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Abstract
Juels and Ristenpart introduced honey encryption (HE) and showed how to achieve message

recovery security even in the face of attacks that can exhaustively try all likely keys. This is
important in contexts like password-based encryption where keys are very low entropy, and
HE schemes based on the JR construction were subsequently proposed for use in password
management systems and even long-term protection of genetic data. But message recovery
security is in this setting, like previous ones, a relatively weak property, and in particular does
not prohibit an attacker from learning partial information about plaintexts or from usefully
mauling ciphertexts.

We show that one can build HE schemes that can hide partial information about plaintexts
and that prevent mauling even in the face of exhaustive brute force attacks. To do so, we in-
troduce target-distribution semantic-security and target-distribution non-malleability security
notions. We prove that a slight variant of the JR HE construction can meet them. The proofs
require new balls-and-bins type analyses significantly different from those used in prior work.
Finally, we provide a formal proof of the folklore result that an unbounded adversary which
obtains a limited number of encryptions of known plaintexts can always succeed at message
recovery.

1 Introduction

Password-based encryption (PBE) suffers from the threat of brute-force attacks. People pick poor,
easy-to-predict passwords and so an attacker, given a ciphertext, can try decrypting it with the
most likely password, the next most likely, and so on. It is easy to determine when the right
password is found, and so as long as the password falls in this list the attacker wins, recovering the
password and the full plaintext. Unfortunately, studies indicate that the most common password
is typically selected by almost 1% of users [10], meaning that passwords have less than µ = 7 bits
of min-entropy. The straightforward attack succeeds with probability a bit more than q/2µ where
q is the number of decryption attempts. Bellare, Ristenpart, and Tessaro [7] proved a closely
matching upper bound, perhaps suggesting that the case was closed and that, for PBE, one cannot
do better.

Honey encryption. Juels and Ristenpart (JR) [23], however, showed how one might provably
achieve security for relatively low-entropy keys—even when attackers can try decrypting a ci-
phertext with all possible keys. Intuitively, their approach makes attacks unsuccessful by ensur-
ing that all plaintexts generated during a brute-force attack look plausible. This approach was
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used previously for the special case of uniformly random plaintexts by Kausik and Hoover [26].
JR proposed a more general cryptographic primitive that they called honey encryption (HE). An HE
scheme is tailored to an estimate of the (possibly non-uniform) distribution of messages for which
it will be employed. We refer to this distribution as the target distribution. Decrypting an HE
ciphertext with an incorrect key yields a decoy (or honey) message that appears, to the attacker,
to be a fresh sample from the target distribution. An attacker that knows no further information
about the true message will be unable to pick it out from the decoys.

JR gave a framework for building HE schemes that composes a distribution-transforming en-
coder (DTE) with an encryption scheme. A DTE is a kind of randomized encoding scheme tailored
to the target distribution. They propose that HE schemes should achieve security in two distinct
settings, what we will call the high-entropy key setting and the low-entropy key setting. The
former is the conventional setting in which security rests on the adversary being unable to do
work proportional to 2µ. Here they show that DTE-then-Encrypt can use standard mechanisms to
provably achieve the conventional goals of [7].

The novelty lies in the low-entropy setting, where we assume that keys have some entropy µ
but that adversaries can nevertheless do work much greater than 2µ. For simplicity here one most
often just assumes unbounded attackers. In this context, JR formalized a message recovery secu-
rity goal. They then proved that in some useful cases DTE-then-Encrypt constructions can achieve
close to optimal message recovery security: for a (relatively high-entropy) message encrypted un-
der a key whose maximum probability of taking on any particular value is at most 1/2µ, then an
unbounded adversary’s ability to guess the correct message, even given the ciphertext, is at most
1/2µ plus a negligible amount. Given that an attacker can always output the decryption of the
challenge ciphertext under the most likely key, the JR result is essentially tight.

The DTE-then-Encrypt construction provides a recipe for building HE for particular applica-
tions, as one need only build a custom DTE for the setting by way of some estimate of the message
distribution. Chatterjee et al. [11] showed how to do so for messages that are themselves lists of
human-chosen passwords and built a prototype password vault system based on HE. Huang et
al. [21] showed how to construct DTEs for messages that describe a person’s genetic information.
The application was for building a secure, long-term genetic information store. In both contexts
they rely on JR’s goal of MR security.

But MR security has several deficiencies from the viewpoint of modern security goals for con-
ventional symmetric encryption (SE), and even for the applications for which researchers have
explored use of HE. For SE one strives for authenticated encryption security [6], or its robust vari-
ants [19, 29]. These notions allow chosen message and ciphertext attacks. Informally speaking,
they demand that not even a single bit of information about plaintexts can be learned by an adver-
sary and that ciphertexts cannot be forged. We are therefore left with a significant gap between
the JR results and what we might like in terms of security. In the genetic store application, for
example, it could be that using an only MR-secure HE scheme would leak most of your genome.
All this begs the question of whether there exist stronger security goals for HE and constructions
that meet them.

Our contributions. In this work, we provide a systematic study of stronger notions of security for
HE schemes in the low-entropy key setting. The bad news first: we formally rule out the ability to
strengthen the JR security notions to allow known-message attacks when attackers can exhaust the
key space. While this result seems intuitively obvious, and was taken for granted in [23], showing
it formally for arbitrary HE schemes required a surprising amount of care. Having done so, we
return to unknown message attack settings, but here provide good news in the way of stronger
security goals and proofs that simple constructions meet them. First, we give a semantic security-
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style notion suitable for unknown message attacks and, second, a notion of target-distribution
non-malleability. We show how the JR construction meets the first, and a new construction that
achieves both. In the remainder of the introduction we provide more overview of these results.

Impossibility of known-message attack security. The JR security message recovery (MR) def-
inition works as follows. A challenge message is drawn from the target distribution, encrypted
under a key, and the resulting ciphertext is given to the adversary. It wins if it can output the
challenge message. While the adversary knows the target distribution and the distribution from
which keys are drawn, it does not get access to any known message, ciphertext pairs under the
key. We extend the notion to additionally give the adversary an oracle from which it can obtain
message-ciphertext pairs more messages drawn from the target distribution, yielding a known-
message attack variant. We denote this notion by MR-KMA.

Intuitively MR-KMAshould be unachievable when the adversary can exhaustively search the
key space. The adversary simply queries the oracle on several different messages, runs a brute-
force attack to find the key that is consistent with all the message-ciphertext pairs, and uses that to
decrypt the challenge ciphertext. While this attack might seem to work against all schemes, in fact
there exist many for which there will be a large set of consistent keys. In the most extreme case,
all keys will be consistent after any number of queries when encryption is the identity function
for each key. One approach to deal with this is to make assumptions about the underlying scheme
that allow one to show that after sufficiently many queries the consistent set will shrink to one.
For example, if the encryption scheme has “sufficiently random” mappings for distinct keys. But
we would like to make no assumptions about the HE scheme.

Our attacker instead simply embraces that there may be a large set of consistent keys, and just
uses one of them at random to decrypt the challenge ciphertext. We then have to lower bound
the probability that a random key from the consistent set decrypts the challenge ciphertext to the
target plaintext. In fact we do not know how to (or whether one can) prove this for an adversary
that makes a fixed number of queries. Rather we show that there exists some number of queries
between zero and κ, where 2κ is the size of the key space, for which an adversary will achieve
advantage at least 1/2κ.

In the end, our result rules out security against known-message attacks. We also note that the
proof techniques here already apply to (non-stateful) symmetric encryption as they do not take
advantage of any properties specific to HE. We are, in fact, unaware of any previous general lower
bound on message recovery for exhaustive key search attacks against conventional symmetric
encryption schemes. Finally, the proof technique can generalize as well to message authentication
goals, such as unforgeability under chosen-message attack.

Protecting partial information. We now return to unknown message attacks, but seek to strengthen
the security goals along two dimensions. First, we consider partial information leakage. MR secu-
rity is potentially adequate in settings for which the encrypted message is, say, an authentication
credential which must be supplied in full elsewhere (the original motivating settings in [23]). It
is likely to prove insufficient more generally. Schemes meeting MR might trivially leak a signif-
icant amount of information about messages. The seminal work of Goldwasser and Micali [17]
argued (in the context of public-key encryption) that one should instead prefer encryption to hide
all partial information about plaintexts. This stronger goal, called semantic security, was subse-
quently adapted to (at least) the settings of symmetric encryption [3], deterministic symmetric
encryption [15, 30], and deterministic and hedged public-key encryption [1, 2, 4].

Unfortunately the traditional symmetric encryption semantic security notion (denoted SS be-
low) [3], along with its variants of indistinguishability under chosen plaintext attack [3], are un-
achievable when keys are low entropy. (This is a corollary of our negative results about MR-CPA.)
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We therefore introduce a new semantic-security style notion suitable for the low-entropy key
setting. We call it target-distribution semantic security (TDSS). In it, an adversary is given the
encryption of a message drawn from a target distribution and must predict a boolean function
applied to the plaintext. It needs to do this better than is possible when predicting the predicate
without the ciphertext. The key difference from SS is that it is asked to hold only for a specific
message distribution, the target, and not for all message distributions. Interestingly we could
find no meaningful indistinguishability-style variant of TDSS (unlike in the conventional setting,
where we have the notion of IND-CPA and, moreover, an equivalence between it and SS [3]).

We relate the MR and TDSS notions, in particular using a result from Dodis and Smith [15] (see
also [4]) that straightforwardly adapts to our setting. We use it as an intermediate step to show
that predicting predicates implies predicting functions for TDSS. Since MR security is equivalent
to predicting the identity function, we obtain that TDSS implies MR security. There exists a simple
separation showing that MR does not imply TDSS.

We go on to analyze the DTE-then-Encrypt scheme due to JR, showing via a new balls-and-

bins analysis an upper bound of about 2ω
7

16
k + 2e

− 1
3ωk

1/8 on the advantage of unbounded TDSS
attackers. Like the MR proof by JR, ours is in the random oracle model [8]. Because TDSS focuses
on predicates, the new balls-and-bins analysis necessarily focuses on the trickier setting of having
many more balls (representing keys here) than the two bins (the possible predicate outputs). Our
proof crucially relies, as did JR’s, on a majorization lemma due to Berenbrink et al. [9] to transition
the balls-and-bins analysis from non-uniform keys to uniform ones. In comparison to MR security
our new bound is quantitatively weaker: JR showed MR advantage upper bounded by ωk (when
message distribution entropy is sufficiently large). Here we instead lose about half the entropy of
the key. Nevertheless our result may be close to optimal (see Remark 5.6).

Non-malleability. The JR message recovery security goal, as well as the TDSS goal above, do
not rule out active attackers manipulating ciphertexts. Indeed, DTE-then-Encrypt instantiations
used in [11, 21, 23] are trivially malleable as they encrypt the DTE output by XOR’ing it with a
pad derived from a hash of the key. An attacker can flip particular bits of the ciphertext and know
that the resulting ciphertext will be decrypted to a plaintext related in a predictable way to the
original. This is true regardless of the unpredictability of either the key or message.

Complicating matters, achieving MR or TDSS security seems to rule out preventing manipula-
tion by including in an HE scheme typical mechanisms such as authentication tags or redundancy.
Intuitively, this is because they would seem to always help the attacker rule out incorrect keys.
We therefore turn to weaker notions like non-malleability [16, 25], which again are unachievable
in the low-entropy key setting (by our negative results above) but may be adaptable to unknown
message settings because their goals do not seem to inherently conflict with confidentiality goals
like MR and TDSS.

We introduce a target-distribution non-malleability (TDNM) notion for HE schemes when
used with low-entropy keys. Informally, an attacker should not be able maul a ciphertext C to
produce a new ciphertext C̃ in a way that some fixed relation R over the associated plaintexts is
met with probability higher than one can achieve without access to C. All this holds for C being
the encryption of a message taken from the target distribution.

We propose a simple construction that we call DTE-then-Encipher. It composes a DTE with a
block cipher with sufficiently large domain. Modeling the cipher as ideal allows us to prove both
TDSS and TDNM security. The TDNM proof shares some similarity to the TDSS proof of DTE-
then-Encrypt, but requires additional techniques. In particular, the balls-in-bins analysis here
cannot use the majorization lemma of [9], and so we perform a new majorization-style analysis
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that exploits Schur convexity [22].

Further related work. Entropic security was considered in [15, 30] as a statistical analogue of
semantic security, and like HE they can also resist unbounded attackers. They show security
against can be achieved when µk+µm ≥ n, where µk ,µm are the min-entropy of the key and message
distribution, respectively, and n is the message length in bits. They show one can do no better in
their setting, which requires security to hold over all distributions with the indicated min-entropy.
HE low-entropy key security instead relaxes this to focus on specific target distributions, thereby
skirting their lower bounds on required entropy, and providing meaningful security even when
µk +µm < n.

2 Notation and Definitions

Notation. If n is an integer we let Zn be the set {0, . . . ,n− 1}. We use y←$A(x) to denote running
randomized algorithm A on input x and setting y equal to its output. If instead A is deterministic
we write y← A(x). If G is a game we let Pr[G⇒ true] denote the probability that G outputs true.

Let S be a set. A distribution on S is a function p : S → [0,1] such that
∑
s∈S p(s) = 1. The

maximum probability ω of a distribution p is defined to be ω = maxs∈S p(s). The min-entropy µ
of p is defined to be µ = − logω. When referencing min-entropy and maximum probability the
distribution will always be clear from context. By s←p S we denote sampling an element s ∈ S
according to the distribution p. That is, each s ∈ S is chosen with probability p(s). For B ⊆ S we
overload notation and let p(B) =

∑
s∈Bp(s).

Hash functions. A hash function H is a function H : {0,1}∗→ {0,1}n which maps strings of arbi-
trary length to strings of some fixed length n. The length n will always be clear from context. In
this work, we model hash functions as random oracles.

Symmetric encryption. A symmetric encryption scheme SE = (Enc,Dec) is a pair of algorithms
defined relative to a key space K and message space M. The randomized encryption algorithm
Enc takes as input a key K ∈ K and a message M ∈ M and outputs a ciphertext C ∈ C. The
deterministic decryption algorithm Dec takes as input a key K ∈ K and a ciphertext C ∈ C and
outputs a message M ∈ M. We require that a symmetric encryption scheme must be correct,
meaning that for all K ∈ K and all M ∈M, Pr[Dec(K,Enc(K,M)) =M] = 1.

Majorization. We say p̄ majorizes q̄ (denoted as p̄ � q̄), if the two vectors p̄ = 〈p1,p2, . . . ,pn〉,
and q̄ = 〈q1,q2, . . . , qn〉 (written in descending order such that for all i ∈ [1,n − 1] that pi ≥ pi+1,
and qi ≥ qi+1) satisfy

∑k
i=1pi ≥

∑k
i=1 qi for all k ∈ {1, . . . ,n}. When p̄ denotes the probabilities

of a distribution with support size n, it is easy to see that q̄ � p̄, if q̄ is defined as qi = p1 for
1 ≤ i ≤ d1/p1e and qi = 0 for d1/p1e+ 1 ≤ i ≤ n.

3 Background on Honey Encryption

Honey encryption schemes. An HE scheme HE = (HEnc,HDec) is a symmetric encryption scheme
for some key space K and message spaceM. Typically K will be strings representating human-
chosen passwords, but HE can be applied in other settings as well. HE schemes should meet
conventional security goals for password-based symmetric encryption [7, 24]. Differentiating HE
schemes from conventional ones, however, is that they are designed relative to a specific (esti-
mated) distribution overM. This allows schemes that achieve a level of security even when the
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MRAHE,pm,pk
K∗←pk K
M∗←pmM
C∗←$ HEnc(K∗,M∗)
M←A(C∗)
Return (M =M∗)

SAMP1DDTE,pm
M←pmM
S←$ encode(M)
b←$D(S)
Return (b = 1)

SAMP0DDTE
S←$S
b←$D(S)
Return (b = 1)

Figure 1: Left: Game defining message recovery security. Middle and Right: Games defining
security of a DTE.

keys are relatively predictable, or have low min-entropy, from an attacker’s perspective. Again,
human-chosen passwords are the canonical example of such keys.

We let pm represent the message distribution on the message spaceM and µm,ωm denote its
min-entropy and maximum probability respectively. Similarly we let pk represent the key dis-
tribution on the key space K and let µk ,ωk denote its min-entropy and maximum probability
respectively. In the low-entropy settings we focus on, we assume that ωk is large enough that an
attacker can easily perform work proportional to 2µk . For simplicity in fact we will in our treat-
ment simply assume adversaries can run in unbounded time. Our results extend to this setting,
but also can be translated to computationally bounded settings in a straightforward manner.

MR security. Juels and Ristenpart [23] formalized and built schemes to achieve message recovery
(MR) security. Their MR security game is defined in Figure 1 for a scheme HE and distributions
pm,pk . An MR adversary A takes as input a ciphertext encrypting a challenge message chosen
according to pm and outputs a message M ∈ M. The adversary wins if it outputs the challenge
message. More precisely, we measure the advantage of a (computationally unbounded) MR adver-
sary A against scheme HE and distributions pm and pk by

Advmr
HE,pm,pk

(A) = Pr
[
MRAHE,pm,pk ⇒ true

]
.

Distribution-transforming encoders. A distribution-tranforming encoder (let us use DTE for
short) is a pair of algorithms DTE = (encode,decode) defined relative to a message spaceM and
a set S called the seed space. Via S←$ encode(M) the randomized encoding algorithm encode
taking a message M ∈M as input and outputs a seed S ∈ S . A DTE must satisfy correctness, that
for any message M ∈ M, Pr[decode(encode(M)) = M] = 1. Like HE schemes, a DTE is designed
for a specific message distribution pm.

Following [23], the security property desired for a DTE is that it is hard for an adversary to
distinguish between S ∈ S chosen uniformly at random and chosen by first picking a message
according to pm and then applying encode. This property is formalized by two of the games
shown in Figure 1. We measure the advantage of an adversary D against DTE and distribution pm
by

Advdte
DTE,pm

(D) = Pr[SAMP1DDTE,pm]−Pr[SAMP0DDTE] ,

and the DTE-goodness is defined by Advdte
DTE,pm

= maxD Advdte
DTE,pm

(D) and where the the maxi-
mization is over all, even computationally unbounded, adversaries D. When the DTE in question
is clear we let pd represent the distribution induced onM by sampling a random seed from S and
applying decode. Formally,

pd(M) = Pr[M ′ =M : S←$S ;M ′← decode(S)] .
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HEnc(K,M)

S←$ encode(M)
R←$ {0,1}rl
C2← H(R||K)⊕ S
Return (R,C2)

HDec(K,C)

(R,C2)← C
S← H(R||K)⊕C2
M← decode(S)
Return M

Figure 2: The DTE-then-Encrypt construction HE[DTE,H], using hash function H and DTE DTE =
(encode,decode).

DTE-then-Encrypt. JR introduced a framework of constructing HE schemes for a target distri-
bution pm from a symmetric encryption scheme SE and a distribution-transforming encoder DTE.
More specifically, the DTE-then-Encrypt framework encrypts a message by applying the DTE en-
coding first and then encrypting the encoding using SE. Security requires some easy-to-meet
properties of SE, such as that it does not pad out inputs.

In more detail, let H be a hash function and r an integer representing the number of random
bits to be used by encryption. Then the scheme which we will denote by HE[DTE,H] is shown in
Figure 2.

Note that as written, this scheme does not achieve the password-based encryption security
goals of [7] for the high-entropy key setting. It is easy to modify the scheme to do so: simply
replace the hash function with an appropriate password-based key derivation function (PBKDF).
One can also deal with using fixed-output-length hash functions with large seed spaces by appro-
priate use of a mode of operation. See [23] for more detailed discussion.

4 Impossibility of KMA Security with Low-entropy Keys

Recall that the MR security notion is a relatively weak goal in various ways. One such weakness is
that it is only an unknown-message attack and provides adversaries with no plaintext-ciphertext
examples. In this section we show that one cannot hope to achieve security in the low-entropy
key setting when given a relatively small number of plaintext-ciphertext examples in a known-
message attack. Making this claim formal required a surprising amount of care.

MR-KMA security definition. Let game MR-KMA be defined as in Figure 3 for scheme HE and
distributions pm,pk . This game is exactly the same as the MR security game except the adversary
additionally has access to an encryption oracle which samples a message M according to pm and
returns an encryption ofM under the secret key. We measure the advantage of a (computationally
unbounded) adversary A against HE with distributions pm and pk by

Advmr-kma
HE,pm,pk

(A) = Pr[MR-KMAAHE,pm,pk ⇒ true].

The “obvious” attack strategy. A straightforward strategy for an MR-KMA adversary is to use its
encryption oracle to receive q distinct message-ciphertext pairs. Then, use test decryption under
all keys to find those keys that correctly decrypt all the ciphertexts correctly. We refer to such
a key as being consistent. The intuition is that even for small q the set of consistent keys will
be a singleton and that, necessarily, it is the key chosen by the experiment. This intuition stems
from the fact that for a “reasonable” scheme, the probability that the wrong key decrypts all the
ciphertexts correctly is low.

Of course formally this logic is meaningless as it makes unspecified assumptions on the scheme.
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MR-KMAAHE,pm,pk
K∗←pk K
M∗←pmM
C∗←$ HEnc(K∗,M∗)
M←$AEnc(C∗)
Return (M =M∗)

Enc()

M←pmM
C←$ HEnc(K∗,M)
Return (M,C)

Figure 3: Game defining message recovery security under a known message attack.

Indeed there are many examples of schemes for which the set of consistent keys will be large, no
matter how large q gets. In the most egregious case, where HEnc and HDec implement the identity
function for all keys, then the set of consistent keys will always be K. Clearly this scheme is not
MR secure, but the point is that when giving a proof that holds for all schemes we must handle
such degenerate cases. This issue (and the particular degenerate example just given) is related
to the well-known fact that key recovery security does not imply message recovery security for
all schemes. Nevertheless, we are unaware of any proofs showing that no SE scheme can resist
message recovery attacks that exhaustively search the key space.

A lower bound on MR-KMA security. Given the example that ruling out keys may not work very
well, we give a slightly different adversary. Our adversary, shown in Figure 4, runs the attack as
described above, but simply finishes by decrypting the challenge using a uniformly chosen key
from the set of consistent keys. It is clear, for example, that in the trivial identity-function scheme
mentioned above all keys will be consistent with the challenge and this attack achieves advantage
one.

We must lower-bound the success probability for any scheme. Doing so requires showing
that with high probability the uniformly selected consistent key must be consistent also with the
challenge ciphertext. Due to technical difficulties relating to our proof, we cannot give an exact
number of oracle queries for which this attack has a high advantage. Instead we show that for
some number of queries which is at most κ = dlog |K|e this attack has a high success probability
of at least 1/(2κ). For concreteness we then say that the advantage of an adversary who picks the
number of queries at random from 0, . . . ,κ will have advantage at least 1/(2κ2). These results give
us the following theorem.

Theorem 4.1. Let HE be an encryption scheme and κ = dlog |K|e. Then for any pm,pk the adversary A
shown in Figure 4 makes at most κ − 1 oracle queries and has advantage

Advmr-kma
HE,pm,pk

(A) ≥ 1
2κ2 . (1)

The idea of the proof is to note that the advantage of the adversaryA for a particular value of q
is equal to the probability that a randomly chosen key that is consistent with q message-ciphertext
pairs is also consistent with a (q + 1)-th pair (the challenge message and ciphertext). Then letting
Sq denote the set of keys consistent after q pairs. We have that the advantage of A for a particular
value of q is E[|Sq+1|/ |Sq|], where the expectation is taken over the appropriate experiment (defined
below). Intuitively, this ratio can only be really small for a small number of q’s because each Sq
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Adversary A(C∗)

q←$ Zκ; Sq←∅
For i = 1, . . . , q do

(Mi ,Ci)← Enc(Mi)
For K ∈ K do

If (∀i HDec(K,Ci) =Mi)
Sq← Sq ∪ {K}

K←$ Sq
Return HDec(K,C∗)

Figure 4: Adversary for MR-KMA making at most κ = dlog |K|e encryption queries.

must contain between 1 and 2κ keys.
Before presenting the full proof we formalize the above intuition with the following lemma

about random variables.

Lemma 4.2. If s0, . . . , sκ are positive integer-valued random variables such that s0 ≤ 2κ and sq+1 ≤ sq
for q ∈Zκ, then maxq∈Zκ

E[sq+1/sq] ≥ 1
2κ .

Proof. Let ε = maxq∈Zκ
E[sq+1/sq]. We will use an inductive argument to prove that Pr[sq ≥ 2κ−q] ≤

2qε for 1 ≤ q ≤ κ. Then considering when q is κ and noting that sκ ≥ 1 always we have 1 = Pr[sκ ≥
1] ≤ 2κε. Solving for ε gives the desired bound.

We now give the inductive argument. First, Markov’s inequality can be used to bound the
probability that sq+1 is at least half sq by Pr[sq+1/sq ≥ 1/2] ≤ 2E[sq+1/sq]. Rewriting and bounding
E[sq+1/sq] by ε we get

Pr[sq+1 ≥ (1/2)sq] ≤ 2ε (2)

for all q ∈Zκ.
Recalling that s0 ≤ 2κ, the base case is easily derived by Pr[s1 ≥ 2κ−1] ≤ Pr[s1 ≥ (1/2)s0] ≤ 2ε.
Now suppose 1 < q ≤ κ and Pr[sq−1 ≥ 2κ−(q−1)] ≤ 2(q − 1)ε. By definition we have,

Pr[sq ≥ 2κ−q] = Pr[sq ≥ 2κ−q|sq−1 < 2κ−(q−1)]Pr[sq−1 < 2κ−(q−1)]

+Pr[sq ≥ 2κ−q|sq−1 ≥ 2κ−(q−1)]Pr[sq−1 ≥ 2κ−(q−1)];

The first part of the equation can be bounded using our inductive assumption:

Pr[sq ≥ 2κ−q|sq−1 ≥ 2κ−(q−1)]Pr[sq−1 ≥ 2κ−(q−1)] ≤ Pr[sq−1 ≥ 2κ−(q−1)]

≤ 2(q − 1)ε;

To bound the second part note that conditioned on the fact that sq−1 is less than 2κ−(q−1), it can
only hold that sq is greater than 2κ−q if sq is greater than (1/2)sq−1. This gives us

Pr[sq ≥ 2κ−q|sq−1 < 2κ−(q−1)] ≤ Pr[sq ≥ (1/2)sq−1|sq−1 < 2κ−(q−1)] .

Then from the definition of conditional probability and using (2) we get that

Pr[sq ≥ (1/2)sq−1|sq−1 < 2κ−(q−1)]Pr[sq−1 < 2κ−(q−1)] ≤ Pr[sq ≥ (1/2)sq−1]

≤ 2ε;

Putting the above equations together we get Pr[sq ≥ 2κ−q] ≤ 2qε, completing the proof.
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Game G

K∗←pk K; M∗←pmM
C∗←$ HEnc(K∗,M∗)
q←$ Zκ; Sq←∅
For i = 1, . . . , q do
Mi←pmM
Ci←$ HEnc(K∗,Mi)

For K ∈ K do
If (∀i HDec(K,Ci) =Mi)
Sq← Sq ∪ {K}

K←$ Sq
M← HDec(K,C∗)
Return (M =M∗)

Game H

K∗←pk K; q←$ Zκ

S0←K; S1, . . . ,Sq+1←∅
For i = 1, . . . , q do
Mi←pmM
Ci←$ HEnc(K∗,Mi)
For K ∈ Si−1 do

If (HDec(K,Ci) =Mi)
Si←$ Si ∪ {K}

M∗←pmM
C∗←$ HEnc(K∗,M∗)
For K ∈ Sq do

If (HDec(K,C∗) =M∗)
Sq+1← Sq+1 ∪ {K}

K←$ Sq
Return (K ∈ Sq+1)

Experiment E

S0←K; S1, . . . ,Sκ←∅
K∗←pk K
For i = 1, . . . ,κ do
Mi←pmM
Ci←$ HEnc(K∗,Mi)
For K ∈ Si−1 do

If (HDec(K,Ci) =Mi)
Si←$ Si ∪ {K}

Figure 5: Left and Middle: Games used in MR-KMA proof. Right: Experiment used in MR-KMA
proof.

We now use the above result to prove Theorem 4.1. The proof proceeds by showing that the
advantage of adversary A for a particular q is E[|Sq+1|/ |Sq|] where Sq is the set of consistent keys
after q message-ciphertext pairs and then noting that the size of these sets fulfill the conditions of
the lemma above.

Proof of Theorem 4.1. First note that Advmr-kma
HE,pm,pk

(A) = Pr[G⇒ true], where game G is defined on

the left side of Figure 5. This is clear because G is simply the game MR-KMAAHE,pm,pk with the code
of A inserted.

Now consider game H shown in the middle of Figure 5. Game H is obtained from G via a few
simple transforms. In it Sq is computed iteratively one (M,C) pair at a time, the choice of M∗ and
C∗ is deferred until they are used, and instead of checking whetherM =M∗ the game equivalently
checks whether the randomly chosen K falls in the subset of Sq that decrypts C∗ to M∗ which is
called Sq+1. It is thus clear that Pr[H⇒ true] = Pr[G⇒ true]

Noting that Sq+1 ⊆ Sq holds for every q, it is clear from the last two lines of H that once q, Sq,
and Sq+1 are chosen, the probability that H will output true is E[|Sq+1|/ |Sq|]. Thus we have that
Pr[H⇒ true] =

∑κ
q=0(1/κ)E[|Sq+1|/ |Sq|].

Next we transition our analysis to considering the experiment E shown in Figure 5. Note
that the distribution of Sq+1 and Sq for any q ∈ Zκ in E is identical to the distribution in H. For
0 ≤ q ≤ κ, let sq be the random variable representing |Sq| in E and ε be maxq∈Zκ

E[sq+1/sq] where
the expectation is taken in experiment E.

Since all Sq always contains at least K∗, each sq must be positive. Thus s0, . . . , sκ are positive
integer-valued random variables which fulfill the conditions of Lemma 4.2 so we have ε ≥ 1

2κ .
Then the following sequence of inequalities exhibits (1):

Advmr-kma
HE,pm,pk

(A) = Pr[H⇒ true] =
κ∑
q=0

1
κ
E[sq+1/sq] ≥

1
κ
· ε ≥ 1

2κ2 .
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Extensions. While we focused above on known-message attacks, our proof techniques carry over
to the more typical setting of chosen-plaintext attacks. Here the adversary has access instead to
an encryption oracle that takes as input an adversarially chosen message, encrypts it using the
secret key, and returns the ciphertext.

Furthermore, the ideas behind our proof can be extended to cover unforgeability under chosen-
message attacks for, e.g., message authentication codes [5, 18]. Here an adversary with access to a
tagging oracle tries to come up with a valid message-tag pair for a message it has not queried yet.
The adversary used to prove its impossibility would use a fixed sequence of messages M1 . . . ,Mκ

and use a random key consistent with the first q messages to sign the next message (a fixed se-
quence of messages is used here to avoid the problem of the adversary trying to tag a message it
has already been given the correct tag for). Then essentially the exact same analysis shows that
this adversary will succeed with high probability. We omit the details for brevity.

5 Stronger Message Privacy for HE Schemes

Given the impossibility result of the last section, we turn to explore achievable but still mean-
ingful security notions that capture the goal of hiding partial informations about the messages
encrypted by an HE scheme. In this section, we propose a semantic security-style definition tai-
lored to the low-entropy key setting. We call it targeted-distribution semantic security (TDSS).
We will also investigate its relationship with MR security. We then go on to show that the DTE-
then-Encrypt construction meets this stronger notion of security, though with concrete security
bounds slightly worse than what could be proved in the MR case.

5.1 TDSS security and its relation to MR security

Recall that semantic security style notions ask, roughly, that an attacker given the encryption
of a message cannot predict a predicate on it with probability better than is possible without the
encryption. In the symmetric encryption setting, semantic security was first formalized by Bellare
et al. [3] where they give the adversary a chosen-message encryption oracle. By our impossibility
results in the last section, we cannot do so, and instead return to an unknown-message only attack
setting for the target message distribution. We refer to this as target-distribution semantic security
(TDSS).

LetM be a message space and pm be an associated target distribution. Let HE be an HE scheme
forM. We let f : M→ {0,1} be a predicate on messages. Let pf (b) = Pr[f (M) = b |M←pmM] and
let ωf = max(pf (0),pf (1)).

The TDSS security games are shown in Figure 6. In game TDSS1A,fHE,pm,pk
an adversary A is

charged with predicting f (M) given an encryption of it. In game TDSS0As ,fpm an adversary As,
called the simulator, which attempts to guess f (M) without access to a ciphertext. The optimal
simulatorAs for any pm, f pair simply outputs most likely value of f (M) given the message distri-

bution and predicate f . This forces Pr[TDSS0As ,fpm ⇒ true] = ωf . We therefore define the advantage
of adversary A against the TDSS security of an HE scheme HE with respect to distributions pm, pk
and predicate f by

Advtdss
HE,pm,pk

(A, f ) = Pr
[
TDSS1A,fHE,pm,pk

⇒ true
]
−ωf .

11



TDSS1A,fHE,pm,pk

K←pk K
M←pmM
C←$ HEnc(K,M)
b←$A(C)
Return (b = f (M))

TDSS0As ,fHE,pm,pk

M←pmM
b←$As
Return (b = f (M))

Figure 6: Games defining TDSS security.

When working with a random oracle H, the game allows the adversary and the encryption algo-
rithm to query H but f must be independent of H.
And the TDSS security of HE is measured by

Advtdss
HE,pm,pk

= max
A,f

Advtdss
HE,pm,pk

(A, f ) .

The maximization is over all, even unbounded adversaries A and arbitrary predicates f . It is easy
to derive ways of measuring restricted versions of TDSS security, such as by placing computational
limits onA or restricting the class of predicates. We will not consider such weaker notions further.

TDSS and MR. We will now consider the relation between MR security and TDSS security. It is
not hard to see that MR security does not imply TDSS security. We can easily construction an HE
scheme such that one bit of the message is revealed completely but the rest is secure using a good
HE scheme, thus making the resulting scheme secure in the MR sense but not in the TDSS sense.

Intuitively, TDSS should imply MR, but proving this is not as easy as the other direction.
Consider the trivial reduction in which a TDSS adversary B runs an MR adversary A and then
computes the predicate on the message returned by A. It’s clear that Pr[TDSS0B,fHE,pm,pk

⇒ true] ≥
Advmr

HE,pm,pk
(A), but this might be smaller than ωf even if A is a very good MR adversary.

Fortunately, Dodis and Smith [15] showed that in the information theoretic setting, a good
predictor for a function can be turned into a good predictor for a boolean predicate. Viewing a MR
adversary as a predictor for the identity function, we can use this to convert a good MR adversary
into a good TDSS adversary. We defer the proof of the following theorem to Appendix B.

Theorem 5.1. Let HE be a honey encryption scheme for message distribution pm.
(i) If Advmr

HE,pm,pk
≥ωm +ω2/3

m , then Advmr
HE,pm,pk

≤ωm + 4 ·Advtdss
HE,pm,pk

.
(ii) There exists message distribution p′m, HE scheme HE′, predicate f , and TDSS adversary A such

that for any pk , HE′ satisfies Advmr
HE′ ,p′m,pk

= Advmr
HE,pm,pk

and Advtdss
HE′ ,p′m,pk

(A, f ) = 1
2 .

5.2 TDSS Security of DTE-then-Encrypt

We turn to showing that the DTE-then-Encrypt construction (refer back to Figure 2 in Section 3)
achieves TDSS security in the random oracle model.

Our analysis proceeds in a modular fashion similar to the JR proof of MR security for this
construction, but with important differences. First we use DTE security to transition to a game in
which the ciphertext is chosen uniformly at random and the challenge key is not sampled until
after the adversary has run (one might look ahead to Figure 8 for the games). In this game, we
can show that the advantage of any adversary is no better than the advantage of an adversary A∗
that decrypts the ciphertext using all possible keys, computes the predicate value on the resulting
plaintext, and outputs the bit which has the higher cumulative mass of keys that resulted in this
bit.

12



Experiment EH,DTE,f
pk

R←$ {0,1}r ; C2←$S
For K ∈ K do
S← H(R||K)⊕C2
M← decode(S)
b← f (M)
Bb← Bb ∪ {K}

LH,DTE,f
pk ←maxb∈{0,1}pk(Bb)

Figure 7: Balls-into-bins experiment used to analyze the security of HE[DTE,H].

One can then view the game measuring this optimal adversary’s success equivalently as a balls-
and-bins experiment. The detailed experiment is shown in Figure 7. Here the balls represent keys
and each ball has weight indicated by pk . There are two bins B0 and B1, and throwing a ball into a
bin corresponds to seeing the predicate value arrived at by decrypting the fixed ciphertext under
the key associated to that ball. Ball throws are independent because H is modeled as a RO.

To our knowledge, in the case that the number of balls is much larger than the number of bins,
existing analyses of balls-and-bins experiments only provide an asymptotic bound [28] and in the
case that bins are chosen uniformly. We instead analyze the maximum load in the case of non-
uniform bin selection and uniformly weighted balls (with the same weights). We can finally then
apply a majorization lemma [9] to get a concrete upper bound in the general case of non-uniform
balls. We break down the analysis into a series of lemmas, and give the final theorem at the end
of this section.

The following lemma captures the first part of our analysis, reducing the security of HE[DTE,H]

to the security of DTE, the expected maximum load E[LH,DTE,f
pk ] in experiment EH,DTE,f

pk , and the bias
ωf of the predicate f on pm.

Lemma 5.2. Let HE be HE[DTE,H] as defined in Section 3 for distributions pm,pk . Let f be a predicate
onM, A be any adversary, then we have:

Advtdss
HE,pm,pk

(A, f ) ≤Advdte
DTE,pm

+E[LH,DTE,f
pk ]−ωf .

Proof. We will use the sequence of games shown in Figure 8 to transition to a game in which the
optimal strategy is clearly A∗ (shown in Figure 9) which outputs the bit most likely to be the
output of f applied to the decryption of the challenge ciphertext under a randomly chosen key.

First note that Pr[G0 ⇒ true] = Pr[TDSS0A,f ,0HE,pm,pk
⇒ true], which is clear because game G0 is

simply the TDSS0 game with the code of HE inserted. Thus,

Advtdss
HE,pm,pk

(A, f ) = Pr[G0⇒ true ]−ωf .
We can then use the security of DTE to transition to game G1 because G1 is identical to G0

except instead of a random message being sampled and then encoded, a random seed is sampled
and then decoded. Consider the adversary D against the security of DTE shown on the left side
of Figure 9. Adversary D uses its input S to simulate the view of A, returning 1 if A selects the
correct bit and 0 otherwise. It’s easy to verify that Pr[G0 ⇒ true] = Pr[SAMP1DDTE,pm ⇒ true] and

Pr[G1⇒ true] = Pr[SAMP0DDTE⇒ true]. This gives us:

Pr[G0⇒ true ] ≤Advdte
DTE,pm

+ Pr[G1⇒ true ] .

Next we will see that G2 is equivalent to G1. In game G2 the ciphertext C is sampled uniformly
at random while the sampling of K and computation of M are delayed until the adversary has
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Game G0

K←pk K
M←pmM
S←$ encode(M)
R←$ {0,1}r
C2← H(R||K)⊕ S
C← (R,C2)
b←$A(C)
Return (b = f (M))

Game G1

K←pk K
S←$S
M← decode(S)
R←$ {0,1}r
C2← H(R||K)⊕ S
C← (R,C2)
b←$A(C)
Return (b = f (M))

Game G2

R←$ {0,1}r
C2←$S
C← (R,C2)
b←$A(C)
K←pk K
S← H(R||K)⊕C2
M← decode(S)
Return (b = f (M))

Figure 8: Games used in proof of Theorem 5.2.

Adversary D(S)

K←pk K
M← decode(S)
R←$ {0,1}r
C2← H(R||K)⊕ S
C← (R,C2)
b←$A(C)
If (b = f (M))

Return 1
Return 0

Adversary A∗(C)

(R,C2)← C
For K ∈ K do
S← H(R||K)⊕C2
M← decode(S)
Lf (M)← Lf (M) + pk(K)

b∗← argmaxb∈{0,1}Lb
Return b∗

Figure 9: Adversaries used in proof of Theorem 5.2.

already executed. Note that in G1 because S was a uniformly chosen element of S , C2 was also a
uniform element of S independent of the choice of K . Thus we can instead select C2 at random
and defer the choice of K (and thus S and M) until after A is executed. Consequently,

Pr[G1⇒ true] = Pr[G2⇒ true ] .

Now we argue thatA∗ is the best possible adversary in game G2. To see this note that in G2 the
choice of the challenge key K is independent of the input to A, so the values L0 and L1 calculated
by A∗ are exactly the probabilities that 0 and 1 will be the correct output, respectively. Thus it’s
clear that the b∗ output by A∗ is the optimal output. Letting Pr[G∗2⇒ true] denote the probability
that A∗ succeeds in G2 we have Pr[G2⇒ true] ≤ Pr[G∗2⇒ true].

Finally we note that the weight L∗ of the maximally loaded bin in the balls-in-bins experiment

LH,DTE,f
pk is identical to the probability that the output of A∗ is correct for the chosen (R,C2). So we

have Pr[G∗2⇒ true] = E[LH,DTE,f
pk ].

Putting everything together gives the desired theorem.

Before we move onto the next step, we first simplify notation. Recall that pd is the distribution
on M given by applying decode to uniform samples from S . When H is a random oracle each
of its outputs is a uniform and independent sample S from S . Thus we can view each message

M as being independently sampled according to pd . Now we can see that experiment EH,DTE,f
pk is

equivalent to a new experiment Epd ,fpk in Figure 10, which is more intuitive. Thus E[LH,DTE,f
pk ] =

E[Lpd ,fpk ].
Next, we will recall a majorization lemma so that we can transition to a balls and bins exper-

iment with uniform ball weights. Let K1, . . . ,K|K| denote an ordering of K according to weight,

14



Experiment Epd ,fpk

For K ∈ K do
M←pdM
bK ← f (M)
BbK ← BbK ∪ {K}

Lpd ,fpk ←maxb∈{0,1}pk(Bb)

Figure 10: Simplified balls-into-bin experiment.

that is, for all i ∈ {1, . . . , |K| − 1} we have pk(Ki) ≥ pk(Ki+1). Then we let p′k be defined such that
for i ≤ d1/ωke we have p′k(Ki) = ωk and p′k(Ki) = 0 otherwise. (Note that p′k may no longer define
a distribution because it’s elements may sum to more than one, but this is not important for our
analysis below.) Recalling the notion of majorization defined in Section 2, we see that p′k majorizes
pk . The following is a special case of a lemma from [9].

Lemma 5.3 (BFHM08). For all pd , f , and weight vectors p′k ,pk for which p′k majorizes pk it holds that

E[Lpd ,fpk ] ≤ E[Lpd ,fp′k
].

We can now concentrate on establishing an upper-bound on E[Lpd ,fp′k
], where p′k consists of

a = d1/ωke weights all equal to ωk . Note that we have here ignored the keys of weight zero, but
this is clearly without loss of generality since they have no influence on bin loads. The following
lemma is gives a bound on the expected maximum load.

Lemma 5.4. Let f be a predicate, pd be a distribution, and pt be the distribution over {0,1} defined by
sampling from pd and applying f . Let p′k be a weight vector with a = d1/ωke values each equal toωk ≤ 1.
Then for all s satisfying as−1 ≤ωt

E[Lpd ,fp′k
] ≤ (1 +ωk)(ωt + as−1 + 2e

−a2s−1
3 ).

Proof. As per the lemma statement, we have that pt is defined by pt(b) = Pr[f (M) = b : M←pdM]
and that ωt is the associated probability of the most probable value in pt. That is, let b∗ =
argmaxb∈{0,1}pt(b) and then ωt = pt(b∗). For simplicity we will assume without loss of general-
ity that b∗ = 1.

Referring to experiment Epd ,fp′k
(Figure 7 with pk replaced by p′k), bK is a random variable which

equals 1 if Ki is thrown into B1 and 0 otherwise. Noting then that |B1| =
∑
K∈K bK it is easy to see

that E[|B1|] = aωt. Let B = (1/ωk) · L
pd ,f
p′k

be the random variable corresponding to the number of
balls that fall into the maximally loaded bin at the end of the experiment. Then we can see that
for all n, Pr[B ≥ n] ≤ 2 ·Pr[|B1| ≥ n] because if B ≥ n then either B0 or B1 must have size at least n
and from our assumption that b∗ = 1, Pr[|B0| ≥ n] is clearly less than Pr[|B1| ≥ n].

To complete the proofs we carefully chose a value of n, so that we can bound the probability
that B is greater than n and obtain the desired result by pessimistically assuming that B is a
whenever it is greater than n and n otherwise.

Recall that Chernoff’s bound tells us that for any 0 ≤ δ ≤ 1, Pr[|B1| ≥ (1 + δ)E[|Bb∗ |]] ≤ e
−δ2

E[|B1 |]
3 .

Then setting δ = as−1/ωt (which is less than 1 from our choice s) and let we get Pr[|B1| ≥ aωt +as] ≤
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e
−a2s−1

3 . Then we get the following sequence of inequalities.

E[B] =
a∑
i=1

i ·Pr[B = i]

≤ (aωt + as)Pr[B < aωt + as] + a ·Pr[B ≥ aωt + as]

≤ (aωt + as) + 2a ·Pr[|B1| ≥ aωt + as]

≤ a(ωt + as−1 + 2e
−a2s−1

3 )

Multiplying both sides of the inequality by ω and noting that d1/ωke ·ωk ≤ 1 +ωk gives the bound

on E[Lpd ,fpk ].

At this point we can combine Lemmas 5.2, 5.3, 5.4 in turn to derive the following sequence of
inequalities:

Advtdss
HE,pm,pk

(A,pm) ≤ Advdte
DTE,pm

+E[LH,DTE,f
pk ]−ωf

≤ Advdte
DTE,pm

+E[Lpd ,fpk ]−ωf

≤ Advdte
DTE,pm

+E[Lpd ,fp′k
]−ωf

≤ Advdte
DTE,pm

+ (1 +ωk)(ωt + as−1 + 2e
−a2s−1

3 )−ωf

along with the restriction that as−1 ≤ωt needed for the last transition. To proceed we note that we
can apply again the security of our DTE to transition ωt to ωf . Consider the adversary Df who
just decodes its input S and outputs f applied to the resulting message. It is easy to verify that

Pr[SAMP1
Df
DTE,pm

] = pf (1) and Pr[SAMP0
Df
DTE] = pt(1) which gives us:

|ωf −ωt | ≤Advdte
DTE,pm

(Df ) ≤Advdte
DTE,pm

.

One can apply this to the last inequality above and rearrange, as well as to the restriction on as−1.
Together all this, combined with maximizing over A, f yields a proof of the following theorem.

Theorem 5.5. Let HE be HE[DTE,H] as defined in Section 3 for distributions pm,pk and with H modeled
as a random oracle.Then for any A, and any s satisfying as−1 ≤ 1/2−Advdte

DTE,pm
,

Advtdss
HE,pm,pk

≤ ωk + d1/ωkes−1 + 2Advdte
DTE,pm

+ 2exp
(
−d1/ωke2s−1

3

)
.

Remark 5.6. (1) This bound does not seem too far from optimal. From existing results about the esti-
mation of the number of balls in the uniform bin case (See Lemma A.1 in Appendix A), we can see that

when ωf = 1
2 , choosing α = 3

4 , E[Lpd ,fp′k
] ≥ Pr[X > kα] · kαωk ≥ (1− o(1))(1

2 +
√
ωk
3 ), thus the advantage

of the TDSS adversary is at least at the order of ω
1
2
k . (2). As long as pk has more than 3 bits entropy, we

can easily find s such that d1/ωkes−1 ≤ 1
2 . (3). If we choose s = 9

16 , Advtdss
HE,pm,pk

≤ 2ω
7

16
k + 2e

− 1
3ωk

1/8 + 2ε.
When ωk = 2−30, the bound is close to 2−13, for which we lose about half of the entropy in the key. If we
don’t mind losing more entropy (choosing larger s), we can tolerate even smaller ωk . (3). The condition
that as−1 ≤ 1/2−Advdte

DTE,pm
, simply comes from the condition that as−1 ≤ωf for all f .
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6 Non-malleability for HE Schemes

The TDSS security goal provides stronger confidentiality properties than MR. But it still does
not speak to the threat of attackers mauling ciphertexts. In particular, the DTE-then-Encrypt
construction as instantiated with a hash function is trivially malleable: an attacker can, without
any knowledge of the key or plaintext, flip bits in a ciphertext so that when it is later decrypted the
resulting plaintext is different from the original in a predictable way. Unfortunately the negative
results in Section 4 suggest that we cannot meet traditional non-malleability security goals [16,
25], let alone ciphertext integrity notions [6], when attackers can exhaustively search the key
space.

Analogously to the last section, we therefore provide a notion of target-distribution non-
malleability (TDNM) for HE schemes for use in the low-entropy key setting. TDNM, like TDSS, is
an unknown-message attack setting, and intuitively demands that even if the key space is search-
able, the ability of an attacker to successfully maul a ciphertext is not improved by having access
to the ciphertext. We then give a construction called DTE-then-Encipher and show it enjoys both
TDSS and TDNM security in the ideal cipher model.

6.1 TDNM Security

We adjust the standard non-malleability notion for symmemtric encryption [25] to consider only
messages from a target distribution. Informally, TDNM security requires that given a ciphertext, it
is difficult to come up with a new ciphertext so that the underling messages satisfy some relation.
This is formalized by the two games shown in Figure 11.

Both games are defined with respect to a binary relation R : M×M → {0,1}. To simplify
notation we sometimes say R(M,M ′) is true if R(M,M ′) = 1 and false otherwise. We let pR =
Pr[R(M,M ′) = 1 |M,M ′←pmM]. The first game has an adversary A attempt to maul a ciphertext
C so as to satisfy R. The second game has another adversary As, called the simulator, attempt to
do so without access to C.

TDNM1A,RHE,pm,pk

K←pk K;M←pmM
C←$ HEnc(K,M)
C̃←$A(C)
If (C̃ = C)

Return false
M̃← HDec(K,C̃)
Return R(M,M̃)

TDNM0As ,RHE,pm,pk

K←pk K;M←pmM
C̃←$As
M̃← HDec(K,C̃)
Return R(M,M̃)

Figure 11: Games defining TDNM security.

The TDNM advantage of an adversary A with respect to a binary relation R, HE scheme HE,
and distributions pm,pk is defined by

Advtdnm
HE,pm,pk

(A,R) =

Pr
[
TDNM1A,RHE,pm,pk

⇒ true
]
−max
As

Pr
[
TDNM0As ,RHE,pm,pk

⇒ true
]

We can then define the TDNM advantage of an HE with distributions pm,pk by

Advtdnm
HE,pm,pk

= max
A,R

Advtdnm
HE,pm,pk

(A,R).
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Remark 6.1. There are two points we would like to note.

1. TDNM with n-ary relations: For simplicity we choose the simpler binary form of the TDNM
definition. Of course, we may generalize it to an n-ary relations, but one must be careful about
concrete security with respect to n. Imagine that n equals the size of the key space. Then TDNM
can be broken for the relation that returns true if at least one ofM1, . . . ,Mn is the challenge message.
An adversary that generates each Ci by decrypting the challenge ciphertext using a different key
and re-encrypting the message with the same key, sill succeed with probability 1.

2. Relationship between TDNM and TDSS (or MR): It is easy obvious that MR and TDSS do not
imply TDNM, the encode-then-encrypt construction serves as an example. However, the other
directions are less clear. Intuitively, an MR adversary can be used as an imperfect decryption
oracle, this property may be explored for the TDNM adversary to compute a new ciphertext en-
crypting the same message. We conjecture that TDNM implies MR (and TDSS), at least under
certain conditions. On the other hand, proving unconditional implication results would require
new observations. The straightforward transformation of an MR adversary to find the secret key
would likely incur a large reduction loss which we can not afford. In all those notions, the bound
is already quite small.

Note that this implication is in contrast with the classical notions when adversary has no access to
the encryption oracle. A trivial scheme than outputs the plaintext directly together with a MAC is
unforgeable, but has no message security.

It would be an interesting open problem to give a complete characterization of the security notions
of the honey encryption schemes.

6.2 The DTE-then-Encipher Construction

Intuitively, to achieve non-malleability we would like a scheme for which modifying any portion
of a ciphertext would yield a ciphertext that will be decrypted to an independent message. Revis-
iting the DTE-then-Encrypt construction, a natural route to achieving this property is to replace
the (malleable) encryption with one that is non-malleable. A good block cipher has the property
that changing any bit of a ciphertext will randomize the decrypted plaintext. In our low-key set-
ting standard security properties like being a pseudorandom permutation are insufficient, and we
will instead turn to the ideal cipher model. Here we model a deterministic, length-preserving en-
cryption scheme (Enc,Dec) as a family of |K| random permutations, one for each key. The resulting
DTE-then-Encipher construction is shown in Figure 12. We denote it by HE-NM.

HEnc(K,M):

S← encode(M)
C← Enc(K,S)
return C

HDec(K,C)

S← Dec(K,C)
M← decode(S)
return M

Figure 12: The TDNM construction HE-NM

To instantiate Enc,Dec one could use a standard block cipher such as AES, but this will only
work when the seed space of the DTE used is exactly the set of bit strings of length equal to
the block size of the cipher, e.g., 128. One can turn to constructions that are proven indiffern-
tiable [27] from an ideal cipher of the appropriate domain size. Coron et al. [12] show how to
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build form an ideal cipher E : {0,1}2k × {0,1}n an ideal cipher with domain 2n and key length k.
One could repeatedly use this construction to extend the domain sufficiently. In theory one could
also build large-domain ciphers using a hash function (modeled as a RO) within the Feistel-like
constructions analyzed in [13,14,20], but the bounds are too loose to be of practical use. We leave
as an open question finding more efficient constructions of TDNM constructions, and focus in the
remainder on analysis assuming a suitable ideal cipher.

The TDSS security for HE[DTE,H] can be adjusted to apply to HE-NM in a straightforward
manner. We focus below on establishing TDNM security.

Proof intuition. Intuitively, in an DTE-then-Encipher construction, any two different ciphertext
would be decrypted to a pair of (nearly) uniform encoded strings, and they will thus decoded
to two randomly sampled messages. However, to formally demonstrate the analysis for TDNM,
it still requires us to show that the maximum probability that an (unbounded) adversary can
generate a ciphertext that is correlated with a given ciphertext is not much better than without
having it. In particular, the adversary can even enumerate all possible ciphertexts that are not
equal to the given ciphertext C, and try decrypting each of them using all possible keys. Based on
the decrypted message pairs, she may choose one to try to maximize the chance of success.

The nontrivial part of the analysis concentrates on bounding the maximal possible success
probability in TDNM1A,RHE-NM,pm,pk

. Again we first do game changes so that the adversary would
output the modified ciphertext before the key is selected. In this case, for each pair of cipher-
text, we can define clearly a set of “preferable” keys for which the decrypted messages resulting
from decrypting using these keys satisfy the relation. After exhausting searching all possible ci-
phertexts, the maximum probability that an adversaries can win with is achieved by outputting
the ciphertext C̃ which defines the set of “preferable” keys which has the maximum accumulated
probability among all those sets, i.e., the largest possible probability that a randomly selected key
will fall into a preferable set. Bounding the accumulated probability can again be transformed
into bounding the maximum weight of balls in a bin. The difference compared to the TDSS anal-
ysis is that now in every experiment, we will throw |K| balls into two bins, but once for every
single ciphertext. Letting N be the number of possible ciphertexts in the range of the scheme, we
therefore analyze N experiments and find the maximum load among all N experiments.

It is not hard to see the expected load in one experiment would be pR, however, directly bound-
ing the load using, e.g., a Chernoff bound would not be very effective since the expected value is
small but the “bad” event (load with significant deviation compared to the expected value) hap-
pens with a significant probability. To proceed forward in a similar way as the TDSS analysis, we
would reduce the bound to the flat distribution. Unfortunately, in this case, the expected maxi-
mum load defined in the TDNM analysis is over several independent balls-into-bins experiments
instead of a single such experiment we can not directly apply the majorization lemma from [9].

We turn to a more general majorization technique that uses the property of Schur convex-
ity [22] (to be defined below). A Schur convex function preserves the order under majorization,
i.e., if p̄ � q̄, for a Schur convex function f , it holds that f (p̄) ≥ f (q̄). To bound the expected max-
imum load in N experiments, we then proceed in two steps. First we argue the expected value of
maximum weight across all bins in the N experiments as a function over the key distribution pk is
indeed Schur convex. Since the flat weight vector (d1/ωke keys each with probability at most ωk)
majorizes the key distribution, we then bound the expected maximum load in N experiments for
the flat weight vector which can be done by counting the maximum number of balls falling into a
bin in N experiments.
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First we introduce some notion we will use for the generalized majorization technique.

Schur convex functions. A function g : Rn → R is called Schur-convex if for any p,q ∈ R
n, if

p � q then g(p) ≥ g(q). A useful result from Schur [22], tells us that any function satisfying two
properties known as convex and symmetric must be Schur-convex.

We say g is convex if for any t ∈ [0,1] and p,q ∈Rn we have g(tp+ (1− t)q)] ≤ tg(p) + (1− t)g(q).
Finally, g is symmetric if the value of the function does not change if the input vector is permuted,
that is if φ : n→ n is a permutation and pφ ∈ Rn is define by pφ(i) = p(φ(i)) for all 1 ≤ i ≤ n then
g(p) = g(pφ).

Lemma 6.2 ( [22]). If a function g : Rn→R is symmetric and convex, then g is Schur-convex.

6.3 Security Proofs for DTE-then-Encipher

We are now in position to formalize the proof intuition above. The main theorem of this sec-
tion, given below, establishes an upper bound on the TDNM security of the DTE-then-Encipher
construction.

Theorem 6.3. Let HE-NM be defied as in Figure 12 for distributions pm,pk , where (Enc,Dec) is an ideal
cipher with Enc :K×{0,1}`→ {0,1}`. Let ε = Advdte

DTE,pm
. Then for any s satisfying d1/ωkes−1 ≤ pR−ε−2`

we have

Advtdnm
HE-NM,pm,pk

≤ωk(1 + d1/ωkes) + 21−` + 2`−
d1/ωk e

2s−1

3 + 2ε

Remark 6.4. The given bound will typically be quantitatively similar to that of the TDSS advantage,
since the message length ` is quite small comparing to d1/ωke2s−1. When we take ωk = 2−40, ` = 128, s =
5
8 , we can get Advtdnm

HE-NM,pm,pk
is around 2−15.

Proof. First we give a lower bound for maxB Pr[TDNM0B,RHE,pm,pk
⇒ true]. Consider the simulator

As that simply outputs a ciphertext C̃ randomly sampled from C. It’s easy to verify that the
probability As succeeds is equal to the probability that a random sample according to pm and a
random sample according to pd satisfy the relation, i.e., Pr[R(M,M̃) = 1 :M←pmM, M̃←pdM].

Denoting this quantity by pdR, letDR be the adversary against the security of DTE which simply
samples a random M according to pm and decodes its input S to obtain M̃, then outputs 1 if M
and M̃ satisfy R. It is easy to verify that Pr[SAMP1DRDTE,pm

] = pR and Pr[SAMP0DRDTE] = pdR which gives
us:

max
As

Pr[TDNM0B,RHE,pm,pk
⇒ true] ≥ pR −Advdte

DTE,pm
.

Transitioning TDNM1A,RHE,pm,pk
. Now we analyze the maximum winning probability of an adversary

A in TDNM1A,RHE-NM,pm,pk
. Consider the sequence of game shown in Figure 13. Game G0 is the

simply TDNM1A,RHE-NM,pm,pk
with the encryption code of HE-NM inserted. Thus,

Pr[G0⇒ true] = Pr[TDNM1A,RHE,pm,pk
⇒ true].

We can then use the security of DTE to transition to game G1 because G1 is identical to G0
except instead of a random message being sampled and then encoded, a random seed is sampled
and then decoded. Consider the adversary D against the security of DTE shown in the center
of Figure 14. Adversary D uses its input to simulate the view of A returning 1 is A wins and 0
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Game G0

K←pk K;M←pmM
S←$ encode(M)
C← Enc(K,S)
C̃←$A(C)
If (C̃ = C)

Return false
M̃← HDec(K,C̃)
Return R(M,M̃)

Game G1

K←pk K; S←$S
C← Enc(K,S)
C̃←$A(C)
If (C̃ = C)

Return false
M← decode(S)
M̃← HDec(K,C̃)
Return R(M,M̃)

Game G2

C←$ C C̃←$A(C)
If (C̃ = C)

Return false
K←pk KM← HDec(K,C)
M̃← HDec(K,C̃)
Return R(M,M̃)

Figure 13: Game transition for TDNM analysis

Adversary D(S)

K←pk K
C← Enc(K,S)
C̃←$A(C)
If (C̃ = C)

Return 0
M← decode(S)
M̃← HDec(K,C̃)
Return R(M,M̃)

Adversary A∗(C)

pC ← 0
For C′ ∈ C \ {C}
K′C ←∅
For K ∈ K
M← HDec(K,C)
M ′← HDec(K,C′)
If R(M,M ′)
KC′ ←KC′ ∪ {K}

pC′ ← pk(KC′ )
C̃← argmaxC′∈C pC′
Return C̃

Figure 14: Adversaries used in proof of Theorem 6.3.

otherwise. It is easy to check that when in SAMP1,D perfectly simulated game G0 forA and when
in SAMP0 it perfect simulates game G1. It is then clear that

Pr[G1⇒ true] ≤ Pr[G0⇒ true] + Advdte
DTE,pm

.

Finally game G2 is simply a rewriting of G1 so that the sampling of K is delayed until after A
has already executed. It is clear that,

Pr[G2⇒ true] = Pr[G1⇒ true].

Next, we will focus on bounding the winning probability of A in game G2. Consider the
attacking strategy described on the right side of Figure 14. The adversary A∗ takes a ciphertext C
as input. For each other C′ ∈ C, adversaryA∗ tries decrypting both C and C′ using all possible keys
and defines a setKC′ consisting of all the keys for which the corresponding decrypted messagesM
andM ′ satisfy the relation R. ThenA∗ defines a quantity pC′ as the probability that a key sampled
according to pk will fall into KC′ .

Recall that in G2, the key is selected after the adversary outputs the ciphertext C̃, thus we can
see that the winning probability of an adversary A in G2 will be exactly the value pC′ calculated
by A∗ corresponding to the output C′.

Thus because A∗ outputs C̃ maximizing this value, it is clear that A∗ is an optimal adversary
for G2. Thus letting G∗2 denote the game G2 when run with A∗ it is clear that:

Pr[G∗2⇒ true] ≥ Pr[G2⇒ true].

Furthermore we can clear see that Pr[G∗2⇒ true] will be exactly the expected value of maxC∈C pC ,
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Experiment E
p′d ,R

p′k

For K ∈ K do
(M,M ′)←p′d

M×M
b← R(M,M ′)
Bb← Bb ∪ {K}

L
p′d ,R
pk ← pk(B1)

Figure 15: Ball-into-bins experiments used to analyze the security of HE-NM.

denoted by E[maxC∈C pC].

Schur convexity of E[maxC∈C pC]. To apply the majorization technique, we will argue the Schur
convexity of the quantity we want to bound. We will argue E[maxC∈C pC] is symmetric and convex.
then following lemma 6.2, it is Schur convex.

For a given key distribution pk let Ppk be a random variable denoting the value maxC′∈C p′C
when A∗ uses distribution pk as the key distribution.

It is clear that E[Pp] is symmetric because the key are only used for the ideal cipher (Enc,Dec)
whose a priori behavior of the key used as input. Thus permuting the corresponding probabilities
of the keys will does not change the expected value of P .

To see that E[Pp] is convex let p,q ∈ R|K|, t ∈ R, and set r = tp + (1− t)q. We would like to show
that E[Pr ] ≤ t ·E[Pp] + (1− t) ·E[Pq]. Note that the corresponding executions ofA∗ differ only in the
weights assigned to the keys, so the distributions of which keys are included in the various sets
KC are the same between them.

For a fixed choice of random coins, let Cr ,Cp,Cq denote the respective output of A∗ in the
different experiments. Then from the definition of r and the fact that the ciphertexts are chosen
to maximize the weights of the corresponding KC we get:

Pr = r(KCr )
= t · p(KCr ) + (1− t)q(Cr )

≤ t · p(KCp ) + (1− t)q(Cq)

= tPp + (1− t)Pq.

Because the above holds for every choice of random coins in the corresponding experiments it
is clear that E[Pr ] ≤ t ·E[Pp] + (1− t) ·E[Pq], so E[Pp] is convex.

Having now shown that E[Pp] is symmetric and convex, Lemma 6.2 tells us it is Schur-convex.

Bounding E[Pp′k ] for flat distribution p′k . Now as in our TDSS analysis let p′k be defined such that

for i ≤ d1/ωke we have p′k(Ki) = ωk and p′k(Ki) = 0 otherwise, and note that p′k majorizes pk . Since
E[Pp] is Schur convex, and p′k majorizes pk , we have:

E[Ppk ] ≤ E[Pp′k ]

Next, we will focus on bounding E[Pp′k ].
Let us rephrase the quantity pC′ using the terminology of a balls-into-bins game. Letting the

challenge ciphertext C be fixed we can think of each K ∈ K as a ball into bins B0 and B1 according
to the value of R(M,M ′) where M and M ′ are obtained by decrypting C and C′ respectively with
K . Because each decryption uses the ideal cipher it is clear that each key is thrown independently.
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Because decrypting applying Dec to ciphertext results in a uniformly random S we would like
to say that we can view M and M ′ as both being drawn independently according to pd . However,
this is not quite true because there is a small dependence between the samples because Dec applied
to C and C′ results in uniformly chosen S and S ′ with the restriction that S , S ′. Let p′d denote
the distribution onM×M obtained by applying decode to two uniformly chosen seeds with the
restriction that the seeds are not equal. Then we can view the values of M and M ′ for each K in
the balls-into-bins experiment as being independent samples from p′d .

Putting this together we can thing of the quantity pC′ as the load L
p′d ,R
p′k

in the balls-into-bins

experiment E
p′d ,R
pk shown in Figure 15.

Let p′R = Pr[R(M,M ′)|(M,M ′)←p′d
M×M] denote the probability that (M,M ′) sampled accord-

ing to p′d satisfies R and a = d1/ωke denote the number of balls thrown in experiment E
p′d ,R
p′k

. Then

it is clear that the expected number of balls that fall into bin B1 is a ap′R.
Then letting X denote the number of balls thrown into B1 and δ = as−1/p′R (which is less than

1 from our choice of s) we can apply Chernoff’s bound to get:

Pr[X ≥ ap′R + as] ≤ e
−a2s−1

3 .

Now we can complete the proof by using this to bound the expected value of maxC∈C p′C for
A∗. For this to be greater than ωk(ap′R + as) it must be the case that for some C ∈ C, p′C is greater
than ωk(ap′R + as). Then from the union bound we get

Pr
[
max
C∈C

p′C ≥ωk(ap
′
R + as)

]
≤

∑
C∈C

Pr[p′C ≥ωk(ap
′
R + as)]

≤
∑
C∈C

Pr[L
p′d ,R
p′k
≥ωk(ap′R + as)]

= (|C| − 1) ·Pr[X ≥ ap′R + as]

≤ (|C| − 1)e
−a2s−1

3 .

Note that applying the union bound in this manner allows us to ignore the dependence that exists
between difference p′C for different C.

Finally we can bound the expected value of maxC∈C p′C by pessimistically assuming it is always
1 whenever it is greater than ωk(ap′R + as) and it is ωk(ap′R + as) otherwise. Recalling that |C| = 2`

and letting P = maxC∈C p′C , this gives us the following sequence of inequalities:

E[P ] ≤ ωk(ap
′
R + as)Pr[P ≤ωk(ap′R + as)] + 1 ·Pr[P ≥ωk(ap′R + as)]

≤ ωk(ap
′
R + as) + (2` − 1)e

−a2s−1
3

≤ ωk(ap
′
R + as) + 2`−

a2s−1
3

From the definition of p′R it is clear that p′R ≤ pR + 1/ |S| = pR + 2−`.
Putting everything together we get the final bound of

Advtdnm
HE-NM,pm,pk

≤ ωk(d1/ωke(pR + 2−`) + d1/ωkes) + 2`−
d1/ωk e

2s−1

3 − pR + 2ε

≤ (1 +ωk)(pR + 2−`) +ωkd1/ωkes + 2`−
d1/ωk e

2s−1

3 − pR + 2ε

≤ ωk(1 + d1/ωkes) + 21−` + 2`−
d1/ωk e

2s−1

3 + 2ε.

This completes the proof.
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7 Conclusions and Open Problems

In this work, we initiated the study of security notions for honey encryption schemes stronger
than the previously proposed goal of resistance to message recovery attacks. We, first, proved that
message recovery is always possible with a known-message attack. Formally proving this folklore
result was more nuanced than expected. We then defined semantic security and non-malleability
for honey encryption schemes with respect to targeted message distributions, and we showed
that the simple constructions of encode-then-encrypt and encode-then-encipher achieve targeted
distribution semantic security and targeted distribution non-malleability, respectively. The gen-
eral technique for balls-into-bins type of analysis using Schur convexity may be of independent
interest.

Security notions for symmetric key encryption with low-entropy keys are still not yet fully
understood. For honey encryption schemes, completely characterizing the relations among vari-
ous security notions remains an open problem whose solution would expand on our results. Also,
although replacing a random oracle with a k-wise independent hash function to get a standard
model construction for TDSS seems intuitive, formally analyzing its security requires more deli-
cate balls-into-bins analysis than we have provided here. Last, our TDNM construction relies on
an ideal cipher with large block size. Obtaining a simple construction provably TDNM secure in
the random oracle model therefore represents an important open question.
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A Omitted Lemma for Remark 5.6

We also present an existing result about estimation of number of balls in the uniform bin setting.
Although this lemma is not useful for the bound of expected maximum load in the general case
with concrete terms, we can use this lemma to show the upper bound we derived is close to
optimal (stated in Remark 5.6).

Lemma A.1 ( [28]). Let X be the random variable that counts the maximum number of balls in any
bin, if we throw a balls independently and uniformly at random into b bins. Then when a� b · (logb)3,

Pr[X > kα] = o(1) if α > 1, and Pr[X > kα] = 1− o(1) if 0 < α < 1, where kα = a
b +

√
2a logb
b (1− 1

α
log2 b
2logb ).
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When p = 1/2, i.e., for balanced predicate, the later can be bounded by using Lemma A.1 by
choosing a = 1

ωk
,b = 2, and α → ∞, E[Lp′k , 12 ] ≤ kαω + Pr[X > kα] = 1

2 +
√
ω + o(1). However, this

bound is only valid for balanced predicates (coins over pd) and with an asymptotic term. For the
general case of non-uniform bins we have to use our results developed in this paper.

B Proof of Theorem 5.1

In Section 5.1 we defined the notion of TDSS security. Then in Theorem 5.1 (restated below) we
gave a formal relationship between these two security notions. In this section we provide the
proof of that theorem.

Theorem 5.1. Let HE be a honey encryption scheme for message distribution pm.
(i) If Advmr

HE,pm,pk
≥ωm +ω2/3

m , then Advmr
HE,pm,pk

≤ωm + 4 ·Advtdss
HE,pm,pk

.
(ii) There exists message distribution p′m, HE scheme HE′, predicate f , and TDSS adversary A such

that for any pk , HE′ satisfies Advmr
HE′ ,p′m,pk

= Advmr
HE,pm,pk

and Advtdss
HE′ ,p′m,pk

(A, f ) = 1
2 .

GuessA,fpm,E

M←pmM
C←$E(M)
x←$A(C)
Return (x = f (M))

Figure 16: Game measuring adversary A’s ability to guess f (M) given some randomized function
E of M.

To prove the first part of the theorem we make a fairly direct use of Lemma 2.2 from [15]
which restate below to match our notation.

Let pm be a distribution onM, f be a function f :M→ {0,1}N , and E be a randomized algo-
rithm which maps inputs fromM to C. We let ωf = maxx∈{0,1}N Pr[f (M) = x|M←pmM]

We will reformulate the lemma of [15] in terms of the game GuessA,fpm,E
shown in Figure 16.

This game measures adversary A’s ability to guess the value of f applied to M when it is given
the output of E run on M. Roughly speaking, the following lemma states that if there exists an
adversary A which is good at predicting a function f then there is an adversary B which is good
at predicting a predicate g.

Lemma B.1 ( [15]). Let pm be a distribution on {0,1}n such that ωm ≤ ε3/2 and E a randomized
mapping from {0,1}n to C. Suppose there exists an adversary A and function f : {0,1}n→ {0,1}N such
that Pr[GuessA,fpm,E

⇒ true] ≥ ωf + ε. Then there exists an adversary B and predicate g : {0,1}n→ {0,1}

such that Pr[GuessB,gpm,E ⇒ true] ≥ωg + ε/4.

We now proceed to the proof motivating the section.

Proof of Theorem 5.1. For this proof we will assume without loss of generality thatM = {0,1}n for
some n.

Let A be an optimal MR adversary against HE with distributions pk ,pm. Then by assumption
we have Advmr

HE,pm,pk
(A) ≥ ωm +ω2/3

m . Then letting f be the identity function on {0,1}n and E be an
algorithm that chooses a key K according to pk and then return HEnc(K,M) it is not hard to verify
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that Pr[GuessA,fpm,E
⇒ true] = Pr

[
MRAHE,pm,pk ⇒ true

]
≥ωm+ω2/3

m because with things so defined the
two games are identical.

Then letting ε = Advmr
HE,pm,pk

(A) −ωm it is clear that the conditions of Lemma B.1 holds. Thus

there exists an adversary B and predicate g such that Pr[GuessB,gpm,E ⇒ true] ≥ωg + ε/4. Now it can

easily be checked that Pr[GuessB,gpm,E ⇒ true] = Pr[TDSS1B,gHE,pm,pk
⇒ true] because the two games are

equivalent when g is a predicate.
This gives us Advtdss

HE,pm,pk
(B, g) = Pr[GuessB,gpm,E ⇒ true] −ωg ≥ ε/4. Plugging in for ε and rear-

ranging the terms we get the desired bound of

4 ·Advtdss
HE,pm,pk

(B, g) +ωm ≥Advmr
HE,pm,pk

(A),

which completes the proof of the first part of the theorem.
Now to prove the second part of the Theorem 5.1 let M′ = {b||M : M ∈ M} and p′m be the

distribution onM′ defined by p′m(b||M) = (1/2)pm(M). Other other words, our new distribution is
the old message distribution concatenated with a randomly chosen bit.

Let HE′ be the honey encryption scheme whose encryption algorithm on input a key K and
message b||M, first runs HEnc(K,M) to get C (note HEnc here is the encryption algorithm of HE)
and then outputs b||C. The corresponding decryption algorithm is clear. It is not hard to verify
that Advmr

HE′ ,p′m,pk
= Advmr

HE,pm,pk
because given a ciphertext the bit b is easy to guess the part of the

message encrypted by HE is just as hard to predict as when the bit wasn’t present.
Moreover is f is the predicate which on input b||M ∈ M′ outputs b it is clear that in TDSS1

an adversary C can always win by outputting the first bit of the ciphertext, but in TDSS0 no
adversary can win with probability better than 1/2 since b is picked uniformly at random. Thus
Advtdss

HE,pm,pk
(C, f ) = 1

2 , completing the proof.
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