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Abstract. In a selective-opening (SO) attack on an encryption scheme,
an adversary A gets a number of ciphertexts (with possibly related plain-
texts), and can then adaptively select a subset of those ciphertexts. The
selected ciphertexts are then opened for A (which means that A gets to
see the plaintexts and the corresponding encryption random coins), and
A tries to break the security of the unopened ciphertexts.
Two main flavors of SO security notions exist: indistinguishability-based
(IND-SO) and simulation-based (SIM-SO) ones. Whereas IND-SO secu-
rity allows for simple and efficient instantiations, its usefulness in larger
constructions is somewhat limited, since it is restricted to special types
of plaintext distributions. On the other hand, SIM-SO security does not
suffer from this restriction, but turns out to be significantly harder to
achieve. In fact, all known SIM-SO secure encryption schemes either re-
quire O(|m|) group elements in the ciphertext to encrypt |m|-bit plain-
texts, or use specific algebraic properties available in the DCR setting.
In this work, we present the first SIM-SO secure PKE schemes in the
discrete-log setting with compact ciphertexts (whose size is O(1) group
elements plus plaintext size). The SIM-SO security of our constructions
can be based on, e.g., the k-linear assumption for any k.
Technically, our schemes extend previous IND-SO secure schemes by the
property that simulated ciphertexts can be efficiently opened to arbitrary
plaintexts. We do so by encrypting the plaintext in a bitwise fashion, but
such that each encrypted bit leads only to a single ciphertext bit (plus
O(1) group elements that can be shared across many bit encryptions).
Our approach leads to rather large public keys (of O(|m|2) group ele-
ments), but we also show how this public key size can be reduced (to
O(|m|) group elements) in pairing-friendly groups.

Keywords: Public-key encryption, selective-opening security, lossy en-
cryption, matrix assumptions.

1 Introduction

Selective-opening (SO) attacks. A selective-opening (SO) attack on an en-
cryption scheme models the adaptive corruption of multiple senders. More for-



mally, an SO adversary A first receives many ciphertexts c1, . . . , cn for respective
plaintexts m1, . . . ,mn that are jointly sampled (and may thus be related). A may
then ask for the opening of an arbitrary subset of the ci. (The opening of a ci
consists of the plaintext mi and the encryption random coins used to construct
ci.) Finally, A is asked to break the security of the unopened ciphertexts.

Different flavors of SO security notions. Note that it is not entirely clear
what “breaking the security of the unopened ciphertexts” should mean. For
instance, since the plaintexts are related, it is possible that all plaintexts (in-
cluding those from unopened ciphertexts) can be efficiently computed from the
opened plaintexts. Hence, two different flavors of SO security have developed:
simulation-based (SIM-SO [9, 2]) and indistinguishability-based (IND-SO [2, 5])
security. Intuitively, SIM-SO security requires that the output of A above can
be simulated by a simulator that sees only the opened mi (and no ciphertexts
at all). In particular, all information A can extract about the unopened mi can
also be generated by a simulator from the opened mi alone. (Thus, this notion
is conceptually similar to semantic security [16].)

On the other hand, IND-SO security requires that the unopened plaintexts
look indistinguishable from independently sampled plaintexts. Because the plain-
texts may be related, this independent sampling must be conditioned on the
already opened plaintexts in order to avoid trivial attacks. Hence, if, e.g., the
opened plaintexts already fully determine all plaintexts, then this conditional
sampling will lead to the originally encrypted plaintexts, and IND-SO security
is trivially achieved.

As a consequence, the IND-SO experiment itself is only efficient for plain-
text distributions that are “efficiently (conditionally) re-samplable” in the above
sense. In fact, usually IND-SO security is only considered for such plaintext dis-
tributions [2, 18, 19], which limits its applicability to scenarios with such dis-
tributions; there is no known encryption scheme that is IND-SO secure against
arbitrary (i.e., only efficiently samplable) plaintext distributions.

The difficulty of achieving simulation-based SO security. Hence, from an
application point of view, SIM-SO security is the preferable notion of SO secu-
rity. Unfortunately, while IND-SO security (restricted to efficiently re-samplable
plaintext distributions and in the chosen-plaintext case) is already achieved by
any lossy encryption scheme [2, 28], SIM-SO security seems much harder to ob-
tain. For instance, [1] show (under mild computational assumptions) that there
are encryption schemes that are IND-CPA but not SIM-SO secure. Furthermore,
known constructions of SIM-SO secure encryption schemes follow dedicated (and
somewhat nonstandard) design strategies [2, 11, 3, 18, 19, 21, 14]. As a result,
all known SIM-SO secure schemes fall into one of the following two categories:

Large ciphertexts. The SIM-SO secure schemes from [2, 11, 3, 21] have cipher-
texts of O(|m|) group elements, where |m| is the bitsize of the plaintext.
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DCR-based. The schemes from [18, 19, 14]3 have more compact ciphertexts,
but are limited to the decisional composite residuosity (DCR) setting [27, 8]
(and rely on its specific algebraic features).

Below, when explaining our technical approach, we will also comment on the
technical obstacles that need to be overcome for SIM-SO security.

Our results. In this work, we offer the first SIM-SO secure encryption schemes
with compact ciphertexts in the discrete-log setting. Specifically, ciphertexts in
our scheme carry O(1) group elements (plus |m| bits, where |m| is the plaintext
bitsize), and SIM-SO security can be proved under any matrix assumption [10]
(and thus in particular under, e.g., the k-linear assumption for any k ≥ 1).
Our construction is simple, works in the standard model, and does not require
pairings.

The price we pay for these features is a rather large public key size (of O(|m|2)
group elements, and computationally expensive encryption and decryption pro-
cedures. Specifically, our encryption proceeds bitwise, and requires O(|m|) expo-
nentiations for each message bit. (Alternatively, the operation needed to encrypt
one bit could also be viewed as one multi-exponentiation with respect to O(|m|)
fixed bases. So there is room for some small improvements in runtime by a con-
stant factor, e.g., using interleaving multi-exponentiation [22].) Concerning the
key size, we show how a technique of [7] can be used to at least compress the
public key to O(|m|) group elements by using a pairing. Still, in particular in
light of the relatively inefficient encryption and decryption in our scheme, we
view our result mainly as a feasibility result.

Scheme Security Assumption |pk | |m| |c| − |m|
BHY09 [2] IND-SO-CPA DDH 2× |G| |G| |G|
BHY09 [2] SIM-SO-CPA QR 1× |N | 1 |N | − 1

FHKW10 [11] SIM-SO-CPA TDOWP TDOWP-pk 1 |img|
FHKW10 [11] SIM-SO-CCA DDH 2× |G| poly(λ) 2|m||G|+ |m|λ
HLOV11 [18] SIM-SO-CPA DCR 2× |N | |N | |N |

Ours SIM-SO-CPA DDH (|m|+ 1)2 poly(λ) 1× |G|
Ours SIM-SO-CPA DLIN (|m|+ 2)2 poly(λ) 2× |G|
Ours SIM-SO-CPA k-linear (|m|+ k)2 poly(λ) k × |G|
Ours SIM-SO-CPA BDDH |m| · (4|G|+ |GT |) poly(λ) 1× |GT |

Table 1: Comparison of our construction with other SO-secure PKE schemes. (We omit schemes
that do not achieve SIM-SO-CPA security in any more efficient way than the ones mentioned, e.g.,
because they focus on CCA security [18, 19, 14] or on the IBE setting [3].) |G| denotes the description
(bit-)size of elements of a group in the discrete-log setting, and |G| and |GT | denote the corresponding
sizes in a pairing-friendly setting with source group G and target group GT . λ denotes the security
parameter. The entry poly(λ) in the |m| column means that the message size is not restricted and
might be set arbitrarily (and especially independent of the group size). QR denotes the quadratic
residuosity assumption, DCR denotes Paillier’s decisional composite residuosity assumption, and
|N | denotes the length of a suitable composite number (determining the modulus) for such schemes.
TDOWP denotes an arbitrary trapdoor one-way permutation, and |img| denotes the (bit-)size of
elements in the corresponding image. |c| − |m| denotes the ciphertext overhead (i.e., the bitlength
of the ciphertext minus the plaintext bitlength).

3 In fact, [18] also offers a scheme with large ciphertexts in the discrete-log setting.
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In the following, we give a brief overview over our approach.

Our starting point. Our starting point is the lossy (and thus IND-SO se-
cure) PKE scheme of [24] (see also [17, 28, 2]). In this scheme, public keys and
ciphertexts are of the form

pk = (g, gx, gy, gz) c = (u, v) = (gr+sx, gry+sz ·m) (1)

for random exponents x, y, r, s, for z = xy, and a plaintext m. Note that if
we switch z to an independently random value (however with z 6= xy), then
encryption becomes lossy: ciphertexts are tuples of random group elements, in-
dependently of m. Furthermore, such a switch can be justified with the decisional
Diffie-Hellman (DDH) assumption.

Efficient openability. In order to achieve SIM-SO security, we additionally
require a property called “efficient openability” of ciphertexts [2, 11]. In a nut-
shell, efficient openability requires that ciphertexts generated under lossy public
keys can be opened to arbitrary messages with a special trapdoor. (Note that
such an arbitrary opening is always possible inefficiently in the lossy case.)

We note that efficient openability implies SIM-SO security [2]. In fact, all
mentioned SIM-SO secure schemes achieve (a suitable variant of) efficient open-
ability.4 Unfortunately, this strong property is not achieved easily. For instance,
consider the PKE scheme from (1) (with lossy public keys, i.e., with z 6= xy).
In order to open a given ciphertext c = (u, v) as an encryption of an externally
given plaintext m, a simulator would have to supply random coins (r, s) satisfy-
ing r + sx = dlogg(u) and ry + sz = dlogg(v)− dlogg(m). Hence, the ability to
open to arbitrary m implies the ability to compute discrete logarithms (which
would seem to require special trapdoors in standard discrete-log groups).5

A first attempt. Our first observation is that the situation changes if only
bits (or messages from a small domain) are encrypted. Concretely, consider the
following slightly modified scheme that encrypts only bits:

pk = (g, gx, gy, gz) c = (u, v) = (gr+sx, H(gry+sz)⊕m) (2)

where x, y, z, r, s are as before, H is a universal hash function that maps group
elements to bits, and m ∈ {0, 1}. This scheme allows for an efficient opening
operation (if z 6= xy). Namely, to open a ciphertext c = (u, v) (as in (2)) to a
message m, using as trapdoor x, y, z, r, s, simply sample r′, s′ randomly subject
to r′ + s′x = r + sx until H(gr

′y+s′z) ⊕ m = v. (On average, it takes 2 such
samplings until suitable r′, s′ are found.)

4 However, it should also be noted that neither efficient openability nor lossiness (in
the sense of [28, 2]) may be necessary for SIM-SO security (see [26] for the lossiness
case). Still, our construction is easiest to explain by following this path.

5 One reason why the DCR settings seems much more suitable for SO security is that
certain DCR subgroups allow to easily compute discrete logarithms. Put differently:
in DCR-based encryption schemes [27, 8, 18], both plaintexts and encryption ran-
dom coins are exponents. Hence, encryption random coins can be computed from
plaintexts (as required for a SIM-SO simulation) much more easily.
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The scheme from (2) hence achieves efficient openability (and thus SIM-SO
security), but suffers from a small message space. Of course, its message space
can be expanded by concatenating several ciphertexts, which would however
increase the ciphertext size to O(|m|) group elements.

Compressing ciphertexts. Hence, instead of concatenating ciphertexts, we
reuse the value of u across several bit encryptions. Doing so naively (e.g., by
setting u = gr+sx and vi = H(gry+sz

i ) ⊕ mi for different generators gi) would
however interfere with our efficient opening strategy. Specifically, it is not obvious

how to efficiently sample r′, s′ as above that would lead to H(gr
′y+s′z
i )⊕mi = vi

for all i simultaneously.
We resolve this issue by adding more encryption random coins (and thus

more “degrees of freedom” for our efficient opening procedure). That is, we set

pk = (g, (gxi , gyj )µj=1, (g
zi,j )µi,j=1)

c = (u, (vi)
µ
i=1) = (gr+

∑µ
j=1 sjxj , (H(gryj+

∑µ
j=1 sjzi,j )⊕mi)

µ
i=1)

(3)

for random exponents xi, yj , zi,j , r, sj and zi,j = xiyj , and an µ-bit plaintext
m = (mi)

µ
i=1. Since zi,j = xiyj , knowledge of all xi, yj allows to decrypt. How-

ever, switching to random zi,j 6= xiyj (which can be justified with the DDH
assumption) implies that encryption becomes lossy (as with (1) and (2)).

Moreover, in case zi,j 6= xiyj , a ciphertext c = (u, (vi)
µ
i=1) can be efficiently

opened as follows. First, select “target exponents” t1, . . . , tµ randomly subject
to H(gti)⊕mi = vi for all i. (The ti can be sampled individually, one after the
other, and so this step requires 2µ samplings on average.) Next, solve the system
that consists of the linear equations r′yj +

∑µ
j=1 s

′
jzi,j = ti (with 1 ≤ i ≤ µ) and

r′ +
∑µ
j=1 s

′
jxj = r +

∑µ
j=1 sjxj for the variables r′, s′j . (Since the zi,j 6= xiyj

are random, this system is solvable using linear algebra with high probability.)
Finally, output (r′, (s′j)

µ
j=1) as the desired random coins that open c to m.

Extensions and open problems. Inside, we also show how to generalize this
idea to weaker assumptions than DDH (in the same spirit in which [13] gener-
alize the DDH-based lossy trapdoor function of [29]). In particular, we obtain
constructions based on any Matrix Diffie-Hellman (MDDH) assumption [10] (at
the price of somewhat larger ciphertexts, but whose overhead is still indepen-
dent of |m|, and somewhat larger public keys), including the k-linear assump-
tion [20, 30]. Furthermore, we show how to compress the public key of our scheme
from O(|m|2) to O(|m|) group elements using a pairing-based technique used to
compress the public key of lossy trapdoor functions [7].

In this work, we focus on chosen-plaintext (CPA) security. One interesting
open problem is to extend our techniques to the chosen-ciphertext (CCA) set-
ting to obtain a SIM-SO-CCA secure scheme with compact ciphertexts in the
discrete-log regime. Besides, of course a further compression of the public key in
our schemes or an improvement in computational efficiency would be desirable.

Roadmap. After fixing some notation and basic definitions in Section 2, we
introduce our construction of lossy encryption with efficient weak opening in
Section 3. The construction is generic and relies on what we call a matrix rank
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assumption. In Section 4, we then instantiate those assumptions with the family
of MDDH assumptions from [10] (and thus in particular with the k-linear as-
sumption). Finally, Section 5 presents a matrix rank assumption with a linear-
size representation which is implied by the BDDH assumption in pairing groups.
This results in a scheme with a public key size that is linear in |m|.

2 Preliminaries

Notation. asdasdasd Throughout the paper, λ ∈ N denotes the security param-
eter. For a finite set S, we denote by s← S the process of sampling s uniformly
from S. For a probabilistic algorithm A, we denote with RA the space of A’s
random coins. y ← A(x;R) denotes the process of running A on input x and with
randomness R ← RA, and assigning y the result. We write y ← A(x) for y ←
A(x;R) with uniform R. If A’s running time is polynomial in λ, then A is called
probabilistic polynomial-time (PPT). We call a positive function η negligible if
for every polynomial p there exists λ0 such that for all λ ≥ λ0 holds η(λ) ≤ 1

p(λ) .

We call η overwhelming if η(λ) ≥ 1 − ν(λ), where ν is a negligible function.
The statistical distance between two random variables X and Y over a finite
common domain D is defined by ∆(X,Y ) = 1

2

∑
z∈D |Pr[X = z] − Pr[Y = z]|.

We say that two families X = (Xλ)λ∈N and Y = (Yλ)λ∈N of random variables
are statistically close or statistically indistinguishable, denoted by X ≈s Y , if
∆(Xλ, Yλ) is negligible in λ.

2.1 Groups and Matrix Assumptions

Prime-order k-linear group generators. We use the following formal defi-
nition of a k-linear prime-order group generator for our constructions.

Remark 1. We stress that our constructions do not require multilinear maps in
the sense of [15]. We rather want to capture both single-group settings and
bilinear group settings in one unified definition, because this will be helpful in
the sequel for the exposition of results that apply to both settings. Hence, one
should have k = 1 or k = 2 in mind in the following definition.

Definition 1. A prime-order k-linear group generator is a PPT algorithm Gk
that on input of a security parameter 1λ outputs a tuple of the form

MGk := (k,G1, . . . , Gk, Gk+1, g1, . . . , gk, e, p)← Gk(1λ)

where G1, . . . , Gk+1 are descriptions of cyclic groups of prime order p, log p =
Θ(λ), gi is a generator of Gi for 1 ≤ i ≤ k, and e : G1 × . . .×Gk → Gk+1 is a
map which satisfies the following properties:

– k-linearity: For all a1 ∈ G1, . . . , ak ∈ Gk, α ∈ Zp, and i ∈ {1, . . . , k} we
have e(a1, . . . , ai−1, αai, ai+1, . . . , ak) = αe(a1, . . . , ak).

– Non-degeneracy: gk+1 := e(g1, . . . , gk) generates Gk+1.
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If G1 = . . . = Gk, we call Gk a symmetric k-linear group generator.

Note that Definition 1 captures both ordinary single group generators and
symmetric bilinear group generators:

– In the single-group setting, G1(1λ) would outputMG1 := (1, G1, G2, g1, e, p),
where G1 = G2 and e : G1 → G2 is the identity mapping.

– In the symmetric bilinear group setting, G2(1λ) would output MG2 :=
(1, G1, G2, G3, g1, g2, e, p), where G1 = G2 and g1 = g2 and e : G1×G2 → G3

is a pairing.

Implicit Representation. Following [10], we introduce the notion of implicit
representations. Let Gi be a cyclic group of order p generated by gi. Then by
[a]i := gai we denote the implicit representation of a ∈ Zp in Gi. More generally,

we also define such representations for vectors ~b ∈ Znp by [~b]i := ([bj ]i)j ∈ Gni
and for matrices A = (aj,k)j,k ∈ Zn×`p by [A]i := ([aj,k]i)j,k ∈ Gn×`i .

Matrix-vector operations in implicit representation. If a matrix [A] =
[(ai,j)i,j ] ∈ Gn×` is known “in the exponent”, and a vector ~u = (ui)i ∈ Z`p is
known “in clear”, then the product [A · ~u] ∈ Gn can be efficiently computed as

[(vi)i] for [vi] =
∏`
j=1[ai,j ]

uj . Similarly, [A ·B] ∈ Gn×k can be computed given

[A] = [(ai,j)i,j ] ∈ Gn×` and B ∈ Z`×kp . If only [A]1 and [B]2 are known (i.e.,
only “in the exponent”) and a bilinear map e : G1 ×G2 → G3 is given, we can
still compute the matrix product [A ·B]3 in the target group G3, as [(ci,j)i,j ]3
for [ci,j ]3 =

∏`
t=1 e([ai,t]1, [bt,j ]2).

Matrix distributions and MDDH assumptions. For instantiating our con-
struction we will make use of matrix distributions and the Matrix Diffie-Hellman
assumption family as introduced in [10].

Let n, ` ∈ N, n > `. We call Dn,` a matrix distribution if it outputs (in prob-
abilistic polynomial time and with overwhelming probability in log(p)) matrices
A ∈ Zn×`p of full rank `. We define D` := D`+1,`.

Definition 2. We say that the Dn,`-Matrix Diffie-Hellman assumption, or just
Dn,`-MDDH assumption for short, holds in Gi and relative to the k-linear group
generator Gk, if for all PPT adversaries D, we have that

AdvDn,`,Gk(D) = |Pr[D(MGk, [A]i, [A~w]i) = 1]− Pr[D(MGk, [A]i, [~u]i) = 1]|

is negligible, where the probability is taken over the output

MGk = (k,G1, . . . , Gk, Gk+1, g1, . . . , gk, e, p)← Gk(1λ),

A← Dn,`, ~w ← Z
`
p, ~u← Z

n
p and the coin tosses of the adversary D.

In particular, we will refer to the following examples of matrix distributions,
all for n = `+ 1:

SC` : A =


s 0 ... 0 0
1 s ... 0 0
0 1 0 0
.
.
.

.
.
.

.
.
.

0 0 ... 1 s
0 0 ... 0 1

 , L` : A =


s1 0 0 ... 0
0 s2 0 ... 0

.

.

.

.

.

.

.
.
.

.

.

.
0 0 0 ... s`
1 1 1 ... 1

 , U` : A← Z
(`+1)×`
p ,
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where s, si ← Zp. The SC` assumption, introduced in [10], is the `-symmetric
cascade assumption (`-SCasc). The L` assumption is actually the well-known
`-linear assumption (`-Lin, [6]) in matrix language (DDH equals 1-Lin), and the
U` assumption is the `-uniform assumption. Moreover, `-SCasc, `-Lin, and the
`-uniform assumption hold in the generic group model [31] relative to a k-linear
group generator if k ≤ ` [10].

The circulant matrix assumption

C`+d,` : A =



s1 0

.

.

. s1

sd

.

.

.

.
.
.

1 sd s1

1
.
.
.

.

.

.

.
.
. sd

0 1


,

has very recently been proposed in [23] as a Dn,`-MDDH assumption with opti-
mal representation size among all assumptions with n > `+ 1. This assumption
has been shown to hold in the `-linear generic group model [23]. More generally,
we can also define the Un,` assumption for arbitrary n > `. Note that the Un,`
assumption is the weakest MDDH assumption (with the worst representation
size) and implied by any other Dn,` assumption [10]. In particular `-Lin implies
the `-uniform assumption as shown by Freeman [12].

Bilinear Decisional Diffie-Hellman. We will make use of the bilinear deci-
sional Diffie-Hellman (BDDH) assumption for our construction with linear-size
public keys.

Definition 3. Let MG2 := (2, G1, G2, G3, g1, g2, e, p) ← G2(1λ), where G2 is
a symmetric bilinear group generator (i.e., G1 = G2 and g1 = g2), and let
a, b, c ← Zp, b ← {0, 1}, T0 := abc and T1 ← Zp. We say that the bilinear
decisional Diffie-Hellman (BDDH) assumption holds relative to G2, if

AdvbddhB,G2(1λ) :=

∣∣∣∣∣ Pr
[
1← B(1λ,MG2, [(a, b, c)]1, [T0]3)

]
− Pr

[
1← B(1λ,MG2, [(a, b, c)]1, [T1]3)

] ∣∣∣∣∣
is a negligible function for all PPT adversaries B.

2.2 Selective-Opening Secure Encryption

Public-Key Encryption. A public-key encryption (PKE) scheme PKE with
message spaceM consists of three PPT algorithms Gen,Enc,Dec. The key gener-
ation algorithm Gen(1λ) outputs a public key pk and a secret key sk . Encryption
algorithm Enc(pk ,m) takes pk and a message m ∈M, and outputs a ciphertext
c. Decryption algorithm Dec(sk , c) takes sk and a ciphertext c, and outputs a
message m. For correctness, we want Dec(sk ,Enc(pk ,m)) = m for all m ∈ M
and all (pk , sk)← Gen(1λ).
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Experiment Expsim-so-cpa-real
PKE,A,T ,n (λ)

(pk , sk)← Gen(1λ)

Dso ← A(dist, pk)

(mi)i∈[n] ← Dso

(Ri)i∈[n] ← (REnc)
n

(ci)i∈[n] := (Enc(pk ,mi;Ri))i∈[n]

I ← A(sel, (ci)i∈[n])

outA ← A(out, (mi)i∈I , (Ri)i∈I)

return T ((mi)i∈[n], outA)

Experiment Expsim-so-cpa-ideal
PKE,S,T ,n (λ)

Dso ← S(dist)

(mi)i∈[n] ← Dso

I ← S(sel)

outA ← S(out, (mi)i∈I)

return T ((mi)i∈[n], outA)

Fig. 1: SIM-SO-CPA security experiments.

Simulation-based selective opening security. We use the definition of se-
lective opening security against chosen-plaintext attacks of Fehr et al. [11], which
refines the definition of [2, 4] (by letting the adversary choose the message dis-
tribution).

Definition 4 (Simulation-based security against selective opening at-
tacks). For a PKE scheme PKE = (Gen,Enc,Dec), a polynomially bounded
function n = n(λ) > 0, a function T and a stateful PPT adversary A, consider
the experiments in Figure 1. We call PKE SIM-SO-CPA secure if for any PPT
adversary A and PPT function T there exists a stateful PPT simulator S such
that

Advsim-so-cpa
PKE,A (λ) :=

∣∣∣Pr
[
Expsim-so-cpa-real

PKE,A,T ,n (λ) = 1
]
− Pr

[
Expsim-so-cpa-ideal

PKE,S ,T ,n (λ) = 1
]∣∣∣

is negligible. As usual, we require that the distribution Dso that A outputs is
encoded as a circuit. Since A is PPT, this enforces efficient samplability of Dso.

2.3 Selective Opening Security from Lossy Encryption

In [2, 4], Bellare et al. show that any lossy encryption scheme where ciphertexts
can be efficiently opened to arbitrary messages is indeed SIM-SO-CPA secure.
The following definition essentially repeats the definition of lossy encryption
with efficient opening from [4] with one small change: the Opener algorithm may
receive an additional input, the random coins that have been used to generate
the ciphertext (that should now be opened to a different message). Consequently,
we call a scheme satisfying this definition a lossy encryption scheme with efficient
weak opening.

Definition 5 (Lossy encryption with efficient weak opening). A lossy
encryption scheme with efficient weak opening and message space M is a tuple
of PPT algorithms LPKE = (Gen, LGen,Enc,Dec) such that
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– Gen(1λ) takes as input the security parameter 1λ and outputs a keypair
(pk , sk). We call pk a real or injective public key.

– LGen(1λ) takes as input the security parameter 1λ and outputs a keypair
(pk , sk). We call pk a lossy public key.

– Enc(pk ,m) takes as input a (real or lossy) public key pk and a message
m ∈M and outputs a ciphertext c

– Dec(sk , c) takes as input a secret key sk and a ciphertext c and outputs either
a message m ∈M or ⊥ in case of a failure.

Additionally, LPKE needs to satisfy the following properties:

1. Correctness for real keys: For all λ ∈ N, (pk , sk)← Gen(1λ), messages m ∈
M, and ciphertexts c← Enc(pk ,m), it always holds that m← Dec(sk , c).

2. Indistinguishability of real keys from lossy keys: For any PPT algorithm D
it holds that the advantage

Advind-lossy-keyLPKE,D (λ) :=

∣∣∣∣ Pr[1← D(1λ, pk) | (pk , sk)← Gen(1λ)]
− Pr[1← D(1λ, pk) | (pk , sk)← LGen(1λ)]

∣∣∣∣
is negligible in λ.

3. Lossiness of encryption with lossy keys: Let λ ∈ N. For any (pk , sk) ←
LGen(1λ) and distinct messages m0 6= m1 ∈M, holds that

(sk ,Enc(pk ,m0)) ≈s (sk ,Enc(pk ,m1))

4. Efficient weak openability: Let REnc denote the space of random coins for
encryption. There exists a PPT algorithm Opener such that for any two
messages m0,m1 ∈M, the probability that Opener on input of a lossy public
and secret key (pk , sk)← LGen(1λ), a ciphertext c← Enc(pk ,m0; r′), where
r′ ← REnc, the corresponding random coins r′, and a message m1, outputs
random coins r uniformly chosen from {r ∈ REnc | Enc(pk ,m1; r) = c} is
overwhelming.

Despite our small changes with respect to the definition of lossy encryption
and SIM-SO-CPA compared to the definitions in [4], the following theorem still
follows from the corresponding proof in [4]: It does not matter for the proof if the
message distribution is some arbitrary but fixed distribution (where we quantify
over all efficiently samplable distributions) or if it is the output of the adversary
after seeing the (lossy) public key. Moreover, the simulator which uses the Opener
algorithm knows the encryption randomness of the (dummy) ciphertexts (that
should be opened differently) as it has generated these ciphertexts itself.6

Theorem 1 ([2, 4]). If LPKE is a lossy encryption scheme with efficient weak
opening then LPKE is SIM-SO-CPA secure.

6 Note that the los-ind2 adversary C in the proof of Theorem 5.2 in [4] is unbounded
and thus may find the appropriate encryption randomness required for our Opener
algorithm itself.
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3 Lossy Encryption from Matrix Rank Assumptions

First, we would like to stress that although we use k-linear group generators
Gk in the following definitions and constructions for generality, the existence of
k-linear maps for k > 2 is not required to instantiate our constructions. For
the instantiations based on MDDH assumptions (Section 4), an ordinary group
generator G1 or bilinear group generator G2 can be assumed (where the pairing is
not used for encryption). For the instantiation based on the BDDH assumption
(Section 5), a bilinear group generator G2 is required where the pairing is needed
in the encryption routine. Hence, for the remainder of this paper, it might be
best to have k = 1 or k = 2 in mind.

In the following, we show how to build efficient lossy encryption with effi-
cient weak opening for multiple bits from rank problems. Roughly speaking, this
problem asks to distinguish a n × n matrix of rank ` < n chosen according to
some (not necessarily uniform) distribution from a matrix of full rank n chosen
according to some (not necessarily uniform) distribution, where both matrices
are given in implicit representation. The following definition captures matrix
rank assumptions and additionally allows the considered matrices to be given
in some “compressed form” (which, e.g., can be decompressed efficiently using a
pairing).

Definition 6. Let MGk := (k,G1, . . . , Gk+1, g1, . . . , gk, e, p) ← Gk(1λ) be a k-
linear group generator. A (n, `)-indistinguishable matrix constructor MCon for
Gi, where 1 ≤ i ≤ k+1, is a tuple MCon = (SetupNFR,SetupFR,Constr) of PPT
algorithms with the following properties.

Setup of non-full rank matrix description. SetupNFR(MGk) returns a ma-
trix A ∈ Zn×np of rank `, where we assume that A’s first ` rows are linearly
independent, as well as a (compact) description mat ∈ {0, 1}∗ of the implicit
representation [A]i of A.

Setup of full rank matrix description. SetupFR(MGk) returns a matrix A ∈
Z
n×n
p of rank n as well as a (compact) description mat ∈ {0, 1}∗ of the im-

plicit representation [A]i of A.

Reconstruction of matrix from matrix description. Constr(MGk,mat) re-
turns [A]i ∈ Gn×ni on input of a matrix description mat.

Correctness. MCon is called correct relative to Gk if for all λ ∈ N, MGk :=
(k,G1, . . . , Gk+1, g1, . . . , gk, e, p)← Gk(1λ), and (A,matA)← SetupNFR(MGk),
(B,matB) ← SetupFR(MGk), the matrices A and B are of rank ` and of
rank n with probability 1, respectively, and [A]i ← Constr(MGk,matA) and
[B]i ← Constr(MGk,matB).

Security. MCon is called secure relative to Gk, if for all PPT algorithms A
and for MGk ← Gk(1λ), (A,mat) ← SetupNFR(MGk), and (A′,mat ′) ←
SetupFR(MGk) holds that the advantage

Advind-matrix-rank
MCon,A (1λ) :=

∣∣Pr[1← A(1λ,MGk,mat)]− Pr[1← A(1λ,MGk,mat ′)]
∣∣

is negligible in λ.
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Construction of the LPKE scheme with efficient weak opening. Apart
from an (n, `)-indistinguishable matrix constructor for Gi, we additionally need
a hash function H : Gi → {0, 1} such that H(a), for uniformly random a← Gi,
is statistically indistinguishable from the uniform distribution on {0, 1}. (For
instance, a function H randomly chosen from a family of universal hash func-
tions [32] has the desired property with high probability. However, depending on
the concrete presentation of group elements, even simpler functions are possible.)

By writing H(~b), where ~b is a vector of group elements from Gi, we refer to the
component-wise application of the hash function, which results in a (bit-)vector

of hash values of the same length as ~b.
Based on these ingredients, we can define a lossy encryption scheme with effi-

cient weak opening LPKE = (Gen, LGen,Enc,Dec) with message space {0, 1}n−`
and ciphertexts consisting of ` group elements and n − ` bits. Note that the
parameter ` reflects the strength of the assumption we are willing to make, the
smaller `, the stronger the underlying assumption. For instance, the assump-
tion that random rank ` matrices are indistinguishable from random full rank
matrices is implied by the assumption that random rank ` − 1 matrices are
indistinguishable from random full rank matrices. (Furthermore, rank ` vs. n
indistinguishability is implied by the `-linear assumption.) Hence, to make ci-
phertexts as compact as possible, one would choose ` = 1 and could, e.g., base
security on the 1-linear assumption which equals DDH.

The idea underlying encryption (with a real key) in our construction is as
follows: a message bit is encrypted using the hash of a randomized linear depen-
dent row vector of A given in implicit representation. Additionally, the linear
independent row vectors of A are randomized the same way and given in im-
plicit representation as part of the ciphertext. Decryption then boils down to
recomputing the (implicit representation of the) linear dependent vector from
the (implicit representations of the) linear independent vectors. As all row vec-
tors are randomized the same way (which is a linear operation), the dependencies
between the vectors are not changed by the randomization. The details of LPKE
are given below.

– Gen(1λ) runs the group generatorMGk := (k,G1, . . . , Gk+1, g1, . . . , gk, e, p)←
Gk(1λ) as well as (A,mat)← SetupNFR(MGk) to choose a matrix of rank `.
Let A0 denote the first ` rows of A and A1 the remaining n− ` rows. Then

it computes a matrix T ∈ Z(n−`)×`
p satisfying

TA0 = A1 (4)

As the rows of A1 linearly depend on the rows of A0, T always exists and can
be computed efficiently (e.g., using Gaussian Elimination). The algorithm
returns pk := (MGk,mat) and sk := (MGk,T).

– LGen(1λ) runs the group generatorMGk := (k,G1, . . . , Gk+1, g1, . . . , gk, e, p)←
Gk(1λ) as well as (A,mat)← SetupFR(MGk) to choose a matrix of rank n.
The algorithm returns pk := (MGk,mat) and sk := (MGk,A).

– Enc(pk , ~m) reconstructs the matrix [A]i ← Constr(MGk,mat). Let [A0]i
denote the first ` rows of [A]i and [A1]i the remaining n − ` rows. Then it
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chooses ~w ← Z
n
p , computes

[~c0]i := [A0 ~w]i
~c1 := H([A1 ~w]i)⊕ ~m

(5)

(using exponentiations with the entries of ~w), and returns ciphertext c :=
([~c0]i,~c1) ∈ G`i × {0, 1}n−`.

– Dec(sk , c) recomputes ~m as ~m := H([T~c0]i)⊕ ~c1.

We show that LPKE indeed satisfies the four properties of a lossy encryption
scheme with efficient weak opening.

Theorem 2. If MCon is secure and the output of H statistically indistinguish-
able from uniform for random input then LPKE is a lossy encryption scheme
with efficient weak opening.

Proof.

Correctness for real keys. Given a real public key pk := (MGk,mat) and
secret key sk := (MGk,T) returned by Gen(1λ) as well as a ciphertext c :=
([~c0]i,~c1), correctness of decryption follows from the equation

H([T~c0]i)⊕ ~c1 = H([T~c0]i)⊕H([A1 ~w]i)⊕ ~m
= H([TA0 ~w]i)⊕H([A1 ~w]i)⊕ ~m
= H([A1 ~w]i)⊕H([A1 ~w]i)⊕ ~m

(6)

Indistinguishability of real keys from lossy keys. It immediately follows
from the security of MCon that a real public key (MGk,mat) generated by
Gen(1λ) is indistinguishable from a lossy public key (MGk,mat ′) generated by
LGen(1λ).

Lossiness of encryption with lossy keys. Consider the matrix [A]i ←
Constr(MGk,mat), where mat is computed by LGen(1λ). This matrix has full
rank, so the linear map defined by A as ~w 7→ A~w is bijective. Thus, for uniformly
random ~w, [~c0]i = [A0 ~w]i is uniformly random over G`i and [A1 ~w]i is uniformly
random over Gn−`i (even when A is given).

Now, since by assumption the output of H is statistically close to uniform
for uniformly random input, H([A1 ~w]i) ⊕ ~m will also be statistically close to
uniform over {0, 1}n−` for any string ~m.

Hence, for uniformly random ~w ← Z
n
p , the distributions of

(A, ([A0 ~w]i, H([A1 ~w]i)⊕ ~m)) and (A, ([A0 ~w]i, H([A1 ~w]i)⊕ ~m′))

are statistically close for any two distinct message vectors ~m 6= ~m′ ∈ {0, 1}n−`.
Efficient weak openability. Let a lossy keypair (pk = (MGk,mat), sk =
(MGk,A)) ← LGen(1λ), message vector ~m, a ciphertext c := ([~c0]i,~c1) ←
Enc(pk , ~m′; ~w′), as well as the corresponding encryption randomness ~w′ be given.
Then Opener should efficiently determine some encryption randomness ~w such
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that Enc(pk , ~m; ~w) = ([~c0]i,~c1). This can be done by setting up a linear system
of equations in the exponent

A~w = ~b, (7)

where the right-hand side vector

~b =
(
~b0
~b1

)
(8)

satisfies ~b0 = ~c0 and H([~b1]i)⊕ ~c1 = ~m.

First, Opener can easily determine ~b0 := ~c0 ∈ Z`p, i.e., the discrete logarithms
of [~c0]i to the base gi, by computing A~w′. Second, it can efficiently find a vector
~b1 ∈ Zn−`p satisfying H([~b1]i)⊕ ~c1 = ~m by randomly guessing one component of
~b1 after another and verifying the equation for this component. As the output
of H is close to uniform for random input, this will require about 2(n− `) steps.
After that, Opener can solve the system of linear equations from Equation 7 by
multiplying with the inverse of A as this matrix is of full rank.

It is not hard to see that the determined randomness ~w has the correct
distribution, i.e., ~w is uniformly chosen from

Coins(~m, c) := {~w ∈ Znp | Enc(pk , ~m; ~w) = c} (9)

Note that each ~w ∈ Coins(~m, c) uniquely determines a right-hand side ~b in (7),
i.e., a vector from

KENCs(~m, c) :=
{
~b =

(
~b0
~b1

) ∣∣∣ ~b0 = ~c0 ∧H([~b1]i)⊕ ~c1 = ~m
}

(10)

Hence, to uniformly sample ~w from Coins(~m, c) it suffices to uniformly sample
~b from KENCs(~m, c) and invert the bijective mapping by computing A−1~b. This
is exactly what Opener does.

4 From MDDH Assumptions To Matrix Rank
Assumptions

We have seen in Section 3 that in order to build an (n−`)-bit LPKE scheme with
efficient weak opening, it suffices to define a secure (n, `)-indistinguishable ma-
trix constructor. In the following, we first show that such a constructor is gener-
ically given by any Dn,`-MDDH assumption (including DDH, `-Lin, `-SCasc,
(n, `)-circulant matrix assumption, etc.). After that, we consider the size of the
public key of our encryption scheme when using different members of MDDH
assumption family.

Generic construction from MDDH assumptions. Let Gk be a k-linear
group generator and MGk := (k,G1, . . . , Gk+1, g1, . . . , gk, e, p) ← Gk(1λ). Fur-
thermore, let Dn,` be a matrix distribution over Zn×`p , where n > `. We assume
that the first ` rows of an output of Dn,` forms a regular matrix with overwhelm-
ing probability. A (n, `)-indistinguishable matrix constructor MConDn,`-MDDH for
Gi can then be defined based on Dn,`-MDDH as follows:
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– SetupNFR(MGk) samples a matrix A′ ← Dn,` of rank ` according to the
given matrix distribution. If A′ is not of rank ` the sampling is repeated.
(Note that since Dn,` outputs full rank matrices with overwhelming probabil-
ity this case should virtually never happen.) Furthermore, a random matrix

R ← Z
`×(n−`)
p is sampled. Then it computes A := A′(I`||R) = (A′||A′R),

where I` is the `× ` identity matrix, and returns (A, [A]i).

– SetupFR(MGk) samples a matrix A′ ← Dn,` of rank ` (if the rank of A′ is

smaller sampling is repeated). After that, random matrices U ← Z
n×(n−`)
p

are sampled until A := (A′||U) is of full rank n. (Note that A will be of
rank n with overwhelming probability of at least 1 − n−`

pn−`
for uniform U.)

It then returns (A, [A]i).

– Constr(MGk,mat) returns mat (as the matrix is not compressed).

Remark 2. Consider the matrix A′ ← Dn,` generated during SetupNFR(MGk).
Let A′0 denote the first ` rows of A′ and A′1 the last n− ` rows of A′. Then the
transformation matrix T from Equation 4, which is used as the secret key, can
be set to T := A′1(A′0)−1. Correctness follows from

TA0 = A′1(A′0)−1A0

= A′1(A′0)−1A′0(I`||R)
= A′1(I`||R)
= A1

(11)

Correctness. Consider (A,matA) ← SetupNFR(MGk) and (B,matB) ←
SetupFR(MGk). Obviously, A = (A′||A′R) will be of rank ` as this is the case
for A′. Similarly, B := (B′||U) will be of rank n by construction. Furthermore,
clearly, it holds that [A]i ← Constr(MGk,matA) and [B]i ← Constr(MGk,matB).

Security. As for security we show

Lemma 1. If the Dn,`-MDDH assumption holds relative to Gk, then the scheme
MConDn,`-MDDH is secure.

Proof. First note that the distribution of A returned by SetupNFR and the
distribution of B returned by SetupFR are statistically indistinguishable from
the distribution of (A′||A′R) and (A′||U), respectively, where A′ ← Dn,`, R←
Z
`×(n−`)
p , and U← Z

n×(n−`)
p .

Then considering the latter distributions, the lemma immediately follows
from the Dn,`-Matrix Diffie-Hellman assumption and its random self-reducibility.
More concretely, the Dn,`-MDDH assumption demands that for all PPT adver-
saries D holds that

|Pr[D(MGk, [A′]i, [A′~r]i) = 1]− Pr[D(MGk, [A′]i, [~u]i) = 1]|

is negligible, where MGk ← Gk(1λ), A′ ← Dn,`, ~r ← Z
`
p and ~u ← Z

n
p . Hence,

[A′||A′~r]i is computationally indistinguishable from [A′||~u]i. As any matrix as-
sumption is random self-reducible (Lemma 1 in [10]), it follows that

|Pr[D(MGk, [A′]i, [A′R]i) = 1]− Pr[D(MGk, [A′]i, [U]i) = 1]|
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is negligible, where R ← Z
`×(n−`)
p and U ← Z

n×(n−`)
p . Thus, [A′||A′R]i is

computationally indistinguishable from [A′||U]i.

Concrete instantiations. Let us now consider what we get from different
members of the MDDH assumption family.

1-bit LPKE from standard assumptions. From standard assumptions like
DDH and `-Lin, we can immediately obtain a one bit lossy encryption scheme
by means of the corresponding indistinguishable matrix constructor. More pre-
cisely, for `-Lin we would consider the L`+1,` matrix distribution which samples
(`+ 1)× ` matrices of the form

A′ =


s1 0 0 ... 0
0 s2 0 ... 0

.

.

.

.

.

.

.
.
.

.

.

.
0 0 0 ... s`
1 1 1 ... 1

 (12)

Hence, this results in a public key of the form

[A]i =



s1 0 0 ... 0 s1r1
0 s2 0 ... 0

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.
0 0 0 ... s` s`r`
1 1 1 ... 1 r1+...+r`



i

, (13)

where ri ← Zp, which can be represented using 2(`+ 1) group elements.
Multi-bit LPKE from standard assumptions. Note that the number of bits we

can encrypt equals the number of linearly dependent row vectors of A ∈ Zn×np ,
i.e., n−`. Thus, if we had a distribution Dn,` that yields matrices with more than
one linearly dependent vector, i.e., n > `+ 1, our construction would be able to
encrypt more than one bit. Hence, we could obtain a scheme for multiple bits
from a standard assumption by finding a Dn,`-MDDH assumption with n > `+1
which is implied by this standard assumption. For instance, the `-Lin assumption
implies Un,`-MDDH for arbitrary n, where Un,` samples uniform n× ` matrices
of rank ` (this follows from Lemma A.1 in [25]). Hence, from DDH, for example,
we can get a scheme for (n− 1)-bit messages with arbitrary n ∈ N by means of
the uniform distribution Un,1 which samples a matrix of the form

A′ =

(
s1
...
sn

)
(14)

and, thus, yields a public key of the form

[A]i =

[( s1 s1r1 ... s1rn−1

...
...

sn snr1 ... snrn−1

)]
i

, (15)

where ri ← Zp. Note that the resulting scheme is essentially the DDH-based
scheme sketched in the introduction (with the minor difference that sn is set to
1 instead of being uniformly chosen).
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It is interesting to observe that `-Lin is a family of assumptions which (at
least in the generic group model) become strictly weaker as ` grows and that we
can get an LPKE scheme for messages of arbitrary size for each member of this
family (by means of Un,`).

On the downside, if make the detour to the Un,` distribution (instead of
directly building on `-Lin), the public key will consist of n2 group elements
to represent [A]i. As an alternative, we can take a more direct approach and
extend a (standard) D`+1,`-MDDH assumption (like `-Lin) to the Dn,`-MDDH
assumption, where the first ` + 1 rows of A′ ← Dn,` are sampled as by D`+1,`

and the remaining n− `− 1 are sampled uniformly. In this case, Dn,`-MDDH is
implied by D`+1,`-MDDH [23]. The representation of [A]i will consist of E+(n−
`− 1)`+ n(n− `) group elements to encrypt n− ` bits, where E is the number
of elements required to represent a matrix sampled by the D`+1,` distribution
(e.g., 1 for `-SCasc).

Multi-bit LPKE from a new Dn,`-MDDH assumption. A Dn,`-MDDH for
n > `+1 with an optimal representation size has recently been proposed in [23].

The circulant matrix distribution C`+d,` outputs matrices A′ ∈ Z(`+d)×`
p which

can be represented using d group elements. The assumption has been shown
to hold in the `-linear generic group model [23]. Plugging this distribution into
our scheme, we obtain a public key consisting of d + (` + d)d group elements
(representing [A]i) to encrypt d bits.

5 From the BDDH Assumption To a Compact Matrix
Rank Assumption

In this section, we show how to leverage the lossy trapdoor function construction
of Boyen and Waters [7] to obtain a (n, 1)-indistinguishable matrix constructor
MConBDDH with a linear-size matrix description mat . This translates to an (n−
1)-bit lossy encryption scheme featuring a linear public key size. (Note that the
size of the secret key is also linear.)

Essentially, the idea is to generate the quadratic number of group elements
in the matrix from a linear number of group elements, by applying a bilinear
map. A technical hurdle is to do this in a way such that matrices computed in
this way have either rank 1 or full rank, in a computationally indistinguishable
way. Here we apply the “linear equations” technique of Boyen and Waters, which
enables an algorithm to re-compute the full matrix by applying the bilinear map,
except for the diagonal. The diagonal entries of the matrix are given additionally
in the matrix description mat , and set-up such that the resulting matrix has
either rank 1 or full rank. Interestingly, the lossy trapdoor function of Boyen
and Waters corresponds to our injective encryption scheme, and vice versa.

Let MG2 := (2, G1, G2, G3, g1, g2, g3, e, p) ← G2(1λ), where G1 = G2 and
g1 = g2, be a symmetric bilinear group generator. Then a (n, 1)-indistinguishable
matrix constructor MConBDDH for G1 can be defined as follows:

– SetupNFR(MG2) samples two uniformly random elements h, k ← Z
∗
p, and

two exponent vectors ~r = (r1, . . . , rn)> ← (Z∗p)
n and ~u = (u1, . . . , un)> ←
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(Z∗p)
n. Then it sets A := (ai,j) ∈ (Z∗p)

n×n with ai,j := hriuj . Furthermore,
it computes

• [~s]1 := [(s1, . . . , sn)>]1 ∈ Gn1 where si := (hi+ k)ri

• [~v]1 := [(v1, . . . , vn)>]1 ∈ Gn1 where vj := (hj + k)uj

• [~d]3 := [(d1, . . . , dn)>]3 ∈ Gn3 where di := hriui

and sets mat := ([~r]1, [~s]1, [~u]1, [~v]1, [~d]3). It returns (A,mat).

– SetupFR(MG2) samples elements h, k ← Z
∗
p and vectors ~r, ~u ← (Z∗p)

n the
same way as SetupNFR. It sets A := (ai,j) ∈ Zn×np with ai,j := hriuj for i 6= j
and ai,i := hriui + 1. Accordingly, [~s]1 and [~v]1 are defined as in SetupNFR

but di is set to di := hriui + 1. It sets mat := ([~r]1, [~s]1, [~u]1, [~v]1, [~d]3) and
returns (A,mat).

– Constr(MG2,mat) computes [A]3 := ([ai,j ]3)i,j for 1 ≤ i, j ≤ n as follows:

• For i 6= j, it uses the pairing to compute

[ai,j ]3 := e([ri]1, [vj ]1)1/(j−i)e([uj ]1, [si]1)−1/(j−i) = [(ri·vj−uj ·si)/(j−i)]3

• For i = j it sets [ai,i]3 := [di]3

Remark 3. The transformation matrix T from Equation 4 can be set to T :=
(r2/r1, . . . , rn/r1)>.

Correctness. Consider (A,matA) ← SetupNFR(MG2) and (B,matB) ←
SetupFR(MG2). Let A0 be the first row of A and A1 be the remaining n − 1
rows. It is easy to see that TA0 = A1, where T is defined as described above.
Moreover, A cannot be the zero-matrix, because h and all ri and uj are non-zero.
So A is of rank 1.

Note also that by construction of SetupFR we have B = A + In, where A
has rank 1 (as above) and In is the (n × n)-identity matrix. Thus, since A has
rank 1, B is row-equivalent to In, which is equivalent to B having full rank.

To see that for [A′]3 := Constr(MG2,matA) and [B′]3 := Constr(MG2,matB)
we have [A′]3 = [A]3 and [B′]3 = [B]3, first observe that the diagonal entries
are correct, since [a′i,i]3 = hriui and [b′i,i]3 = hriui + 1. Moreover, in either case
we have for i 6= j that

[a′i,j ]3 = [b′i,j ]3 = [(rivj − ujsi)/(j − i)]3
= [(ri(hj + k)uj − uj(hi+ k)ri)/(j − i)]3
= [(hriujj + kriuj − hriuji− kriuj)/(j − i)]3
= [hriuj(j − i)/(j − i)]3
= [hriuj ]3

(16)

Security. Following [7], we prove security under the bilinear decisional Diffie-
Hellman assumption (cf. Definition 3). However, to simplify the security proof of
MConBDDH, we first define the following slightly modified BDDH* assumption,
which is implied by the standard BDDH assumption from Definition 3 by a
straightforward reduction.
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Definition 7. Let MG2 := (2, G1, G2, G3, g1, g2, e, p) ← G2(1λ), a, b, c ← Z
∗
p,

b ← {0, 1}, T0 := abc and T1 := abc + 1. We say that the BDDH* assumption
holds relative to G2, if

Advbddh∗B,G2 (1λ) :=

∣∣∣∣∣ Pr
[
1← B(1λ,MG2, [(a, b, c)]1, [T0]3)

]
− Pr

[
1← B(1λ,MG2, [(a, b, c)]1, [T1]3)

] ∣∣∣∣∣
is a negligible function for all PPT adversaries B.

Remark 4. A straightforward reduction allows to show that Advbddh∗B,G2 (1λ) ≤ 2 ·
AdvbddhB,G2(1λ) for all PPT algorithms B.

Theorem 3. If the BDDH* assumption holds relative to G2, then MConBDDH is
secure.

Proof. We will show that one can construct an adversary B against the BDDH*
assumption from each adversary A against MCon such that

Advind-matrix-rank
MCon,A (1λ) ≤ n · Advbddh∗B,G2 (1λ) (17)

To this end, we describe a hybrid argument which consists of n + 1 hybrid
games H0, . . . ,Hn. In Hybrid Hδ, δ ∈ {0, . . . , n}, we run A on input mat :=

([~r]1, [~s]1, [~u]1, [~v]1, [~d]3), where all values are computed exactly as in SetupNFR,
except that

di :=

{
hriui + 1 for i < δ

hriui for i ≥ δ

Note that the input mat of A in H0 is identically distributed to the the ma-
trix descriptions computed by (A,mat) ← SetupNFR(MG2). In Hn, A receives
a matrix description mat which is distributed exactly as a matrix description
computed by (A,mat)← SetupFR(MG2).

Let Xδ denote the event that A outputs “1” in Hybrid Hδ. We show that for
each δ ∈ {1, . . . , n} we can construct an adversary B such that

Advbddh∗B,G2 ≥ |Pr[Xδ−1]− Pr[Xδ]| (18)

which proves (17).
B receives as input a BDDH*-instance (MG2, [(a, b, c)]1, [T ]). It creates mat =

([~r]1, [~s]1, [~u]1, [~v]1, [~d]3) as follows.

– [~r]1 := [(r1, . . . , rn)>]1, where [rδ]1 := [a]1 and ri ← Z
∗
p for all i ∈ {1, . . . , n}

with i 6= δ

– [~u]1 := [(u1, . . . , un)>]1, where [uδ]1 := [b]1 and ui ← Z
∗
p for all i ∈ {1, . . . , n}

with i 6= δ

– [h]1 := [c]1 and [k]1 := [−hδ + y] for y ← Zp \ {hδ}
– [~s]1 := [(s1, . . . , sn)>]1, where [si]1 = [(hi+ k)ri]1 = [(h(i− δ) + y)ri]1. Note

that all the [si]1 can efficiently be computed by B, due to the above setup
of [h]1, [k]1, [~r]1.
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– [~v]1 := [(v1, . . . , vn)>]1, where [vj ]1 = [(hj + k)uj ]1 = [(h(j − δ) + y)uj ]1.
As above, all the [vi]1 can efficiently be computed by B, due to the setup of
[h]1, [k]1, [~u]1.

Finally, B sets [~d]3 := [(d1, . . . , dn)>]3, where

[di]3 =


[hriui + 1]3 for i < δ

[T ]3 for i = δ

[hriui]3 for i > δ

Then it runs A on input (MG2,mat) and outputs whatever A outputs.
Note that if [T ]3 = [abc]3 = [hrδuδ]3, then the view of A when interacting

with B is identical to its view in hybrid Hδ−1. Thus, the probability that A
outputs “1” in this case is equal to Pr[Xδ−1]. If [T ]3 = [abc+ 1]3 = [hrδuδ + 1]3,
then it is identical to Hδ, so that the the probability that A outputs “1” in this
case is equal to Pr[Xδ]. This yields (18) and thus concludes the proof.

Shortcut evaluation. We remark that it is possible to reduce the number of
pairing computations required to compute [A~w]3 for ~w ∈ Znp , given mat . In the
näıve approach sketched above, one first has to recompute [A]3 from mat , which
requires O(n2) pairing evaluations, and then [A]3 ~w.

Following the “shortcut evaluation” approach described in [7], we note that
the number of pairing evaluations can be reduced to 2n = O(n), by computing

([z1]3, . . . , [zn]3) from mat = ([~r]1, [~s]1, [~u]1, [~v]1, [~d]3) and ~w ∈ Znp as

[zj ]3 :=

[∑
i6=j

wiri
j−i

]
1
· [vj ]1[∑

i 6=j
wiui
j−i

]
1
· [sj ]1

+ [wjdj ]3

Indeed, as shown by Boyen and Waters [7], it is easy to verify that

[zj ]3 =

[
n∑
i=1

riuihwi

]
3

for all j ∈ {1, . . . , n}, and thus it holds that ([z1]3, . . . , [zn]3)> = [A~w]3. Note
that this “shortcut evaluation” takes only two pairing evaluations for each j ∈
{1, . . . , n}, which amounts to only 2n pairing evaluations in total.
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