This gives [

uk
vk

]
= Ak−1

[
u1
v1

]
with

A =

[
1 a
a 1

]
By diagonalizing the matrix A, we obtain that:

ak∗ = ukv
−1
k with uk = 2−1[(1 + a)k − (1− a)k] and vk = 2−1[(1 + a)k + (1− a)k]

Then we have ak∗ = 2−1[(1 + a)k − (1 − a)k](2−1[(1 + a)k + (1 − a)k])−1 =
[(1 + a)k − (1− a)k][(1 + a)k + (1− a)k]−1 = skt

−1
k with sk = (1 + a)k − (1− a)k

and tk = (1 + a)k + (1− a)k. Then we get uk + vk = (1 + a)k. This can can also
be proved by induction.

Corollary 3. If ak∗ exists, then (−a)k∗ = −ak∗.

Corollary 4. Let a ∈ K.

1. If there exists k(a) ∈ N∗ such that ∀k < k(a), sk 6= 0, tk 6= 0 and sk(a) =
0, tk(a) 6= 0, then (〈a〉, ∗) is a group.

2. If there exists k′(a) ∈ N∗ such that ∀k < k′(a), sk 6= 0, tk 6= 0 and tk′(a) = 0,
then a does not generate a group.

11



We recall the results obtained in Proposition 5 : ∀a ∈ K, ∀k, ak∗ = skt
−1
k with

sk = (1 + a)k − (1− a)k and tk = (1 + a)k + (1− a)k. Then uk + vk = (1 + a)k.
This shows that once get the decomposition ak∗ = ukv

−1
k , computing logarithms

for the ∗ law is essentially the same as for the classical case. Therefore the
cryptographic scheme based on this law ∗ (analog to tanh) is again essentially
similar to the classical cryptographic scheme based on the discrete logarithm.

4 Associativity on other algebraic curves

It seems that there is a little hope to find “magic algebraic curves” that are more
efficient than elliptic curves. In particular, our curve b2 = a2+1 had little chance
to be useful due to general results on the classification of algebraic groups. For
any abelian algebraic group, there exist unique decompositions:

– 0→ G0 → G→ π0(G)→ 0 where G0 is connexe and π(G) is étale.
– 0→ L→ G0 → A→ 0 where A is an abelian variety and L is a linearizable

group.
– 0→ U → L→ T → 0 where T is a torus, and U is unipotent.

The first and the third decompositions are rather simple. The second one is more
complicated and can be found in [1].

12



Part II

Commutative Properties





5 Tchebychev Polynomials

To generalize the Diffie-Hellman Algorithm by using (f ◦ g)(a) = (g ◦ f)(a), we
want:

– f and g to be one way
– f and g to be easy to compute
– f ◦ g = g ◦ f , i.e. commutativity

The value a is typically between 80 and 2048 bits (as in Section 2). Ironically,
here (unlike in Part I) associativity is very easy, since ◦ is always associative,
but we want commutativity on f and g, and this is not easy to obtain. In part
I, we had a law ∗ on elements of G with about 160 bits, but here, we work with
functions f and g on G and we have more fuctions from G to G than elements
of G. Moreover ai∗ = a ∗ a ∗ . . . ∗ a︸ ︷︷ ︸

i times

can be computed in O(ln i) with square and

multiply, while f i(a) = f [f . . . f(a))] would generally require O(i) computations
of f . An interesting idea is to use the the Tchebychev polynomials (cf [4–6, 8]
for example). In [7], the structure of Tchebyhev polynomials on Z/pZ is also
studied. However we will show that the schemes of [4–6, 8] are not really better
than the classical public key schemes without Tchebychev polynomials.
The Tchebychev polynomials Tn can be defind as the polynomials such that:

cosnx = Tn(cosx) (1)

Since cos a + cos b = 2 cos(a+b
2 ) cos(a−b

2 ), we have: cos(n + 1)x + cos(n − 1)x =
2 cosx cosnx, and therefore we have: Tn+1(X) = 2XTn(X)− Tn−1(X) (2). For
example, the first polynomials are: T0 = 1, T1 = X, T2 = 2X2 − 1, T3 = 4X3 −
3X, T4 = 8X4−8X2 +1. From (1), we can see that the Tchebychev polynomials
commute: (Tn(Tm(X)) = Tm(Tn(X)) since cos(nm)x = cos(mn)x. Therefore, we
can design analog of the Diffie-Hellman or RSA schemes by using Tchebychev
polynomials instead of the monomial transformation X 7→ Xa. Moreover, from
(2), we can write: [

Tn(X)
Tn+1(X)

]
=

[
0 1
−1 2X

] [
Tn−1(X)
Tn(X)

]
and this gives [

Tn(X)
Tn+1(X)

]
=

[
0 1
−1 2X

]n [
1
X

]
(3)

Now from (3) we can obtain: Tn(X) = U ◦Xn ◦U−1 (4) with U(X) =
X+ 1

X

2 and

U−1(X) = X +
√
X2 − 1. This property (4) is very nice since it shows that we

can compute Tn(X) about as fast as a Xn (and we use an analog of the square
and multiply algorithm), so we can compute Tn(X) efficiently even when n has a
few hundred or thousands of bits. However, property (4) also shows that Tn(X)
and Xn are essentially the same operation since U and U−1 can considered as
public. Therefore, public key cryptography based on Tchebychev polynomials is
essentially the same as (classical) public key cryptography based on Xn.

15



6 Commutativity with other polynomials

If we look for infinite family of polynomials satisfying commutativity, the Block
and Thielman theorem [2] shows that we do not have many solutions. More
precisely:

Theorem 8. (Bloch and Thielman, 1951)
Let (Qn) be a polynomial of degree n. If (Qn)n≥1 is a family of polynomials that
commute, then there exists a polynomial of degree 1, U , such that, either for
all n, Qn = U ◦ Xn ◦ U−1 or for all n, Qn = U ◦ Tn ◦ U−1, where Tn is the
Tchebychev polynomial of degree n.

For cryptographic use, we may look for “sufficiently large” families of poly-
nomials that commute (instead of “infinite families”) but it seems difficult to
find new large families.

7 Conclusion

In this paper, we investigated new ways in order to obtain generalizations of
the Diffie-Hellman algorithm. However, after our analysis, it appears that the
proposed schemes are essentially equivalent to the classical ones. Nevertheless,
the study showed that there are interesting connections between associativity,
commutativity and the construction of such algorithms. We also explained that
there is a little hope to find “magic algebraic curves” more efficient than elliptic
curves and we suggested to study “large” but not infinite families of polynomials
that commute for further analysis.

References

1. I. Barsotti. Un Teorema di structura per le variettà di gruppali. Rend. Acc. Naz.
Lincei, 18:43–50, 1955.

2. H.D. Block and H.P. Thielman. Commutative Polynomials. Quart. J. Math. Oxford
Ser., 2(2):241–243, 1951.

3. W. Diffie and M.E. Hellman. New Directions in Cryptography. IEEE Transactions
on Information Theory, 22(6):644–654, 1976.

4. M. Hunziker, A. Machiavelo, and J. Parl. Chebyshev Polynomials aver Finite Fields
and Reversibility of σ-automata on Square Grids. Theoretical Computer Science,
320(2-3):465–483, 2004.

5. L. Kocarev, J. Makraduli, and P. Amato. Public Key Encryption Based on Cheby-
shev Polynomials. Circuits Systems and Signal Processing, 24(5):497–517, 2005.

6. Z. Li, Y. Cui, Y. Jin, and H. Xu. Parameter Selection in Public Key Cryptosystem
Based on Chebyshev Polynomials over Finite Field. Journal of Communications,
6(5):400–408, 2011.

7. J. Rosen, Z. Scherr, B. Weiss, and M. Zieve. Chebyshev Mappings over Finite Fields.
Amer. Math. Monthly, 119:151–155, 2012.

8. J. Sun, G. Zhao, and X. Li. An Improved Public Key Encryption Algorithm Based
on Chebyshev Polynomials. TELKOMNIKA, 11(2):864–870, 2013.

16


