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Abstract

Secure two-party computation based on cut-and-choose has made great strides in recent
years, with a significant reduction in the total number of garbled circuits required. Nevertheless,
the overhead of cut-and-choose can still be significant for large circuits (i.e., a factor of ρ in both
communication and computation for statistical security 2−ρ).

We show that for a particular class of computation it is possible to do better. Namely,
consider the case where a function on the parties’ inputs is computed only if each party’s input
satisfies some publicly checkable predicate (e.g., is signed by a third party, or lies in some
desired domain). Using existing cut-and-choose-based protocols, both the predicate checks and
the function would need to be garbled ρ times. Here we show a protocol in which only the
underlying function is garbled ρ times, and the predicate checks are each garbled only once.
For certain natural examples (e.g., signature verification followed by evaluation of a million-gate
circuit), this can lead to huge savings in communication (up to 80×) and computation (up to
56×). We provide detailed estimates using realistic examples to validate our claims.

1 Introduction

Secure two-party computation (2PC) allows two parties with private input to compute some com-
mon function such that both parties learn the output while keeping their inputs private. One way
to build such protocols is to use garbled circuits [Yao82]. Here, one party, the generator, constructs
a “garbled” version of a boolean circuit representing the function to compute, where each wire is
represented by a wire label that hides the value on that underlying wire and each gate is garbled in
such a way that the party evaluating the garbled circuit cannot learn the underlying bit of any given
wire label. The generator sends this garbled circuit to the other party, the evaluator. The evaluator
receives the wire labels associated with its input using oblivious transfer (OT), and evaluates the
circuit to learn the output of the computation.

The basic garbled-circuit protocol described above is only secure against semi-honest adver-
saries, that is, adversaries that are assumed to follow the protocol but may try to deduce the
other party’s input from the protocol transcript. Lindell and Pinkas [LP07] showed how to se-
cure garbled-circuit protocols against malicious adversaries (that is, adversaries who can deviate
arbitrarily from the protocol) using the cut-and-choose technique. The basic idea with cut-and-
choose is that the circuit generator constructs multiple garbled circuits, a certain fraction of which
are opened by the evaluator to check that they are constructed correctly. If this check passes,
the evaluator processes the remaining circuits and derives the appropriate output. Lindell and
Pinkas [LP07] required 680 garbled circuits for statistical security 2−40 (i.e., such that a malicious

1



generator can succeed in cheating only with probability ≤ 2−40). This was improved in a sequence
of works [sS11, LP12, HKE13, Lin13, AMPR14], with the best current protocols requiring exactly
ρ circuits to achieve statistical security 2−ρ. Although the number of circuits can be reduced in an
amortized sense [HKK+14, LR14], it seems that the limit has been reached in the single-execution
case.

Even with this progress over the last several years, most practical 2PC research still focuses
on the semi-honest setting. We argue that this is due to several reasons. For one, a slowdown
of 40× to achieve security 2−40 is still significant. Moreover, even a protocol that is secure in
the malicious model offers no assurance on its own that the adversarial party uses a “valid” input
(for some definition of valid). Finally, in the semi-honest setting parties can rely on (some) local
computation which can greatly reduce the size of the circuit that needs to be garbled. In contrast,
in the malicious setting such local computation cannot (in general) be relied upon because there
is no guarantee that an adversary correctly computes said computation. Below, we describe these
latter two issues in more detail and describe how they can be addressed (inefficiently) using existing
protocols.

Input validity. One inherent limitation of the malicious security model is that a malicious party
can choose an arbitrary value as its input. This potentially allows a malicious party to learn a
significant amount of information, or violate correctness (at least in an intuitive sense). As an
example of the former, consider a shortest-path computation where one party holds a weighted
graph, the other holds a source-destination pair, and both parties learn the length of the shortest
path. By manipulating edge weights, the first party can ensure that it learns the source-destination
pair of the other party. As an example of the latter, consider computing the average of several
temperature readings, where one party uses a temperature of 1000◦C.

One possible solution to this input-validity problem is to let the two parties verify that the other
party’s input is signed by some trusted party, or satisfies some other predicate. However, verifying
a signature can require more than one hundred billion non-free gates [KMsB13]. Recalling that
malicious security requires an additional O(ρ) multiplicative overhead due to cut-and-choose, this
approach appears impractical, especially if the underlying function to be computed is small.

Local computation. One popular technique to improve efficiency in the semi-honest model
is to utilize local computation. Namely, instead of each party submitting their input directly,
each party first performs some local computation on their input and submits the result of that
local computation as input to some secure computation. (An interactive approach, in which a
secure computation is run to generate intermediate values which are further processed by the
parties locally before further secure computation is done, can also be used.) Some works have
shown that for specific examples this approach improves the running time of (semi-honest) secure
computation by orders of magnitude, including private set intersection [HEK12] and edit-distance
estimation [WHZ+15], etc. One common characteristic shared by these works is that most of the
computation is done locally such that the part of the function requiring secure computation is
significantly, and in many cases asymptotically, smaller. However, in the malicious setting, local
computation is not beneficial at all, since there is no guarantee that the malicious party provides
the correct result of a local computation starting from some input. Thus, all computation must be
integrated into the secure-computation protocol itself.
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Abstracting the problem. We observe that the two problems mentioned above relate to a
common problem were the two parties, holding inputs x and y, respectively, wish to compute a
function of the form

f(x, y) := “if f1(x) and f2(y) then g(x, y) else ⊥”,

where f1(·) and f2(·) are (public) predicates on each party’s input and g(·, ·) is the underlying
function the parties would like to compute. Note that this directly captures the input-validity
problem, in that the predicate functions could check validity however the parties choose to define
it. Likewise, for the local-computation problem we can have the predicates verify that the local
computation was done correctly—something which can often be more efficient than re-doing the
computation.

As f(·, ·) is a two-party function, we can compute it securely using any existing malicious 2PC
protocol. We refer to this as the “generic solution.” In this work we show how it is possible to
do much better by using cut-and-choose only on g(·, ·). For the predicate checks, we use the zero-
knowledge-based-on-garbled-circuits approach of Jawurek et al. [JKO13] to evaluate f1(·) and f2(·).
This allows us to garble f1(·) and f2(·) only once, while only garbling g(·, ·) a total of ρ times.
Combining these protocols in a naive way, however, does not guarantee that a malicious party uses
consistent inputs between the predicate circuits (namely f1(·) and f2(·)) and the computation circuit
(namely g(·, ·)). In order to solve this consistency problem efficiently, we extend a building block
in the protocol of Afshar et al. [AMPR14] and utilize a novel functionality we call “half-committed
OT” which can be efficiently instantiated by adapting existing OT protocols. See details below.

To understand the performance gains of our protocol versus the generic solution, we present a
detailed cost analysis, comparing the computation and communication costs of our protocol with
that of Afshar et al. We obtain savings of up to ≈ 80× in communication and ≈ 56× in computation
for many realistic examples. We refer to Section 5 for more details.

Concurrent work. A recent and concurrent work by Baum [Bau16] also provides a solution for
a similar problem we considered here. Their technique uses universal hash functions to enforce
the consistency, which enlarges the size of circuit to be used by the maliciously secure two party
protocol.

1.1 Relevant Prior Work

Because our protocol relies heavily on the existing works of Jawurek et al. [JKO13] and Afshar et
al. [AMPR14], we briefly recap how those constructions work.

Efficient zero-knowledge using garbled circuits [JKO13]. In a zero-knowledge proof-of-
knowledge (ZKPoK), two parties, a prover and a verifier, have some common predicate f(·), and
the prover would like to demonstrate to the verifier that it knows some witness w such that f(w) = 1,
without revealing w to the verifier. Such a protocol is a particular case of 2PC, so any generic secure-
computation protocol, with malicious security, could be used. Jawurek et al. [JKO13] showed,
however, that one can do much better, and devised a ZKPoK protocol with essentially the same
cost as a semi-honest garbled-circuit protocol for the predicate f .

The basic idea is as follows. The verifier sends a garbling of f(·) to the prover, who evaluates
it using the input-wire labels it receives through OT, learning an output-wire label Z. The prover
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commits to this value, and then asks the verifier to open the garbled circuit so the prover can
verify that the garbled circuit sent by the verifier indeed corresponds to the correct predicate f(·).
If this is the case, the prover decommits to reveal Z to the verifier; if Z is the output-wire label
corresponding to ‘1’ then the verifier learns that the prover supplied a valid witness. Security of
the OT implies that the prover’s input w is hidden from the verifier; security of the garbled circuit
implies that the prover cannot learn the correct output-wire label Z if its witness does not satisfy
the predicate.

Efficient malicious two-party computation [AMPR14]. Afshar et al. [AMPR14] propose
an optimized variant of Lindell’s “fast cut-and-choose with cheating punishment” protocol [Lin13],
which garbles ρ circuits for 2−ρ statistical security.1 The basic idea with Lindell’s protocol is
that if any of the evaluation circuits lead to inconsistent outputs, these inconsistencies can be
used to recover the circuit generator’s input x, allowing the evaluator to locally compute f(x, y).
Lindell’s protocol requires running an additional secure computation protocol for the “cheating
punishment” phase; Afshar et al. show how to remove this (computationally expensive) step. Their
idea is as follows. The circuit generator P1 begins by committing to its input bits using a specific
ElGamal commitment scheme. Namely, for all i ∈ [n1], where n1 is the input length, P1 computes
EGCommith(xi; r) = (gr, hrgxi), where h = gw for some secret value w known to P1, and sends these
commitments to P2. Note that if the evaluator P2 learns w it can break the commitments and thus
learn x. Party P1 then constructs garbled circuits such that if P2 learns both output-wire labels
in an evaluation circuit, then it learns w. Thus, if P1 tries to cheat, P2 can recover w and thus
learn P1’s input, allowing P2 to compute f(x, y) locally. Party P1’s input consistency is enforced by
having P1 prove that the input-wire labels it provides for the evaluation circuits are commitments
to the bits P1 initially committed to.

1.2 Our Solution

In this work, we combine the works of Jawurek et al. [JKO13] and Afshar et al. [AMPR14] to handle
functions with predicate checks on each party’s input. The parties first prove (in zero-knowledge)
that their inputs satisfy the requisite predicate, and if so, the parties compute the underlying
function. The main technical difficulty is thus devising a mechanism for tying together the inputs
of the predicate checks with the inputs to the underlying computation function. Namely, we need
to enforce that, for example, the input P1 supplies to f1(·) is the same input used when computing
g(·, ·). We describe how we do this for each party in turn.

Enforcing consistency on P1’s input. Recall that in the protocol of Afshar et al., P1 commits
(using a specific ElGamal commitment scheme) to each individual input bit of x at the beginning
of the protocol, and then proves in zero-knowledge that the input-wire labels it provides to the
evaluation circuits are commitments to those same input bits. Thus, in order to support input
consistency across f1(·) and g(·, ·) we need to somehow enforce that P1’s inputs to f1(·) are the same
as those it committed to initially. We do so by using a specific ElGamal-based OT protocol which
works with the ElGamal commitment scheme used by P1. Namely, the ElGamal commitments to

1While Afshar et al. also show how their protocol can be used to provide non-interactive secure computation, we
do not utilize this property in our setting.
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xi sent by P1 are used to construct P2’s OT messages encoding the input-wire labels to the garbling
of f1(·); P1 can only recover those wire labels associated with the bit values it committed to.

In more detail, recall that P1 commits to its input bits using the commitment scheme
EGCommith(b; r) = (gr, hrgb) = (A,B). Note that if b = 0 then the pair (g, gr, gsht, AsBt) is
a Diffie-Hellman tuple. Likewise, if b = 1 then the pair (g, gr, gsht, As(B/g)t) is a Diffie-Hellman
tuple. Thus, letting (Ai, Bi) be the ElGamal commitment of input bit xi, P2 can encode the
input-wire labels to the garbling of f1(·) as

(Âi,0, B̂i,0)← (gsi,0hti,0 , (Ai)si,0(Bi)ti,0 ·Xi,0)
(Âi,1, B̂i,1)← (gsi,1hti,1 , (Ai)si,1(Bi/g)ti,1 ·Xi,1),

for random si,0, ti,0, si,1, ti,1, and send Âi,0, B̂i,0, Âi,1, B̂i,1 to P1, who can only recover one of the
two wire labels based on which value xi it committed to.

Note that this OT protocol is not maliciously secure in the sense that a simulator cannot extract
P2’s inputs. This is okay in our setting, as the garbling of f1(·) is fully opened later in the protocol,
and thus we can recover the wire labels in that step.

Another issue is that when simulating a malicious P1, we need to be able to extract its input
x. In the protocol of Afshar et al., this extraction happens when P1 sends the garbled circuits to
P2; here, the simulator can learn w and thus break the commitments sent by P1. However, in our
protocol we need to extract x earlier, in particular in the phase where we check whether f1(x) = 1.
We do this by having P1 prove in zero-knowledge that it knows the exponent of h used in the
commitments. When simulating, we can thus extract this exponent and break the commitments,
learning P1’s input.

Enforcing consistency on P2’s input. In this step we need to enforce that P2’s input y is
consistent between f2(·) and g(·, ·). Note that P1 garbles both these functions: f2(·) is garbled
once and g(·, ·) is garbled ρ times, with around half being used as evaluation circuits. Thus, given
the wire labels for y needed to compute f2(y), we devise a scheme that allows P2 to derive the
appropriate wire labels for g(·, ·). Thus, P2 can derive only those wire labels related to its input
y, whereas P1 can derive both wire labels. Since OT hides which wire labels P2 selects in the
predicate function computation, P1 never learns which wire labels P2 has acquired and thus cannot
learn which wire labels P2 is able to derive for the underlying function computation. Likewise,
because P2 only retrieves one of the two wire labels for each input, it cannot derive the wire labels
for the underlying function computation for those bits that are not part of its input y. We describe
this in more detail below.

Clearly, the input-wire labels for g(·, ·) cannot be derived directly from the input-wire labels for
f2(·), as these wire labels are opened when P2 verifies that P1 indeed correctly garbled f2(·). Instead,
we introduce a specific OT protocol called half-committed OT. This is the same as sender-committed
OT (where the sender is committed to its inputs such that it can later decommit these values to
the receiver); however, in half-committed OT only half of the sender’s inputs are committed. That
is, the sender inputs (m0,0,m0,1) and (m1,0,m1,1), with the receiver receiving (mb,0,mb,1) for choice
bit b. The sender can then later decommit to m0,0 and m1,0. Such a primitive can be easily
realized using existing OT protocols, such as the efficient maliciously-secure OT protocol of Peikert
et al. [PVW08]. We use half-committed OT when transferring the wire labels for the predicate
circuit f2(·). Let Yi,0, Yi,1 denote these wire labels. As input to the half-committed OT, party P1
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submits (Yi,0, ri,0) and (Yi,1, ri,1), for some random values ri,0 and ri,1. Note that when P1 opens the
committed values to enable P2 to check that the garbling of f2(·) was done correctly, it only reveals
Yi,0 and Yi,1, and not ri,0 and ri,1. The parties use these latter values to derive the input-wire
labels for the underlying circuit g(·, ·). Namely, P1 constructs garblings of g(·, ·) with input-wire
labels for P2 equal to PRFri,0(j) and PRFri,1(j), where j denotes the jth garbling of g(·, ·), and
PRF is a pseudorandom function. Thus, if P2 chooses b = 0 in FhcOT it can only derive the zero-bit
input-wire label for the ith input to g(·, ·) using ri,0, and likewise, if b = 1 then P2 can only derive
the one-bit input-wire label.

The approach as described above however has a selective-failure attack in that P1 can use, for
example, r′i,0 6= ri,0 as input into the half-committed OT. If P2’s ith input is zero it aborts (since
the input-wire labels it derives using r′i,0 are invalid) and otherwise it succeeds. This allows P1 to
learn the ith bit of P2’s input. We can fix this by using the XOR-tree approach of Lindell and
Pinkas [LP07]. Instead of P2 having n2 bits of input, the parties modify both the f2(·) and g(·, ·)
circuits such that P2 now has ρn2 bits of input, where ρ is the statistical security parameter, and
the new inputs are XORed together to equal P2’s original input. Namely, let y be P2’s original
input and let y1, . . . , yρ be the new inputs. Then P2 chooses the yi values such that

⊕
yi = y.

Thus, a selective-failure attack on a single input bit leaks a bit which reveals nothing about P2’s
original input y. While P1 can launch a selective failure attack on multiple input bits, it only learns
a bit of y if it succeeds in guessing all ρ shares, and thus succeeds with probability ≤ 2−40.

Although the naive XOR-tree works, it leads to a blow-up of ρ in P2’s input size. However,
Lindell and Pinkas [LP07] proposed a scheme that requires only max{4n2, 8ρ} input wires for P2,
and thus for reasonably large input sizes the overhead is only 4× (instead of ρ× using the naive
XOR-tree approach).

1.3 Other Related Work

We have already touched upon the myriad of garbled-circuit-based protocols for malicious 2PC, and
thus in this section we focus on malicious 2PC protocols based on other building blocks. One such
approach is the “LEGO” technique, where instead of applying cut-and-choose at the circuit level
one applies it at the gate level. A series of works [NO09, FJN+13, FJNT15] has investigated this
approach, with the most recent TinyLEGO approach [FJNT15] giving competitive performance
results in terms of communication with the garbled circuit approach. As an example, for circuits
with one billion gates, the number of bits communicated when using TinyLEGO is around half that
of the garbled circuit approach. However, we note that it is not clear whether TinyLEGO can be
adapted to take advantage of privacy-free computation, as can be done in our protocol. Thus, while
our communication gains are halved when compared with TinyLEGO, this still implies a roughly
40× improvement in communication using our approach. In addition, it is not clear whether
TinyLEGO is competitive with the garbled circuit approach from a computation standpoint.

Another line of malicious secure computation work has been based on using the GMW proto-
col [GMW87] with maliciously-secure MAC checks [NNOB12, DPSZ12, DKL+12]. These protocols
work in the preprocessing model, and while they have very efficient (information theoretic) online
running times, the required offline computation and communication is very heavy.
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Functionality F2pc

Private inputs: P1 has input x ∈ {0, 1}n1 and P2 has input y ∈ {0, 1}n2 .
Common input: Circuit C0 : {0, 1}n1 × {0, 1}n2 → {0, 1}n3 , where

C0(x, y) := if f1(x) and f2(y) then g(x, y) else ⊥.

1. Upon receiving either (input, x) or (input,⊥) from P1, proceed as follows:

• If x was received and f1(x) = 1, then send (received, ok) to P2 and continue.
• If either ⊥ was received or f1(x) = 0, send (received,⊥) to P2 and halt.

2. Upon receiving either (input, y) or (input,⊥) from P2, proceed as follows:

• If y was received and f2(y) = 1, then send (received, ok) to P1 and continue.
• If ⊥ was received or f2(y) = 0, send (received,⊥) to P1 and halt.

3. Upon receiving either (abort) or (continue) from P1, proceed as follows:

• If abort was received, send (output,⊥) to P2 and halt.
• If continue was received, send (output, g(x, y)) to P2 and halt.

Figure 2.1: Functionality F2pc for two-party secure computation with predicate checks.

2 Preliminaries

We use κ to denote the computational security parameter and ρ to denote the statistical security
parameter. We assume the reader is familiar with secure computation and the cut-and-choose
paradigm for constructing malicious protocols based on garbled circuits.

Two-party functionality for enforcing predicate checks. We consider a reactive two-party
functionality F2pc of a certain form, where each party’s input must satisfy some predicate function
before some underlying function (computed on both parties’ inputs) is run. In case a party’s input
does not satisfy the necessary predicate, the functionality outputs ⊥ to the other party.

The functionality begins by taking either an input x or ⊥ from P1; if the functionality receives
x such that f1(x) = 1 then it sends an ok message to P2 and waits for either an input y or ⊥ from
P2, and otherwise it halts. Likewise, if the functionality receives y such that f2(y) = 1 from P2
then it sends an ok message to P1 and otherwise it halts. If both parties send valid inputs to the
functionality, then it waits for a continue message from P1, at which point it outputs g(x, y) to P2
and halts. See Figure 2.1 for the formal description.
F2pc is slightly weaker than the non-reactive functionality F ′2pc that accepts inputs x and y from

the two parties, and then returns ⊥ to both parties if either f1(x) = 0 or f2(y) = 0, and g(x, y)
otherwise. In particular, F2pc allows P2 to learn whether f1(x) = 1 even if f2(y) = 0—something
that is not possible when interacting with the non-reactive functionality F ′2pc just described. In
most practical scenarios, however, we expect that an honest P1 would only ever use an input for
which f1(x) = 1, and so “leaking” that information to an attacker is insignificant.

Half-committed oblivious transfer. Our protocol requires a form of committed oblivious
transfer (OT) in which only the first half of the inputs is sender-committed, whereas the second
half is not. Namely, the sender’s inputs are of the form (X0, Y0) and (X1, Y1), where on input b the
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Functionality FhcOT

• On receiver input (choose, i, b), if no message of the form (choose, i, ·) exists then store (choose, i, b) and
send (chosen, i) to the sender.

• On sender input (transfer, i,X0, Y0, X1, Y1), if no message of the form (transfer, i, ·, ·, ·, ·) exists and a
message of the form (chosen, i, b) does, then send (transferred, i,Xb, Yb) to the receiver.

• On sender input (open-all), send (transferred, i,X0, X1), for all i, to the receiver, and halt.

Figure 2.2: Half-committed oblivious transfer ideal functionality FhcOT.

Protocol ΠhcOT

Inputs: The sender has input (X0, Y0, X1, Y1); the receiver has input b ∈ {0, 1}.
Auxiliary input: Tuple (G, q, g0), where G is a group of order q with generator g0.
• The receiver chooses y, α0←$Zq, sets α1 := α0 +1, computes g1 := (g0)y, h0 := (g0)α0 , and h1 := (g1)α1 ,

and sends (g1, h0, h1) to the sender.
• The receiver proves in zero-knowledge that (g0, g1, h0, h1/g1) is a Diffie-Hellman tuple.
• The receiver chooses r at random, computes g := (gb)r and h := (hb)r, and sends (g, h) to the sender.
• Define the function RAND(w, x, y, z) = (wsyt, xszt, s, t) for s, t←$Zq.
• The sender computes

(u0,0, v0,0, s0,0, t0,0)←$RAND(g0, g, h0, h),
(u0,1, v0,1, s0,1, t0,1)←$RAND(g0, g, h0, h),
(u1,0, v1,0, s1,0, t1,0)←$RAND(g1, g, h1, h),
(u1,1, v1,1, s1,1, t1,1)←$RAND(g1, g, h1, h),

and sends (u0,0, v0,0 ·X0, u0,1, v0,1 · Y0, u1,0, v1,0 ·X1, u1,1, v1,1 · Y1) to the receiver.
• The receiver computes Xb := v0,b ·Xb/(u0,b)r and Yb := v1,b ·Xb/(u1,b)r.
• To open the commitments to X0 and X1, the sender sends s0,0, t0,0 and s1,0, t1,0, and the receiver recom-

putes RAND(gb, g, hb, h) using randomness s1,b, t1,b, for b ∈ {0, 1}.

Figure 2.3: Half-committed oblivious transfer implementation, based on the plain-model variant of
the Peikert et al. oblivious transfer [LP11, PVW08].

receiver gets (Xb, Yb). What makes the OT half-committed is that the sender can later decommit
to only the values X0 and X1, and not Y0 and Y1.

Our functionality is modeled after the sender-committed OT of Jawurek et al. [JKO13, Fig. 3];
see Figure 2.2. The main difference is that in our functionality the sender inputs two pairs of
messages, and when opening the values, only the first entry in each pair is revealed to the receiver.

Note that the maliciously-secure OT protocol of Peikert et al. [PVW08] can be used to construct
half-committed OT in a straightforward manner. Namely, to decommit to a given input, the sender
reveals the randomness used to mask only that input; see Figure 2.3.

3 Our Protocol

Our construction carefully combines Jawurek et al.’s ZKPoK protocol [JKO13] with the maliciously
secure 2PC protocol of Afshar et al [AMPR14], where the functions we are interested in are of the
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form
f(x, y) = “if f1(x) = 1 and f2(y) = 1 then g(x, y) else ⊥”.

As we presented the protocol intuition in the Introduction, we jump straight to the full protocol
description, and we assume familiarity with both of the works we build off of.

Private inputs: P1 has input x ∈ {0, 1}n1 and P2 has input y ∈ {0, 1}n2 .
Common inputs: Circuit C0 : {0, 1}n1 × {0, 1}n2 → {0, 1}n3 , where

C0(x, y) := if f1(x) and f2(y) then g(x, y) else ⊥;

computational security parameter κ; statistical security parameter ρ; hash function H : {0, 1}∗ → {0, 1}κ;
commitment scheme (Com,Open); ideal functionalities FhcOT and FOT.

Protocol:
Check that f1(x) = 1:

1. If f1(x) = 0 then P1 sends ⊥ to P2.
2. P1 chooses w←$Zp, computes h← gw, and sends h to P2. P1 gives a zero-knowledge proof of knowledge

that it knows w such that gw = h.
3. P2 constructs garbled circuit GCf1 of function f1. Let {Xi,b}i∈[n1],b∈{0,1} denote the input-wire labels.
4. For i ∈ [n1], P1 computes (Ai, Bi)← EGCommith(xi; ri), for random ri, and sends (Ai, Bi) to P2. Denote

these as P1’s input commitments.
5. For i ∈ [n1], P2 computes

(Âi,0, B̂i,0)← (gsi,0hti,0 , A
si,0
i B

ti,0
i ·Xi,0)

(Âi,1, B̂i,1)← (gsi,1hti,1 , A
si,1
i (Bi/g)ti,1 ·Xi,1),

for random si,0, ti,0, si,1, ti,1, and sends Âi,0, B̂i,0, Âi,1, B̂i,1 to P1.

6. For i ∈ [n1], P1 recovers Xi,xi by computing B̂i,xi/(Âi,xi )ri .
7. P2 sends GCf1 to P1, who evaluates it, learning output-wire label Zf1 . P1 computes

(comf1 , decomf1 )←$ Com(Zf1 ), where Com is an equivocal and extractable commitment scheme, and
sends comf1 to P2.

8. P2 sends {si,0, ti,0, si,1, ti,1}i∈[n1] to P1, who recovers all the input-wire labels and aborts if GCf1 was not
constructed correctly. Otherwise, P1 sends decomf1 to P2, who computes Zf1 ← Open(comf1 , decomf1 ).
If Zf1 is the 1-bit output-wire label of GCf1 then P2 continues. Otherwise, P2 outputs ⊥.

Check that f2(y) = 1:

9. If f2(y) = 0 then P2 sends ⊥ to P1.
10. P1 constructs garbled circuit GCf2 of function f ′2(y1, . . . , yρ) = f2(

⊕
i
yi), where each yi is an n2-bit

bitstring. Let {Yi,b}i∈[ρn2],b∈{0,1} denote the input wires.

11. For i ∈ [ρn2], P1 chooses ri,0←$ {0, 1}κ and ri,1←$ {0, 1}κ.
12. P1 and P2 run FhcOT ρn2 times, where in the ith run P1 inputs (transfer, i, Yi,0, ri,0, Yi,1, ri,1) acting as the

sender and P2 inputs (choose, i, yi) acting as the receiver, receiving (transferred, i, Yi,yi , ri,yi ) as output.
13. P1 sends GCf2 to P2, who evaluates it, learning output wire label Zf2 . P2 computes

(comf2 , decomf2 )←$ Com(Zf2 ), where Com is an extractable commitment, and sends comf2 to P1.
14. P1 sends (open-all) to FhcOT with P2 receiving (transferred, i, Yi,0, Yi,1) for all i. P2 uses these wire labels

to check that GCf2 was constructed correctly, and if not P2 aborts. Otherwise, P2 sends decomf2 to
P1, who computes Zf2 ← Open(comf2 , decomf2 ). If Zf2 is the 1-bit output-wire label of GCf2 then P1
continues. Otherwise, P1 outputs ⊥.
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Evaluate g(x, y):

15. For i ∈ [n1], P1 chooses wi,0←$Zp and sets wi,1 := w−wi,0, computes output commitments hi,0 := gwi,0

and hi,1 := gwi,1 , and sends {hi,0} and {hi,1} to P2.
16. For j ∈ [ρ], P1 chooses seed seedj←$ {0, 1}κ and key kj←$ {0, 1}κ.
17. P1 and P2 run FOT ρ times, where in the jth run P1 inputs (kj , seedj) acting as the sender, and P2 inputs

b←$ {0, 1} acting as the receiver.
18. For j ∈ [ρ], proceed as follows:

(a) For i ∈ [n1] and b ∈ {0, 1}, P1 computes uj,i,b ← EGCommith(b; rj,i,b), where rj,i,b is derived from
seedj .

(b) P1 constructs garbling GCj of function g′(x, y1, . . . , yρ) = g(x,
⊕

i
yi), where P1’s ith input-wire

labels are defined as {H(uj,i,0), H(uj,i,1)}, P2’s ith input-wire labels are defined as {PRFri,0 (j),
PRFri,1 (j)}, where ri,0 and ri,1 are the values input to FhcOT in Step 12, and the randomness used
to construct GCj is derived from seedj . P1 sends GCj to P2.

(c) For i ∈ [n1], P1 computes (comj,i,0, decomj,i,0) ← Com(uj,i,0), (comj,i,1, decomj,i,1) ← Com(uj,i,1),
and sends {comj,i,π, comj,i,1−π : π←$ {0, 1}} to P2.

(d) For i ∈ [n3], P1 chooses Kj,i,0,Kj,i,1←$Zp and sends output recovery commitments hi,0 ·gKj,i,0 and
hi,1 · gKj,i,1 to P2. Likewise, P1 sends EncZi,0 (Kj,i,0) and EncZi,1 (Kj,i,1) to P2.

(e) Let

Inputsj ← {comj,i,xi , decomj,i,xi}i∈[n1]

InputEqualityj ← {ri − rj,i,xi}i∈[n1]

OutputDecomj ← {(wi,0 +Kj,i,0, wi,1 +Kj,i,1)}i∈[n3]

P1 sends Enckj (Inputsj , InputEqualityj ,OutputDecomj) to P2.

19. For all check circuits j (i.e., where P2 received seedj in Step 17), proceed as follows:

(a) P2 checks that seedj generates GCj and the other values constructed using randomness derived
from seedj , and aborts if not.

20. Set cheat := 0. For all evaluation circuits j (i.e., where P2 received key kj in Step 17), proceed as follows:

(a) P2 decrypts Enckj (Inputsj , InputEqualityj ,OutputDecomj).
(b) For i ∈ [n1], P2 computes ũj,i,xi ← Open(comj,i,xi , decomj,i,xi ) and checks that

ûj,i,xi · (gri−rj,i,xi , hri−rj,i,xi ) = EGCommith(xi; ri) for all i ∈ [n1], otherwise set cheat := 1.
(c) For i ∈ [n3] and b ∈ {0, 1}, P1 checks that gwi,b+Kj,i,b equals the output recovery commitments

sent by P1, otherwise set cheat := 1.
(d) P2 evaluates GCj , using PRFri,yi

(j) as its input-wire labels, learning output-wire labels {Zi}. P2

then uses these labels to learn the appropriate Kj,i,b values, and uses these to check that hj,b ·gKj,i,b

equals the appropriate output recovery commitment sent by P1; otherwise set cheat := 1. If this
succeeds, P2 marks the circuit as “semi-trusted.”

21. If cheat = 1 then abort. Otherwise, if all the semi-trusted circuits have the same output wire labels, P2
outputs that value. Otherwise, let Zj,i and Zj′,i be two differing output wire labels for garbled circuits j
and j′ and output wire i. P2 can extract w0

i and w1
i by using the sets OutputDecomj and OutputDecomj′ ,

and thus learn w, allowing P2 to decrypt P1’s initial commitments to learn x. P2 then outputs g(x, y).

Proof of security. We now prove that the above protocol realizes F2pc in the (FhcOT,FOT)-
hybrid model by constructing simulators for the case that either P1 or P2 is corrupted.
Malicious P1. Suppose adversary A corrupts P1. We construct a simulator S as follows.

1. S invokes A on its input.
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2. If A sends ⊥ in Step 1, S sends (input,⊥) to F2pc and outputs whatever A outputs.

3. In Step 2, S acts as an honest P2. If the ZKPoK fails then S sends (input,⊥) to F2pc and
outputs whatever A outputs. Otherwise, S extracts w from the ZKPoK.

4. In Step 4, S uses w extracted above to extract x ∈ {0, 1}n1 ∪{⊥} from the commitments sent
by A, where x = ⊥ if any of the commitments are invalid.

5. S continues to act as an honest P2 would. In Step 8, S checks if either x = ⊥ or f1(x) = 0; if
so, S sends (input,⊥) to F2pc and outputs whatever A outputs. Otherwise, S sends (input, x)
to F2pc, receiving either (received, ok) or (received,⊥) from F2pc. If ⊥ was received, S sends
⊥ to A in Step 9 and outputs whatever A outputs.

6. S extracts A’s input to FhcOT, and uses these values to open the garbled circuit sent by A,
thus learning the one-bit output-wire label Z1. S sends Com(Z1) to A.

7. S receives the opening to FhcOT and checks consistency with the values received above. If
anything fails, S sends (abort) to F2pc and outputs whatever A outputs.

8. S continues to act as an honest P2 would. If cheat = 0 in Step 21 then S sends (continue) to
F2pc and outputs whatever A outputs. Otherwise, (i.e., cheat = 1), S sends (abort) to F2pc
and outputs whatever A outputs.

We now prove that the view of A is computationally indistinguishable in the real and ideal worlds.
We do so by a series of hybrid experiments.

• Hybrid1. Same as the real execution.

• Hybrid2. Same as Hybrid1, except that P2 extracts w from the ZKPoK and aborts if it
fails to extract.

These two hybrids are computationally indistinguishable, as by the security of the ZKPoK
the probability that P2 fails to extract w is negligible.

• Hybrid3. Same as Hybrid2, except that P2 aborts in Step 8 if f1(x) = 0.

These two hybrids are computationally indistinguishable by the hiding property of the
ElGamal-based oblivious transfer and the security of the garbling scheme. Namely, in
Hybrid2, A cannot recover the appropriate input-wire label in Step 5 for those input bits
which are incorrectly committed and likewise can only recover one of the two input-wire labels
for those input bits which are correctly committed. Thus, by the authenticity property of the
garbling scheme, A is unable to recover the one-bit output-wire label Z1 with high probabil-
ity. Thus, if A can distinguish between Hybrid2, where P2 aborts due to A committing to
an invalid output-wire label, and Hybrid3, where P2 aborts regardless of what A commits
to, then this leads to an attack on the authenticity property of the garbling scheme.
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• Hybrid4. Same as Hybrid3, except that P2 aborts if all the evaluated circuits are not good.

These two hybrids are perfectly indistinguishable except that P2 may abort in Hybrid4 and
not Hybrid3. However, this only happens if A correctly guesses which circuits will end up
as check versus evaluation circuits, which happens with probability 2−ρ.

• Hybrid5. Same as Hybrid4, except that P2 uses P1’s extracted input x to compute and
output g(x, y) instead of evaluating the garbled circuits.

These two hybrids are perfectly indistinguishable because if A tries to cheat in Hybrid5 then
P2 can extract A’s input and just compute g(x, y) locally and otherwise P2 retrieves g(x, y)
by evaluating the garbled circuits.

As Hybrid5 is the same as the ideal world protocol, this completes the proof for a malicious P1.
�

Malicious P2. Suppose adversary A corrupts P2. We construct a simulator S as follows.

1. S invokes A on its input.

2. If S receives (input,⊥) from F2pc, then S sends ⊥ to A and outputs whatever A outputs.

3. S acts as an honest P1 would, using 0n1 as P1’s input, until Step 7, at which point S commits
to a random value.

4. S continues to act as an honest P2 would, where in Step 8 it opens the garbled circuit sent by
A and learns the one-bit output-wire label Z1. If S fails to open the garbled circuit, it sends
⊥ to F2pc and outputs whatever A outputs. Otherwise, it equivocates on its previously sent
commitment to make the committed value equal to Z1.

5. In Step 9, if A sends ⊥ then S sends ⊥ to F2pc and outputs whatever A outputs.

6. S extracts y from FhcOT and proceeds to act as an honest P1 would until Step 13. Here, if
f2(y) = 0 then S sends (input,⊥) to F2pc, outputting whatever A outputs.

7. S continues to act as an honest P1 would until Step 17. Here, S extracts A’s choices as to
which circuits are check circuits and which are evaluation circuits. For check circuit j, S
replaces the key kj input to FOT with a random string.

8. In Step 18, S sends (input, ok) to F2pc, receiving (output, z), and proceeds as follows:

• For the check circuits, S constructs them as an honest P1 would.
• For the evaluation circuits, S uses fresh randomness to generate everything related to

the garbling and garbles a circuit with fixed output z. It also replaces the input wire
label PRFri,1−yi (j), where yi denotes the ith input of P2, with a random wire label,
the commitment Com(uj,i,1−yi) values with commitments to zeros, and the encryption
EncZi,1−zi (Kj,i,1−zi), where zi denotes the ith output, with an encryption to zeros.

9. S outputs whatever A outputs.
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We now prove that the view of A is computationally indistinguishable in the real and ideal worlds.
We do so by a series of hybrid experiments.

• Hybrid1. Same as the real execution.

• Hybrid2. Same as Hybrid1, except P1 equivocates on the commitment it sends to P2 in
Step 7 to be the output of GCf1 .

These two hybrids are computationally indistinguishable based on the security of the equivocal
commitment scheme.

• Hybrid3. Same as Hybrid2, except that in Step 14 P1 aborts if f2(y) = 0.

These two hybrids are computationally indistinguishable based on the authenticity property
of the garbled circuit.

• Hybrid4. Same as Hybrid3, except that P1 replaces the kj values for the check circuits with
random values and generates the evaluation circuits using fresh randomness.

These two hybrids are perfectly indistinguishable in the FOT-hybrid model.

• Hybrid5. Same as Hybrid4, except that P1 uses 0n1 as its input to the check circuits.

These two hybrids are computationally indistinguishable by the security of the encryption
scheme.

• Hybrid6. Same as Hybrid5, except that P1 replaces the commitments of uj,i,1−yi with
commitments to zeros in the evaluation circuits.

These two hybrids are computationally indistinguishable by the security of the commitment
scheme.

• Hybrid7. Same as Hybrid6, except that P1 uses the output z of F2pc to construct fake
garbled circuits with fixed output z for all evaluation circuits.

These two hybrids are computationally indistinguishable by the security of the garbling
scheme.

• Hybrid8. Same as Hybrid7, except that P1 replaces the output encryptions for all output
bits that do not correspond to z with encryptions of zero.

These two hybrids are computationally indistinguishable by the security of the encryption
scheme.

• Hybrid9. Same as Hybrid8, except that P1 replaces its input with 0n1 in the evaluation
circuits and input commitments.

These two hybrids are computationally indistinguishable by the security of the ElGamal
commitment scheme.
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• Hybrid10. Same as Hybrid9, except that P1 replaces the input-wire labels for P2’s input
that do not correspond to y with random strings.

These two hybrids are computationally indistinguishable by the security of the PRF. Namely,
if A can distinguish between the random strings and the correctly computed wire labels it
can break the security of the PRF.

As Hybrid10 is the same as the ideal world protocol, this completes the proof for a malicious P2.
�

4 Protocol Optimizations

We begin by noting a couple of immediate optimizations to our protocol. First off, assuming the
random oracle model, we can instantiate all the commitment operations with a hash function. We
also note that we can use privacy-free garbled circuits [FNO15] with the “half gate” optimiza-
tion [ZRE15] for the garbling of f1 and f2, taking only one ciphertext per non-free gate. Finally,
the ZKPoK that P1 knows some w such that h = gw can be efficiently implemented using a Schnorr
protocol [Sch90].

As our protocol requires public key operations for both P1’s and P2’s inputs, we consider
optimizations to reduce the number of exponentiations required. First off, when P1 computes
values of the form gsht in EGCommit and the protocol for FhcOT, only one exponentiation is needed
since P1 knows w such that h = gw and thus can directly compute gs+wt (= gsht). For P2, gsht
can be computed more efficiently using the “Euclidean method” described by de Rooij [de 95]. The
high level idea is to apply the following observation recursively:

gsht = (ghq)shp, q = b t
s
c, p = t mod s.

We also note that for both P1 and P2, most of the exponentiations are fixed-base exponentiations,
which can be computed much more efficiently using pre-computed tables [BGMW93].

We also note that our protocol as written only addresses the situation where all the input bits
are used both in the predicate check stage (i.e., the proofs that f1(x) = 1 and f2(y) = 1) and the
computation stage (i.e., the computation of g(x, y)), which may not always be the case. When only
parts of the input are used in the predicate check or computation stage, we do not need the heavy
machinery we use to ensure input consistency between each party’s input in the two stages.

To be more specific, we consider the input of each party as three parts:

1. Input used only in the predicate check stage (denote these inputs as x1, y1);

2. Inputs used in both the predicate check and computation stages (denote these inputs as
x2, y2);

3. Inputs used only in the computation stage (denote these inputs as x3, y3).

For the first case (i.e., inputs x1 and y1) we can use (standard) committed OT which allows us to
utilize OT extension. For the third case (i.e., inputs x3 and y3), we can handle these as in the work
of Afshar et al. [AMPR14]; see below for details.
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Denote P1’s input by x = (x1‖x2‖x3), P2’s input by y = (y1‖y2‖y3), and the function to be
computed by:

f(x, y) := if f1(x1, x2) and f2(y1, y2) then g(x2, x3, y2, y3) else ⊥.

We can construct a protocol for dealing with this extended case as follows. It is the same as the
protocol described in Section 3 except with the following changes:

1. For input x1, we can skip the input commitment steps (Steps 4–6) and checking step (Step 8).
This allows us to use a committed OT which works with OT extension.

2. For input y1, we can skip the XOR-tree (Step 10) and half-committed OT (Step 12). Instead,
we can use committed OT as above.

3. For inputs x2 and y2, these are handled as in our original protocol.

4. When computing g(·, ·), we use EGCommit to ensure the consistency of x3 among computation
circuits.

5. For input y3 we do not need the XOR-tree, and can instead use committed OT during the
computation stage.

For several real world examples, these extensions lead to important practical improvements; see
Section 5.

5 Evaluation

In this section, we compare our protocol with generic malicious two-party computation protocols
for several example functions to showcase the gains in communication and computation that our
approach gives. In particular, we compare our protocol with the protocol of Afshar et al. [AMPR14],
the most efficient and practical malicious 2PC construction that we are aware of. We refer to
this protocol as the “generic solution” in contrast to our solution which is specifically designed
for the type of functions we consider. We evaluate the improvement based on the speedup of both
computation and communication. We do so by calculating the number of symmetric key operations,
public key operations, and bytes sent by both our protocol and the generic solution. While obviously
a rough approximation of the actual running time of an implementation, we believe this gives a
good benchmark independent of implementation details, computer/network configuration, etc.

While we are aware of more efficient customized protocols for some of the examples discussed
below, these protocols are not as flexible as our approach. For example, it is usually very difficult,
and sometimes even impossible, to change or even just extend a customized protocol to support
secure pre- or post-computation, which in many real-world settings seems necessary. As an example,
consider the following use-case for private set intersection: a dating application would like to
securely compute the intersection of two peoples’ interests, and then give weights to the matched
items in order to compute some expected match percentage. This requires some post-processing on
the matched items, which existing customized protocols are unable to do as they reveal the items
upon completion of the private set intersection protocol.

We assume a computational security parameter of κ = 128 and a statistical security parameter
of ρ = 40. We utilize all known garbled circuit optimizations, including privacy-free garbled
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circuits [FNO15] for computing the predicate checks, the “half-gates” optimization [ZRE15] for
reducing the size of the garbled circuit, elliptic curve cryptography for smaller public key sizes, etc.
If not specified otherwise, we use γ = 1250 as the ratio between the cost of a public key operation
and a symmetric key operation. (As our protocol makes heavy use of public key operations, a smaller
ratio leads directly to better results for our protocol.) This number is derived from estimates using
the Crypto++ benchmark [Cry] and OpenSSL, and while this is of course a rough estimate, we
believe it is reasonably accurate for current systems. Note that we do not separate the cost of,
e.g., fixed-base exponentiations and the exponentiate-and-multiply optimizations as discussed in
Section 4, which in a real implementation would further reduce this ratio.

In what follows we show different examples where input checking improves the performance
of realistic functions. To briefly summarize our findings, we find that in many applications our
improvement is asymptotic, and yields up to about 56× improvement in terms of computation
and 80× improvement in terms of communication. (The exact improvement in concrete running
time will of course be a combination of these two improvements depending on the computational
power of the parties and the network throughput.) Although we discuss signature checks and local
computation separately, they can be used together, which makes the predicate circuit larger and
our result better.

5.1 Signature Checks on Inputs

One of the main applications of our improved protocol is to efficiently check that the input of
each party is correctly signed. As mentioned in the Introduction, the motivation here is that the
malicious security model allows an attacker to carefully choose some fake but consistent input that
helps it learn extra information from the other party, such as by supplying the full universe in a
private set intersection computation to learn the other party’s input. A solution to this problem
using existing protocols is to maliciously compute a functionality that first checks a pre-signed
signature on the input and then computes the original function if and only if the signature is valid.
However, checking a signature within a garbled circuit is extremely expensive, and often more
expensive than the underlying computation itself. Our protocol is particularly beneficial here, as
it reduces the cost of the signature checks by O(ρ) times with only a slight increase in public key
operations required.

In the following, we evaluate our protocol using both “small” and “large” inputs. For computing
the signature verification, we follow the hash-and-sign paradigm and first hash the input to a 512-bit
digest which we verify, and use SHA-256 as the underlying hash function.

Signature checks for “small” inputs. Suppose both parties have 5000 bits of input and P1
also has a signature on its input. The parties would like to compute a circuit with ten million
(non-free) gates if P1’s input is correctly signed.2

In Figure 5.1, we show the improvement of this setting for various sizes of the predicate circuit,
from 106 to 1012. Particularly, we highlight three special cases, where the size of the predicate
circuit corresponds to signature verification using either RSA 512, RSA 1024, or RSA 2048.3 We
obtained the sizes for these circuits using an existing circuit compiler work [KMsB13]. As we can
see in Figure 5.1, for RSA 512 we are able to achieve an improvement of about 40× for computation

2We use a computation circuit with ten million gates to be able to cover many practical circuits. Using a
computation circuit with smaller size only benefits our comparison.

3We use an RSA-based signature scheme because this is the only signature scheme with known circuit sizes.
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Figure 5.1: Varying the predicate circuit size. We fix the input size of each party to 5000 bits
and the size of computation circuit g(·, ·) to ten million gates, and vary the size of the predicate
circuit for party P1. We use two ratios, γ = 125 and γ = 1250, for the public-key to symmetric-
key cost. The curves represent the communication and computation improvement of our protocol
compared to the generic protocol by Afshar et al., with the vertical lines denoting the sizes of the
circuits for RSA 512, RSA 1024 and RSA 2048.

and 50× for communication. For a large enough predicate circuit, such as when using RSA 2048,
we are able to achieve up to about 56× speedup in computation and up to about 80× speedup in
communication.

Note that these numbers agree with what we would expect asymptotically. Let |C| be the
size of the predicate circuit. The protocol by Afshar et al. [AMPR14] needs to perform 40 · 4 ·
|C| + 20 · 4 · |C| + 20 · 2 · |C| = 280|C| symmetric key operations (to garble and evaluate the
circuits), and send 40 · 2 · |C| = 80|C|κ bits. On the other hand, our protocol only need to perform
2|C|+2|C|+|C| = 5|C| symmetric key operations and send |C|κ bits when using privacy-free garbled
circuits and the “half-gates” optimization. Thus, the asymptotic improvement is 280/5 = 56 for
computation and 80/1 = 80 for communication when calculating the predicate circuit on its own.
Thus, when the predicate circuit is much larger than the computation circuit, these cost dominate
the overall cost and the asymptotic bound is reached.

Signature checks for “large” inputs. In Figure 5.2, we consider a similar situation as above,
but here we vary the input size of P1’s input, using RSA 2048 as the signature scheme. In Figure 5.2a
the computation circuit is of size N for N bit input, while in Figure 5.2b the computation circuit
size is N logN .

We can see that the improvement is about 80 for communication and about 56 for computation
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(a) N sized computation circuit
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(b) N logN sized computation circuit

Figure 5.2: Varying the input size. We fix the predicate circuit to be RSA 2048 and vary P1’s
input length N from 103–1012 bits, with the size of the computation circuit based on the input size.
The left graph presents the speedup versus the generic approach for a computation circuit of size
N , and the right graph presents the speedup versus the generic approach for a computation circuit
of size N logN . We present results for both γ = 125 and γ = 1250 for the ratio of public-key to
symmetric-key costs.

up to around 105 input bits. When the input size becomes more than 107 bits, the improvement for
computation is less than 10×, and the improvement for communication reduces to about 40× for
the linear computation circuit and about 10× for the N logN computation circuit. Note that the
main reason for such a reduction is that as the number of input bits increase the cost of checking
the signature becomes amortized away, in which case our improvement becomes less significant.

Note however, that (1) in both cases, our protocol never performs worse than that of Afshar et
al. [AMPR14] in terms of computation and improves 10–40× in terms of communication, and (2)
the reduction in the improvement only happens when the number of input bits is huge (about ten
million).

5.2 Enforcing Correct Local Computation

Using local computation to reduce the cost of 2PC in the semi-honest model has been used in several
existing works [HEK12, WHZ+15, etc.]. Our protocol is able to provide some of these same benefits
in the malicious model. Suppose two parties want to compute f(x, y), which can be represented as
h3(h1(x), h2(y)), for some functions h1(·), h2(·), and h3(·, ·). In the semi-honest setting, we let the
parties compute h1(x) and h2(y) locally and then jointly perform a semi-honest secure computation
on h3(·, ·). Here, the bottleneck is now computing h3(·, ·), as the other computations are all local.
However, in the malicious setting, the advantage of local computation is completely lost: the result
of the local computation cannot be trusted in the malicious setting. Therefore, a generic malicious
protocol needs to compute a circuit that contains both local computation (h1(·) and h2(·)) and
joint computation (h3(·, ·)).

However, using our protocol, we can view predicate checking as a way to ensure that local
computation is done honestly. That is, the two parties first locally compute H1 = h1(x) and

18



0.0 0.2 0.4 0.6 0.8 1.0
Number of Edits in P1’s Input ×106

0.0

0.2

0.4

0.6

0.8

1.0

N
um

be
r

of
E

di
ts

in
P

2
’s

In
pu

t

×106
[59, 63) [54, 59) [47, 54)

Figure 5.3: Computation improvement for private edit distance approximation. We
vary the input size of each party and fix the ratio of public-key to symmetric-key costs to γ = 1250.
F represents a speedup in the range [59, 63), represents a speedup in the range [54, 59), and ◦
represents a speedup in the range [47, 54).

H2 = h2(y). Then they use H1‖x and H2‖y as their input to the protocol, using predicate functions
f1(H1‖x) := (H1

?= h1(x)) and f2(H2‖y) := (H2
?= h2(y)) and computation function g(x, y) =

h3(H1, H2). This is particularly beneficial when there are more efficient ways of checking that, say,
H1

?= h1(x), than redoing the local computation itself. For example, checking that a list of N
elements is sorted takes O(N) time whereas sorting a list of N elements takes O(N logN) time.

Thus, using our protocol improves over generic malicious 2PC for the following two reasons:

1. We save a factor of O(ρ) on the predicate circuits used to check the local computation.

2. Since x and y are not used in the underlying computation directly, they do do not require
the machinery needed to enforce input consistency. That is, we only need to ensure the
consistency of h1(x) and h2(y), which can be much smaller than the original input (see the
examples below for more details).

We look at three examples of protocols that can be improved using local computation: (1) private
edit distance approximation, (2) solving a linear system, and (3) private set intersection.

Private edit distance approximation. Wang et al. [WHZ+15] designed an algorithm to ap-
proximate the edit distance of two genome sequences in the semi-honest setting. They proposed
several optimizations that minimize the circuit for joint computation. Let N be the number of edits
in the genome compared to the reference genome, and let ε be the relative error we want to achieve
with 2−δ failure probability. During the local computation, each party hashes each edit to either 1
or −1 and sums them up, while the joint computation computes the square of the difference between
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Figure 5.4: Improvement when solving linear systems. This graph shows the speedup in
terms of computation and communication versus the naive approach when solving linear systems,
where we vary P1’s input size and use γ = 125 and γ = 1250 as the ratios of public-key to
symmetric-key costs.

the two sums. In order to achieve the error mentioned above, we need to compute this O( 1
ε2 log 1

δ )
times, each time using a new random hash function. Therefore, local computation is on the order
of O(N/ε2 log 1

δ ), while the joint computation has a circuit of size O( logN
ε2 log 1

δ ). Thus, whereas
the generic solution in the malicious setting has a complexity of O

(
ρκ
(
N
ε2 log 1

δ + logN
ε2 log 1

δ

))
, our

protocol has only O
(
κN
ε2 + ρκ logN

ε2 log 1
δ

)
complexity.

We compare the two protocols for a varying number of genome edits, based on an error rate
of 1% with 95% confidence; see Figure 5.3. Our protocol achieves about 79× communication
improvements for all combinations we tested, therefore we only show the computation improvement.
We achieve a computation improvement up to about 63×, with the exact improvement increasing
as we increase the input size of P1 or P2. Note that the improvement here is greater than the
asymptotic bound of 56× described in Section 5.1 because here both parties do an input check
while in the previous setting only P1 did an input check. Having P2 also do an input check leads
to additional improvements.

Note that our protocol also works for other algorithms with a similar pattern as private edit
distance approximation, such as heavy hitters, quantiles, etc.

Solving a linear system. Suppose P1 holds an invertible matrix A and P2 holds a vector
b. The two parties want to securely solve the linear system Ax = b. A naive solution is to
perform Gaussian elimination obliviously within the secure computation, which requires a circuit
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with O(N3) multiplications. A better solution in the semi-honest setting is to let P1 compute A−1

locally so that the parties only need to perform O(N2) multiplications in the secure computation
portion of the protocol.

When it comes to the malicious setting, we can check that P1 inputs a correct inverse by checking
that A−1A = I. Applying the generic solution gives us a protocol with complexity O(ρκN3) whereas
our protocol achieves a complexity of O(κN3 + ρκN2).

As shown in Figure 5.4, we achieve an improvement of 10× in terms of communication when the
dimension of the matrix is as small as 10. The improvement reaches the theoretical improvement
calculated in Section 5.1 when the dimension increases to about one thousand. The computation
improvement also behaves similarly to the previous example of checking signatures.

Private set intersection. We evaluated private set intersection following the approach of
Huang et al. [HEK12]. Private set intersection has a predicate circuit of size N and a compu-
tation circuit of size O(N logN). We evaluated our protocol on this with input size up to one
million and found a 1.3× improvement in computation and communication. While these gains are
not as great as the order-of-magnitude gains for other functions, we note that a 30% improvement
in running time is still significant.

The main reason for a smaller improvement than the order-of-magnitude improvements we see
in the previous examples is because the predicate circuit is of size N for N input bits while the
computation circuit size is O(N logN). This means that the cost is dominated by the computation
circuit and hence we get smaller gains.
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